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Abstract: Time-tiling is necessary for e�cient execution of iterative stencil computations. But
the usual hyper-rectangular tiles cannot be used because of positive/negative dependence distances
along the stencil's spatial dimensions. Several prior e�orts have addressed this issue. However,
known techniques trade enhanced data reuse for other causes of ine�ciency, such as unbalanced
parallelism, redundant computations, or increased control �ow overhead incompatible with e�cient
GPU execution.
We explore a new path to maximize the e�ectivness of time-tiling on iterative stencil computations.
Our approach is particularly well suited for GPUs. It does not require any redundant computations,
it favors coalesced global-memory access and data reuse in shared-memory/cache, avoids thread
divergence, and extracts a high degree of parallelism. We introduce hybrid hexagonal tiling,
combining hexagonal tile shapes along the time (sequential) dimension and one spatial dimension,
with classical tiling for other spatial dimensions. An hexagonal tile shape simultaneously enable
parallel tile execution and reuse along the time dimension. Experimental results demonstrate
signi�cant performance improvements over existing stencil compilers.

Key-words: polyhedral model, GPGPU, CUDA, code generation, compilers, loop transforma-
tions, time tiling, stencil
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Les promesses du partitionnement hybride
hexagonal/classique pour GPU

Résumé : Le partitionnement temporel est indispensable pour l'exécution e�cace de stencils
itératifs. En revanche les tuiles hyper-parallélépipédiques usuelles ne sont pas applicables en
raison du mélange de dépendances en avant et en arrière suivant les dimensions spatiales du
stencil. Plusieurs études ont été consacrées à ce problème. Pourtant, les techniques connues
tendent à échanger une meilleure réutilisation des données contre d'autres sources d'ine�cacité,
telles que le déséquilibre du parallélisme, des calculs redondants, ou un surcoût induit par la
complexité du �ot de contrôle incompatible avec l'exécution sur GPU.

Nous explorons une autre voie pour maximiser l'e�cacité du partitionnement temporel sur des
stencils itératifs. Notre approche est particulièrement bien adaptée aux GPUs. Elle n'induit pas
de calculs redondants, favorise l'agglomération des accès à la mémoire globale et la réutilisation
de données dans les mémoires locales ou caches, tout en évitant la divergence de threads et en
exposant un degré élevé de parallélisme. Nous proposons le partitionnement hybride hexagonal,
qui repose sur des tuiles hexagonales selon la dimension temporelle (séquentielle) et une dimension
spatiale, combinées avec un partitionnement classique selon les autres dimensions spatiales. La
forme de tuile hexagonale autorise l'expression de parallélisme entre tuiles et la réutilisation selon
la dimension temporelle. Nos résultats expérimentaux mettent en évidence des améliorations
sensibles de performance par rapport aux compilateurs spécialisés dans l'optimisation de stencils.

Mots-clés : modèle polyédrique, GPGPU, CUDA, génération de code, compilateurs, transfor-
mations de boucles, partitionnement temporel, stencil
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4 Grosser et al.

1 Introduction

Tiling is a critical loop transformation to enable the e�ective exploitation of data locality in
computations. With the growing divergence between combined computational rates of cores on a
chip and the aggregate bandwidth to o�-chip memory, the grouping of operations in the iteration
space into tiles of contiguous operations that exhibit reuse is a fundamentally important technique
to reduce the amount of o�-chip memory transfer. There has been a long history of e�orts to
develop compiler algorithms to perform tiling [9, 20, 3]. Several publicly available research
compilers exist that implement advanced tiling transformations for a�ne loops [18, 1, 3, 10, 11],
and some of them [18, 1] also perform automatic parallelization of sequential code to parallel
code on GPUs.

Despite signi�cant compiler advances in tiling, it still is a challenging problem to perform
e�ective tiling of stencil computations for GPUs. Stencil computations involve the repeated
updating of values associated with points on a multi-dimensional grid, using only the values at a
set of neighboring points. Stencils represent an important computational pattern used in scienti�c
applications in many domains including computational electromagnetism [13], solution of PDEs
using �nite di�erence or �nite volume discretization [12], and image processing. While stencil
computations manifest signi�cant amounts of parallelism at each time step across the spatial
domain, the challenge is to avoid being memory-bandwidth bound because the spatial domains
are often much larger than cache capacity. Time-tiling, or blocking of the computations over
multiple time steps for a su�ciently small spatial domain that can �t within cache is essential
to achieving high performance. But simple rectangular tiling over the iteration space is not
feasible since the dependence components along spatial dimensions have negative components.
The �classical� solution to time-tiling of stencil computations is to skew all spatial dimensions
with respect to time, so that all dependence components are positive along all dimensions. But
this inhibits inter tile parallelism [21].

Other approaches to tiling, such as split tiling [7], overlapped tiling [8], and diamond tiling
[2] have been proposed to address the loss of concurrency with standard time-tiling of stencil
computations. However, as elaborated further in the next section, all previously proposed
approaches have drawbacks for GPUs. Achieving high performance on GPUs requires that several
considerations all be satis�ed by the generated tiled stencil code: 1) coalesced data access from
global memory, 2) two-level parallel structure, where e�cient synchronization is feasible only at
the inner (within a thread-block) and high degree of parallelism is desired to e�ectively mask
access latency to global memory, but only moderate level of parallelism is needed at the outer
(across thread blocks, 3) avoidance of thread divergence within thread blocks.

Previously proposed approaches to stencil computations on GPUs, whether manual or assisted
by compiler transformations, su�er from one or more drawbacks, as explained in Sec. 2. In
contrast, in this paper we develop a compiler transformation and code generation strategy
for stencil execution on GPUs, which addresses all the above requirements, without resorting
to execution of any redundant or unnecessary computations. The paper makes the following
contributions:

� It develops a novel hybrid hexagonal/standard tiling approach that achieves adequate
thread-level parallelism, while fully avoiding thread divergence.

� Unlike other specialized stencil compilers, the developed compiler algorithms for stencil
optimization can be integrated into general polyhedral frameworks, and are being incorpo-
rated into the publicly distributed ppcg polyhedral tool.

� Experimental performance data are provided on a number of stencil benchmarks demon-
strating consistent superiority over all existing GPU stencil compilers on 2D stencils, and

Inria
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comparable performance with the best on 3D stencils. Our stencil compiler is also the only
one generating correct GPU code for important multi-statement stencils like FDTD.

The paper is organized as follows. In Sec. 2, we elaborate on the challenges of tiling stencils
for GPUs, pointing out the limitations of previously proposed approaches. Sec. 3 presents
the compilation algorithm and proof of correctness. Sec. 4 explores important code generation
issues pertinent to optimizing for GPU execution. Sec. 5 discusses related work on tiling and
optimization of stencils on GPUs. Sec. 6 presents experimental results, and we conclude in Sec. 7.

2 Analysis

A cleverly chosen tiling scheme must navigate through a host of constraints. At the core,
unrolled inner loops must be carefully specialized to avoid control �ow and cumbersome address
computations, exploiting register reuse and relying on shared memory as e�ciently as possible.
Only then, such highly optimized building blocks can be tiled at higher levels of the memory
hierarchy and distributed over the whole parallel architecture. Figure 1 shows a 2D Jacobi
stencil in source form, and Figure 2 show the core of the PTX code, as generated by our tool
and extracted from the CUDA compiler. This highly tuned block is free of control �ow, performs
only 3 shared memory loads and 1 store for 5 compute instructions, no global memory access,
and 2 out of the 5 values in �ight are being reused in registers across sequential time steps.

for (t=0; t < T; t++)
for (i=1; i < N-1; i++)
#pragma ivdep
for (j=1; j < N-1; j++)
A[(t+1)%2][i][j] = 0.2f * (A[t%2][i][j] +

A[t%2][i+1][j] + A[t%2][i-1][j] +
A[t%2][i][j+1] + A[t%2][i][j -1]);

Figure 1: Jacobi 2D stencil

ld.shared.f32 %f361 , [%rd10 +8200];
add.f32 %f362 , %f353 , %f361;
add.f32 %f363 , %f362 , %f345;
ld.shared.f32 %f364 , [%rd10 +7656];
add.f32 %f365 , %f363 , %f364;
ld.shared.f32 %f366 , [%rd10 +7648];
add.f32 %f367 , %f365 , %f366;
mul.f32 %f368 , %f367 , 0f3E4CCCCD;
st.shared.f32 [%rd10 +1624] , %f368;

Figure 2: Generated PTX (CUDA bytecode)

Generating such optimized core loops and thread code gets even more complicated for higher-
dimensional stencils. Let us review some of the pitfalls and limitations of state-of-the art methods,
before we introduce our new approach to the conciliation of all important constraints.

Split the wrong dimensions → divergence Tiling on a GPU is exposes coarse-grained
parallelism exploited as thread blocks, and it is also essential to control shared memory usage.
Previous automated techniques did not use speci�c heuristics to address these two di�erent
goals: we claim that both should be addressed separately and with dedicated tiling strategies.
Speci�cally, we use hexagonal tiling to expose parallelism, but classical tiling to bound the memory
size of the kernels. In addition, we do not apply hexagonal tiling to the iteration space dimension
carrying contiguous (stride-one) array accesses: this allows for coalesced memory loads. The

RR n° 8339



6 Grosser et al.

tile size for the contiguous access dimension is thus constant over all time steps (parallel tile
boundaries), and choosing it to be a multiple of the warp size avoids any thread divergence in
the core computations.

Overlapped tiling→ wastes shared memory Overlapped tiling [8] seems to be a promising
strategy, as trading in redundant computations to reduce memory accesses is likely to be bene�cial
on devices such as GPUs where individual computations are cheap and memory bandwidth is
commonly a limiting factor. However, it needs to be stressed that overlapped tiling degrades
shared memory usage on GPU kernels, as temporary values must be stored in shared memory
before being atomically committed. Having to allocate additional memory for temporary values
consequently means less iterations can be executed before synchronizing and communicating with
global memory. As the IO/compute ratio improves with larger tile sizes, relying on temporary
values negatively impacts the computation throughput.

Diamond tiling → memory access bottleneck Diamond tiling [2] is a very successful
strategy to enable time-tiling while exploiting parallelism along the main dimensions of the
iteration space. This has load balancing and code quality bene�ts. Our proposal is directly
related to diamond tiling, but introduces two major advances. The �rst one is that diamond
tiles always have a narrow peak. This is not good for GPUs, because the amount of parallelism
at this level is too low to exploit �ne-grain parallelism in kernels, and because accesses to global
memory are too narrow to make e�cient use of the available bandwidth and to hide latency. This
can lead to the weird situation where a computation is memory bound but the available memory
bandwidth is not fully used. Lastly, even though diamond tiling uses identical tile shapes, the
actual integer points may vary in the di�erent tiles. This may induce additional control �ow and
code bloat, when the peaks of the diamonds sometimes fall on an integer point and sometimes
do not.

Data-transfer to compute ratio Finally, the intrinsic IO/Compute ratio of the stencil
algorithm must be considered, measuring its impact on the tile shape and strategy. When
applying di�erent time-tiling strategies to Jacobi-style stencils, di�erences in their IO/Compute
behavior can be observed. Understanding these di�erences and their performance impact on
GPU computations is important. Figure 3 illustrates the behavior of overlapped tiling, split
tiling and diamond tiling on 1 space dimension, for a three point stencil. Setting a bound on
shared memory usage to 3 elements per array (for the sake of the illustration), we maximize
tile sizes while keeping intra-tile computations in shared memory. The light blue and green line
illustrate in the �gure the amount of data that is read in and written out.

For overlapped tiling, as a �rst step all data from one array needs to be communicated
before the computation can begin. The computation phase needs two arrays of 3 elements
each. Overlapped tiling executes 1 unit of actual computation and another unit of redundant
computation. After the whole computation has �nished, 1 unit of data can be written out.
Overall, 4 data elements must be communicated, and 1 redundant computation is required for
each useful computation. This results in an IO/Compute ratio of 4.0.

For split tiling, there are two symmetric cases. In the �rst case one loads 3 data elements
before any computation can begin. But it is then possible to perform 2.25 units of computation.
After the tile has �nished 6 results need to be written back. Overall 9 data elements are
communicated to perform 2.25 computations. This gives an IO/Compute ratio of 4.0. Unlike
overlapped tiling, it is possible to stream data in and out on the �y or to recycle registers and
shared memory rather than having to wait for the completion of the full tile.

Inria
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a) Overlapped b) Split c) Diamond/Hexagonal

IO: 4
Compute: 1
IO/Compute: 4
Redundant: 1

IO: 9
Compute: 2.25
IO/Compute: 4
Redundant: 0

IO: 12
Compute: 4.5
IO/Compute: 2.67
Redundant: 0

Figure 3: IO/Compute ratio w.r.t. tiling strategy

For diamond tiling, 3 loads are again necessary from each of the two arrays, but these allow
to perform 4.5 computations, before writing back 3 values to each of the two arrays. Overall,
12 elements are communicated to perform 4.5 computations. This gives an IO/Compute ratio
of 2.67. Again, data can be streamed in and out on the �y, like split tiling. Hexagonal tiling
behaves the same way, but improves on parallelism and memory transfers.

3 Algorithm

Our approach can be divided into several steps. First, the input program is analyzed statically
and translated into a polyhedral representation. This representation is then canonicalized for
stencil computations. Next, this abstract information allows to derive an execution schedule
that materializes the ordering of iterations in a hybrid hexagonal/classical tiling. Finally, we use
this schedule to parameterize our generic CUDA code generator. After presenting the general
structure we propose non-essential amendments addressing speci�c performance issues. As a last
critical point, we show how to use a parameterized code generation algorithm to achieve very
high code quality.

3.1 Polyhedral Model

The polyhedral model [6] allows for an instance-based analysis of a program by representing its
main features using sets and relations bounded by a�ne constraints. The main constituents of a
polyhedral representation are the iteration domain, the access relations, the dependence relation
and the schedule. The iteration domain contains all the statement instances, where a statement
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8 Grosser et al.

instance L[t, i, j] is represented by the name of the statement L and the values of the surrounding
loop iterators t, i, j (see Figure 1). The access relations map the statement instances to the array
elements read or written by the instance. The schedule de�nes the relative execution order of
the statement instances by mapping them to a single schedule space where the execution order is
determined by the lexicographical order in the schedule space. The dependence relation consists
of those pairs of statement instances such that the second statement instance depends on the
�rst statement instance. This dependence relation can be computed from the iteration domain,
the access relation and a description of the original execution order [5]. A dependence distance
vector is the di�erence in the schedule space between a statement instance and a statement
instance on which it depends.

3.2 Preprocessing

As a �rst step, we extract a polyhedral description from our input C program using pet [19],
compute dependences using isl [17] and transform the polyhedral description into some canonical
form that later simpli�es the construction of the schedule. We currently assume that the input
program consists of an outer loop containing k ≥ 1 perfectly nested loop nests such that none of
the loops in these loop nests carry any dependences. That is, all dependences are either carried
by the outer loop or connect instances from di�erent loop nests. If these conditions are met, then
we construct a schedule of the form Li[t, s0, . . . , sn] → [k · t + i, s0, . . . , sn], where i satisfying
0 ≤ i < k re�ects the order in which the loop nests appear inside the outer loop. If the loop
nests have di�erent nesting depths, then they are currently manually aligned. In the constructed
schedule, all dependences are carried by the outer dimension k · t+ i, meaning that the remaining
dimensions si are fully parallel.

More generally, we could use a general purpose optimizer such as Pluto [3] to construct such
an initial schedule (i.e., one with a single outer sequential dimension followed by only parallel
dimension). This would allow us to consider more general inputs, but is left for future work.

The hybrid tiling of Section 3.5 is applied on top of the initial schedule. This tiling consists
of a hexagonal tiling along the time and the �rst space dimension as well as classical tiling along
the inner dimensions. We �rst describe the hexagonal and the classical tiling individually and
then show how they are combined into a hybrid tiling.

3.3 Hexagonal tiling

We calculate a hexagonal tiling from a two dimensional initial schedule space P = [t, s0] and a
set of dependences D ⊆ P × P . We �rst describe the constraints we impose on the input data.
Having conforming input data, we then derive the tiling by constructing the hexagonal tile shape
and consequently calculating a schedule that implements the tiling. Finally, we show that the
constructed tiling is correct and that it allows the parallel execution of the inner tile dimension.

3.3.1 Constraints on input

We require that the lexicographic order of the iterations in P is a valid schedule and that all
dependences in D are such that t, the outer dimension of the index space, carries all dependences.
As a result, the inner dimension s0 is fully parallel. Finally, we assume that the dependence
distances in the s0-direction are bounded by a �xed constant times the dependence distance in
the t-direction, both from above and below. Essentially, this assumption corresponds to the fact
that we are dealing with a stencil computation.

Inria



Hybrid Tiling for GPU 9

3.3.2 The hexagonal tile shape

To derive the tile shape of our hexagonal tiling we calculate two valid tiling hyperplanes from
our dependences and use those hyperplanes to construct a tile shape for a given height h and
width w0. We illustrate the process on a slightly contrived example that computes

A[t][i] = f(A[t-2][i-2], A[t-1][i+2]);

∆ t
∆ s0δ0 δ1

Figure 4: Opposite dependence cone

h

1

w0

⌊
δ0h

⌋
1w0

⌊
δ1h

⌋
1 w0

t

s0

Figure 5: A hexagonal tile

We derive the tiling hyperplanes from the given dependences. We �rst compute the set
of dependence distance vectors. In the example, we have { (1,−2); (2, 2) }, meaning that the
statement instances that directly depend on a given statement instance are executed in the
original schedule at an o�set (∆ t,∆ s0) = (1,−2) or (2, 2). Conversely, the opposites of these
distance vectors are the o�sets of statement instances on which the current statement instance
directly depends. The cone generated by these opposite distance vectors is an over-approximation
of the set of o�sets of statement instances on which the current statement instance depends
directly or indirectly. This cone (for the example) is shown as the red area in Figure 4. As we
required the input to have strictly positive dependence distances in the �rst dimension, the cone
lies entirely in the negative ∆ t half-space. Furthermore, because of our requirement of bounded
distances in the s0-direction, we can compute constants δ0 and δ1 such that ∆ s0 ≤ δ0∆ t (or,
equivalently, −∆ s0 ≥ δ0(−∆ t)) and ∆ s0 ≥ −δ1∆ t. These constants can be computed through
the solution of an LP-problem. Figure 4 shows the points (−1,−δ0) and (−1, δ1) in blue and the
cone generated by these two points in red.
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10 Grosser et al.

The basic idea is now that a tile will compute one or more s0-instances at a given time
step t together with all the instances on which it depends, except those that have already been
computed by previous tiles. We therefore take w0+1 instances at a given time step and construct
a truncated cone that contains all the instances on which these selected instances depend by
taking the union of the opposite dependence cones (the red cone from Figure 4) shifted to each
of these instances. Figure 5 shows three such truncated cones in red, bounded by dashed lines.
The blue tile shape is the result of subtracting these three truncated cones from the truncated
cone bounded by solid lines. The o�sets of the truncated cone have been carefully selected such
that the entire space can be tiled using a single shape. In particular, the truncated cone on the
left has o�set (−h−1,−w0−1−

⌊
δ0h
⌋
), the cone on the right has o�set (−h−1, w0 + 1 +

⌊
δ1h
⌋
)

and the cone on the bottom has o�set (−2h − 2,
⌊
δ1h
⌋
−
⌊
δ0h
⌋
). The tiling is shown in dotted

lines. In the �gure, w0 = 3 and h = 2. If there are multiple statements in the kernel, then
choosing h such that h + 1 is a multiple of the number of statements ensures that each tile
starts with the same statement. To ensure that the result of the subtraction is a convex shape,
the width w0 has to be large enough. This is illustrated by the large brown dependence vector
in Figure 5. If w0 were equal to 1, then the result of the subtraction would contain an extra
component to the right of the right truncated cone. Such extra components can be avoided by
imposing

w0 ≥ max
(
δ0 +

{
δ0h
}
, δ1 +

{
δ1h
})
− 1, (1)

with {x} the fractional part of x, i.e., {x} = x − bxc. In the example, we have w0 ≥ 1. The
correctness of (1) will be shown in Section 3.3.3

3.3.3 The schedule for hexagonal tiling

t

s0

Figure 6: Hexagonal tiling pattern

The schedule of our hexagonal tiling maps the two iteration space dimensions [t, s0] into a
three dimensional tile space [T, p, S0]. The schedule alternates between two phases, 0 and 1. In
particular, within each time tile T , the schedule �rst executes the blue tiles of Figure 6 (phase
0) and then the green tiles (phase 1). The tiles that belong to the same time tile and the same

Inria



Hybrid Tiling for GPU 11

phase are indexed by S0 and can be executed in parallel. For phase 0, we have

T = b(t+ h+ 1)/(2h+ 2)c (2)

S0 =

⌊
s0 +

⌊
δ1h
⌋

+ w0 + 1 + T
(⌊
δ1h
⌋
−
⌊
δ0h
⌋)

2w0 + 2 + bδ0hc+ bδ1hc

⌋
, (3)

while for phase 1, we have

T = bt/(2h+ 2)c (4)

S0 =

⌊
s0 + T

(⌊
δ1h
⌋
−
⌊
δ0h
⌋)

2w0 + 2 + bδ0hc+ bδ1hc

⌋
. (5)

The di�erence in the numerator of expression for T ensures that the blue tiles belong to the same
T -tile as the green tiles that have the same and greater t coordinates. Within this T -tile, the
blue tiles are then executed before the green tiles. The other o�sets are required to make all the
tiles line up.

The (T, S0)-coordinates refer to the boxes in Figure 6, the solid boxes for phase 0 and the
dotted boxed for phase 1. To ensure that each (t, s0) is only executed once, we only execute
parts of these overlapping boxes. In particular, we execute the blue tile in each solid box and the
green tile in each dotted box. To describe the hexagons, we use local coordinates (a, b) within
each box. For example, for the green tiles, we have

a = t mod (2h+ 2)

b = s0 + T
(⌊
δ1h
⌋
−
⌊
δ0h
⌋)

mod
(
2w0 + 2 +

⌊
δ0h
⌋

+
⌊
δ1h
⌋)
.

Using these local coordinates, the constraint of the top of the hexagons can be derived directly
from the constraints of the opposite dependence cone. In particular, we have

δ0a− b ≤ (2h+ 1)δ0 −
⌊
δ0h
⌋

(6)

a ≤ 2h+ 1 (7)

δ1a+ b ≤ (2h+ 1)δ1 +
⌊
δ0h
⌋

+ w0. (8)

The remaining constraints are obtained from subtracting the earlier truncated cones. Let (a′, b′)
be the local coordinates in the box at o�set (−h− 1,−w0 − 1−

⌊
δ0h
⌋
), i.e., a′ = a+ h+ 1 and

b′ = b + w0 + 1 +
⌊
δ0h
⌋
. When subtracting the truncated cone associated to this box, we need

to add the negation of the constraint

δ1a′ + b′ ≤ (2h+ 1)δ1 +
⌊
δ0h
⌋

+ w0, (9)

i.e.,
δ1a+ b ≤ hδ1 − 1.

Let d1 be the denominator of δ1. The negation of this constraint can then be written as

δ1a+ b ≥ hδ1 − d1 − 1

d1
. (10)

In principle, we now also need to consider other pieces of the di�erence that satisfy (9), but that
do not satisfy one of the other two constraints. Because of the vertical position of truncated
cone we are subtracting it is impossible for there to be any integer points that lie in the original
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truncated cone, satisfy (9) and do not satisfy a′ ≤ 2h+ 1. To verify that there can be no points
in the current truncated cone that do not satisfy the constraint

δ0a′ − b′ ≤ (2h+ 1)δ0 −
⌊
δ0h
⌋
, (11)

we again rewrite the constraint in terms of the current local coordinates and obtain

δ0a− b ≤ (2h+ 1)δ0 −
⌊
δ0h
⌋

+ w0 + 1 +
⌊
δ0h
⌋
− δ0(h+ 1).

Due to our choice of w0 in (1), we have w0 − δ0 −
{
δ0h
}

+ 1 ≥ 0, meaning that (11) is implied
by the corresponding constraint on the original truncated cone.

The truncated cone at o�set (−h− 1, w0 + 1 +
⌊
δ1h
⌋
) similarly yields the constraint

δ0a− b ≥ δ0h−
⌊
δ0h
⌋
− w0 −

⌊
δ1h
⌋
− d0 − 1

d0
, (12)

with d0 the denominator of δ0. Finally, the box at o�set (−2h − 2,
⌊
δ1h
⌋
−
⌊
δ0h
⌋
) yields the

constraint

a ≥ 0. (13)

3.4 Classical tiling

In the remaining spatial dimensions, we apply a more traditional tiling. This means that we lose
parallelism along these dimensions, but it allows us to reduce the working set within each tile.
These additional tilings are performed on each spatial dimension si with i ∈ [1, n] separately.
As in the case of hexagonal tiling (see Figure 4), we �rst need to consider the projection of the
dependence cone onto the time dimension and the given spatial dimension. However, in this case
we only need to consider dependences on statement instances with higher values for the spatial
dimension. This means that we only need to compute δ1i and that therefore the dependence
distance in the spatial dimension only needs to be bounded in terms of the distance in the time
dimension from below. The tile shape for these tilings is a parallelogram with sides that are
parallel to the corresponding side of the opposite dependence cone. Since this tiling needs to be
combined with the hexagonal tiling, the height of these tiles is equal to 2h + 2. The width can
be independently chosen as wi. In sum, the corresponding tile dimension is given by

Si =
⌊
(si + δ1i t

′)/wi

⌋
, (14)

where t′ is a normalized version of t that ensures that the starting positions of the tiles in the
spatial direction are the same for all time tiles and for both phases. That is, we set

t′ = (t+ h+ 1) mod (2h+ 2) for phase 0 and (15)

t′ = t mod (2h+ 2) for phase 1. (16)

The above normalization is bene�cial in two ways. First, the generated code is simpler because
the o�set is a constant instead of an expression that needs to be (re)calculated at each time tile
step. Secondly, constant o�sets make it easier to align the load instructions that fetch data
from global to local memory. This is because the location and alignment of the load instructions
directly depends on the position of the individual tiles.
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3.5 The hybrid tiling

The �nal hybrid tiling is a combination of the hexagonal tiling of Section 3.3 and the classical
tiling of Section 3.4. This tiling is of the form

[t, s0, s1, . . .]→ [T, p, S0, S1, . . . , t, s0, s1, . . .],

with tile dimensions de�ned by (2), p = 0, (3) (for S0), (14) (for Si with i ≥ 1) and (15) for
phase 0 and by (4), p = 1, (5), (14) and (16) for phase 1. Each phase is only applied to the subset
of the domain that satis�es the conditions (6), (8), (10) and (12) in the local coordinates of the
rectangular tile de�ned by (T, p, S0). The constraints (7) and (13) are automatically satis�ed for
all points in the rectangular tile. As an example, Figure 7 shows the phase-0 part of a hybrid
tiling where are δs are equal to 1.

[t, s0, s1, . . . , sn]→ [T, 0, S0, S1, . . . Sn, t, s0, s1, . . . , sn] :

∃a, b : a = (t+ h+ 1) mod (2h+ 2) ∧
b = (s0 + h+ 1 + w0) mod (2h+ 2 + 2w0) ∧
a− b ≤ h+ 1 ∧ a+ b ≤ 3h+ 1 + w0 ∧
a+ b ≥ h ∧ a− b ≥ −w0 − h ∧
T = b(t+ h+ 1)/(2h+ 2)c ∧
S0 = b(s0 + h+ 1 + w0)/(2h+ 2 + 2w0)c ∧
S1 = b(s1 + ((t+ h+ 1) mod (2h+ 2)))/w1c ∧

.

.

.

Sn = b(sn + ((t+ h+ 1) mod (2h+ 2)))/wnc

Figure 7: n-dimensional hybrid tile schedule for ±1 dependence distances

The schedule is parameterized with the values h, w0, . . .wn. h allows to adjust the distance
between two subsequent tiles on the time dimension, and the di�erent values wi de�ne the
distance between subsequent tiles along the space dimensions si. For dimensions si with i ≥ 1
the parameter wi gives the exact width along this dimension, whereas for the dimension s0 the
value of parameter w0 only gives the minimal width. The maximal tile width along this dimension
may increase depending on the current time step.

4 Code Generation

To generate GPU code, we use the generic CUDA code generator from ppcg, feeding it with
additional information to exploit the structure of the hybrid tiled iteration space. We start
by providing ppcg the hybrid schedule as well as some essential information to generate tiled
GPU code. As a next step we drive ppcg into moving most of the core computation into shared
memory.

4.1 Generating CUDA code

Our tool uses the previously generated hybrid schedule to create CUDA code by mapping the
schedule's output dimensions [T, p, S0, S1, . . . , t, s0, s1] to nested loops in the generated code. The
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T dimension is mapped to the host code, where it takes the form of a for loop repeatedly iterating
over two CUDA kernels. One for p equals one, the other for p equals two. For each kernel call the
dimension S0 is mapped to a one dimensional grid of thread blocks that are executed in parallel.
In case dimension S0 has more elements than there are thread blocks supported by CUDA, the
individual thread blocks execute multiple elements of S0. Figure 8 presents the host code that
is generated for a simple 2D kernel.

for (T = 0; T <= 132; T += 1) {
{

dim3 dBlock (64, 2);
dim3 dGrid (93);
kernel0 <<<dGrid , dBlock >>>(dev_A , T);

}
{

dim3 dBlock (64, 2);
dim3 dGrid (94);
kernel1 <<<dGrid , dBlock >>>(dev_A , T);

}
}

Figure 8: The CUDA host code

The remaining dimensions [S1, . . . , Sn, t, s0, . . . , sn] are code generated within each kernel.
The dimensions [S1, . . . , Sn, t] are code generated as sequential loops. As the dimensions
[s0, . . . , sn] are fully parallel they can be mapped to di�erent CUDA thread dimensions. In
case there are more parallel dimensions than there are CUDA thread dimensions, the outer
dimensions will be enumerated sequentially. To ensure all iterations of a dimension are executed
even though there may be more iterations than threads in a thread block, additional iterations
are assigned to threads in a cyclic way: iteration i is mapped to thread i mod Ti with Ti being
the number of threads used for dimension i. The sequential execution of subsequent time steps is
ensured by generating a synchronization call at the end of each iteration of the sequential loops.
Figure 9 shows the CUDA code generated for the jacobi 2D kernel shown in Figure 1 using two
threads along the s0 dimension and 64 threads along the s1 dimension.

b0 = blockIdx.x;
t0 = threadIdx.y, t1 = threadIdx.x;

for (S1 = 1; S1 <= 14; S1 += 1)
for (t = 6 * T; t <= 6 * T + 5; t += 1) {

for (s0 = max(-((t0 + t) % 2) + 22 * b0 -
6 * T + t - 4,

-((t0 + t + 1) % 2) +
22 * b0 + 6 * T - t + 1);

s0 <= ms0n (22 * b0 - 6 * T + t + 8,
22 * b0 + 6 * T - t + 13);

s0 += 2)
for (s1 = ((t1 - 6 * T + t + 64) % 64) +

6 * T + 128 * S1 - t;
s1 <= 6 * T + 128 * S1 - t + 127;
s1 += 64)

S: A[-(t % 2) + 1][s0][s1] = ...
__syncthreads ();

}

Figure 9: CUDA kernel code for a 2D problem (without border tile conditions)
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4.2 Use of shared memory

We want the generated CUDA code to take advantage of shared memory. One of the core goals
of time tiling is to reduce the number of memory accesses. For CUDA this means we want
to reduce the amount of global memory accesses and instead keep values that are only used
locally in shared memory. This could either be achieved by relying on the automated caches
or by explicitly managing shared memory. In our work we decided to explicitly manage shared
memory.

Our memory management strategy is as follows. We keep all values that are used within
a single tile in shared memory. ppcg allows us to de�ne the loop level up to which data that
is used multiple times should be kept in shared memory. We set this loop level to the last
schedule dimension that enumerates the tiles. ppcg then automatically derives the subset of
global memory on which reuse occurs and which can be placed in shared memory. If there is a
su�cient amount of shared memory ppcg introduces code to copy values from global to shared
memory, ppcg rewrites the memory accesses to point to shared memory and ppcg introduces
code to copy the values back from shared memory to global memory. Figure 10 gives an example
that shows how before each tile all values are copied into shared memory and how after each
tile all values are copied back to global memory. Within a tile, all calculations are performed in
shared memory.

b0 = blockIdx.x;
t0 = threadIdx.y, t1 = threadIdx.x;
__shared__ float shared_A [2][15][135];

for(S1=1;S1 <=14;S1+=1){
for(c0=0;c0 <=1;c0+=1)

for(c1=t0;c1 <=14;c1+=2)
for(c2=t1;c2 <=134; c2+=64)

shared_A[c0][c1][c2]
=A[c0 ][22*b0+c1 -3][128* S1+c2 -6];

for(t=6*h0;t<=6*h0+5;t+=1){
__syncthreads ();
for(s0=max(-((t0+t)%2)+22*b0 -6*T+t-4,

-((t0+t+1)%2)+22* b0+6*T-t+1);
s0 <=ms0n (22*b0 -6*T+t+8, 22*b0+6*T-t+13);
s0 += 2)

for(s1=((t1 -6*T+t+64)%64)+6*T+128*S1 -t;
s1 <=6*T+128*S1 -t+127; s1 += 64)

shared_A[-(t%2)+1][ -22* b0+s0+3][ -128*S1+s1+6] = ...
__syncthreads ();

}
for(c0=0;c0 <=1;c0+=1)

for(c1=-t0+2;c1 <=13;c1+=2)
for(c2=max (((t1-c1 +74)%64)+c1 -10,

((t1 +63)%64)+1) ,
((t1+c1+60)%64) -c1+4);

c2 <=min(c1+130,-c1+144 ,133);
c2+=64)

A[c0][22*b0+c1 -3][128* S1+c2 -6]
=shared_A[c0][c1][c2];

__syncthreads ();
}

Figure 10: CUDA kernel code using shared memory (without border tile conditions)

4.3 Re�nement of the schedule

We would like to present a set of adjustments to the previously presented hybrid schedule which
take advantage of additional knowledge about how our generic CUDA code generator to further
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improve the generated code. The three main changes introduced are: 1) making the o�set of
the tiles invariant to the time dimension, 2) ensure aligned memory loads and 3) avoid modulo
operations in the core computations.

4.3.1 Alignment

We want to ensure that load instructions from global memory are aligned to cache line boundaries.
The location of the data that is loaded from global memory directly depends on the position
of the tiles in space. Speci�cally the o�sets of the tiles along the di�erent space dimensions.
In the previous section we ensured that all these o�sets are independent of the time dimension
T . For the case where the size of the innermost data space dimension is a multiple of the
minimal alignment, and the tile width along the innermost dimension is also a multiple of the
minimal alignment, all loads are either perfectly aligned or none of them is aligned. To ensure
perfect alignment, the schedule is translated such that the tiles are distributed along individual
dimensions, the global memory loads being fully aligned.

To implement this translation, we replace the occurrences of si in the original schedule by
variables s′i, de�ning them as the translation by o�set oi of the original variable si.

4.3.2 Avoiding modulo operations

Another point that needs to be addressed is the occurrence of modulo operations in the array
subscripts of the computational statement. When mapping the di�erent iterations of one of
the inner space dimensions si with i ≥ 1 to the CUDA threads the mapping is cyclic. In the
optimal case where there are exactly as many threads as iterations along a space dimension,
all statement instances are executed in a single line of code without any conditions and with
no thread divergence. However, with the current schedule the access functions of this optimal
statement still require a modulo operation, because it may still happen that the upper part of
the thread group is calculating the lower part of the iteration space. This is because the subset
of the iteration space that is executed along a dimension changes due to the sloped tiles, and the
�rst thread does not always point to the �rst iteration that needs to be executed. By ensuring
that the �rst thread always executes the �rst iteration on a certain dimension, we can avoid the
introduction of modulo operations.

4.4 Stencil speci�c code generation heuristics

During the �nal translation from the polyhedral program representation back to an abstract
syntax tree (AST), domain speci�c knowledge can be used to adapt the performance heuristics
used during code generation time.

For a given input program and tiled schedule, there may be a wide spectrum of code generation
choices. All of these respect the ordering of statement iterations dictated by the schedule, but
they may result in widely di�erent code quality and performance [15]. Polyhedral code generators
regularly need to choose between di�erent ASTs that implement the same behavior. In general
such decisions are taken automatically by some internal heuristics. For the code generator
provided by isl [17] we made it possible to in�uence such decisions on a per statement and per
loop iteration level, such that it is now possible to adapt decisions e.g. to unroll iterations, to
balance between code size and control overhead and even to apply di�erent code generation
strategies for di�erent parts of the program. We used this �exibility to specify code generation
heuristics that are optimal for stencil computations and our speci�c tiling scheme.
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4.4.1 Specialized code for the core computation

To generate optimal code for the core part of the computation we parameterize the code
generation strategy such that specialized code is generated for full tiles and generic code for
the remaining partial tiles.

When generating our schedule we have been especially careful to ensure that the number of
integer points contained in a tile is the same for all tiles in the program and that the o�sets
used to derive the iterations that belong to a tile are constant within a single phase of our tiling
schema. We also made sure that within a core tile, there is no need for conditional execution
that would cause thread divergence. To ensure that the simplicity of the core tiles is maintained
and not lost by the need to handle rarely executed boundary cases we generate specialized code
for the core tiles.

To parameterize the code generation accordingly, we �rst need to compute the set of iterations
that are part of the core computation. For this we use the previously calculated schedule, but
project out the point loops of the tiling. This yields a map that maps elements of the iteration
space to the tile coordinate they are executed in ([t, s0, s1, . . . , sn] → [T, 0, S0, S1, . . . , Sn]). If
we now apply this mapping once on the iteration space itself and once on the complement of
the iteration space, we get a set of tiles that are fully or partially executed as well as a set of
tiles tiles that are partially or not at all executed. Subtracting the latter from the former yields
the set of full tiles. We now provide this set to the polyhedral code generator, which uses it to
check at each loop level if it is legal to introduce specialized code for the core computation. If
this is the case, such specialized code is introduced and protected with the necessary run-time
conditions.

4.4.2 Unrolling for hybrid tiled stencils

Unrolling is often a bene�cial transformation, but it is especially useful for stencil operations
tiled with our hybrid tiling approach. As stated in the previous section, we construct our hybrid
schedule such that the core computation is free of any thread divergence. In fact it does not
require conditional control �ow However, due to the limited amount of shared memory and the
large number of parallel threads, the number of iterations that needs to be executed within a
single thread is relatively low. Hence, we can unroll the point loops within the tile to create
straight code without any conditions. This does not only reduce control, but it also exposes
instruction level parallelism. Furthermore, depending on the tiling parameters chosen, we unroll
neighboring points next to each other such that they can use a single load to get values that are
within the neighborhood of both points.

Note that unrolling is not performed at the AST level, but on the constraint representation
of the kernel. Constraint-based unrolling is necessary to ensure that all conditions can be
specialized or eliminated in the unrolled code, simplifying them according to the context in
which an instruction is unrolled [15].

5 Related Work

Automatic generation of high-performance code for stencil computations has made rapid progress
in the past 2 years. Holewinski's overtile [8] and Grosser's split tiling [7] have set the reference
performance for the automatic generation of e�cient GPU code relying on overlapped and
split tiling, respectively. Patus is a domain-speci�c framework for stencils, driving multiple
compilation strategies with auto-tuning, and targeting both CPUs and GPUs [4].
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On the other hand, ppcg [18], a state-of-the-art parallelizer for CPUs and GPUs, performing
classical (time) tiling with parallel boundaries; ppcg relies on a�ne transformations to extract
parallelism and improve locality, a variant of the Pluto algorithm [3]. Reservoir Labs' R-Stream
is also a reference polyhedral compiler targeting GPUs [10, 16]. Par4All [1] is an open source
parallelizing compiler developed by Silkan targeting multiple architectures. The compiler is not
based on the polyhedral model, but uses abstract interpretation for array regions, performing
powerful interprocedural analysis on the input code.

CPU-only frameworks are also available. Pochoir [14] is a domain-speci�c framework embed-
ded into C++. The diamond tiling algorithm by Bandishti et al. [2] is closely related our approach
while supporting combinations of a�ne transformations such as loop fusion and shifting, which
is important when combining multiple stencils or non-stencil computations. We address the
more constrained problem of generating code for GPUs, and we overcome performance caveats
of diamond tiling through our hybrid, hexagonal/classical scheme, with unique bene�ts on higher
dimensional stencils.

6 Experimental Results

laplacian 2D heat 2D gradient 2D ftdt 2D laplacian 3D heat 3D gradient 3D

ppcg 30.6 46.8 37.3 15.5 11.5 38.0 28.7
Par4All 39.3 49.0 103.6 invalid CUDA 18.2 52.3 75.0
Patus crash crash n/a n/a 20.1 19.6 n/a
Overtile 63.5 60.5 128.0 21.8 41.1 89.0

hybrid 82.5 125.0 140.0 21.6 26.5 43.8 66.7

Table 1: NVIDIA GTX 470

laplacian 2D heat 2D gradient 2D fdtd 2D laplacian 3D heat 3D gradient 3D

ppcg 5.8 8.2 5.6 2.4 1.9 6.7 4.9
Par4All 7.0 7.1 18.9 invalid CUDA 3.1 9.1 14.5
Patus crash crash n/a n/a 3.9 3.2 n/a
Overtile 15.8 13.5 21.2 4.7 8.7 16.9

hybrid 18.6 26.0 25.7 5.3 6.4 9.9 14.5

Table 2: NVS 5200

We evaluate our approach by comparing hybrid hexagonal tiling against Patus [4], overtile [8],
Par4All [1] as well as the unmodi�ed ppcg compiler [18]. We were not able to obtain a license
for comparative evaluation with R-Stream [10].

As benchmarks we use a laplace kernel with two space dimensions, a 2D heat and 2D gradient
stencil as well as a two-dimensional, multi-statement fdtd kernel. We also run a laplace, heat
and gradient kernel each having three space dimensions. For the two-dimensional stencils we
run a data size of 20482 with 512 time steps whereas the three dimensional stencils where run
on a data set with 2563 elements using 128 time steps. We do not use 1D stencils because the
hybrid method boils down to existing hexagonal or split tiling in this case [7]. All calculations
have been performed as float and all timings include the data transfer overhead to and from
the GPU. The experiments were performed on a NVIDIA NVS 5200M mobile GPU as well as a
NVIDIA GeForce GTX 470.

For each tool, we sought to auto tune for the optimal tile sizes for the implemented tiling
schema and a speci�c benchmark. For ppcg, we used the tile sizes found empirically and used
in a prior publication [18]. For Patus and overtile we used the provided autotuner. For Patus
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the auto-tuner was run until it �nished, for overtile we explored around 800 tile sizes for each
benchmark. For our hybrid tiling we manually selected reasonable tile sizes. For Par4All we used
the provided tile size heuristic. All tools where run with default arguments, except for Par4All
we used the �ags -cuda �com-optimization to enable GPU code generation.

Figure 1 gives the results for the GTX 470 and Figure 2 gives the result for the mobile GPU
NVS 5200. As a general-purpose compiler, ppcg is able to create code for all benchmarks, but
does not reach optimal speed. Patus, on the contrary, does always succeed. For the gradient
kernels it does not support the sqrt instruction, whereas it simply throws an exception for the
other 2D kernels.1 Even though Patus supports multiple statements executed at one time point
as well as di�erent stencils executed at di�erent regions of the iteration space, we were not able
to model a multi-statement stencil like fdtd. For the remaining 3D benchmarks, Patus performs
reasonably well on the laplacian 3D benchmark, but not as good on the heat 3D kernel. Except
for one benchmark, Par4All produces reasonably well performing code, even reaching the top
performance for the 3D heat kernel with 52 GFLOPS on the GTX 470. This is quite impressive
for a general-purpose compiler. overtile performs well on 2D kernels. And with gradient 3D,
overtile even produces the fastest kernels of all GPU compilers.

The last row describes our own hybrid tiling compiler. For all 2D kernels, on both the
GTX470 and the NVS 5200, we are able to report notably better performance than all previous
techniques. For the 3D kernels the performance of hybrid tiling is also excellent, but generally
not the best of all approaches. This can be explained when observing that the top performers,
Par4All and overtile, did not use time tiling for 3D stencils. Par4All does not support time
tiling in general, whereas the overtile auto tuner found that time-tiling does not give the best
performance. When the dimension increases, time tiling brings diminishing returns in terms of
data reuse, because much reuse can already been exploited on space dimensions. Similarly, the
extra dimensions expose su�cient amounts of concurrency to saturate the processor, without the
need to leverage one additional (time) dimension to free some space iterations for an increased
parallelism degree. To validate this analysis, we disabled time tiling for our hybrid hexagonal
tiling, and repeated the experiment on 3D stencils. Table 3 shows the results of this experiment
for two data sizes, the original 2563 as well as a larger data size of 3843. In this con�guration,
our tool generates the best code for laplacian 3D, and about the same as the others for heat and
gradient 3D.

GTX 470 2563 3843

laplacian-3d 22.40 33.9
heat-3d 32.3 48.5
gradient-3d 45.0 75.0

NVS5200 2563 3843

laplacian-3d 7.1 7.0
heat-3d 11.7 11.4
gradient-3d 16.6 17.0

Table 3: Space tiling for 3D stencils

7 Conclusion

We presented hexagonal tiling and its combination with classical tiling, a hybrid algorithm
for the automatic parallelization of iterative stencil computations on GPUs. Hexagonal tile

1The crash was reported to the author, but is not yet �xed
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shapes simultaneously enable parallel tile execution and reuse along the time dimension. The
hybrid extension o�ers unprecedented performance on higher dimensional stencils, thanks to
coalesced global-memory accesses, data reuse in shared-memory/cache and registers, avoiding
thread divergence and maximizing the exploitation of concurrency at all levels. Experimental
results demonstrate signi�cant performance improvements over existing stencil compilers. We
plan to combine this domain-speci�c approach with loop transformations for general, non-stencil
codes, integrating the technique in to a polyhedral research compiler.
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