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Abstract. We present a distributed asynchronous algorithm that, for
every undirected weighted n-node graphG, constructs name-independent
routing tables for G. The size of each table is Õ(

√
n ), whereas the

length of any route is stretched by a factor of at most 7 w.r.t. the
shortest path. At any step, the memory space of each node is Õ(

√
n ).

The algorithm terminates in time O(D), where D is the hop-diameter
of G. In synchronous scenarios and with uniform weights, it consumes
Õ(m

√
n+n3/2 min {D,

√
n }) messages, where m is the number of edges

of G.
In the realistic case of sparse networks of poly-logarithmic diameter, the
communication complexity of our scheme, that is Õ(n3/2), improves by a
factor of

√
n the communication complexity of any shortest-path routing

scheme on the same family of networks. This factor is provable thanks
to a new lower bound of independent interest.

Keywords: distributed routing algorithm, name-independent, compact
routing, bounded stretch

1 Introduction

Message routing is a central activity in any interconnection network. Route effi-
ciency and memory requirements are two major central parameters in the design
of a routing scheme. Routing along short paths is clearly desirable, and the stor-
age of the routing information at each node must also be limited to allow quick
routing decision, fast update, and scalability. There is a trade-off between the
route efficiency (measured in terms of stretch) and the memory requirements
(measured by the size of the routing tables). The shorter the routes, the larger
the routing tables. It is also desirable that routing schemes are universal, i.e.,
they apply to any topology, as the model of large dynamic networks cannot be
guaranteed. An additional desirable property of a routing scheme is to use ar-
bitrary routing addresses (say based on processor IDs or MAC addresses), and
? All the authors are supported by the ANR-project DISPLEXITY
(ANR-11-BS02-014), and the European STREP7-project EULER. The
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{gavoille,glacet,hanusse,ilcinkas}@labri.fr



2 Cyril Gavoille, Christian Glacet, Nicolas Hanusse, and David Ilcinkas

thus addresses independent of the topology. Such routing schemes are called
name-independent.

This paper focuses on distributed algorithms that can construct universal
and name-independent routing schemes for static networks. For practical use, it
is essential that such distributed algorithms be as fast as possible (typically lin-
ear in the diameter) since the objective is to quickly update routing tables after
topological changes in the network. Naturally, to optimize the network trought-
put, a distributed algorithm must consume as few messages as possible. We
are therefore interested in time and communication complexities of distributed
routing schemes. There are well-established trade-offs between the stretch and
the memory for centralized routing schemes (see the related works part in Sec-
tion 1.4). In this paper we show some different trade-offs between the stretch,
the memory, and the communication complexity of distributed routing schemes.
The fundamental question we address is to determine whether or not theoretical
optimal space-stretch trade-offs can be achieved when time and communication
complexities are restricted.

1.1 Terminology and Models

We consider undirected weighted graphs with positive edge-weights. The aspect
ratio of a weighted graph G is the maximum ratio between any two edge-weights
in G. A shortest path between u and v in G is a path of minimum cost (the weight
sum of the path edges) connecting u to v in G, and this cost is the distance
between u and v. The hop-distance between u and v is the minimum number
of edges in a shortest path between u and v. The hop-diameter is the largest
hop-distance in the graph.

In the case of uniform weights, the aspect ratio is 1 and the hop-diameter
corresponds to the classical notion of diameter in unweighted graphs. It is well-
known that the asynchronous distributed Bellman-Ford algorithm can construct
a shortest-path spanning tree rooted at a node u in time h + 1, where h is the
height of the tree and also the maximum hop-distance between u and its leaves
(see [13]). This time is thus at most the hop-diameter of G plus one. The hop-
diameter plays an important role, not only in the time for computing a shortest-
path tree, but in the running time of all subsequent distributed subroutines using
this tree (e.g. for broadcasting).

A routing scheme on a family of graphs is an algorithm that produces, for
every graph G of the family, a routing algorithm for G. A routing algorithm is
in charge of delivering any message from every source to every destination node
in G. A name-independent routing algorithm must deliver messages assuming
that the destination names given at the sources are the original names of the
input graph.

The stretch factor of a routing algorithm is the maximum, over all source-
destination pairs (u, v), of the ratio between the cost of the route from u to v,
and the distance from u to v in G. So, shortest-path routing algorithms have
stretch factor exactly one. The round-trip stretch factor is the maximum ratio
between the total cost of the route going from u to v and back to u, and the
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distance from u to v plus the distance from v to u. This notion is naturally used
in the context of directed graphs [23], where the distance from u to v may differ
from the one from v to u. In this paper, graphs are undirected though. Note
that if the round-trip stretch is bounded above by s, then the average stretch
(average over all the source-destination pairs) is at most s.

The routing tables are the local data structures used by the routing algorithm
to perform routing. The working memory space (a.k.a. per-node state or topo-
logical memory) is the maximum memory space a node of the graph needs when
running the distributed routing scheme. If the working memory space is S, then
the routing tables have size at most S as well. The challenge is to design routing
schemes with working memory space that is sub-linear in n and not significantly
greater than the size of the final routing tables.

We assume a reliable asynchronous network, where a message sent along an
edge is received after an unpredictable but finite time. The time complexity
of a distributed algorithm A is the worst-case difference of time units between
the first emission of a message and the last reception of a message during any
execution of A, assuming the slowest message uses one time unit to traverse an
edge. The bit-message complexity of A is the worst-case total number of bits
exchanged along the edges of the graph during any execution of A. As in the
standard asynchronous model, processors have no synchronous wake-up: they
can either spontaneously wake up, or be activated when receiving a message.
We make no assumptions on the number of messages that can be transmitted
over a link in one time unit, and so we ignore congestion problems.

As specified by the name-independent model, we do not make any assump-
tion on the distribution of node identifiers, which are chosen by an adversary.
However, using hashing technique as explained in [4, 8], we will assume that node
identifiers can be represented on O(log n) bits.

Each message of our distributed algorithm has a poly-logarithmic size. More
precisely, messages have size at most B = O(logW +min {D, log n} · log n) bits,
where W is the aspect ratio and D is the hop-diameter of the graph. We also
assume that each entry of the routing tables is large enough to receive B bits.
The size of a routing table is the number of its entries. We assume that whenever
a node receives a message on some incident edge, it can determine the weight of
that edge.

1.2 Our Results

We design a new distributed routing scheme and two lower bounds.

– We propose an asynchronous distributed name-independent routing scheme
for weighted n-node graphs of hop-diameter D. The stretch is 7 and the
round-trip stretch is 5. The time complexity is O(D), with a small hidden
constant (< 10). Moreover, at each time of the algorithm, the working mem-
ory space of each node is4 Õ(

√
n ). In particular, the routing tables have size

4 The notation Õ(f(n)) stands for a complexity in O(f(n) · logO(1) f(n)).
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Õ(
√
n ). In a synchronous scenario, and in the case of uniform weights, the

message complexity is Õ(m
√
n+ n3/2 min {D,

√
n }).

– For the realistic case of weighted sparse networks of poly-logarithmic hop-
diameter, the message complexity is Õ(n3/2). A simple variant of our algo-
rithm shows that, for this same family of networks, we can achieve stretch 5
with sub-linear routing tables and sub-quadratic message complexity. See
Table 1 for a summary.

Schemes Stretch Memory #Message Time Reference
Distance or Path Vector 1 Ω(n) O(n2) O(D)

DistRoute(n1/2) 7 Õ(n1/2) Õ(n3/2) O(D) Corollary 1
DistRoute′(n2/3) 5 Õ(n2/3) Õ(n5/3) O(D) Corollary 2

Memory lower bound < 2k + 1 Ω((n logn)1/k) any any [2]
#messages lower bound 1 any Ω(n2) o(n) Theorem 2

Time lower bound 6 n/(3D) any any Ω(D) Theorem 1

Table 1. Fast distributed name-independent routing schemes for realistic weighted
graphs, i.e., with Õ(n) edges and logO(1) n hop-diameter. The “Memory” column stands
for working memory space and routing table size. Note that lower bounds are given in
bits or bit-messages.

Our lower bounds show that time Ω(D) is indeed required for any constant
stretch, and that shortest-path routing requires Ω(n2) bit-message complexity
even on sparse graphs of logarithmic diameter. More precisely, we prove that:

(1) Every synchronous constant-stretch name-independent distributed routing
scheme requires time Ω(D) on unweighted graphs of diameter D. This bound
is independent of the bit-message complexity and the routing table size of
the scheme.

(2) There are unweighted n-node graphs of diameter O(log n) and with maxi-
mum degree 3 for which every synchronous distributed shortest-path routing
scheme (name-independent or not) of o(n) time complexity requires Ω(n2)
bit-message complexity.

For these lower bounds, we assume a synchronous scenario which also implies
the results for asynchronous scenarios. We also point the fact that we do not
make any restriction on the message length.

1.3 Discussion

Our first lower bound may seem trivial at first glance. It is indeed immedi-
ate to show that a time Ω(D) is required for shortest-path routing schemes.
Just consider for instance a path of D nodes and a source in the middle of the
path. However, this folklore lower bound is less straightforward when arbitrary
stretched routing schemes are considered. Let us stress that, for paths, the cow-
path routing algorithm [12, 18] achieves stretch 9 without any routing tables!
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One may also think that the second lower bound is again folklore since clearly
a shortest-path routing scheme must send at least one message on each edge.
Otherwise subsequent routing queries will not be able to use all the edges of the
graph (and so cannot be a shortest-path routing). This gives a communication
complexity of Ω(n2) for dense graphs. However, this quadratic bound cannot be
guaranteed using the same argument for sparse graphs as stated by our lower
bound. An option to prove a quadratic bound for sparse graphs might be to show
that Ω(n) bits of information must be transmitted along long paths in the graph,
say paths of Ω(n) edges. Again, this cannot be achieved for poly-logarithmic
diameter graphs. Finally, we stress that the arguments of any formal proof must
take into account the time complexity of the routing scheme. This is because a
1-bit message can carry more than one bit of information. For instance a 1-bit
message can be sent during odd or even clock pulse to carry more information.
Senders could also decide to send 1-bit or 2-bit messages, so encoding extra
information with the message length.

Our distributed routing scheme, although universal, achieves better perfor-
mance when realistic networks are considered. By realistic networks we mean
sparse and small-diameter graphs, typically graphs with Õ(n) edges and poly-
logarithmic diameter. The classical Distance Vector and Path Vector routing pro-
tocols both achieve message complexity of Ω(mn) = Ω(n2) for realistic networks,
whereas our scheme consumes at most Õ(n3/2) messages. This good theoretical
behavior is confirmed by experiments. We have implemented our routing scheme
on a fully distributed routing scheme simulator5. For instance, on CAIDA-2004
map6, our scheme7 produces an average stretch of 1.75 for 534 entry routing ta-
bles on average (maximum size is 1002), and this after exchanging a total of 55M
messages (synchronous scenario). Running Distance Vector on the simulator on
the same graph generates routing tables of 16K entries after exchanging 1,617M
messages. Note that our scheme reduces both the number of messages and the
number of entries by a factor close to 30.

Our scheme is widely inspired from the universal name-independent routing
scheme [4] that achieves the smallest possible stretch for routing tables of size
Õ(
√
n ). Following the work of [4], stretch-3 can be achieved at the price of

an extra communication cost factor of roughly
√
n over our stretch-7 scheme.

The communication complexity becomes therefore Ω(mn), which is as high as
the complexity of a shortest-path routing scheme. To implement the stretch-3
scheme of [4], we need to consider the set of vicinity balls touching the vicinity
ball of a given node u. Unfortunately, there are small diameter graphs where each
node has Θ(n) different touching vicinity balls, which implies a total volume
of Ω(n2) routing information to manage in the graph. This translates into a
Ω(n2) communication complexity. Designing a distributed routing scheme with
stretch 3 and o(n2) message complexity on small diameter graphs, if it exists,
requires another approach.

5 Source code available on demand.
6 It has 16K nodes and 32K edges.
7 More precisely, we run DistRoute(k) for k = 78, see Section 3.
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To conclude the discussion, let us stress that bounding the working memory
space of each node considerably reduces the set of standard tricks to decrease
communication complexity. For instance, when o(n) working memory space is
forced, then a simple broadcast in a spanning tree may cost O(m) messages
instead of O(n) messages (since a node cannot store all its children in the tree).
More generally, the γ-synchronizer methodology [9] cannot be applied, and the
use of sparse spanners (like in [14]) on which subsequent routines consume less
messages is problematic.

1.4 Related Works

The theory of name-independent routing schemes has a long history, and started
early with Kleinroch’s work about routing in the ARPANET. The first provable
trade-off between the size of the routing tables and the stretch appeared in [11].
In the line of hierarchical routing schemes initiated by Kleinroch et al. [19], the
authors have proposed a name-independent routing scheme of stretch 2k−1 with
routing tables of size Õ(n1/k) on average, where k > 1 is an integral parameter.
In [8], better space-stretch trade-offs have been proposed. In particular, the size
of the routing tables is bounded by Õ(n2/k) for each node, and not only on
average, and the stretch is in O(k2). However, the schemes assume polynomial
aspect ratio. They achieve a stretch 3 with routing tables of size Õ(n2/3), and
a stretch 5 for routing tables of size Õ(

√
n ). Finally, [3] proposed a scheme

with linear stretch O(k) for routing tables of size Õ(n1/k), and this for arbitrary
weighted graphs. According to the best current lower bounds, a linear stretch8

Ω(k) is optimal for routing tables of size Õ(n1/k). More precisely, [2] showed
that there are weighted depth-1 trees with edge-weights in {1, k} such that every
name-independent routing scheme of stretch < 2k + 1 requires Ω((n log n)1/k)-
bit routing tables. According to this lower bound, routing schemes of stretch < 5
require routing tables of Ω(

√
n log n ) bits (k = 2), and the best possible stretch

for o(n log n)-bit routing tables is > 3 (k = 1). Note that these lower bounds
apply to realistic graphs. A scheme with stretch-3 and Õ(

√
n )-bit routing tables

has been proposed in [4], which is therefore optimal in space and stretch.
Better stretch-space trade-offs can be achieved for more specific classes of

networks. Bounded growth [6] and bounded doubling dimension [1, 20] graphs,
trees [21], planar and more generally minor-free unweighted graphs [5], sup-
port name-independent routing schemes of constant stretch and poly-logarithmic
routing tables.

For practical usage, several distributed routing schemes have been proposed
and implemented, and first of all distributed shortest-path routing schemes
(stretch 1). Distance Vector and Path Vector protocols are such distributed rout-
ing schemes. Based on Bellman-Ford algorithm, they produce after a time O(D)
shortest-path routing tables of linear size using O(mn)messages, for small aspect
ratio graphs. A variant of Bellman-Ford supporting an aspect ratio W > 1 uses
O(mn log(nW )) messages while preserving the time complexity. However paths

8 This holds also for the average stretch.
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are no longer shortest paths and may have stretch up to 3. The message com-
plexity of shortest-path routing has been reduced to O(n2 log n) in [7], degrading
the time complexity to O(D log n). Actually, 2n2 messages are enough [17], but
messages can be as large as Ω(n log (nW )) bits, whereas in Bellman-Ford based
routing schemes and in [7], messages have size O(log(nW )) bits.

As proved by the theoretical lower bounds, shortest-path routing has to be
scrapped right away if sublinear working memory space and sublinear routing
tables are required. In this spirit, [11] proposed a synchronous distributed routing
scheme with stretch 2 · 3k − 1 and working memory space of Õ(d + n1/k) for a
degree-d node. For k = 2, the working memory space and routing tables are
Õ(d +

√
n ), and the stretch is 17. In [24], a distributed implementation of a

stretch-7 routing scheme is presented. Routing tables have size Õ(
√
n ) but the

message complexity is not analytically bounded. Moreover, each entry in the
tables can be as large as Ω(D), and the working memory space as large as
Ω(d
√
n ) for a degree-d node. [25] proposed a variant of the routing scheme

of [4], and show experiments on synthetic power-law graphs and real AS-graphs.
For these unweighted graphs, the stretch is asymptotically 2, but it is unbounded
for general graphs, even unweighted ones. Techniques using sparse spanners, like
in [14, 15], can achieve almost shortest paths with message complexity Õ(mnε1 +
n2+ε2) where 0 < ε1, ε2 < 1 are constants that can be arbitrarily chosen and
influence the stretch of the paths. We observe that for unweighted sparse graphs
of small diameter, the scheme requires at least Ω(n2)messages and Ω(n) working
memory space.

As far as we know, no distributed name-independent routing scheme is able
to guarantee a bounded stretch and a sublinear working memory space.

In the next section, we present our lower bounds on the time and message
complexities. In Section 3, we formally present the performance of our distributed
routing scheme and give an overview of the scheme. Due to lack of space, details
of the proofs and of the distributed algorithm are omitted.

2 Lower Bounds

2.1 Time Lower Bound

We give a formal proof that Ω(D) time is required for any distributed rout-
ing scheme of constant stretch (the result extends to stretch as large as n/D).
Our proof is independent of the message and routing table sizes used by the
distributed routing scheme. The lower bound holds for single-source routing
schemes, a sub-class of routing schemes. A single-source routing algorithm can
only deliver messages from a fixed source node of the graph. And, a routing
scheme is single-source if the routing algorithms it produces are single-source.

A (d, k)-star is a rooted tree with dk + 1 nodes obtained by replacing each
edge of a K1,d graph, a star of degree d, by a path of k edges. The root is the
degree-d node.
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Theorem 1. Every synchronous distributed name-independent routing scheme
on the family of unweighted (d, k)-stars, and running in time t < k, produces a
route of length at least (2d− 1)(k − t) + t between the root and some leaf.

In particular, every synchronous distributed single-source name-independent
routing scheme on unweighted n-node graphs of diameter at most D ∈
{2, . . . , n− 1}, and of stretch factor at most 1

3n/D, requires a time Ω(D).

Note that for t = 0 (no pre-processing), the problem stated by Theorem 1 is
equivalent to the d-lane cow-path problem in which the distance to the destina-
tion, here k, is known at the source. Our bound gives a stretch of 2d− 1 which
is known to be optimal if the distance is known and no pre-processing is allowed
(cf. [12, 18]).

2.2 Communication Complexity Lower Bound

Next, we prove that the o(n2) bit-message complexity for sparse graphs, as in
Corollary 1, cannot be achieved without degrading the stretch factor. Impor-
tantly, the bound holds independently of the compactness of the routing tables,
and of the message length.

Theorem 2. There are a constant λ > 0, and some unweighted n-node graphs
of diameter O(log n) and maximum degree 3, for which every synchronous dis-
tributed shortest-path routing scheme (name-independent or not) of time com-
plexity at most λn requires Ω(n2) bit-message complexity.

3 An Asynchronous Distributed Routing Scheme

Our distributed routing scheme, denoted by DistRoute(k), assumes that each
node initially receives a color9 in {1, . . . , k}, where k is an integral parameter of
our scheme. In practice, each node picks its color independently at random in
{1, . . . , k}. However our scheme is deterministic. As we will see in Theorem 3,
the correctness of our scheme is independent of the node coloring, which is not
the case of the routing scheme of [4].

Theorem 3. Let G be a connected weighted n-node graph of hop-diameter D.
For every k-coloring of G, DistRoute(k) is a deterministic asynchronous dis-
tributed routing scheme for G. It runs in time O(D). The message complexity is
no more than O(n) times the number of messages that a single-source distributed
Bellman-Ford consumes in G.

The routing algorithm it produces has stretch 7, round-trip stretch 5, and
uses headers of O(min {D, log n} · log n) ⊂ O(log2 n) bits. Each routing decision
takes constant time, and the header of each routing message, once created at the
source, is modified at most once along the path to the destination.

9 We do not impose that neighbors get different colors.
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Our scheme directly depends on the asynchronous distributed Bellman-Ford
that can generate Ω(2n) messages in worst-case asynchronous scenarios and for
graphs of large aspect ratio (see [10]). So, in some occasions, our scheme may
generate an exponential number of messages. However, in a synchronous scenario
and for graphs of low aspect ratio, the message complexity is polynomial. Note
that it is well-known that the message complexity of the distributed Bellman-
Ford algorithm is polynomial on average, and even O(n2∆3) with overwhelming
probability, where ∆ is the maximum degree of the graph [26].

The next result (Theorem 4) specifies the size of the routing tables and the
message complexity. Both complexities depend on the node coloring, the aspect
ratioW of the graph, and on synchrony. The parameters involved in the analysis,
namely n,m,D,W , are not known by the nodes when the distributed scheme
starts. We will essentially make the two following assumptions:

Random Coloring. The node coloring is uniformly random in {1, . . . , k}, and
k = nα for some constant α ∈ (0, 1). The results claimed under this stochas-
tic hypothesis then hold in expectation or with high probability (w.h.p.)10,
where the probabilities are computed over all k-colorings of the graph.

Synchronous Scenario. The network is synchronous. In that case, the dis-
tributed Bellman-Ford algorithm uses a polynomial number of messages.

Hereafter, we define ξ = 1 + D(1 − 1/W ). This value appears in the mes-
sage complexity of our scheme in synchronous scenarios. It corresponds to the
maximum number of times a node u changes its state when computing the hop-
distance to a node v. At each change, u sends a message to its neighbors. Observe
that for uniform weighted graphs ξ = 1 as W = 1.

Theorem 4. Let G be a connected weighted n-node graph of hop-diameter D,
with m edges, and with aspect ratio W . Under the random coloring hypothesis,
DistRoute(k) on G produces w.h.p. a working memory space and routing tables
of size O(k log k + n/k). Furthermore if the scenario is also synchronous, the
message complexity is, in expectation,

O

(
ξm
(
k log k +

n

k

)
+
n2

k
·min {D, k}

)
.

So, for k =
√
n/ log n the routing tables have O(

√
n log n ) entries, and in

the case of uniform weights (W = ξ = 1), the message complexity in Theorem 4
even simplifies to

Õ(m
√
n+ n3/2 ·min

{
D,
√
n
}
) .

Another important particular corollary of our analysis is the following:

Corollary 1. Under random coloring and synchronous hypotheses, and for
weighted n-node graphs with Õ(n) edges and poly-logarithmic hop-diameter, the
distributed routing scheme DistRoute(

√
n ) has message complexity Õ(n3/2),

produces a stretch-7 routing algorithm, and w.h.p. a working memory space and
routing tables of size Õ(

√
n ).

10 It means that it holds with probability at least 1− 1/nc for some constant c > 1.
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A simple variant of our algorithm, denoted by DistRoute′(k), fulfills all the
statements of Theorem 3 except that it achieves stretch 5. This is done at a price
of an extra communication cost of O(n3/k2 · min {D, k}) messages (under the
hypothesis of Theorem 4). We obtain another trade-off which is:

Corollary 2. Under random coloring and synchronous hypotheses, and for
weighted n-node graphs with Õ(n) edges and poly-logarithmic hop-diameter, the
distributed routing scheme DistRoute′(n2/3) has message complexity Õ(n5/3),
produces a stretch-5 routing algorithm, and w.h.p. a working memory space and
routing tables of size Õ(n2/3).

The message complexity that can be achieved by DistRoute or DistRoute′

on realistic graphs without the synchronous hypothesis is significantly higher
than Ω(n2). Observe however that by a slight modification of the algorithms,
namely by adding an α-synchronizer (cf. [22]), we can still guarantee a message
complexity of respectively Õ(n3/2) and Õ(n5/3) in the asynchronous setting while
keeping a time complexity of O(D).

3.1 Overview of the Scheme

Consider an initial uniformly random k-coloring of the nodes of the graph, and
denote by c(u) ∈ {1, . . . , k} the color selected by node u. In parallel of the color-
ing, nodes are split into groups of size O(n/k) thanks to a fixed balanced hash
function h, as in [4], mapping in constant time and w.h.p. the node identifiers to
the set {1, . . . , k}. A node of color i will be responsible of the routing informa-
tion for all the nodes of hash value i. Nodes of color 1, called landmarks, have a
special use in the scheme.

Consider an arbitrary node u. Node u stores three types of routing informa-
tion. (1) The node u stores in a table Bu the information on how to route along
shortest paths to its vicinity ball, a set containing O(k log k) nodes closest to u.
More precisely, this ball contains the smallest number of nodes closest to u such
that each color has been chosen by at least one node of the ball. (2) For each
landmark l, the node u stores a shortest path between l and u. These pieces of
information are stored in a table Lu. (3) For each node v such that h(v) = c(u),
the node u stores in a table Cu the closest landmark to v, namely lv, and a
shortest path from lv to v.

All these paths stored in the second and third tables are not arbitrary but are
extracted from fixed shortest-path spanning trees Tl rooted at each landmark l.
Moreover, paths are stored in a compressed way into routing labels, using only
O(min {D, log n} · log n) bits, thanks to a distributed variant of the technique
of [16]. Overall, the routing table of u has size O(k log k + n/k) since there are
O(n/k) landmarks and nodes with the same hash value.

We now describe how the actual routing from a source s to a destination t is
performed using these tables. If t ∈ Bs, then the table Bs allows s to transmit
the packet along a shortest path to t. Otherwise, node s forwards the packet
to the closest node u ∈ Bs such that c(u) = h(t). This is done by putting u’s
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identifier in the header of the packet. Also, note that u may be the node s itself.
Once in u, the header is replaced by lt and the compressed path from lt to t
stored in the table Cu. Now, thanks to the header and to the tables Lv of all the
intermediate nodes v, the packet will follow the unique path from u to t in the
shortest-path spanning tree Tlt rooted in lt (see Fig. 1).

In practice, the routing algorithm can be improved when routing on the
unique path from u to t in Tlt . Each intermediate node v on this path first
checks whether node ti, the i-th nearest ancestor of t on the path from lt to t,
belongs to Bv and is not an ancestor of v in Tlt . In that case, v can route
directly to ti along a shortest path, producing a shortcut in the path from v to
ti in Tlt . These nodes ti are contained in the header available at v, and they are
checked in the order t0, t1, t2, . . . where t0 = t. Actually, due to the compressed
representation of the path, only min {D, log n} nodes ti are available at v.

u

s

lt

t

Bs

Bt

Fig. 1. Routing from s to t where c(u) = h(t).

The stretch analysis of the routing algorithm is as follows. If t ∈ Bs, the
stretch is 1. Otherwise, assume that s and t are at distance d. Then the cost of
the route s u is at most d, since t /∈ Bs. The route lt  t is at most 2d since
the landmark of s (that is in Bs) is at distance at most 2d from t, and lt is the
closest landmark to t. It follows that the cost of the route u lt is bounded by
the cost of the route u s t lt which is at most 4d. Therefore, the cost of
the route s  u  lt  t is at most d + 4d + 2d = 7d. The round-trip stretch
analysis is similar and gives an upper bound of 5.

Note that stretch 5 can be achieved if the segment of the route u t would
have been done in tree Tls instead of Tlt . Indeed, the route u t would not be
longer that the route u s ls  s t where each of the four segments is a
shortest path of length at most d, yielding to a total of 5d from s. In other words,
u could have store a better landmark tree path in Cu for v. We use this obser-
vation for the variant DistRoute′(k) and to prove Corollary 2. Unfortunately,
this consumes more messages to construct such enhanced tables Cu.

3.2 Overview of the Distributed Routing Scheme

The goal of the distributed routing scheme is to compute, for every node u, the
tables Bu, Lu and Cu. The computation of the table Cu is made after every node
v has computed its landmark table Lv. For that we use a weak synchronization
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that allows to reduce the number of messages in asynchronous environments
since no unreliable information about landmark tables are sent. Thereby our
algorithm can be described as two sub-algorithms that run in parallel. The first
one computes Bu, and the second one computes Lu, then Cu.

The algorithm to compute vicinity balls is similar to the distributed Bellman-
Ford algorithm. The main difference is that to construct Bu, the closest nodes
to u start a shortest-path tree spanning u. Importantly, to save messages, tie
break between candidates of the last layer for Bu is selected according to the
arrival order of their discovery message received at u. This also guarantees that
the monotony property of vicinity balls is respected: the next-hop w to reach any
v ∈ Bu from u verifies that v ∈ Bw. In the synchronous scenario, the construction
of all vicinity balls takes O(ξmk log k) messages.

The algorithm to construct Lu and Cu is subdivised into the following steps,
each one runing in time O(D).
Step 1. Each landmark l starts the construction of a shortest-path spanning
tree Tl. During this process, node u stores its parents in Tl for all the landmarks,
and learns the landmark of smallest identifier, the leader denoted by lmin. In a
synchronous scenario, Step 1 consumes O(ξmn/k) messages.
Step 2. After detecting termination of Step 1, the routing label of u in each
tree Tl, denoted by `(u, Tl), is computed by a process we describe in Section 3.3.
After Step 2, Lu is computed, and u can determine its closest landmark denoted
by lu. The termination detection of Step 1 is done by lmin and takes O(m)
messages, and Step 2 consumes O(mn/k) messages in total. Note that our bound
on the working memory space prevents us from broadcasting in a tree in O(n)
messages, because a node cannot store all its children.

The goal of the last two steps is to construct Cu. For that, u needs to retrieve
the routing label `(v, Tlv ) for every node v such that h(v) = c(u). For that, every
node v of hash value h(v) sends its label to its closest node of color h(v), say w.
Node w is then in charge of broadcasting this message to all nodes u of color h(v).
It is important to note that we want a more efficient algorithm than a simple
broadcast for each node, which would require Ω(n2) messages.
Step 3. In this step, we construct an efficient broadcasting scheme composed of
k logical trees, one for each color. We will use them in Step 4. For every color
i ∈ {1, . . . , k}, we build a logical tree Ti whose node-set is composed only of
nodes of color i in G. An edge between w and w′ in Ti represents a path from w
to w′ in Tlmin

without any intermediate node of color i.
To construct the edge {w,w′} in Ti, w sends to its parent in Tlmin

a message
〈i, `(w, Tlmin

)〉 to find a potential parent in Ti. (There is a special treatment we
do not detail whenever w has no ancestor of color i in Tlmin .) Such a message
is forwarded to the parent of the current node until a node w′ of color i is en-
countered. Whenever node w′ learns the existence of w, it knows how to reach w
through the routing label `(w, Tlmin

). It acknowledges to w by indicating its own
routing label `(w′, Tlmin

).
We can prove that edges of Ti are composed on average of t 6 2min {D, k}

edges of G. So, to construct Ti it takes O(nit) messages, where ni is the number
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of nodes of color i. For all the k logical trees, this sums to O(
∑
i nit) = O(nt) =

O(nmin {D, k}) messages.

Step 4. Node v sends the identifier lv and its routing label `(v, Tlv ) to w, its
closest node of color i = h(v). Node w broadcasts this label to its neighbors
in Ti. Eventually, any node u of color i = c(u) = h(v) will receive all such labels
to construct its table Cu. Thus v contributes to O(min {D, k log k}) messages
for the construction of Cu, the hop-distance between v and w. Then, from w,
the cost of broadcasting this label is O(n/k · t) messages, since there are O(n/k)
nodes in Ti connected by paths of at most t edges. Therefore, to construct all the
tables Cu, and to complete Step 4, we need O(n · (min {D, k log k}+ n/k · t)) =
O(n2/k ·min {D, k}) messages since k 6 n.

The variant DistRoute′(k) is a slight change in Step 4 only. It consists in
broadcasting from v the whole collection of routing labels `(v, Tl), for each land-
marks l, instead of only `(v, Tlv ). These labels are already stored by v in Lv. Then
node u, combining with its own routing labels in Lu can select the best landmark
tree for each v. This allows u to store an enhanced table Cu producing a stretch
at most 5, according to the remark in the stretch analysis of DistRoute(k).
The counterpart of this stretch improvement is that node v sends O(n/k) more
messages than initially. This is O(n3/k2 ·min {D, k})messages in total for Step 4,
the previous steps being the same.

3.3 Routing Labels

We give in this part some details about routing label computation. Let us con-
sider a shortest-path tree T of G rooted at node r. Note that in T the path
between any two nodes contains O(D) edges. Every node can compute a routing
label of O(min {D, log n} · log n) bits such that routing can be achieved using
these labels and headers of the same size. Routing decisions take a constant
time. We adapt an algorithm described in [16] which allows to compute in a
centralized way routing labels with similar size. However, the solution proposed
in [16] would have, in a distributed setting, a time complexity of O(n) due to the
computation of a DFS number for every node, this DFS number is part of the
routing label. Since we aim at a time complexity O(D), we made some changes
to the routing scheme in order to avoid this DFS construction.

In order to compute its routing label `(u, T ), every node u computes its
weight (its number of descendants in T ), together with its heaviest child. These
two metrics can be computed by using a global function as described in [22].
Once every node has computed these metrics, node r can initiate the computa-
tion of a compact path from r to every other node. A compact path is a sequence
of node identifiers in which every identifier that corresponds to an heaviest child
identifier is replaced by a star ∗. This computation can be achieved by broad-
casting compact paths in T from r. Once a node u has calculated its compact
path, namely path∗u, it can compute locally `(u, T ) with the following algorithm.

The routing label `(u, T ) is composed of (1) the cpathu which is path∗u where
every star sequence is replaced by its own length; (2) and a bit-set bu that
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allows to determine whether an element of cpathu is a node identifier or a star
sequence’s length. An example of such a routing label is given in table 2.

path in T u0 = r u1 u2 u3 u4 u5 = u

path∗u u0 u1 * * u4 *
cpathu u0 u1 2 u4 1
bu 1 1 0 1 0

Table 2. A simple example of `(u, T ) after computation, considering that u1 heaviest
child is u2, u2 heaviest child is u3 and u4 heaviest child is u5.

The routing algorithm at node u with destination v is performed as follows.
Node u will use `(u, T ) and `(v, T ) to determine the next-hop to v. In short,
using these labels, node u can determine an approximate location of v in T .
To do so, u has to find the longest matching prefix of `(u, T ) and `(v, T ). This
actually requires two computations: node u has to find the longest matching
prefix of the two bit-sets bu and bv, and the longest matching prefix of cpathu
and cpathv. Once this is done, u can determine whether v is a descendant of u
or not (note that the common ancestor of u and v can be v itself). In the latter
case, u routes the packet to its parent in T . Conversely, if v is a descendant, then
using the first element of the bit-set bv, node u determines whether the next-hop
to v is u’s heaviest child or not:

– if it is, then node u knows its heaviest child identifier and can thus route the
packet to it;

– if it is not, then the next-hop is part of `(v, T ), which is contained in the
header of the packet and thus, node u can route the packet.

Thus u can route to any node v in T using only `(u, T ) and `(v, T ).
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