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Wireless sensor networks are of energy-constrainednature, which
calls for energy efficient protocols as a primary design goal. Thus,
minimizing energy consumption is a main challenge. We are
concerned in how collected data by sensors, can be processed
to increase the relevance of certain mass of data and reduce the
overall data traffic. Since sensor nodes are often densely de-
ployed, the data collected by nearby nodes are either redundant
or correlated. One of the great challenges for the aforementioned
problem is to exploit temporal and spatial correlation among the
source nodes. Our work is composed of two main tasks: 1- A
predictive modeling taskthat aims to capture the temporal corre-
lation among collected data. 2- Adata similarity detection task
that measures the data similarity based on the spatial correlation.
Key words:Wireless sensor networks; Time series forecasting; Data ag-
gregation; Data similarity; Redundancy; Spatial correlation; Temporal
correlation;

1 INTRODUCTION

Wireless Sensor Networks have opened up new opportunities in many do-
mains including environmental monitoring, agriculture, industrial, biological
detection (On/In-Body sensor networks), home security andso on.

⋆ email:Alia.Ghaddar@lifl.fr
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A main task of sensor networks is the regular collection and aggregation
of data towards the base station. participating nodes in these networks are
typically battery operated, and thus have access to a limited amount of en-
ergy and processing power. One node, called the leader, collects data from
surrounding nodes and then sends the summarized information to upstream
nodes (many-to-one flows). It happens that some collocated nodes notify the
sink about the same event, at almost the same time and approximately the
same values. This induces a propagation of redundant highlycorrelated data,
which is costly in terms of system performance, and results in energy deple-
tion, network overloading, and congestion. However, important ideas in last
decade arise to lighten the importance of redundancy on dataaccuracy and
sensing reliability in WSNs. Therefore, methodologies to decrease or even
eliminate the redundancy are often needed to make a balance between the
benefits and disadvantages while maintaining the system lifetime in WSNs.
For this purpose, clustering and data aggregation approaches has been ex-
tensively studied [1], since the energy consumption of the network can be
minimized if the amount of data that needs to be transmitted is minimized.

The idea behind data aggregation is to combine the data coming from dif-
ferent sensor nodes en route, eliminating redundancy, minimizing the number
of transmissions and thus saving energy [21]. Many researchers have noted
the importance of data aggregation in sensor networks such as [28]. Basically,
there are two types of data aggregation techniques: Spatialdata aggregation
which aggregates data from different sources and temporal data aggregation
which combines data from different periods of time.

Along with this, the performance of data collection and aggregation in
WSNs can be enhanced by exploiting the data correlations . Sensor nodes
are often densely deployed in sensor network[2], hence the data collected by
nearby sensor nodes are either redundant or correlated. This data correlation
can be exploited to reduce the amount of data transmitted in the network,
resulting in energy savings.

Spatial Correlation occurs when observations from the sensor nodes which
are in close proximity are highly correlated (the degree of correlation depends
upon the distance between nodes). Therefore, information about an event is
captured by many surrounding sensor nodes, which generate alarge amount
of traffic on the wireless channel and consumes a lot of battery energy. Fur-
thermore, the nature of the physical phenomenon constitutes the Temporal
Correlation between each consecutive observation of a sensor node.

In this paper, we propose an estimation-based algorithm to investigate tem-
poral and spatial correlations among data in WSNs to detect redundancy and
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reduce data transmission traffic. Our work is composed of twomain tasks:
A predictive modeling taskand adata similarity detection task. The goal of
a predicting modeling is to build a model that can be used to predict− based
on known examples collected in the past, future values of some phenomena
which will reduce the transmission rate from a sensor node tothe base sta-
tion. This model aims to capture the temporal correlation among collected
data. While the data similarity detection task (relayed on kernel based meth-
ods) measures the similarity between collected data in order to improve the
performance of data collection while preserving data accuracy. The use of
these two tasks produces a considerable accuracy prediction and transmission
rate reduction as we will show later in this paper.

The rest of the paper is structured as follows: Section 2 provides an overview
of time series techniques, describes our prediction model and presents its ef-
ficiency in terms of communication traffic and rate. In Section 3, we present
key concepts on similarity functions. We also propose data similarity detec-
tion algorithm and show its efficiency. Section 5 concludes our paper.

2 FORECASTING TECHNIQUES

To improve the performance of data aggregation, Times series forecasting
was proposed as a means to reduce the amount of communicationbetween
the wireless sensor and the sink. The sink node exploits timeseries model to
predict local readings instead of direct communication with sensors.

Some approaches [27, 19] use AR/ARMA models (AutoRegressive /Au-
toRegressiveMoving Average) [4] contained in both the sinkand each sensor.
Other approaches were based on Kalman filters [20]. Some haveuse rel-
atively complex probabilistic models (e.g., multi-variate Gaussians [10] or
generalized graphical models). Other works were more simpler like [27] in
which the framework relies mostly on local probabilistic models computed
and maintained at each sensor. This model is similar in character to our pre-
diction model, in that each sensor continuously maintains its local model, and
notifies the sink only of significant changes. However, it hasmore heavy-
weight learning phase than our model as we mention later. Recent work
in [19], gives nodes, additional task over environmental monitoring. Every
node, has to calculate an Adaptive-ARMA model (A-ARMA) froma history
of samples to discover the time series correlation between measurements. Al-
though it uses ARMA, the work proposed in [19], is close to ours since it
uses recent readings to predict future local readings. Whena reading is not
properly predicted by the model, the sensor choose to re-learn the model, and
notify the sink by sending new model parameters and a certainnumber of
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recent readings samples. Predictions would then begin again, and continue,
until an error tolerance is violated.

2.1 Modeling time series
A time series is a set of observationsXt, each of which is recorded at time
t, representing a phenomena evolving over time. An importantpart of the
analysis of time series is the description of a suitable uncertainty data model
to predict future values using some recent history of readings. AR/ARMA
models are principal models for time series. Being more simple than ARMA
model due to its lower computational cost and memory requirements, AR
model becomes popular in many domains (such as in finance, communication,
weather forecasting, and a variety of other domains [4]). The time series (AR)
of orderk is represented as follows:

AR(k) : Xi+k = a0 + a1Xi+k−1 + · · · + akXi (1)

wherea1,...,ak are the model parameters,Xt is the time series. The work
in [27] shows that AR models, while simple, still offer excellent accuracy
in sensor networks for monitoring applications, making such models practi-
cal on many current-generation sensor networks. We will adopt this model
due to its simplicity, which leads to lower computational cost and memory
requirements (unlike the fully general ARMA models).

2.2 Our Estimation approach
Motivation

Our prediction model design is motivated by the need to reduce commu-
nication overhead between sensors communicating on one hoppath, in or-
der to increase sensor lifetime and the monitoring operations. Since sensor
nodes are energy-constrainedand they are difficult to replace every time when
consumed: such as implantable body sensors (pacemakers andcardioverter-
defibrillators), disaster or battle field monitoring sensors, etc. Moreover, since
it was indicated by empirical studies [13], that the transmission of one bit over
100 meters would cost about the same level of energy as executing 3000 in-
structions in sensor node. We try to achieve our goals using prediction model
without loosing accuracy by exploring temporal correlation among data.

Prediction Model Overview

Basically, the communication between a sensor and a sink is caused by an er-
ror threshold violation. Regularly, when a sensor collectsa new observation,
it computes the error valuee between this new observation and the predicted
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value from the model. If the prediction error becomes biggerthan some pre-
specified error tolerance, the prediction is not acceptable; Then sensor node
re-computes the parameters of the model from a number of recent samples,
and sends information about the changes to the sink as notification to update
its model. In most cases, the information sent to the sink arethe model pa-
rameters and optionally a list of measures such as in [27] and[19]. In [15],
we proposed two algorithms with a pre-specified error bound.We reduced
the communication overhead by sending only one previous measure (Algo-
rithm 1 denoted byEEE) then a list of recent errors (Algorithm 2 denoted by
EEE+) for more accuracy and energy-saving. We assume having a normal
data series with no anomalous values and we demonstrated theefficiency of
EEE+ algorithm in terms of communication traffic and energy consumption.

Preliminaries
In this part, we rely on cluster-based data aggregation mechanisms in which
each node can reach its corresponding sink (e.g Cluster Head) directly in one-
hop (such as In/On-Body sensors for personal health monitoring,..) and we
assume having a proper routing protocol.

We employ an AR-based model for data prediction. The model iscon-
tained in both: the sink and each source sensor node, to predict values instead
of direct communication. As [26], we ignore the trend and seasonal compo-
nents of the time series and we set a narrow prediction window, denoted by
k = 3 in order to decrease the complexity of learning and adaptingthe model.

The choice of a narrow prediction window is made for two reasons: (1) to
simplify our model similarly to [26, 27], (2) Our experimentresults depicted
in Figure 1 show that a large prediction window does not really increase the
percentage of accepted values. In fact, a too large window means that we take
into account very old information that may have changed, so the algorithm re-
action to change may be too slow. This could explain the deviation in number
of accepted values when the window size increases. This could require more
re-learning phases. Moreover, Figure 2 shows that the percentage error is
limited (∼5%) while changing the prediction window size for this data type.
So typically, we consider a value of 3 a reasonable compromise.

2.3 Predictive modeling task-EEE
∗ algorithm

The prediction task is based on the work presented in [15]. Regularly, when
a sensor collects a new observationNt at timet, it computes the error value
e between this new observation and the predicted valueXt from the model.
If the prediction error becomes bigger than some pre-specified error toler-
anceth (Xt is mispredicted value), the sensorre-learnsthe prediction model
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Influence of the prediction window size on the estimation error usingEEE
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from a number of recent samples, and sends information aboutthe changes
to the sink as notification to update its model. It also generates a new error
prediction bound as follows:

th =

k∑

i=1

(
|Ni − Ni−1|

k
) + rrand (2)

rrand is random value∈ [−cσ√
k

, cσ√
k
] to add some reliability the choice ofth.

We denote byσ the standard deviation of the differences between the latest
data samplesNi. c indicates the level of uncertainty (for a confidence interval
of 95% we choosec = 1.96). The prediction would then begin again and
continue until the new error prediction bound is violated.

2.4 Our prediction model Efficiency
Performance of the models is statistically evaluated in a panel of different
tables such as Data point statistics (RMSE, correlation coefficient,..), Relative
error statistics (Mean value of the relative error,..) and others. To evaluate the
performance in estimation of our model and AR/ARMA models, we use the
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relative error measure between the real values and the estimated ones, the
residual values and the correlation coefficient.
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Prediction Accuracy

Information about the absolute error is little use in the absence of knowledge
about the magnitude of the quantity to be measured. So, in order to deter-
mine if the estimation error produced is too high or acceptedaccording to the
dynamic threshold change, we choose to use the relative error between the
estimated and the real values, as follows:Ni−Xi

Ni
. Figure 3, shows the relative

error obtained usingEEE∗ on real data series such as: the chemical pro-
cess temperature readings taken every minute, the monthly measurements of
carbon dioxide above Mauna Loa⋆ , and cardiac frequency measurements† .

Data type AR(2) AR(3) ARMA(3,3) EEE
∗

Garden (T°) up to 43% up to 50% Divergence up to 7%
Chemical process (T°) up to 40% up to 43% up to 41% up to 6%

Carbon dioxide up to 10% up to 11% up to 11% up to 2%
Cardiac frequency up to 50% up to 50% up to 35% 99% of errors

were≤ 5%
Radiosity up to 60% up to 60% up to 60% 99% of errors

were≤ 8%
Female (T°) ∼5% ∼5% ∼4% ∼3%

TABLE 1
The relative error produced by each model estimations: AR(2), AR(3), ARMA(3,3)
andEEE

∗

Figure 3 shows the relative error produced byEEE∗ and different other
prediction models such as AR(2), AR(3), ARMA(3,3). In fact,predictions
generated by AR/ARMA models using different estimation methods such as
MLE, Burg, OLS and Yule-Walker, did not produce better relative errors com-
pared to our prediction model. AR/ARMA models tend to be divergent in
some cases such as Figures 3(a). This is due to the effects of looseness of
accuracy along the prediction process.

As shown in Table 1, the relative error produced byEEE∗ did not exceed
8% for most data types used. In cases such as cardiac frequency, we can no-
tice that 99% of errors were≤ 5%, and that about 12 of 2565 predictions was
increased up to 15%. We consider that this could be perturbedby different
factors (sudden emotions or actions, etc..). Note that in this paper, we do not
detect or take into consideration such events or even data intrusions that may
occur in other WSNs applications.

Figure 4, shows the relative error produced by Adaptive-ARMA(3,3) pro-

⋆ http://www.robjhyndman.com/TSDL/
† http://www.inrialpes.fr/Xtremlog/
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FIGURE 4
Relative error produced by Adaptive-ARMA(3,3) with a bound=0.05 andEEE

∗.

posed in [19] andEEE∗ model on the different data types. For the sake
of fairness, we used A-ARMA(3,3) with a bound=0.05. We can notice that
A-ARMA(3,3) yields the predictions better then classical AR/ARMA mod-
els, due to its model adjustment during the prediction process. However, it
produces less accuracy thenEEE∗. Hence, as for the precision and data
transmission traffic, we deduce thatEEE∗ is an appropriate algorithm for
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Garden Chemical Carbon dioxide Cardiac Freq.
Temperature process (T°)

AR(2) ∼1.956 e-08 ∼1.586e-06 5.58e-06 3.343e-06
AR(3) ∼0.01523 ∼3.363e-05 6.90e-07 2.752e-08
ARMA(3,3) 0.00439 0.018 0.00012 0.00012
EEE

∗ 0.996 0.9889 0.983 0.964

TABLE 2
RV value measuring the correlation between real values and predictions of AR(2),
AR(3), ARMA(3,3) andEEE

∗

slow variation data series measurements. We can notice thatEEE∗ does
not provide greatest estimation quality for the radioactivity, as shown in Fig-
ure 4(c). However, we note that∼ 90% of relative errors produced for the
radioactivity were around 8%.

RV coefficient

We also refer to the correlation coefficient to observe the relationship between
values. The purpose of this is to see how much the real data andthe samples
produced by the discussed models are correlated. In other word, if two vari-
ables are correlated, we can predict one based on the other. We can notice
in Table 2 that the correlation coefficient tends to 1 inEEE∗ and is greater
then other models correlation coefficient values. This indicates a strong lin-
ear relationship between the value produced by our model andthe real data.
Combining these results with the one produced in Table 3, we consider that
our model is a good prediction model and produces more accurate estimations
then AR/ARMA models.

Scatterplots

Having a correlation coefficient value that tends to zero (such as for AR/ARMA
in Table 2), does not mean the absence of relation. There may be a non linear
relation between the models outputs and the real data.

The possibility of such non-linear relationships is another reason why ex-
aminingscatterplots is a necessary step in evaluating every correlation. Fig-
ure 5 shows the relationships between the ARMA(3,3) andEEE∗ models
andCO2 data values. It indicates thatEEE∗ is a suitable algorithm to pre-
dict data studied here then ARMA(3,3) model. As the scatterplots for other
models revel similar results using the different data typesstudied, we did not
show them.
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3 DATA SIMILARITY MEASUREMENTS

3.1 Role of similarity measurements
Similarity measures play a central role in reasoning in manyapplications
such as bioinformatics, natural language processing (NLP), image process-
ing, pattern recognition and different other problems of information retrieval.
The similarity functions (called also affinity functions) and denoted bys :

X × X −→ R are in some sense the converse to dissimilarity functions:
meaning that the similarity between two objects should growif their dissim-
ilarity decreases. In particular, a similarity function issupposed to increase
the more similar the points are. Different methods was introduced to mesure
the similarity between two objects, we present below, a brief introduction to
a special type of similarity functions: the ”Kernel functions”.

3.2 Kernel based-methods
Kernel functions are one of the most popular tools in MachineLearning and
this has by now reached full maturity as evinced by the numberof publication
and books related to it. Kernel-based learning algorithms [8] work by embed-
ding the data points into a Hilbert space, and searching for linear relations in
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such a space. The embedding is performed implicitly, by specifying the inner
product between each pair of points rather than by giving their coordinates
explicitly. This approach has several advantages, the mostimportant deriv-
ing from the fact that often the inner product in the embedding space can be
computed much more easily than the coordinates of the pointsthemselves.

Given an input setX , an embedding spaceF and a mapφ : X → F . Hav-
ing two points,xi ∈X andxj ∈ X , the function that returns the inner product
between their images in the spaceF is known as thekernelfunction.

Definition 3.1 : A kernel k is a function, such that k(x, z) =≺ φ (x), φ (z)≻
for all x, z∈ X , whereφ is a mapping fromX to an (inner product) feature
spaceF .

Kernel methods can handle different problems of classification [3, 23, 12],
data compatibility, data integration, and data completion. They are based on
measures of similarity (kernel functions) that allow us to perform classifica-
tion, regression and related tasks (for a complete introduction refer to [3]).
In-fact, many generic kernels (e.g. Gaussian kernels), as well as specific ker-
nels (e.g. Fisher kernels), describe different notions on similarity of objects.

The gaussian kernel (3) is a popular and powerful kernel usedin pattern
recognition. Theoretical statistical properties of this kernel can be employed
for different techniques such as fuzzy aggregation techniques [11].

k(x, y) = exp
− ‖ x − y ‖2

2 ∗ σ2
(3)

wherek(x, y)∈ [0, 1], σ determines the width of the Gaussian kernel (Note
that we havex = y whenk(x, y) = 1). In what follows, we will adopt the
gaussian kernel function in (3) withσ = 1.74 such as [9].

3.3 Data Aggregation scheme
Achieving energy efficiency to prolong the network lifetimeis an important
design criterion for Wireless Sensor Networks. Since communication be-
tween nodes is the main source of energy consumption [25], different tech-
niques have been used such asData Aggregationto reduce the communica-
tion cost There are a large number of existing mechanisms which make data
aggregation more efficient. One of these focuses on establishing a proper
routing schemes. These schemes organize the sensor nodes into chain, a tree
or clusters. As a brief description,Chain-based data aggregation algorithms
organize sensor nodes as a shortest chain along which data istransmitted
to the sink. WhileTree-based data aggregation algorithmsorganize sensor
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nodes into a tree. Data aggregation is performed at intermediate nodes along
the tree and a concise representation of the data is transmitted to the root
node which is usually the sink [22][18].Cluster-based data aggregation al-
gorithms, organize sensors into clusters. Each cluster has a designated sensor
node as the cluster head which aggregates data from all the sensors in the
cluster and directly transmits the result to the sink (such as [29, 17]). In this
paper, we adopt cluster-based data aggregation schemes. The adoption of
other schemes is discussed in our future work.

3.4 Related works

A significant challenge in WSNs is to prolong the monitoring operation of
sensor nodes by efficiently using their limited energy, bandwidth and com-
putation resources. Due to the high density in the network topology, sensor
observations are highly spatially correlated. By allowingthe nodes to cor-
porate to carry out joint data from aggregation, the amount of data commu-
nicated within the network can be reduced. Recent techniques for processing
multiple sensor streams in an energy efficient manner has been proposed.
These techniques make use of both spatial and temporal correlations as well
as clustering approaches to perform data reduction.

The work in [16] proposes an algorithm that manages spatio-temporal data
in a distributed fashion, it performs in-network regression using kernel func-
tions assuming rectangularregions of support. The network is assumed
to contain multiple overlapping regions and in each region significant spatial
correlations are expected to be observed. The authors introduce the usage
of kernel functions; a region’s kernel function maps a pointx to a number,
depending on the position ofx in the region. Other techniques propose the
use of statistical models of real world processes to reduce the cost of sens-
ing and communication in sensor networks such as [10]. The prototype built,
BBQ, consists of a declarative query processor and an underlying probabilis-
tic model and planner, based on time-varying multivariate Gaussians.

Here, we extend the previous part to integrate spatial similarity measure-
ment. This work relays on the idea of decreasing the communication overhead
between nodes towards the base station by: 1- detecting and reducing redun-
dancy by exploiting data similarity measurements. 2- reducing the number of
communicated bits since it was indicated that the transmission of one bit over
100 meters would cost about the same level of energy as executing 3000 in-
structions in sensor node [13]. An aggregator will not just perform temporal
aggregation, but also checks for data correlation during aggregation to reduce
his data transmission amount.
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Due to the spatial correlation in the sensed data, aggregation techniques
have been incorporated into the routing protocols. Different routing strategies
have involved data compression via coding in correlated data aggregation, to
reduce data traffic. These strategies (like aggregation with Distributed source
coding strategy-DSC [7]) have been based on lossless codingschemas (such
as Slepian-wolf coding [6]) in data aggregation. In this paper, we do not
propose a clustering/routing methods or discuss a coding schema and its de-
pendence of optimal cluster-sizes on spatial correlations. We suppose that
clusters and clusters heads (CH) are determined using distributed or central-
ized methods such as LEACH, HEED [17, 29] and others [24]. We assume
having a suitable routing protocols that do not interfere with the spatial ag-
gregation described in section 3.5. Each non cluster head node sends data to
the CH node in its own cluster instead of to the base station (BS). The ap-
proach of clustering has the following advantages: 1) non-CH sensor nodes
can save energy consumption because the nodes can avoid long-distance com-
munication and have only to send data to its own CH being nearby and 2) the
amount of data to be sent to BS can be reduced, which also savesthe energy
consumption. In what follows, we propose an algorithm basedon time series
estimations to investigate temporal and spatial correlations to reduce the com-
munication overhead and ensure estimation accuracy. Our experiment results
show that the relative errors between estimations made by the source sensors
and the ones deduced by the sink, are very small.

3.5 Data similarity detection task

Given a typical WSNs in which each node records information from its vicin-
ity and transfers this information to a centralized base station. Nodes which
are close to each other, eventually sense similar information. Hence the infor-
mation is geographically correlated. So, before sending itto the central agent,
a huge saving in data transmission costs may be achieved by aggregating in-
formation from nearby nodes, removing redundancy and keeping data trans-
mission to a minimum. We will call these geographical regions: ”similarity
regions”, denoted byRj and we consider that these regions are pre-defined
by the base station at the deployment time. Since clusters are determined
based on nodes’ battery level, their coverage capabilities, the communication
cost and the node density such as [17, 29, 5] it may happen thattwo neigh-
boring clusters may share spatial data correlation. Hence asimilarity region
may contain different clusters spatially correlated as shown in Figure 6. We
denote byΛj the number of clusters in a similarity regionRj .

Our goal is to detect data similarities during aggregation to keep data trans-
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mission and overhead to a minimum. Thus, during aggregation(intra-/inter-
clustering aggregation), an aggregator verifies the sourceof each received
data (if it is a source node inside its own cluster or a CH node of a neigh-
boring cluster) as well as the degree of similarity to reduceredundancy and
overhead communication as possible. Along this line of thoughts, event de-
tection/anomalies can be also observed. Let us describe some notations used

FIGURE 6
The concept of similarity region.

in this section:

• δ: the spatial similarity degree threshold. More specifically, δRj
and

δc are respectively the degree of similarity thresholds inside a similar-
ity regionRj and cluster (determined during clustering and similarity
regions decomposition).

• Γ: the data similarity threshold. Precisely,ΓRj
andΓc refers respec-

tively to the degree of data similarity inside a regionRj and a cluster
(The choice ofΓ values could be a user defined threshold when clusters
and similarity regions are determined).

• dn1n2
: the distance between two nodesn1 andn2. For simplicity, we

refer to the euclidean distance.
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For every pair of nodesn1 andn2 belonging to the same cluster,dn1n2
≤

δc. While belonging to the same similarity region,dn1n2
≤ δRj

(We
denote bydSCH the distance between a sourceS and a cluster head
CH). If Λj = 1, the similarity regionRj is a cluster withδRj

= δc and
ΓRj

= Γc.

• We choose to capture the (dis)similarity between two arrays of data A
and B of lengthp by K(A, B) = Πp

i=0k(Ai, Bi).

We capture the temporal data correlation using our proposedmodel in sec-
tion 2.3, each sensorS uses a prediction model to estimate future environ-
ment values and communicates with the sink only when a prediction thresh-
old violation occurs. the values to be transmitted are no more the model
parameters or recent data raw, but a recent numberp of error valueseS

i where
i ∈ {0, .., p}. An aggregator, while monitoring the environment may receive
an array of data error values (eS

i ) from a source sensor in its cluster or a CH
neighboring node, and it may combine these values with its own error values
e

agg
i , if it has, then routes these values to the base station.

During aggregation, distinguishing between fused data is important. Simply
speaking, fusing similar data can ensure redundancy and leads to huge com-
munication cost. In fact, two nodesn1 andn2 located in the same similarity
region or cluster, may have their values (en1

i ) and (en2

i ) highly correlated,
which produces redundancy if they are sent both to the sink. Also, the choice
of a similarity region can ensure reliable event detection/malicious tasks or
anomalies, based on similarity measurement during inter-clustering fusion,
for example when a CH node sends to another CH (resided in the same sim-
ilarity region) an information that is not similar to the latter one, while it
should be, one can deduce that something interesting has happened.

We assume that neighbor nodes monitor the same event, the position of
each sensor is predetermined. Our algorithm is presented asfollows: When a
sensor nodeS sends data array (eS

i ) to a CH node, the latter -before starting
processing these data- calculates the spatial degree of similarity to ensure if
they are in the same cluster or similarity region:

• If dSCH ≤ δc: The source and the CH nodes are in the same cluster.
Then, the aggregator uses the Gaussian kernel function to calculate the
degree of data similarityK(eS , eCH) = Πp

i=0k(eS
i , eCH

i ) between his
array of data (eCH

i ) and (eS
i ) of the source.

– if K(eS, eCH) ≥ Γc, the values are highly spatially correlated
and redundancy occurs. Then the aggregator routes its own data
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values (eCH
i ) toward the sink. But, to ensure reasonable data

quality and accuracy by the sink while updating its prediction
model, the CH sends in addition to its own values, the array of
similarity measuresk(eS

i , eCH
i ) between its data values and the

sensors’ ones. These values belong to[0, 1], and we consider that
sending their decimal part (integer values) instead of the main er-
ror values(eS

i ) (float values) can help reducing the data traffic in
terms of number of bits. Note that the choice of a node CH to
send its (eCH

i ) values is more energy saving especially in case of
data fusion coming from different sensors.

– if K(eCH , eS) ≺ Γc. This indicates that an anomaly may occur,
sensors are misbehaving or that something interesting has hap-
pened (e.g., the sensor became hot because a fire started nearby),
these cases of which the sink should be aware. In this case, the
aggregator decides to send both valueseCH

i andeS
i toward the

sink.

• Otherwise, if sensors are in the same similarity region (dSCH ≤ δRj
)

, the CH node follows the same process mentioned above by changing
Γc to ΓRj

• Note that if both sensors are not in the same similarity region, the ag-
gregator decides to send both valueseCH

i andeS
i .

In the following section, we apply our methodology using a simple example,
and we try to figure out the communication overhead and data prediction
accuracy between the sink and the source sensors (note that asensor and a
sink use the same time series prediction model with orderk = p = 3). In the
experiment below, we considered two values as similar when their degree of
similarity k(eS

i , eCH
i ) ≥ 0.3 henceK(eS , eCH) ≥ (0.3)

p. We then defined
Γc = 0.027.

4 EXPERIMENTATION AND ACCURACY RESULTS
We applied our algorithm on a simple 2-hop network topology composed of
a sensor, an aggregator and a sink. We assume that the source sensor and the
CH nodes are in the same similarity regionRj (Λj = 1, ΓRj

= Γc = 0.027).
Since our prediction model in [14] is suitable for a slow variation measure-
ments, we applied our algorithm on different real data values‡ : Wind speed
at Lille (aggregator at Paris) (see Figure 7), Humidity average at Limoges

‡ http://www.wunderground.com/global/stations/
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FIGURE 7
Wind speed measurement: the source sensor is located at Lille while the cluster head
at Paris.

and Sea Low Level pressure at Limoges (aggregator at Lyon). We measure
the data prediction accuracy between the sink and the sourceestimations after
training the sink prediction model based on the aggregated data.

Figure 8 shows that the relative error values between sourceand sink esti-
mations∈ [−7×10−7, 10−6], which maintain good data quality and accuracy.
In addition, Table 3 shows the number of data aggregated and communicated
to the base station before and after using the similarity measurement. The data
could be the error values (float numbers) and/or the similarity degree (integer
values) according to the similarity examination results. We can see that the
number of floats communicated after introducing the similarity measurement
is reduced about 41% for wind speed,∼ 20% for humidity and∼ 39% for
sea low level pressure which can increase energy saving since the number of
transmitted bits is reduced. Table 4 represents the total overhead in terms of
bytes before and after using the similarity measurements. if we consider that
an integer is represented on 4 bytes and a float on 8 bytes. Our experiment
shows a reduction in terms of bits of about∼ 20% for wind speed,∼ 10% for
humidity and∼ 20% for sea low level pressure.

Using sim. meas. Without sim. meas.
Data traffic # float(a) # int. # float(b) (a)

(b)

Wind speed 51 36 87 ∼ 0.586
Humidity 24 6 30 0.8
Pressure 69 42 111 ∼ 0.62

TABLE 3
The data traffic produced before and after introducing the similarity measurements.
Here (a)

(b) , is the fraction between the data traffic (in terms of floats) before
and after using similarity measurements .
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(c) Sea Low Level Pressure at LimogesFIGURE 8
The relative error between the sensor and sink estimations.

Data traffic Without sim.(a) Using sim.(b) (b)
(a)

Wind speed 696 bytes 552 bytes ∼ 0.79
Humidity 240 bytes 216 bytes 0.9
Pressure 888 bytes 720 bytes ∼ 0.81

TABLE 4
The data traffic represented in terms of bytes before and after introducing the similarity
measurements.

5 CONCLUSION

The batteries on today’s wireless sensor barely last a few days, and nodes
typically expend a lot of energy in computation and wirelesscommunication.
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Hence, the energy efficiency of the system is a major issue. Data collection
process and redundancy might have their negative impact on wireless network
(e.g., waste of energy and bandwidth) due to high data communication traffic
and rate. We have adopted time series forecasting techniques and we have
proposed an algorithm based on the AutoRegressive model (AR), to predict
local readings and reduce the data communication rate generated by sensors.
We also integrated data similarity measurements based on kernel methods to
reduce the overall communication load and avoid the transmission of redun-
dant messages. Our experiments show that it’s possible to reduce the com-
munication overhead between nodes while ensuring a reasonable data quality
and accuracy. Our future work is to enhance our algorithm andexperiment it
on complex topologies with clustering/routing methods since our experiments
has focused on a simple case topology.
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