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A Comparison of Scale Estimation Schemes for a Quadrotor UAV

based on Optical Flow and IMU Measurements

Volker Grabe, Heinrich H. Bülthoff, and Paolo Robuffo Giordano

Abstract— For the purpose of autonomous UAV flight control,
cameras are ubiquitously exploited as a cheap and effective
onboard sensor for obtaining non-metric position or velocity
measurements. Since the metric scale cannot be directly re-
covered from visual input only, several methods have been
proposed in the recent literature to overcome this limitation
by exploiting independent ‘metric’ information from additional
onboard sensors. The flexibility of most approaches is, however,
often limited by the need of constantly tracking over time
a certain set of features in the environment, thus potentially
suffering from possible occlusions or loss of tracking during
flight. In this respect, in this paper we address the problem
of estimating the scale of the observed linear velocity in the
UAV body frame from direct measurement of the instantaneous
(and non-metric) optical flow, and the integration of an on-
board Inertial Measurement Unit (IMU) for providing (metric)
acceleration readings. To this end, two different estimation
techniques are developed and critically compared: a standard
Extended Kalman Filter (EKF) and a novel nonlinear observer

stemming from the adaptive control literature. Results based
on simulated and real data recorded during a quadrotor UAV
flight demonstrate the effectiveness of the approach.

I. INTRODUCTION

Over the last years, Unmanned Aerial Vehicles (UAVs)

and in particular quadrotors became a highly popular robotic

platform. Being cheap and flexible, quadrotors can be used

for many different applications such as exploration, mapping

or inspection tasks. Recently, with the support of several

EU-funded projects, UAVs started to enter also the area of

service robotics [1], [2], thus opening a new wide range of

possibilities and challenges.

Key to almost all applications involving high autonomy

levels is a reliable (self-)motion estimation to allow for

an effective flight control performance. Among the typical

sensors used for this goal, cameras represent a lightweight,

cheap, and flexible choice. While cameras are often installed

on UAVs for the purpose of aerial photography or target

localization, they can also be exploited to retrieve the UAV

position or velocity w.r.t. the observed scene. Using a purely

visual approach, however, any position or velocity informa-

tion can only be retrieved up to an unknown scale factor

— the well-known scale-ambiguity affecting perspective
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projection systems [3]. Nevertheless, the actual metric scale

can still be recovered by either exploiting some pre-known

structure of the scene, or by fusing the visual information

with independent metric measurements.

For instance, in the case of a known initial map, the

scale can be recovered from the observation of a sufficiently

large number of feature points at known locations [4].

Alternatively, when an initial metric map is not available,

metric sensory information from, e.g., distance sensors or

accelerometer readings can be exploited for this purpose. The

commercially available AR.Drone uses ultrasonic distance

and an air pressure sensor to estimate its height over ground.

Other proposed frameworks exploiting the availability of an

oboard IMU, however, are also dependent on SLAM tech-

niques to build up and maintain a map of tracked features. In

these cases, the main objective is to recover the global scale

factor of the underlying map. This has been achieved for the

popular Parallel Tracking and Mapping (PTAM) toolbox [5],

[6], for a general position estimator [7], and for the recovery

of the traveled trajectory using visual odometry [8]. Even

more remarkably, in [9] it has been shown how to estimate

in closed-form the absolute scale from IMU readings and

observation of a single feature point over time.

A. Optical flow-based velocity estimation

All these approaches, however, highly depend on the

possibility to continuously track or recognize individually

identified features for an extended period of time. This

assumption might be too restrictive when navigating with

only on-board sensing/computational power in unknown or

cluttered environments because of, e.g., unexpected occlu-

sions or the heavy computations needed for feature matching.

This is not the case, on the other hand, for those solutions

based on an instantaneous optical flow decomposition as

they allow for a self-motion estimation on a frame-to-frame

basis, thus requiring the most minimal tracking capabilities.

Motivated by these considerations, in [10], [11] we proposed,

and experimentally tested on a quadrotor UAV, an algorithm

for decomposing the (instantaneous) observed optical flow

based on the so-called continuous homography constraint.

In particular, assuming a predominant planar patch in the

scene, we showed how to recover a scaled (non-metric) linear

velocity which could also be used for closed-loop flight

control purposes.

The goal of the present paper is to extend this latter

approach to the online recovery of the (unknown) scale

factor by exploiting the concurrent measurements of an

onboard IMU. In particular, we propose, discuss and compare



two estimation schemes for achieving this goal: a classical

Extended Kalman Filter (EKF), a common choice in most

previous works on similar topics, and a novel nonlinear

observer based on the theory of Persistency of Excitation

(PE) stemming from the adaptive control community [12].

Both estimation schemes have their pros/cons: being the

problem under consideration essentially nonlinear, the EKF

requires a linearization step which may degrade the estima-

tion performance. On the other hand, as it will be shown

in the following, no linearization is needed in the PE case.

Thus, the PE observer ought to perform better, in principle,

than an EKF in all cases. However, the PE formulation

assumes a deterministic dynamics, and copes with presence

of noise in an indirect way. The EKF, in turn and despite

its inherent approximations, is ‘noise-aware’, and thus more

suited to deal with the typical noise levels of IMU and

camera readings during a quadrotor flight.

Recently, a system capable of hovering and landing on a

moving platform by exploiting optical flow was presented

in [13]. This work did not consider the issue of determining

the unknown scene scale factor since the proposed control

approach could be implemented by only employing the

scaled linear velocity. An optical flow-based approach com-

bined with scale estimation was instead presented in [14] by

developing a small sensor for on-board velocity estimation.

However, the proposed metric scale estimation relies on a

ground facing sonar, thus limiting the vehicle operation to

near ground flights within the sonar range. Finally, in [15] the

authors experimentally demonstrated the possibility of esti-

mating the metric scale, sensor biases, and the IMU/camera

relative pose via an EKF approach based on optical flow

measurements. However, the system was mainly designed

for serving as an initialization of the PTAM framework in

near hovering mode rather than for closed-loop UAV control

over an extended period of time.

With respect to this latter contribution, which shares some

similarities with our work, we instead (i) propose and

compare two independent estimation schemes for dealing

with the scale estimation problem, (ii) provide a rigorous

modeling of the complete system dynamics, including that

of the scene scale factor, and (iii) rely on the continuous ho-

mography constraint, rather than on the epipolar constraint,

for decomposing the perceived optical flow. In fact, in case

of partly planar indoor or outdoor scenes, a homography-

based approach should yield better results compared to an

epipolar-based one (which becomes singular for a perfectly

planar scene), and, additionally, it also remains valid in case

of stationary flight (e.g., when moving close to hovering) [3].

The remainder of this paper is then structured as follows:

in Sec. II we first review the self-motion estimation algo-

rithms originally proposed in [10] and exploited also in this

work. In Sec. III, we describe the equations of motion for

the system under consideration. These are then exploited for

estimating the metric scale of the scene by designing an

Extended Kalman Filter (EKF) in Sec. IV, and the alternative

PE nonlinear observer in Sec. V. Afterwards, in Sec. VI

and VII we present the results of the conducted experi-

Fig. 1: Locations of the IMU (I), camera (C), body (B) and world
frame (W) relative to each other. Frames I,B and C are assumed
to be rigidly linked to each other. The world frame W is oriented
horizontally with its z-axis pointing down, following the NED
convention.

ments aimed at validating and comparing the two estimation

schemes. Finally, we conclude the paper in Sec. VIII by

giving a short overview of our future plans.

II. SELF-MOTION ESTIMATION FROM OPTICAL

FLOW

The approach adopted in this paper for decomposing the

perceived optical flow in order to recover the scaled linear

velocity is taken from [10], [11]. For our experimental

validation, as explained in the previous section, we relied

on an improved version of the continuous homography con-

straint [11], [16]. We believe this choice has the important

advantage over other possibilities (e.g., epipolar constraint)

of being well-conditioned when observing planar scenes such

as, e.g., during take-off or landing when using a downfacing

camera, or when flying in GPS denied environments made of

large planar regions. We thus refer the reader to [10], [11] for

all the details. We nevertheless note that the scale estimation

schemes proposed in the next Sect. IV and Sect. V are in

general independent from how the scaled linear velocity is

actually retrieved — therefore, any other choice yielding

comparable results would have been appropriate.

As for the actual implementation, in brief: from consec-

utive frames, we first compute an optical flow field through

detection and tracking of FAST corners using a pyramidal

version of the Lukas-Kanade algorithm. This flow field is

further derotated using angular velocity measurements from

the onboard IMU [10]. We then identify a suitable subset of

features belonging to a common planar region [11]. This set

of flow vectors is used to recover the continuous homography

matrix which is further decomposed into the scaled linear

velocity v

d
and the normal vector of the underlying plane n

by means of a modified version of the 4-point algorithm [16].

III. EQUATIONS OF MOTION

We now proceed to describe the equations of motion of our

system (UAV + camera + IMU) necessary for then designing

the scale estimation schemes presented in Sects. IV–V. In

the following, we will denote with B, C, I and W the body,

camera, IMU and inertial world frame, respectively. The

origin of frame B is assumed to be located at the quadrotor

barycenter, while frames C and I are supposed to be rigidly

attached to B, see Fig. 1.



Throughout the text, left superscripts will be exploited to

indicate the frames where quantities are expressed in. The

symbol XRY ∈ SO(3) will be used to denote the rotation

matrix from frame X to frame Y , and ZpXY ∈ R
3 to

represent the vector from the origin of frame X to the origin

of frame Y and expressed in frame Z . We also introduce the

following quantities instrumental for the next developments:

g ∈ R
3 as the gravity vector, and If ∈ R

3, Iω ∈ R
3 as the

specific acceleration and angular velocity at the origin of I.

Define Cv = CRW
WṗWC as the camera linear velocity

in camera frame, and Bv = BRW
WṗWB as the body

linear velocity in body frame. Since BRC , BRI , BpBC and
BpBI are assumed constant, from standard kinematics the

following relationships hold

B
v = B

RC(
C
v + [ Cω]×

C
p
CB

) = B
RC

C
v + [Bω]×

B
p
CB

, (1)
C
v̇ = C

RI(
I
a+ [ Iω̇]×

I
p
IC

+ [ Iω]2×
I
p
IC

)− [ Cω]×
C
v =

= C
RI

I
a+ [ Cω̇]×

C
p
IC

+ [ Cω]2×
C
p
IC

− [ Cω]×
C
v, (2)

C
ω = C

RI
I
ω (3)

C
ω̇ = C

RI
I
ω̇ (4)

where Ia = IRW
Wp̈WI is the linear acceleration ex-

perienced by the IMU. We note that Ia = If + Ig and
Ig = IRW [0, 0, g]T in case of a horizontal orientation of

the world frame, see Fig. 1.

Assume now presence of a planar scene with plane equa-

tion CnT CP + d = 0, where CP ∈ R
3 is a generic point on

the plane seen by the camera, Cn ∈ S
2 is the unit normal

vector to the plane, and d ∈ R the plane distance from the

camera optical center. We then have (see, e.g., [17])

Cṅ = −[ Cω]×
Cn (5)

ḋ = Cv
T Cn. (6)

Finally, according to this notation, the decomposition of the

optical flow summarized in the previous Section allows to

directly measure the scaled linear velocity Cṽ = Cv/d.

The estimation schemes presented in the next Sections are

then meant to recover the (unmeasurable) value of the plane

distance d and to consequently reconstruct the linear velocity

vector Cv.

IV. SCALE ESTIMATION BASED ON THE

EXTENDED KALMAN FILTER

We start designing an EKF for estimating the distance to

the planar scene d. We will adopt the discrete version of the

EKF, and let index k ∈ N denote the k-th iteration step.

For clarity, we will also adopt the convention of appending

a right subscript m to all those quantities directly available

through one of the onboard sensors, e.g., specific force Ifm

and angular velocity Iωm from the IMU, and scaled linear

velocity Cṽm = ( Cv/d)m from the camera.

A. Definitions

The EKF state vector x consists of the camera linear

velocity in camera frame Cv and the camera distance to the

planar scene d:

x =

[

Cv

d

]

, Cv ∈ R
3, d ∈ R. (7)

B. Prediction

We rewrite (2) in terms of the measurements Ifm and
Iωm obtained from the IMU in frame I:

Cv̇ = CRI(
Ia+ [ Iω̇]×

IpIC + [ Iωm]2×
IpIC)− [ Cωm]×

Cv

≈ CRI(
Ifm + Ig + [ Iωm]2×

IpIC)− [ Cωm]×
Cv. (8)

Since no direct measurement of Iω̇ is possible in our setup,

and Iω is usually a noisy signal, in (8) we approximate
Iω̇ ≈ 0 rather than attempting to recover Iω̇ via a numerical

differentiation. Consequently, using (6) and (8) the following

equations govern the predicted state x̂[k]k−1:

Cv̂[k]k−1 = Cv̂[k − 1] + T Cv̇[k] (9)

d̂[k]k−1 = d̂[k − 1] + T Cv̂[k]T Cn[k] (10)

where T denotes the sampling time of the filter.

Although most quantities derived in the following steps are

time varying, from now on, for the sake of exposition clarity,

we will omit the time dependency [k] wherever possible.

In order to compute the predicted covariance matrix of the

system uncertainty Σ[k]k−1 ∈ R
4×4, we first define the

Jacobian matrix G[k]k−1 ∈ R
4×4

G =











∂ Cv̂[k]k−1

∂ Cv̂[k − 1]

∂ Cv̂[k]k−1

∂d̂[k − 1]
∂d̂[k]k−1

∂ Cv̂[k − 1]

∂d̂[k]k−1

∂d̂[k − 1]











=

[

I3 − T [ Cω]× 03×1

T Cn
T

1

]

. (11)

Matrix Σ[k − 1] from the previous step is then propagated

as:

Σ[k]k−1 = GΣ[k − 1]GT +R. (12)

Here, matrix R ∈ R
4×4 is obtained from

R = V

[

cov( Ifm) 03×3

03×3 cov( Iωm)

]

V T (13)

where

V =









∂ Cv̂[k]k−1

∂ Ifm

∂ Cv̂[k]k−1

∂ Iωm

∂d̂[k]k−1

∂ Ifm

∂d̂[k]k−1

∂ Iωm









, V ∈ R
4×6

=

[

T CRI T ( CRIM + [ Cv]×
CRI)

01×3 01×3

]

(14)

M = ( IωT
m

IpIC)I3 +
Iωm

IpT
IC − 2 IpIC

IωT
m, (15)

and cov( Ifm) ∈ R
3×3, cov( Iωm) ∈ R

3×3 are the covari-

ance matrixes of the accelerometers/gyroscopes sensors in

the IMU.



C. Update

Whenever a new scaled visual velocity estimate zm[k] =
Cṽm =

(

Cv[k]/d[k]
)

m
becomes available from the optical

flow decomposition, the predicted state x̂[k]k−1 is updated

to produce the estimated state x̂[k]. Let ẑ[k]k−1 be the

predicted scaled visual velocity estimation based on the

predicted state x̂[k]k−1

ẑ[k]k−1 =
Cv̂[k]k−1

d̂[k]k−1

. (16)

The kalman gain K[k] ∈ R
4×3 is obtained as

K[k] = ΣJT (JΣJT + cov(zm))
−1, (17)

where cov(zm) ∈ R
3×3 is the covariance matrix of the

scaled visual velocity measurement, and the Jacobian J ∈
R

3×4, relating the predicted measurement ẑ[k]k−1 to the

predicted state x̂[k]k−1, is given by

J =

[

∂ẑ[k]k−1

∂ Cv̂[k]k−1

∂ẑ[k]k−1

∂d̂[k]k−1

]

=

[

1

d̂[k]k−1

−
Cv̂[k]k−1

d̂2[k]k−1

]

. (18)

Finally, the predicted state x̂[k]k−1 is updated to the

estimated state x̂[k], together with matrix Σ[k], as

x̂[k] =

[

Cv̂[k]

d̂[k]

]

=

[

Cv̂[k]k−1

d̂[k]k−1

]

+K[k] (zm[k]− ẑ[k]k−1)

(19)

Σ[k] = (I4 −KJ)Σ[k]k−1. (20)

D. Discussion

We list here the quantities actually needed for implement-

ing the proposed EKF. Apart from the estimated state x̂[k],
one needs knowledge of:

1 the constant IMU/camera rotation matrix IRC and

displacement vector IpIC ;

2 the IMU angular velocity Iωm;

3 the IMU linear acceleration Ia = Ifm + Ig;

4 the plane normal Cn;

5 the scaled camera linear velocity zm = ( Cv/d)m.

The quantities in item 1 are assumed to be known from

a preliminary IMU/camera calibration phase while vector
Iω in item 2 is available directly from the IMU gyroscope

readings.

Measurement of the linear acceleration Ia in item 3

requires the specific acceleration Ifm (directly available

through the IMU accelerometer readings) and knowledge

of the gravity vector Ig in IMU frame. An estimation

of this latter quantity is also provided by standard IMUs

in near-hovering conditions, a fact largely exploited when

recovering the UAV attitude from onboard sensing, see,

e.g., [18]. Alternatively, when the vehicle is undergoing

large accelerations one can, for instance, obtain Ig by

assuming a horizontal planar scene (as often the case) and

by exploiting knowledge of the plane normal Cn recovered

by decomposing the homography matrix H (item 4) [10].

Finally, vector zm in item 5 is directly retrieved from the

optical flow decomposition described in Sec. II.

V. SCALE ESTIMATION BASED ON A

NONLINEAR OBSERVER

In this Section, we detail the derivations of an alternative

nonlinear observer for retrieving the plane distance d based

on the theory of Persistency of Excitation (PE) in the context

of adaptive control [12]. The benefits of this estimation

scheme w.r.t. the previous EKF lie in its cleaner design

(it does not require any linearization or approximation as

implicit in any EKF), easier interpretation of its convergence

properties, and easiness of tuning (less parameters to be

fixed). However, as opposed to the EKF, the design assumes

a deterministic dynamics, and therefore does not take ex-

plicitly into account the noise inherent into the system (state

transition and measurement). For the sake of exposition, the

developments are here formulated in continuous time.

We start by recalling the Persistency of Excitation

Lemma [12] upon which the next developments are based.

Lemma 1: Consider the linear time-varying system
{

ξ̇ = Wξ +Ω
T (t)z, ξ ∈ R

n

ż = −ΛΩ(t)Sξ, z ∈ R
p (21)

where W is an Hurwitz matrix, S is an n × n symmetric

positive definite matrix such that W TS+SW = −Q, with

Q symmetric positive definite, and Λ is a p× p symmetric

positive definite matrix. If ‖Ω(t)‖, ‖Ω̇(t)‖ are uniformly

bounded and the persistency of excitation condition is satis-

fied, i.e., there exist two positive real numbers T and γ such

that
∫ t+T

t

Ω(τ)ΩT (τ)dτ ≥ γI > 0, ∀t ≥ t0, (22)

then (ξ, z) = (0, 0) is a globally exponentially stable

equilibrium point of system (21).

In the context of range estimation from vision, exten-

sions of the PE theory have been successfully applied to

recover the depth of feature points from known camera

motion in [19], [20], and the plane normal and distance by

processing image moments in [17]. Roughly speaking, the

PE Lemma can be exploited as follows: assume a vector

x = [xT
1 xT

2 ]
T ∈ R

n+p can be split into a measurable

component x1 and an unmeasurable component x2. Defining

an estimation vector x̂ = [x̂T
1 x̂

T
2 ]

T ∈ R
n+p, and the

corresponding estimation error e = [ξT zT ]T = [xT
1 −

x̂
T
1 xT

2 − x̂
T
2 ]

T , the goal is to design an update rule for

x̂ such that the closed-loop error dynamics matches formu-

lation (21). When this manipulation is possible, Lemma 1

ensures global exponential convergence to 0 of the estimation

error e = [ξT zT ]T , thus allowing to infer the unmeasurable

value of x2 from knowledge of x1. The PE condition (22)

plays the role of an observability constraint: estimation of

x2 is possible iff matrix Ω(t) ∈ R
p×n is sufficiently exciting

over time in the sense of (22). We finally note that, being

Ω(t) a generic time-varying quantity, the formulation (21) is

not restricted to only span the class of linear systems, but it



can easily accommodate nonlinear terms as long as they are

embedded in matrix Ω(t).
We now detail how to tailor (21) to the case under

consideration. We start by defining x2 = 1/d and x1 =
Cṽ = Cv/d = Cvx2 with, therefore, n = 3 and p = 1.

Exploiting (6), the dynamics of x2 is given by

ẋ2 = −
ḋ

d2
= −

Cv
T Cn

d2
= −

Cṽ
T Cn

d
= −x2x

T
1

Cn. (23)

As for the dynamics of x1, using (2) we have

ẋ1 = Cv̇x2 +
Cvẋ2

= Cv̇x2 −
Cvx2x

T
1

Cn

= Cv̇x2 − x1x
T
1

Cn

= ( CRI
Ia+ [ Cω]2×

CpIC + [ Cω̇]×
CpIC)x2

− [ Cω]×x1 − x1x
T
1

Cn

=Ω
T (t)x2 − [ Cω]×x1 − x1x

T
1

Cn (24)

with

Ω
T (t) = CRI

Ia+ [ Cω]2×
CpIC + [ Cω̇]×

CpIC . (25)

We can then design the update rule for the estimated state x̂

as

˙̂x1 = Ω
T (t)x̂2 − [ Cω]×x1 − x1x

T
1

Cn+K1ξ (26)

˙̂x2 = −x̂2x
T
1

Cn+K2Ω(t)ξ. (27)

where K1 > 0 and K2 > 0 are symmetric and positive

definite gain matrixes. With this choice, the dynamics of the

estimation error e = [ξT zT ]T becomes

ξ̇ = −K1ξ +Ω
T (t)z (28)

ż = −K2Ω(t)ξ − zxT
1

Cn. (29)

It is easy to verify that, by letting W = −K1, Λ = K2 and

S = I3, the formulation (21) is almost fully recovered apart

from the spurious scalar term g(e, t) = −zxT
1

Cn in (29).

Nevertheless, exponential convergence of the estimation error

e(t) to 0 can still be proven by resorting to Lyapunov theory

and by noting that the spurious term g(e, t) is a vanishing

perturbation of an otherwise globally exponentially stable

nominal system. We refer the reader to [20], [17] for an

explicit proof of these facts.

We note that the design of observer (26–27) did not require

any linearization step as for the previous EKF thanks to

the more general class of (nonlinear) systems spanned by

formulation (21). Instrumental, in this sense, is the choice

of considering, as state variable x2, the inverse of the plane

distance d: this manipulation allows to obtain linearity of

the state equations in x2, thus ultimately making it possible

to apply the PE theory to the case under consideration.

Similar inverse parameterizations for the scene scale can

also be found in other works dealing with the issue of range

estimation from moving cameras, see, e.g., [20], [21].

It is also worth analyzing, in our specific case, the meaning

of the PE condition (22) necessary for obtaining a converging

estimation. Being Ω
T (t) ∈ R

3 a vector, condition (22)

Fig. 2: Experimental setup with the highlighted location of IMU
and camera. The x-axis of the body frame is oriented along the red
metal beam of the frame.

requires that the norm of Ω
T (t) (i.e., at least one compo-

nent) does not ultimately vanish over time. On the other

hand, vector ΩT (t) represents the camera linear acceleration

through space w.r.t. the inertial world frame W . Therefore,

we recover the well-known condition that the estimation of

d is possible if and only if the camera undergoes a physical

acceleration, and, consequently, moving at constant velocity

w.r.t. W cannot allow the estimation to converge.

As done in the previous Sect. IV-D, we finally list the

quantities necessary for implementing the proposed ob-

server (26–27). In addition to the estimated state x̂, these

are:

1 the constant IMU/camera rotation matrix IRC and

displacement vector IpIC ;

2 the IMU angular velocity Iωm;

3 the IMU angular acceleration Iω̇;

4 the IMU linear acceleration Ia = Ifm + Ig;

5 the plane normal Cn;

6 the scaled camera linear velocity x1 = Cṽm =
( Cv/d)m.

Thus, the same considerations of Sect. IV-D apply also to the

PE estimation scheme (26–27). In particular, as done for the

EKF, in our implementation we will approximate Iω̇ ≈ 0

in (25) (item 3) because of lack of a direct measurement of

the UAV angular acceleration.

VI. EXPERIMENTS

A. Experimental Setup

For our experiments, we used a quadrotor from

MikroKopter. The location of all relevant sensors and frames

can be found in Figs. 1–2. The quadrotor was equipped with

an additional 3DM-GX3-25 IMU from MicroStrain (frame

I) to provide the measurements of the specific acceleration
Ifm, of the angular velocity Iωm, and of the gravity vector
Igm at 200Hz. A precalibrated MatrixVision mvBlueFox

camera (frame C) captured the necessary image stream. The

body frame B was fixed at the center of the quadrotor metal

frame. To obtain a reliable ground truth, a Vicon tracking

system with sub-millimeter accuracy was used throughout

our experiments.

B. Simulations

In order to illustrate the convergence of the proposed

estimation schemes, we generated a synthetic acceleration



profile together with the corresponding (simulated) sensor

readings. This resulted in a camera motion similar to the

circular trajectory presented in the experimental results of

the next Sec. VI-C. All generated sensor readings were

perturbed with an additive zero mean gaussian noise with co-

variance matrixes taken from the real sensor characteristics:

0.00004 I3
m
s2

, 0.00002 I3
rad
s

and 0.00001 I3
1

s
for Ifm,

Iωm, and for the scaled linear velocity from optical flow

( Cv/d)m, respectively. The same covariance matrixes were

employed in the steps (13)–(17) of the EKF, while the gains

of the nonlinear observer K1,K2 were manually tuned to

K1 = 10 and K2 = 70.

To demonstrate the robustness to unknown initial esti-

mates, the two filters were initialized with d̂(t0) = −5m
and Cv̂(t0) = [0 0 0]T m/s, while the actual initial distance

from the scene was d(t0) = −1m.

C. Recorded Data

To allow for a controlled and direct comparison of the

two systems, we recorded data while flying along a circular

trajectory of 2m in diameter. The trajectory was chosen in

order to have the UAV accelerating sinusoidally along the

three cartesian directions. It was traveled once in about 10 s,

with a maximum speed of 0.6 m
s

. The height varied from

0.5m to 1.5m along the trajectory. The quadrotor relied on

the Vicon tracking system in order to track the trajectory with

a standard flight controller. On-board hardware was used to

record vision and IMU data during flight. Afterwards, the two

scale estimation approaches were tested offline by processing

the collected data sets and by comparing the results against

the Vicon ground truth.

Sensor offsets were calibrated before takeoff, and the

covariance matrices of Ifm, Iωm and ( Cv/d)m were es-

timated over a period of 60 s. Both filters were initialized

close to the real initial state with d̂(t0) = −1m and Cv̂(t0) =
[0 0 0]T m

s
. The gains for the nonlinear observer were tuned

to K1 = 10 and K2 = 6.

D. Comparison with Previous Work

To allow for a direct comparison with the approach

presented in [15], we tried to reproduce a similar experi-

ment consisting of small sinusoidal hand held motions. This

resulted in a trajectory with an amplitude of about 0.1 m
s

and

a frequency of about 1Hz at the height of 0.5m.

VII. RESULTS AND DISCUSSION

A. Simulations results

Figure 3a presents the results of the EKF and the nonlinear

observer in estimating the distance d over time. By properly

tuning the (two) gains of the PE observer, a faster conver-

gence of the estimation error can be obtained w.r.t. the ‘fully-

informed’ EKF, i.e., relying on the exact knowledge of the

noise characteristics. This is also evident in Fig. 3b where the

estimation error is explicitly shown. The nonlinear observer

was able to compensate for the initial offset within 12 s while

the EKF needed 27 s. Measured after convergence, the EKF

reaches a RMS error of 0.0042m while we found a RMS
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Fig. 3: Estimated plane distance d using a simulated dataset. (a)

Estimated d and (b) the estimation error d − d̂ for the two tested
estimation approaches. For completeness, the norm of ‖Ω(t)‖ as
defined in (25) is shown as well.
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Fig. 5: Error of the linear velocity estimation for the two approaches
w.r.t. the Vicon ground truth.

error of 0.0057m for the nonlinear observer. As discussed

in Sec. V, the norm of vector Ω(t) in (25) plays the role of

an observability condition in affecting the filter convergence

over time. This fact can be appreciated in Fig. 3b: phases

with a small convergence speed correspond to relatively

small values of ‖Ω(t)‖.

After estimating d̂, one can retrieve the actual camera

linear velocity from the optical flow measurement as Cv̂ =
( Cv/d)md̂. The resulting estimated linear velocity is shown

in Fig. 4 while the estimation error relative to ground truth

is presented in Fig. 5. The convergence behavior is similar

compared to the estimation of d. From these plots we can

conclude that, with the employed noise characteristics and

gains, in a real scenario large velocities should be avoided

until convergence is reached, and this process could be

quickened by alternating acceleration phases. Again, after

30 s, we computed the RMS error. For the EKF and the

nonlinear observer, we found an error of 0.008 m
s

and

0.010 m
s

respectively.

B. Recorded Data

The picture is slightly different in the case of real sensory

data, with the filters being initialized close to the real states.

Figure 6a shows the estimated distance d̂. Here, in presence
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Fig. 4: Linear velocity estimate on simulated data in the (a) x, (b) y and (c) z axis.
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Fig. 6: Distance of the camera from the ground d as (a) estimated
from a recorded dataset and (b) the corresponding estimation error
compared to the ground truth as obtained from a Vicon tracking
system. Additionally, the quantity ‖Ω(t)‖ is also shown.

of real noise, the EKF produces a smoother output compared

to the nonlinear observer, for which noise corrupts the

estimation error for the first 15 s as plotted in Fig. 6b. In

fact, the noise naturally increases with the height of the

UAV as the signal to noise ratio for the visual velocity

estimate decreases due to the reduced apparent velocity. In

our experiments, the EKF was able to cope with this noise

more robustly than the nonlinear observer. Over the last 10 s
however, we found a RMS error of approximately 0.03m
for the scale factor d with both approaches. As expected for

a circular trajectory, ‖Ω(t)‖ kept a constant non-zero value

over time, thus providing the two estimators with an adequate

excitation level in the measured signals.

Similarly, the estimated metric linear velocities presented

in Fig. 7 show an acceptable error for the control of a

quadrotor right from the beginning in the case of the EKF.

The nonlinear observer yielded a reliable output after 17 s
as well.

C. Comparison with Previous Work

The results shown in Fig. 8 allow for a comparison

of the PE estimator to the solution presented in [15]. By

exploiting the PE scheme along a similar trajectory as

the ones used in [15], we could obtain RMS values of

[0.0074, 0.0095, 0.0114] m
s

for the velocity estimation error

in the three Cartesian directions, respectively. This yields

an improvement of [3.8, 3.7, 2.2] times w.r.t. what reported

in [15]. Although the experimental conditions are obviously

different, we believe these results still indicate the good

potential of the proposed PE observer in dealing with scale

estimation from vision.

As for our proposed EKF, we found a RMS error of

[0.0101, 0.0141, 0.0107] m
s

respectively, which still corre-

sponds to an average improvement of 2.5 times compared

to the EKF used in [15]. This could be ascribed to the

more accurate modeling of the system dynamics, including

an explicit expression for ḋ, or to the choice of employing

the continuous homography constraint instead of the epipolar

one when dealing with a mostly planar scene.

VIII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this paper, we stressed the need for reliable visual veloc-

ity estimation systems on UAVs to overcome the boundaries

of protected lab environments. In particular, we proposed a

solution based on direct optical flow decomposition in order

to be highly independent from maps, known landmarks, or

the need of extended tracking over time. We focused our

attention on the estimation of the metric scale from the fusion

of the scaled visual velocity obtained from optical flow with

the high frequency readings of an onboard IMU. To this end,

we discussed two estimation schemes, the former based on a

classical EKF, and the latter proposing a novel PE nonlinear

observer. Simulated and real experimental data were used

to assess and compare the performance of both filters in

ideal and real conditions. Compared to other state of the art

solutions, we could obtain an improved estimation accuracy

of about 3.5 times.

We found the PE nonlinear observer to yield good results

in presence of well-characterized noise and poor knowledge

of the actual initial state of the system. However, when it

is more important to cope with various sources of complex

noise rather than to achieve a fast convergence, the EKF

might be the better choice.

B. Future Work

Currently, we are working towards an implementation of

both scale estimation approaches in closed-loop control using

onboard hardware only. In this scenario, the user will send a

velocity command by means of wireless communication to

the otherwise fully autonomously acting quadrotor system.
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Fig. 7: Recovered linear velocity from a recorded dataset in the (a) x, (b) y and (c) z directions. The ground truth was obtained by
numerically differentiating the Vicon position information.
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Fig. 8: Experimental results for the comparison with [15]. Results for the (a) x, (b) y and z directions are plotted against a ground truth
obtained from the Vicon tracking system. We found a RMS value of [0.0074, 0.0095, 0.0114] m

s
for the Cartesian directions, respectively.
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