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Abstract 

The Anaerobic Digestion Model N°1 (ADM1) is a complex model which is widely accepted 

as a common platform for anaerobic process modeling and simulation. However, it has a 

large number of parameters and states that hinders its calibration and its use in control 

applications. A principal component analysis technique was extended and applied to 

simplify the ADM1. The method shows that the main model features could be obtained 

with a minimum of two reactions for winery effluent wastewater. A new reduced 

stoichiometric matrix was identified and the kinetic parameters were estimated on the 

basis of representative known biochemical kinetics (Monod and Haldane). The obtained 

reduced model takes into account the measured states in the anaerobic wastewater 

treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The 

reduction methodology presented here can be used to develop on-line control, 

optimization and supervision strategies for AWT plants. 
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1. Introduction 

Towards a sustainable society, the production of chemicals from renewable resources and 

particularly from waste streams is emerging as an important biotechnological application. 

Efforts are now being made to remove organic contaminants as far as possible without 

external sources of energy. For these reasons and as consequence of the application of 

Directive 96/61/EC, the BREF in Common Waste Water and Waste Gas Treatment 

recommend the use of Anaerobic Wastewater Treatment (AWT) as a best available 

technique (BAT) for the pre-treatment of wastewater such as those from agro-food 

industries with high biodegradable soluble substances (European Commission, 2003). 

Consequently, in the last decades, AWT has evolved into a consolidated technology for 

the treatment of medium to high load wastewater from agro-food industries (Gomez et al., 

2010, van Lier et al., 2001). However, the suitable operation of an AWT plant requires 

constant surveillance and the targeted adjustment of different process parameters (Garcia 

et al., 2007, Olsson et al., 2005). 

Anaerobic digestion process involves many interactions between species that may not all 

have been accurately identified. AWT has classically been regarded as a difficult process 

to be controlled and managed. For these reasons, modeling of AWT process has been a 

very active area through the last decades (Angelidaki et al., 1993, Bernard et al., 2001, 

Costello et al., 1991, Dalmau et al., 2010, Gavala et al., 2003, Lee et al., 2009, Mairet et 

al., 2011, Mosey, 1983, Mu et al., 2008, Muha et al., 2012, Siegrist et al., 2002, 

Tartakovsky et al., 2008). All this knowledge about the process and its modeling has tried 

to be condensed into a model that is known as IWA Anaerobic Digestion Model n°1 

(ADM1) (Batstone et al., 2002). It is a standard benchmark for developing operational 

strategies and evaluating the performance of controllers (Batstone and Steyer, 2007). 
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However, its large number of parameters (86 parameters) and not measurable states 

(especially a large number of types of biomass) hinders its use in the development of 

control applications. The ADM1 tries to be as widely applicable as possible and therefore 

the price to be paid is that the mathematical analysis is very difficult, this influencing further 

developments in state and parameter estimation, dynamic optimization and control. Thus, 

a reduction of the model is considered as a reasonable alternative to simplify its 

complexity and facilitate the development of controllers to specific applications. 

There are different methodologies that can be applied for the reduction of models. These 

are mainly divided in projection (such as the methods based on singular value 

decomposition or proper orthogonal decomposition) and non-projection based methods 

(such as singular perturbation). Some research works on model reduction have been 

focused on extending or applying these methodologies to the reduction of wastewater 

treatment models (Barrou et al., 2008, Chachuat et al., 2003, Steffens et al., 1997). In 

general, the majority of these methodologies give as result reduced models that do not 

take into account the variables that are measured in AWT facilities. Besides, they lead to a 

reduced model that reproduces properly the behavior but that does not maintain the 

biochemical sense of variables and parameters. 

Bernard et al. (Bernard and Bastin, 2005a, Bernard and Bastin, 2005b) have developed a 

methodology, based on the projection of data through a principal component analysis 

(PCA). This method allows to reducing the complexity of biochemical models taking into 

account the measurable variables and maintaining the highest possible biochemical 

sense. Furthermore, this technique has proven to be effective for reducing the Benchmark 

Simulation Model Nº 1 (BSM1) (Barrou et al., 2008), and the identification of the minimal 

reaction network for several biochemical systems (Bernard et al., 2006, Bernard and 

Bastin, 2005a, Bernard and Bastin, 2005b, Bernard and Queinnec, 2008, Helias et al., 
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2011). 

The present paper aims to extend, to structure and to evaluate the ability of a model 

reduction technique as basis for the development of a simplified model with control and 

monitoring purposes. In this sense, a new reduced model was developed from ADM1 

using a PCA based technique (Bernard and Bastin, 2005a, Bernard and Bastin, 2005b). 

The first step consisted of evaluating the number of reactions to be taken into account for 

preserving the greatest possible variability. In a second step, the new reduced pseudo-

stoichiometric matrix was computed from the principal axis. Then, the process kinetic was 

determined and adjusted using already known biochemical kinetic expressions. Finally, the 

resulting model was validated, where the results of the different states were compared with 

the results of ADM1. Additionally, an alternative procedure was used to compute and to 

validate the pseudo-stoichiometric matrix derived from PCA. 

 

2. Materials and methods 

2.1  Experimental data 

The input data set used in this study corresponds to experiments carried out in an 

anaerobic USBF reactor treating winery effluents. The main characteristics of the input, 

organic loading rate (OLR) and the influent concentration of chemical oxygen demand 

(CODin), are shown in Fig. 1. The used data set corresponds to an experiment where a 

series of increasing influent OLRs up to destabilizing the process had been applied to an 

anaerobic digester (Ruiz-Filippi, 2005). These data were used as input of an ADM1 

simulator and the results of the simulation were used to derive a reduced model. 
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Fig. 1. 

 

2.2  IWA Anaerobic Digestion Model no. 1 (ADM1) 

ADM1 (Batstone et al., 2002) is a complex model of multistep anaerobic process 

transformations. ADM1 incorporates processes such as hydrolysis of particulates, 

acidogenesis, acetogenesis and methanogenesis, and it includes 26 dynamic state 

concentration variables, 19 biochemical kinetic processes, 3 liquid-gas mass transfer 

kinetic processes, 8 implicit algebraic variables per liquid vessel, and 86 parameters. A 

detailed description on ADM1 can be seen in the IWA Scientific and Technical Report Nº 

13 (Batstone et al., 2002). 

A virtual plant of ADM1 in a DAE (differential and algebraic equation) implementation and 

checked for consistency with the benchmark version from Lund University (Rosen et al., 

2006, Rosen and Jeppsson, 2006) was used to the simulations. Additionally, the virtual 

plant incorporates ethanol degradation pathways (Ruiz-Filippi et al., 2004) and it was 

calibrated for the anaerobic USBF (Upflow Sludge Bed Filter) reactor which was used to 

obtain the experimental data. 

The dynamic behavior of the anaerobic digestion process in the USBF reactor was 

described by the following macroscopic mass balance applied to the liquid phase: 

 

)()( xxxax
x

rKQDD
dt

d
Gin ×+--=

 
(1) 

 

where,  in and   represent the inlet concentration vector and the state vector respectively, 

D is the dilution rate, QG( ) quantifies the loss of mass of each specie by transfer to the 
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gas phase. The parameter a (0 ! ai ! 1) describes the solid behavior inside of reactor 

measuring the deviation from the ideal mixing behavior. The term K·r( ) represents the 

transformation phenomena in the bioreactor where r( ) is the (p x 1) vector of reaction 

rates and K is the pseudo-stoichiometric matrix with dimension n x p being n the number of 

species and p the number of reactions or processes considered in the model. Thus, each 

kij element of the matrix K corresponds to the yield coefficient that relates the jth reaction 

with the concentration of the ith specie. In consequence, a specie ith with a positive value of 

kij is related to the products of the reaction jth while a negative kij value refers to substrate 

consumption; and if kij = 0 the ith specie is not involved in the jth reaction. 

 

2.3  Model reduction method 

A complete structured procedure to reduce ADM1consisting of 4 steps was extended and 

applied: 

1. The first step in the model reduction procedure consists of determining the number 

of reactions p (i.e., number of columns of the reduced stoichiometric matrix K) 

applying the methodology based on PCA developed by Bernard et al. (Bernard and 

Bastin, 2005a, Bernard and Bastin, 2005b). PCA was applied in combination with 

the appropriate mass balances, where the number of measured species n is 

assumed to be greater than the number of reactions p. It is described in the section 

2.3.1. 

2. The second step was the determination of a new pseudo-stoichiometric matrix (K) 

from the principal components (i.e., eigenvectors from PCA). It is described in 

detail in the section 2.3.2. 

3. In the third step a state transformation was applied in order to obtain a set of new 
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kinetic functions and their parameters. These were modeled using well-known 

kinetic functions used for reproducing the reactions rates of biochemical reactions 

(i.e., Monod, Haldane, Contois, etc.). It is described in the section 2.3.4. 

4. Finally, the accuracy of the reduced model was assessed along with its ability for 

fitting quantitatively the data. 

A scheme that summarizes the model reduction methodology is shown in the Fig. 2. 

 

Fig. 2. 

 

The method was applied to obtain a reduced model for an AWT plant treating winery 

effluent wastewater. Nonetheless, the methodology described below could be applied to 

any other type of wastewater (e.g., effluents of agro-food industries) and to other 

biochemical models based on mass balances. 

The following section explains how a new reaction network with a lower dimension than 

ADM1 can be obtained by means of the PCA method. 

 

2.3.1 Dimension of the reaction network 

In the reduction of biochemical models the number of reactions to be considered, is crucial 

for avoiding an unmanageable boost in complexity. The aim is to define the smallest 

number of reactions or processes (p) that can represent the process dynamic. For this 

task, the general mass balance (Eq. (1)) was rewritten such that the transport terms were 

grouped on the left side or first member in the Eq. (2) while the biochemical 

transformations K·r( ) were located on the right side. 
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))(())(( trKtv
dt

d
xx

x
×=-  (2) 

 

where !( ) represents all fluxes of material in the bioreactor. Then, from Eq. (2) the 

following equation can be obtained, where u(t) can be computed because of all transport 

terms are known: 

 

)()( trKtu ×=  (3) 

 

The determination of the number of pseudo-reactions (p) implies the identification of the 

dimension of the space where u(t) lives. It corresponds to the principal component analysis 

(PCA). PCA is a statistical technique for the reduction of dimensionality in a multivariable 

process. PCA provides a roadmap for how to reduce a complex data set to a lower 

dimension to reveal the sometimes hidden, simplified structure that often underlay it. To 

address this question, u(t) is considered at N time instants, with N > n, and these vectors 

are gathered in a matrix U = [u(t1) u(t2)"�"u(tN)]. The number of pseudo-reactions (p) is 

then determined by counting the number of non-zero eigenvalues of UUT (Bernard and 

Bastin, 2005a, Bernard and Bastin, 2005b). Nonetheless, in practice there are not zero 

eigenvalues for the matrix UUT. Let us remark that the eigenvalues of UUT correspond to 

the variance associated with the corresponding eigenvector (i.e., principal component) 

(Johnson and Wichern, 1992). Thus, the method consists of selecting the p first 

eigenvectors which represents a total variance larger than a fixed confidence threshold 

(e.g., 90%). 

In order to give the same weighting to all the variables in the PCA, the data vectors u(ti) 
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were normalized as follows: 

 

)(

)(
)(~

i

iki
ki

ustdvN

utu
tu

×
-

=  
(4) 

 

where iu is the mean value of ui(tk) and stdv(ui) is the corresponding standard deviation. 

 

2.3.2 Pseudo-stoichiometric matrix identification 

The second step in the model reduction technique consists of determining a new pseudo-

stoichiometric matrix K. In this sense, the family of possible pseudo-stoichiometric 

matrices K is parameterized by a matrix G according to Eq. (5). Therefore, a number of p2 

constraints must be introduced to identify K. 

 

GK ×= r  (5) 

 

From a mathematical point of view, the identification of each pseudo-reaction (i.e., kj � 

column of K) is independent of the identification of the other pseudo-reactions. Hence, let 

us assume that p constraints are available for each jth pseudo-reaction and then these can 

be identified using Eq. (6). 

 

pjpjjjj gggGk rrrr ,2,21,1 ...+++=×=  (6) 

 

Constraints can be chosen, as follows: i) normalizing the jth reaction with respect to one 

specie, imposing a +1 or a -1 in some element of kj; ii) assuming that a specific component 
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is not involved in the reaction and therefore imposing a zero in the corresponding 

stoichiometric coefficient; iii) imposing the conservation of elementary mass balances; and 

iv) many other valuable assumptions based on a priori knowledge of anaerobic digestion 

process can be set up. However, let us remark that, constraints without biochemical 

meaning could be also applied to identify K but it should not be the preferred option. 

 

2.3.3 Pseudo-stoichiometric matrix validation 

To validate the pseudo-stoichiometric matrix an alternative calculation procedure was 

applied (Bernard and Bastin, 2005b). The idea consists in identifying a group of n-p 

vectors gathered in #, such that: 

 

nTK ÂÎ= bb      with 0  (7) 

 

Once the n-p vectors were identified, it was necessary to solve the multiple linear 

regressions associated to each vector #i (refers to Eq. (8)) from where the stoichiometric 

coefficients were reidentified. Then, the sign of the stoichiometric coefficients and the 

significance of regressions were checked. 

 

0)(
1

=å
=

tui

n

i

ib  (8) 

 

2.3.4 Kinetics and parameter estimation 

The third step in the model reduction methodology consists in estimating the reaction rates 

with respect to the biochemical species in the system. To simplify the parameter 
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identification procedure and to limit the correlation between the kinetic parameters, each 

reaction was treated separately. 

In order to isolate each jth reaction a state transformation was applied. It was assumed that 

there exists a $j vector (with dimension n x 1) according to the following approach (Chen et 

al., 2000): 

 

)0...0 1 0...0(   s.t.  =KTj
T

j ll
 (9) 

))(( ))(( trKtr
T

jj xlx =  (10) 

 

Then combining Eq. (3) and Eq. (10), each reaction rate can be expressed as: 

 

)())(( tutr
T

jj lx =  (11) 

 

Now the objective is to identify the reaction rates (rj�s) as a function of some components 

of the state  . In this sense, the reactions rates are determined by many factors but they 

often mainly depend on substrate and biomass concentration. However, this step is far 

from being trivial and different kinetics can be proposed. Here we suggest to investigate 

the possibility that rj/Xj (reaction rate / biomass for the jth reaction) would be a function of 

some of the substrate concentrations identified in the previous step. The substrates 

correspond to negative elements in kj and the biomass species correspond to some 

positive elements in kj. Thus, the procedure consists of determining whether the Sk leads 

to a functional relationship in the space (rj/Xj ,Sk). Then, known kinetic models can be 

chosen in order to assess the adjustment of the reduced model with regard to the data. In 

general, for the appropriate pair Xj and Sk, the function can be chosen from the set defined 
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by Eq. (12). 

 

ï
ï
î

ï
ï
í

ì

==

Other

Contois

Haldane

Monod

SX
X

SXr
kjj

j

kjj
),(

),(
m

 
(12) 

 

Once the mappings rj( )"have been selected, a procedure of parameter identification is 

necessary. As a first step, the parameters of each reaction jth can be estimated by 

minimizing the following objective function: 

 

( )
2

1

model ),(),,(min)( å
=

-=
N

k

kdatakjjj SXSXJ mqmq  (13) 

 

where, qj represents the set of parameters associated with the kinetic model selected for 

the jth reaction. This provides a first estimate of kinetic parameters (qj) which will then be 

used as an initial estimate for a further multi-objective optimization. The aim is to reduce 

the error between the data generated by the original model and the data reproduced by 

the reduced model. Thus, the latter optimization consists in minimizing the following 

objective function along the considered time instants tk: 

 

( )
2

1 1

model )(),(min)( åå
= =

-=
n

i

N

k

kidatakii ttJ xqxwq  (14) 

 

Here, %i is a selected weight for each state variable;  data and  model are the states of the 

original and reduced model respectively. 
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3. Results and discussion 

3.1  Number of pseudo-reactions 

PCA was applied to experimental data from an USBF reactor treating winery effluent 

wastewater and simulated ADM1 data with the aim of determining the number of pseudo-

reactions that must be taken into account to simplify the ADM1. Depending on data 

availability (i.e., measured process variables), different numbers of mass balances were 

considered for computing the number of pseudo-reactions. Table 1 shows the species 

considered for the application of mass balances (9, 8 or 7 balances) and summarizes the 

number of reactions obtained in each case for a preservation of data variability of 90%. As 

it can be observed in the table, when 7 mass balances were considered the resulting 

number of pseudo- reactions was lesser than the other two cases. This apparent 

discrepancy occurred as result of the methodology used. As a general rule, a lesser 

number of mass balances implied a lower number of pseudo-reactions to be considered in 

the reduced model structure. In fact, according to the adopted methodology, several 

combinations are often possible among reaction networks of different complexity (Bernard 

and Bastin, 2005b) and therefore the choice of a reaction network and its associated 

stoichiometry matrix is usually the result of modeling assumptions, data availability and 

modeling objectives. Hence, modeler expertise is crucial for determining the interest of 

increasing the accuracy of the model by increasing its complexity. 

 

Table 1 
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In the case of anaerobic digesters, only a small set of measured variables are available 

on-line (Spanjers and van Lier, 2006). Thus, the reduction method was applied considering 

only those variables that can be measured or easily estimated in AWT plants. These 

variables were: chemical oxygen demand (S1), concentration of volatile fatty acids (S2) 

(note that the volatile fatty acids-VFA are also a source of chemical oxygen demand-COD, 

however we decided to represent the VFA in a separate way from main COD source), 

methane (CH4), inorganic carbon concentration (IC), inorganic nitrogen concentration (IN), 

acidogenic biomass concentration (X1) and methanogenic biomass concentration (X2). 

Considering this set of variables, the results obtained by application of PCA suggest that a 

model with p equal to 2 reactions (i.e., a new 7 x 2 pseudo-stoichiometric matrix K) would 

be adequate to describe the behavior of an AWT plant treating winery effluent wastewater. 

This can be observed in Fig. 3, where the accumulated explained variance is higher than a 

90% by considering only 2 reactions.. This result agrees with other scientific works, where 

two reactions were used to represent the experimental data issued from an anaerobic 

plant processing ethanol containing wastewater (Bernard et al., 2006, Bernard and 

Queinnec, 2008). 

 

Fig. 3. 

 

3.2  Pseudo-stoichiometric matrix 

Once the number of compounds to be modeled was established (i.e., n equal to 7) and the 

number of reactions was determined (i.e., p equal to 2), the next step consisted in the 
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identification of the pseudo-stoichiometric matrix K for the reduced model. As it was 

explained previously in the section 2.3.2, a number of p2 constraints (22 = 4) were required 

to identify a new pseudo-stoichiometric matrix K. The structure of K is shown in the Eq. 

(15): 
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(15) 

 

Two constraints by reaction were proposed based on a priori knowledge of anaerobic 

digestion process. Constraints that preserve as much as possible the biochemical 

meaning were preferred over any other possibilities. Thus, the first column or first reaction 

was identified assuming that it corresponds to the acidogenic step and therefore the 

following constraints were considered: 

- The reaction was normalized with regard to the acidogenic biomass (X1) and then a 

value of +1 was assigned to the stoichiometric coefficient k51 (refers to Eq. (15)). 

- It was assumed that the solubility of methane is negligible and also that it is only 

produced in the methanogenic step (i.e., k31 = 0). 

In a similar way, two constraints were used to identify the second column (see Eq. (15)) or 

2th pseudo-reaction, considering it equivalent to the methanogenic step of the anaerobic 

digestion process: 

- The second reaction was normalized with regard to the methanogenic biomass 

(X2); this implies that a value of +1 was imposed for the stoichiometric coefficient 
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k62. 

- It was considered that original source of COD cannot be directly consumed by the 

methanogenic biomass (i.e., k12 = 0). 

Each pair of constraints associated to a column of K permitted to solve the linear system 

that corresponds with each pseudo-reaction (refers to Eq. (6)). Then, the unknown 

stoichiometric coefficients kij were calculated by means of Eq. (5). The obtained pseudo-

stoichiometric matrix that results of this procedure is the following: 
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(16) 

 

This new pseudo-stoichiometric matrix reduces considerably the 28 x 21 ADM1 

stoichiometric matrix. 

 

3.3  Kinetics of the Reduced Model 

The functions that describe the kinetics were chosen in order to assess whether the model 

fits well the data. Fig. 4 shows the projected data and the kinetic fitted data according with 

Eq. (12). 

 

Fig. 4. 
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As it is shown in Fig. 4, the reaction rate was expressed with regard to the biomasses (i.e., 

acidogenic biomass X1 and methanogenic biomass X2 concentrations), and plotted against 

the corresponding substrate concentration (i.e., S1 and S2) for each pseudo-reaction. A 

Monod kinetic function (Eq. (17)) was chosen for acidogenesis � 1st pseudo-reaction (see 

Fig. 4a) while a Haldane kinetic function (Eq. (18)) was chosen for methanogenesis � 2nd 

pseudo-reaction (see Fig. 4b). 
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Initially, the parameters were identified using Eq. (13), and then these were optimized to 

improve the response of the reduced model (refers to Eq. (14)). The results of the 

parameter identification procedure are shown in Table 2. 

 

Table 2 

 

3.4  pH - electroneutrality 

Electroneutrality is a principle that must be respected in biochemical processes; so the 

concentration of anions weighted by the number of electrical charges must be equal to the 

concentration of cations with the same weighting. In ADM1, electroneutrality principle is 

used to evaluate the pH in the medium (an important variable to be monitored). The pH is 
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calculated using a charge balance which implies the use of an algebraic equation. This 

algebraic equation cannot be reduced by the PCA method and therefore it was adapted 

considering the state variables of the reduced model. pH was computed using the charge 

balance in Eq. (19) which is an adaptation of ADM1 charge balance. 

 

0423 =---+++ +++---- HNHCatsAnHCOHO  (19) 

 

Affinity constants were used for computing the dissociated chemical species involved in 

(19). The affinity constant for the dissociated volatile fatty acid (s2
-) was assumed equal to 

acetic acid affinity constant considering that it is the major volatile fatty acid compound in 

anaerobic digestion process under not overloaded conditions. Cat+ and An- represent 

additional positive and negative ions respectively (e.g. Na+, Cl-). Fig. 5 compares the 

values of pH obtained by ADM1 and the results obtained with the charge balance given by 

Eq. (19). According with the results shown in this figure, the approximation used for the 

affinity constant seems to be reasonable. 

 

Fig. 5. 

 

3.5  Gas flow 

Methane and carbon dioxide flows are other two important operating parameters used to 

monitor anaerobic processes. As the solubility of methane is very low (with a Henry 

constant of 0.00116 M/bar in water at 310 K - (Batstone et al., 2002)), it is possible to 
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simplify the differential equation corresponding to the methane in the reduced model 

structure applying a singular perturbing simplification (Kokotovic et al., 1986; Bastin and 

Dochain, 1990; Dochain and Vanrolleghem, 2001). Hence, the methane concentration in 

the liquid phase and its time derivate were set to zero and it was assumed that there not 

exists mass transfer resistance between the liquid and the gas phase. Thus, the methane 

gas flow (QM) was computed using the Eq. (20). 

 

232 rkQM ×=  (20) 

 

where r2 is the kinetic rate associated to methanogenesis and k32 is the yield coefficient of 

methane. 

Besides, the carbon dioxide has relatively high solubility and therefore its flow rate (QC) 

was estimated using Henry�s law and the following mass transfer equation: 

 

)( 22 cCOCOLC PKHSakQ ×-×=  (21) 

 

where, kLa is the overall mass transfer coefficient for carbon dioxide, SCO2 is the CO2 

concentration in the liquid phase, KHCO2 is the Henry constant for CO2 in water at 310 K 

(0.0246 kg mol/m3·bar - (Batstone et al., 2002)) and Pc  is the CO2 partial pressure in the 

biogas. 
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3.6  Model validation 

3.6.1 Validation of the macroscopic reaction network 

The macroscopic reaction network estimated by means of PCA was validated finding the 

pseudo-stoichiometric matrix (Kval) by the alternative method described in the section 

2.3.3. In consequence, a multiple linear regression was derived for each vector #i, 

according to Eq. (8). The numerical results obtained from each regression are shown in 

Table 3. It resulted that all the regressions were significant. Furthermore, the identified 

pseudo-stoichiometric matrix after validation (Eq. (22)) was compared with that obtained 

previously by PCA (see Eq. (16)). These matrices and its elements (comparing the order 

of magnitude and signs) are closer, which validates the estimated reaction scheme. 

 

Table 3 
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(22) 

 

3.6.2 Validation of the reduced model 

For nonlinear models (e.g., ADM1), it is not possible to check analytically the accuracy of a 

model, and therefore the quality of a model is assessed by means of simulations. Thus, 

the main objective of model validation was to verify that the reduced model fits the data 
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properly. Consequently, simulations with the reduced model were carried out, and the 

different states were compared then with the results obtained by the original model 

(ADM1). It is important to note that the validation phase was performed with a data set 

which was not used to establish or to identify the reduced model. 

Fig. 6 shows the results of the simulations provided by the reduced model against ADM1 

simulation data (i.e., COD concentration in the effluent, VFA concentration in the effluent 

and methane flow rate). The dynamic of the system is well explained by the reduced 

model which is based on a 7 x 2 pseudo-stoichiometric matrix in comparison with 28 x 21 

ADM1 matrix. Thus, it is demonstrated that this very simple model is able to properly 

describe the behavior of the principal monitoring and control variables for an AWT plant 

treating winery effluents. A limitation of the reduced model is that will not be able to 

differentiate among the different volatile fatty acids and different microorganism 

populations. For instance, it cannot forecast a propionate accumulation, as this feature has 

not been taken into account in its development. However, the model is able to reproduce 

the pH properly (Fig. 5). Furthermore, the used reduction methodology is flexible enough 

for allowing the inclusion of new variables depending on modeling objectives. 

 

Fig. 6. 

 

These results show how ADM1 can be reduced to a much simpler one describing well 

enough the behavior of the modeled system for a specific type of wastewater. 

Table 4 shows the number of parameters, state variables, types of biomass, pseudo-

reactions and outputs in ADM1 against those used in the reduced model for winery 
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effluents. From these data, it can be observed the degree of reduction or simplification with 

regard to ADM1. In this sense, the reduced model has a higher complexity ratio (i.e., ratio 

between the number of available measurements and the number of parameters) than 

ADM1. As a consequence, the development of controllers and estimators from the 

reduced model would be easier. On another hand, the reduced model could be 

recalibrated automatically due to the most of its state variables are measured on-line. 

 

Table 4 

 

4. Conclusions 

In this paper, a reduction methodology was extended and applied to evaluate its ability to 

obtain a reduced model from ADM1 for control and supervision purposes. This 

methodology appeared to be a powerful tool to simplify ADM1 and models with similar 

structure for AWT. A reduced model with only two biochemical reactions was derived using 

this methodology. It was able to represent the dynamics of anaerobic digestion considering 

the instrumentation available at an AWT plant treating winery effluent wastewater. Future 

work will focus on the proposal and development of observers, software sensors and 

controllers based on the methodology presented here. 

 

Nomenclature 

Acronyms Variable Units 

& solid behavior model parameter (0 ! &i ! 1) [-] 

# sound left kernel vectors matrix (n-p x p) 
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qj set of kinetic parameters 

$j transformation vectors (n x 1) (see Eq. (9)) 

'j specific growth rate 1/d 

'data specific growth rate vector related to the data (1 x N) 1/d 

'max,1 maximum acidogenic bacteria growth rate 1/d 

'max,2 maximum methanogenic bacteria growth rate 1/d 

'model specific growth rate vector related to the reduced model (1 x N) 1/d 

! fluxes of material in the bioreactor (n x 1) (see Eq. (2)) 

  state vector (n x 1) 

 data state vector related to the data (n x 1) 

 model state vector related to the reduced model (n x 1) 

 in inlet concentration vector (n x 1) 

* matrix of eigenvectors (n x p) 

*j eigenvector (column j of *) 

%i weighs during parameter optimization  

An
-
 anions concentration kg mol/m

3
 

Cat
+
 cations concentration kg mol/m

3
 

COD chemical oxygen demand 

CODin influent concentration of chemical oxygen demand kg COD/m
3
 

D dilution rate 1/d 

G G matrix (p x p) (see Eq. (5)) 

H
+
 hydron concentration kg mol/m

3
 

HCO3
-
 bicarbonate concentrations kg mol/m

3
 

HO
-
 hydroxide concentration kg mol/m

3
 

J objective function 

K pseudo-stoichiometric matrix (n x p) 

k32 yield coefficient for methane kg mol-CH4/kg COD 

k71 yield for inorganic nitrogen (acidogenesis) kg mol-IN/kg COD 

k72 yield for inorganic nitrogen (methanogenesis) kg mol-IN/kg COD 

KHCO2 * Henry�s constant for CO2 in water at 310K (0.0246 kg mol/m
3
·bar) kg mol/m

3
·bar 

KI Inhibition constant kg COD/m
3
 

ki rows of matrix K 

kij element i,j of the pseudo-stoichiometric matrix K 

kLa liquid-to-gas mass transfer coefficient 1/d 

Ks half-saturation constant kg COD/m
3
 

Kval pseudo-stoichiometric matrix for validation (n x p) 

N number of data set records 

n number of states 

NH4
+
 ammonium concentration kg mol/m

3
 

OLR organic loading rate kg COD/m
3
·d 

p number of processes or reactions 

Pc  CO2 partial pressure in biogas bar 

QG mass transferred to the gas phase kg mol/m
3
·d 

QC carbon dioxide transferred to the gas phase  kg mol/m
3
·d  

QM methane transferred to the gas phase kg mol/m
3
·d 

qm methane gas flow m
3
/d 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

25 

 

r reaction rates vector (p x 1) 

r1 acidogenesis reaction rate kg COD/m
3
·d 

r2 methanogenesis reaction rate kg COD/m
3
·d 

S1 organic substrate concentration (COD source) kg COD/m
3
 

S2 volatile fatty acids concentration kg COD/m
3
 

s2
- 

ionized volatile fatty acids concentration kg mol/m
3
 

SCO2 CO2 concentration in the liquid phase kg mol/m
3
 

tk considered time instants 

U set of data records U = [u(t1) u(t2)"�"u(tN)] at N time instants (n x N) 

u transport vector for each time instant (n x 1) 

+ transport vector normalized (n x 1) 

VFA volatile fatty acids 

X1 acidogenic biomass concentration kg COD/m
3
 

X2 methanogenic biomass concentration kg COD/m
3 

 

* Taken from (Perry and Green, 1999). 
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Table 1 

Mass balances considered depending on the key chemical species involved in the anaerobic process 

and number of pseudo-reactions determined by PCA with a data variability threshold of 90%. (COD: 

Chemical Oxygen Demand, VFA: Volatile Fatty Acids expressed as acetic). 

 9 mass balances 8 mass balances 7 mass balances 

Soluble compounds 

COD 

VFA 

Inorganic carbon 

Inorganic nitrogen 

Methane 

Hydrogen 

COD 

VFA 

Inorganic carbon 

Inorganic nitrogen 

Methane 

Hydrogen 

COD 

VFA 

Inorganic carbon 

Inorganic nitrogen 

Methane 

Biomass Acidogenic biomass 

Acetoclastic biomass 

Hydrogenotrophic biomass 

Acidogenic biomass 

Methanogenic biomass 

Acidogenic biomass 

Methanogenic biomass 

Number of pseudo-reactions 3 (3) 3(3) 2(2) 

* Inside of parenthesis the number of reactions computed from experimental data. 

 

 

 

  



 

 

 

 

 

 

Table 2 

Kinetic parameters obtained for the reduced model. 

Parameter Units Acidogenesis 

1
st

 pseudo-reaction 

Methanogenesis 

2
nd

 pseudo-reaction 

 max 1/d 0.065 (0.085) 2.016 (2.029) 

Ks kg COD/m
3
 0.279 (0.193) 1.668 (1.450) 

KI kg COD/m
3
 - (-) 0.024 (0.034) 

()
 In brackets the initial values for the optimization by equation (12).  

 

  



Table 3 

Significance of the regressions (threshold 5%) derived from Eq. (8) and parameter values. 

Vector Unknown Significance Value Interval 
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Table 4 

Comparison of the complexity between the ADM1 and the reduced model. 

 ADM1 Reduced Model 

Parameters 89 13 

State variables 28 7 

Types of biomass 8 2 

Number of reactions 21 2 

Outputs 32 8 

Complexity ratio* 7/89 = 0.08 7/13 = 0.54 

* Complexity ratio is defined as the ratio between the number of available measurements 
and the number of parameters. A higher ratio complexity indicates greater model 
simplicity.  

 



Figures 

Fig. 1. Input conditions for the anaerobic USBF reactor treating winery effluents. The organic loading 
rate OLR (-) (kg COD/m3·d) and the influent concentration of chemical oxygen demand CODin (-.-) (kg 
COD/m3). 

Fig. 2. Scheme of the procedure used for model reduction. 

Fig. 3. Explained variance (bar) and cumulated explained variance for 7 mass balances (!) with 
respect to the number of reactions for winery effluents treated in a USBF. 

Fig. 4. Simulated reaction rate and kinetics of the reduced model. a) Acidogenesis � Monod function. 
r1: acidogenic reaction rate; X1: acidogenic biomass; S1: primary organic substrate expressed as 
chemical oxygen demand (COD). b) Methanogenesis � Haldane function. r2: methanogenic reaction 
rate; X2: methanogenic biomass; S2: volatile fatty acids. 

Fig. 5. pH simulation comparing the behavior of the reduced model (-.-) against the ADM1 (-). 

Fig. 6. Time evolution of methane flow rate qm (m3/d), chemical oxygen demand S1 (kg COD/m3) and 
volatile fatty acids concentration S2 (kg COD/m3) at the outlet of the USBF reactor for the reduced 
model (-.-) and ADM1 (-). 
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