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Abstract Microalgae are often seen as a potential biofuel producer. In order to
predict achievable productivities in the so called raceway culturing system, the dy-
namics of photosynthesis has to be taken into account. In particular, the dynami-
cal effect of inhibition by an excess of light (photoinhibition) must be represented.
We propose a model considering both photosynthesis and growth dynamics. This
model involves three different time scales. We study the response of this model to
fluctuating light with different frequencies by slow/fast approximations. Therefore,
we identify three different regimes for which a simplified expression for the model
can be derived. These expressions give a hint on productivity improvement which
can be expected by stimulating photosynthesis with a faster hydrodynamics.

1 Introduction

Microalgae have received a specific attention in the framework of biodiesel pro-
duction and renewable energy generation since a decade. Their high actual pho-
tosynthetic yield compared to terrestrial plants (which growth is limited by CO2

availability and access to nutrients) could lead to large potential algal biomass
productions which is orders of magnitude higher than biofuel from field crops [30].

After a nitrogen limitation, this biomass can reach a very high lipid content (up
to 60% of dry weight [18]). These possibilities have led some authors to consider
that microalgae could be one of the main biofuel producers in the future [14,7].
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Moreover, the ability of microalgae to fix CO2 in a controlled way opens up appli-
cations in mitigation systems [1,20]. Microalgal biofuel production systems could
therefore be associated with industrial powerplants with a high CO2 production.
In the same spirit, microalgae could be used to consume inorganic nitrogen and
phosphorus, and improve wastewater treatment technology [26].

These advantages put microalgae in a good position for renewable energy pro-
duction at large scale [7]. In the coming years there might be large scale industrial
plants to produce microalgae. However, the culture of algae is not straightforward
and suffers from many limitations [22,5]. As a matter of fact, growth rates in mass
cultures are often reduced due to an excess of light which is inhibiting the pho-
tosynthesis process. Consequently, productivity is often under its optimal value.
Better understanding photoinhibition and therefore improving growth efficiency
of the algae is a key issue. The dynamics of photoinhibition has been described
by models [10,11,13], but its effect on cell cultures is challenging to predict since
photoinhibition is a dynamic mechanism: The level of photoinhibition experienced
by a cell does not depend only on the level of light intensity that the cell is exposed
to, but as well on the length of exposure. The damaging effect of photoinhibition
is counterbalanced by a recovery process that also needs to be considered. In most
cultivation systems, the light intensity that cells are exposed to constantly varies
as cells move within the culture due to mixing. It should therefore be possible to
optimize the hydrodynamics regime in order to minimize the effect of photoin-
hibition. Another difficulty is that the level of photoinhibition has an impact on
the rate of nitrogen uptake, even under nitrogen-limiting conditions. In order to
account for this interaction between photoinhibition and nitrogen absorption, this
study aims at analyzing the Han photoinhibition dynamics model coupled with
the Droop model for nitrogen consumption.

The Droop model [8,9] has been widely studied and proved to accurately re-
produce situations of nitrogen limitation [9,25,4]. The Droop model has been
validated for the prediction of microalgal growth in the case of nitrogen limitation
for biodiesel production [17].

This paper is organized as follows. In a first part, we recall the Droop model.
Secondly, we introduce the light influence in this model. In a third part we propose
analytic approximations of the model for the whole frequency range. In the last
part, the applicability of the model and the approximations are discussed.

2 The Droop model

The Droop model has been proven to appropriately represent the effect of macronu-
trients, such as nitrogen on the growth rate of microalgae [9]. It is known to predict
a unique non trivial equilibrium if the culturing conditions (i.e. influent concen-
tration of nitrogen sin and dilution rate D) are kept constant [15,3]. In contrast
to the simpler Monod Model [19], the Droop Model considers a dependence of
growth on the intracellular nitrogen concentration or quota q. This defines nutri-
ent uptake and growth as uncoupled processes. In the following, the differential
equations present a modified version of the Droop Model (as in [2]) representing
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the evolution of the biomass (x) with an inorganic nitrogen substrate s.

(D)


ṡ = Dsin − ρ(s, q)x−Ds

q̇ = ρ(s, q)− µ(q)q

ẋ = µ(q)x−Dx

(1)

In this model the absorption rate ρ(s, q) and growth rate µ(q) are generally defined
as Michaelis-Menten and Droop functions:

ρ(s, q) = ρ0
s

s+Ks
· (1− q/Ql) (2)

µ(q) = µ0(1− Q0

q
) (3)

where Ks is the half saturation constant for substrate uptake and Q0 the minimal
cell quota. At the quota Q0, the growth rate equals 0. In Eq. (1), a factor (1−q/Ql)
is introduced to account for the down regulation of the uptake when the quota
becomes high. It thus limits the internal quota to the following interval [2]:

Q0 ≤ q ≤ Qm ≤ Ql (4)

Qm is the maximum cell quota which is obtained in conditions where nutrients
are not limiting. As a direct consequence, the growth rate is also bound:

0 ≤ µ(q) < µmax = µ0(1−Q0/Qm) (5)

where µm is the maximum growth rate reached in non limiting conditions. The
parameters of the Droop model can be estimated well with growth experiments
under nutrient limiting conditions [2]. The Droop model has been widely studied
[15,3,28] and validated [9,25,4,28]. However, it cannot directly be used for the
description of photobioreactors or raceways since it does not account for light.

3 Integration of the fast photosynthetic unit time scale

In a microalgae culturing device, the light perception of a cell can vary at a time
scale faster than the inherent uptake and growth time scales of the Droop model
[16,21]. The fast dynamics of the photosynthetic processes within the chloroplasts
have thus to be taken into account. On a molecular scale two photosystems types
(denoted PSI and PSII) are involved in the photon harvesting process [27]. The
photosynthetic production is triggered by the simultaneous excitation of both pho-
tocenters. In the Han model [12] it is assumed that the activation of the second
photosystem (PSII) is the limiting factor in photosynthetic productivity. These
photosystems can be damaged by an excess of energy due to an excess of absorbed
photons. The key proteins within the photosynthetic units (PSUs) can be how-
ever repaired at a slow rate. Photosystem damage and recovery are the two main
processes which drive the dynamics of photoinhibition.

The PSII is assumed to be in one of the three states: open (A), closed (B), or
inhibited (C). Open PSUs may be excited by photons, trigger the photosynthetic
process, and turn to the closed state. The turnover rate for this process is the



4 Philipp Hartmann et al.

product of the PSII’s cross section σ and the light intensity I. A closed PSU may
return to an open state at the rate 1

τ , whereas τ represents the turnover time of
the electron transfer chain. If facing excessive radiation, a closed PSU can also be
destroyed by incident light. The rate for photoinhibition processes is defined by
the product kdσI, kd being the PSII’s damage parameter. Inhibited PSUs can be
repaired by chemical processes in the cell at a constant rate kr. The equations for
the three states (according to [12]) consequently are:

dA
dt = −IσA+

B

τ
(6)

dB
dt = IσA− B

τ
+ krC − kdσIB (7)

dC
dt = −krC + kdσIB (8)

A, B and C are the relative frequencies of the respective states, the sum of A, B,
and C is therefore 1 and the system can be completely described by two equations
only.

To couple this model with the Droop model, we consider that growth rate
results from the product of the total cross section of the cell PSUs in open state
(resulting thus from their number and size) and light. In line with the Droop model,
we assume that the PSUs number and size are related to the internal nitrogen quota
with a Droop relationship. In that spirit, the Droop relationship can be seen as a
factor describing the total cross section of all PSUs. As a consequence, the total
cross section of productive PSUs is assumed to be proportional to σ(1 − Q0

q )A.
The growth rate in terms of inorganic carbon fixation rate is then proportional
to the product of the light intensity I with the total cross section of the active
photocenters.

µ(I, A, q) = µm(1− Q0

q
) · σIA (9)

where µm is a parameter such that µmσI0A = µ0 for a constant light I0, and the
associated fraction of open states A.

In the following considerations, only 2T -periodic light is studied. Assuming
state periodicity, we can compute:∫

2T

Ȧdt = −
∫
2T

IσAdt+

∫
2T

B

τ
dt = 0 (10)

(11)

Since A is periodic, we have then:

IAσ = B̄/τ

where IA and B̄ denominate the mean values over one period. Following this
equation, B̄ can be used as an indicator for the photosynthetic productivity; by
definition it is bound in the interval [0,1].

B̄ = IAστ (12)

In the following section, we will compute B̄ as a function of the light intensity and
frequency. Depending on the frequency domains, two approximations (B̄slow and
B̄fast) will be given.
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Parameter Value Unit
kr 4.8 · 10−4 s−1

kd 2.99 · 10−4 ·
1/τ 0.1460 s−1

σ 0.0019 m2/(µmol)
I0 2000 µmol s−1m−2

Table 1 Model parameters according to [31]

4 Model analysis

4.1 Motivation

In this section, the mathematical behaviour of the Droop-Han model under peri-
odic forcing of light is investigated. It is worth noting that the time scales associ-
ated with the kinetics of light response and nitrogen consumption differ by several
orders of magnitude. Indeed, the excitation/relaxation and photodamage/recovery
processes have time scales lower than the hour, while the nitrogen uptake has a
time scale of hours to days [2]. As a result, by using quasi steady state approxi-
mations [24], the analysis of the Droop-Han model will be performed in two steps.
First, the light-response will be discussed, and then the effect of nitrogen con-
sumption on this light response will be investigated.

The light response of the model implies two additional time scales of very
different magnitude. It can thus be identified as a slow/fast system which can be
approximated using singular perturbation theory [24].

4.2 Light Response

We rewrite the Han model by using B = 1−A− C, it is a system with slow/fast
time scales:

dA

dt
= −(σI + 1/τ)A+ (1− C)/τ (13)

dC

dt
= kd(−(kr/kd + σI)C + σI(1−A)) (14)

which can be written in the classical form of a slow/fast system:

ẋ = ε · (Mx + b) (15)

ε =

(
1 0
0 kd

)
;M =

(
−(σI + 1/τ) −1/τ
−σI −(kr/kd + σI)

)
; b =

(
1/τ
σI

)
(16)

Using an exemplary parameter set as shown in Table 1, the absolute values of
the entries of M and b are in the range 0.1 to 6 whereas kd is on the order of 10−4.
This shows that the system of equations (13 - 14) has a slow/fast dynamics with a
time scale ratio of kd. The dynamics of C is more than a factor 1000 slower than
the dynamics of A. Although the considered parameters depend on the species,

this key time scale property remains qualitatively true for any species due to the
nature of the involved physiological processes.
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Fig. 1 Direct effect of light on the growth rate: variation of the mean value of B over a period
with respect to light intensity. The plot results from the approximations for slow frequency
(B̄min, red), intermediate frequency (B̄int, dashed cyan) and fast frequency (B̄max, dotted
black)
.

In order to study analytically the model response to fluctuating light, we con-
sider a caricatured light pattern as follows:

I(t) =

{
I0, for 0 < t < T
0, for T < t < 2T

(17)

Note that the solution of the Han model (14), at steady state, for a continuous
light I0, can be straightforwardly computed as follows:

B̄SS(I0) =
σI0τ

1 + τσI0 + kd/krτ(σI0)2
(18)

In order to analytically study the model response to various light frequencies, two
domains of the light variation frequency have to be distinguished: slow frequencies
with T > 10 · τ ≈ 100s, and fast frequencies with T ≤ 100s.

In the following paragraphs, the approximations for the low and the high fre-
quency domains are given, as shown in Figures 1 and 2. All approximations con-
sider a forced periodic state of the system.
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4.2.1 Low frequencies

For large values of T , the fast dynamics of A (Eq. (13)) will reach its slow manifold,
given by (σI+1/τ)A = (1−C)/τ . The slow dynamics can therefore be represented
by Eq. (14), where A is replaced by its expression with respect to C. An analytical
expression can be derived for C (calculation not shown). The average value along
the period 2T can then be determined (see Appendix A1), leading to the following
expression for B̄:

B̄slow =

(
1 +

δ(I0)

kr

1

T

(1− γ(0))(1− γ(I0))

1− γ(0)γ(I0)

)
· B̄SS(I0)

2
(19)

with

δ(I) =
kdτ

(σI)2

1+τσI

kr + (σI)2

1+τσI

(20)

γ(I) = e−(kr+kd
(σI)2

1+τσI
)T (21)

4.2.2 High frequencies

For small T , the dynamics of C in Eq. (14) is so slow that C stays approximately
constant over one period. As a consequence, Eq. (14) leads thus to a value of C as
a function of the mean value of I and IA on one period. This value can then be
used in Eq. (13) and defines the dynamics of B, as shown in Appendix A2.

B̄fast =
σI0
2

η − θ + τηθ

η2 + kd(σI0)2

2kr
(η − θ)

(22)

η = (σI0 + 1/τ) (23)

θ =
1

T

(1− α(0))(1− α(I0))

1− α(I0)α(0)
(24)

α(I) : = e−(1/τ+σI)T (25)

4.3 Monotony of the productivity with respect to light period

Property: The approximated growth rate response composed by B̄fast, B̄slow
reproduces a continuous and decreasing function of T from Bss(I0/2) down to
Bss(I0)/2. The results obtained through this approximation are represented on
Fig. 2.

Proof: First, let us show that the successive approximations continuously join
up together. Using the rule of de l’Hôpital, the limits of B̄slow can be estimated
for T → 0 and T →∞:

lim
T→0

B̄slow = B̄int =
σI0τ

(2 + 2τσI0 + kd/krτ(σI0)2)
(26)

lim
T→∞

B̄slow = B̄min = BSS(I0)/2 (27)
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The limit for long periodicities is the steady state solution, i.e. 0 during night
period and B̄SS during light. Finally, the average response is B̄min = BSS/2.
Considering B̄fast, the same type of calculation leads to:

lim
T→0

B̄fast = B̄max =
τσ I02

(1 + τσ I02 + kd/krτ(σ I02 )2)
(28)

lim
T→∞

B̄fast = B̄int (29)

The limit of B̄fast for low frequencies coincides with the limit of B̄slow for high
frequencies. The limit of B̄fast for high frequencies is the steady state solution for
continuous illumination with the mean intensity I = I0/2. As shown in Appendix
A3, both approximations B̄fast and B̄slow are decreasing functions with respect
to T . The monotonic behaviour of the functions in repect to T is presented in Fig.
2.

4.4 Dynamics of the Droop Variables

In most cultivation systems, algae are cultivated under nutrient-saturating condi-
tions in order to maximize the productivity. Consequently, we assume s >> Ks,
and the nitrogen absorption rate, as given by Eq. (2) is only a function of q. The
dynamics of q in system (1) does only depend on q, and this stable linear equation
can be solved at steady state. The intracellular concentration of nitrogen can be
determined, by calculating the equilibrium value of q (Qeq):

Qeq =
ρ0 + µmB̄(I, T )Q0
ρ0
Ql

+ µmB̄(I, T )
(30)

where B̄(I, T ) is the mean photosynthetic productivity and can stand for any
of the presented approximate values. The growth rate can then be computed as
follows:

µ = µm

(
1− Q0

Qeq(I, T )

)
B̄(I, T )/τ= µH(I, T )

(
1− Q0

Qeq(I, T )

)
(31)

Figure 3 shows the resulting growth rate µ as defined in equation (31), the
theoretical photosynthetic productivity neglecting any nitrogen limitation µH and
the equilibrium value for the intracellular nitrogen Qeq as defined in Eq. 30. The
function B̄(I, T ) was assumed to be equal to Bslow(I, T ). As presented, high light
conditions lead to a lowered Q and therefore a slight reduction of the growth rate,
compared to the photosynthetic efficiency only considered with the Han model.
Furthermore, the influence of the steady state value Qeq turns to a constant factor
for intermediate and high productivities. Therefore, in the case of non limiting
nitrogen, it can be disregarded.
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Fig. 2 Approximations of the growth rate over different domains of light frequency (B̄slow:
purple dash-line, B̄int: cyan line, B̄fast: green dash-line, B̄max: red-line) against LD-frequency
f = 1/T on a logarithmic scale

4.5 Parameter identification

From measurements of substrate, biomass and intracellular nitrogen under differ-
ent conditions, the key parameters of Droop’s model can be identified [2]. As it has
been discussed, the limited nitrogen quota fluctuation due to light (when nitrogen
is not limiting) hardly influences growth rate.

Assuming that the growth rate response for continuous illumination B̄SS(I)
(Haldane curve) is available, two parameters can be determined. The parameters
g1 and g2 can be estimated by a least square fit of the function B̄SS(I), as it is
defined in eq. (18), normalized by the value of its maximum:

B̄SS =
σI0τ

1 + g1I0 + g2I20
(32)

with

g1 = τσ (33)

g2 = kd/krτσ
2 (34)

(35)
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Fig. 3 Intracellular nitrogen ratio at equilibrium (Qeq , red) in respect to irradiance at steady
state for the slow frequency approximation B̄min (Eq. (30)). The growth rate µ given by the
Droop-Han model (blue dash-line) is compared to the growth rate µH computed without the
Droop term (green line) (cf. Eq. (31)).

In order to calculate the independent values of τ and σ, the following quantity
can be calculated for different values of I0:

F1(I0) = I0 ·
(

1

B̄min(I0)
− 1

B̄int(I0)

)
=

1.5

σ
+ 1.5τI0 (36)

As F1 is a linear function of I0, a linear regression enables the determination
of the values of τ and σ. As a consequence, σ, τ and kd

kr
can be determined by

measuring B̄min and B̄int with respect to I0 only. To get the absolute values of kd
and kr, a possible approach is to use the productivity response B̄slow as a function
of T . Since the system has only one remaining degree of freedom, a least-square
fitting can provide this value.

With the proposed method, measuring the growth rate response for various
irradiances and light-dark (LD) frequencies leads to the identification of all the
model parameters.

4.6 Preliminary validation of the Droop-Han Model

The methodology presented in the previous section is only valid in the case of
a simple square signal with light and dark periods of equal length. Furthermore,
it is necessary to use diluted cultures to ensure a homogeneous light distribution
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Fig. 4 Growth rate as a function of the frequency of the light signal in the case of a simple
square signal (plain lines: theoretical prediction using the Han model; blue circles: experimental
data from Vejrazka et al [29]).

within the reactor and avoid an additional flashing effect. In recent experiments,
Vejrazka et al. [29] provided data for the growth of Chlamydomonas reinhardtii in
LD cycles at a LD ratio of 0.1. Although, their experimental setup differs from the
preconditions in the presented approach, Vejrazka’s results are in agreement with
the prediction of the Droop-Han model as can be seen in Fig. 4. The ”inflexion
point” can therefore be identified for this experiment between 10 and 50 Hz. The
growth rate for 100 Hz is equal to the growth rate under continuous light with
average light intensity. These results meet very well the predictions of the Droop-
Han model and its analytical approximations for established periodic regimes.
Nevertheless, data covering more variations of I0 and T would allow a better
model calibration and a more quantitative validation.

5 Discussion

With the proposed coupled model, new insights about microalgal response to vary-
ing light signals have been obtained. When algae are exposed to periodic flashing
light, the Droop-Han model predicts that the growth rate is an increasing func-
tion of the light frequency as shown in Fig. 2. It includes plateaus for very low
and very high frequencies. A plateau or inflexion point is obtained in a median
domain. This specific shape seems to be compatible with the experimental results
of Vejrazka et al. [29], supporting then the model validity, as illustrated on Fig. 4.
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The characteristic shape directly illustrates key properties of the Han model: the
two gradients in growth rate correspond to the two time scales of the inhibition-
repair process and the activation-relaxation process. For very slow light variations,
growth is limited by strong inhibition during the light phase. With increasing fre-
quency, the degree of inhibition turns to a constant equilibrium throughout each
LD cycle. As a result, for increased frequency, there is less photoinhibition dur-
ing the light phase, which results in an increased productivity of the photosystem.
With further increasing frequency, the degree of photoinhibition remains constant,
while the open-closed dynamics changes from two alternating states to a constant
equilibrium value throughout the entire LD cycle. The equilibrium state reached
for high frequencies leads to an increased growth rate compared to the very slow
alternating state. The maximum growth rate is the one obtained for a constant
illumination with the mean light intensity I0/2. This latter point coincides with
the theoretical proof of Celikovsk, et al. [6]. The inhibition at I0/2 is of course
lower than the inhibition at I0. It is less clear that, with a Haldane model, the
growth rate at I0/2 is always greater than half the value of the growth rate at I0

1

:
µH(I0)

2
≤ µH(

I0
2

) (37)

This effect is even stronger for the portion of the Haldane curve far from the initial
tangent i.e. for photoinhibiting light intensities.

This point is important, since it provides an estimation of the flashing effect
scale at a given flashing light intensity I0. The possible productivity gain between
a process where the cells stay too long exposed to a high light and a process
where the alternation is fast, is the difference between Bss(I0/2) and Bss(I0/2).
For algae whose photoinhibition is low (at this light intensity), the increase in
productivity will then be very low and it will not compensate for the additionally
invested mixing energy. This effect can however be stronger when photoinhibition
is higher. An efficient management procedure could therefore consist in increasing
the agitation velocity only at high light, when the microalgae experience a strong
photoinhibition.

It is also interesting to note that the intermediate growth rate for which a
plateau, or simply an inflexion point is obtained, corresponds to the Haldane
model Bss(I0/2), but for which the inhibition term has been doubled (kd/kr in
the model). This provides a hint on the respective effect of the flashing effect for
low and high frequencies.

6 Conclusion

The model properties have been derived analytically using a slow/fast approxi-
mation. The resulting formulas have a very simple form compared to the exact
solution of the Han model [6]. Based on these formulas, a measurement protocol
has been proposed to deduce the parameters of the model which relies on the
dependency between growth rate and cycle frequency. It can also be derived from
the link between growth rate and the maximum light intensity I0. Concerning

1 This property can be shown by remarking that the Haldane curve BSS(I) is always un-
der its initial tangent for I = 0. Straightforward geometrical considerations based on Thales
Theorem prove this result.
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the physiological parameters describing the photosynthetic system, the proposed
method for parameter identification varies fundamentally in complexity from other
approaches, as proposed by [31] and [23]. Our approach is a simple procedure
not implying a tricky numerical integration of the system nor additional off line
measurements. This simplifies the experimental protocol and the calculation. In
addition, our simple analytical expression allows for a better estimation of the
approximation error.

The resulting formulas for the growth rate do not only allow for the determi-
nation of the physiological parameters, they also show a characteristic dependency
between signal frequency and growth rate which enables an easy experimental val-
idation of the model. The shape of the curve explains the ”Flashing Light Effect”
and shows that the increase of growth rate with fluctuation frequency is not linear
but shows a very characteristic saturation for intermediate frequencies. Only a
weak increase in growth rate can be expected with frequency augmentation in this
domain. This insight can lead to important consequences for the design of race-
ways and photobioreactors. The dynamics of nitrogen assimilation and nutrient
limited growth play an inferior role under the conditions we were assuming.

The proposed model is suitable to investigate the effect of the hydrodynamic
regime on the growth rate of microalgae cultures due to photoinhibition. Regard-
ing biofuel production with raceways and photobioreactors, the light variability on
faster time scales is typically caused by mixing. The results from this study give
important insights and are a first step in understanding the coupling of physical
and biological models. With further research on the Droop-Han Model, the light
intensity dynamics at the scale of the microalgae can be optimized by the design
of the process and an increased productivity can be achieved using the same total
light dose. Increasing efficiency in biomass production by optimized photobioreac-
tors is an important step on the way to the industrial use of microalgae.
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4. O Bernard and J L Gouzé. Nonlinear qualitative signal processing for biological systems:
application to the algal growth in bioreactors. Math. Biosciences, 157:357–372, 1999.

5. A P Carvalho, L A Meireles, and F X Malcata. Microalgal reactors: A review of enclosed
system designs and performances. Biotechnology Progress, 22(6):1490–1506, 2006.

6. S Celikovsk, D Stys, S Papacek, S Celikovsky, and J Ruiz-Leon. Bilinear system as a
modelling framework for analysis of microalgal growth. Kybernetika, 43(1):1–20, 2007.

7. Y Chisti. Biodiesel from microalgae. Biotechnology Advances, 25:294–306, 2007.
8. M R Droop. Vitamin B12 and marine ecology. The kinetics of uptake growth and inhibition

in Monochrysis lutheri. J. Mar. Biol. Assoc., 48(3):689–733, 1968.
9. M R Droop. 25 Years of Algal Growth Kinetics, A Personal View. Botanica marina,

16:99–112, 1983.
10. P H C Eilers and J C H Peeters. A model for the relationship between light intensity

and the rate of photosynthesis in phytoplankton. Ecological modelling, 42(3-4):199–215,
September 1988.



14 Philipp Hartmann et al.

11. P H C Eilers and J C H Peeters. Dynamic behavior of a model for photosynthesis and
photoinhibition. Ecological modelling, 69(1-2):113–133, September 1993.

12. B P Han. Photosynthesis-irradiance response at physiological level: A mechanistic model.
J Theor Biol, 213:121–127, 2001.

13. B P Han. A mechanistic model of algal photoinhibition induced by photodamage to
photosystem-II. Journal of theoretical biology, 214(4):519–27, February 2002.

14. M Huntley and D G Redalje. CO2 Mitigation et Renewable Oil from Photosynthetic
Microbes: A New Appraisal. Mitigation and Adaptation Strategies for Global Change,
12:573–608, 2007.

15. K Lange and F J Oyarzun. The Attractiveness of the Droop Equations. Mathematical
Biosciences, 111:261–278, 1992.

16. HP Luo and Al-Dahhan. Analyzing and modeling of photobioreactors by combining first
principles of physiology and hydrodynamics. Biotechnology & Bioengineering, 85:382–393,
2004.

17. F Mairet, O Bernard, P Masci, T Lacour, and A Sciandra. Modelling neutral lipid pro-
duction by the microalga Isochrysis affinis galbana under nitrogen limitation. Biores.
Technol., 102:142–149, 2011.

18. F B Metting. Biodiversity and application of microalgae. Journal of Industrial Microbi-
ology and Biotechnology, 17:477–489, 1996.

19. Monod. La technique de culture continue. théorie et applications. Annales de L’intiut
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Appendix A: Analytical Derivation

A1. Low Frequency Signal

Eq. (12) is taken as an expression for the productivity of the photosynthetic system
and the mean value during one period is taken. The domain of the integral can be
restricted to the light phase of the cycle only, since during the dark phase B = 0.

B̄slow =
1

2T

∫
T

Bdt (38)



The effect of Time Scales in Photosynthesis on microalgae Productivity 15

By replacing A by 1−B − C, and assuming that A rests in its equilibrium while
C is periodically oscillating:

B = τσIA (39)

we get:

B̄slow =
1

2

τσI0
1 + τσI0

(
1− 1

T

∫
T

Cdt

)
(40)

Analogously, the differential equation for C can be reformulated

Ċ = −
(
kdτ

(σI0)2

1 + τσI0
+ kr

)
C +

(σI0)2

1 + τσI0
(41)

This equation can be easily solved. C0 is determined by applying the periodic
boarder condition. Several simplification steps lead to the following expression for
the integral: ∫

T

Cdt =
C0 − δ(I)

ε
(1− γ(I) + δ(I)T ) (42)

Using expression (40), we get expression (19).

A2. High Frequency Signal

Under the precondition that the periodicity of the signal is short, we already
showed that the dynamics of C is negligible. In contrast, the transition process
of A and B has to be taken into account. The expression for the mean growth
rate has to account for the entire period, since B ≥ 0 during the dark phase. The
expression for the growth rate turns to:

B̄fast =
1

2T

(∫ T

0

Bdt+

∫ 2T

T

Bdt

)
(43)

The first integral being during the light period and the second during the dark
period. To solve the integrals, an expression for A(t) has to be determined from the
differential equation. By assumption that C is a constant value and with periodical
boarder conditions, Eq. (14) can be solved with the result:

A(t) = (A0 +
1− C

1 + I0στ
)e(−

t
τ
−I0σξt) − 1− C

1 + I0στ
, for t ∈ [0, T ] (44)

A(t) = (AT + 1− Ce(−
t−T
τ

))− 1− C, for t ∈ [T, 2T ] (45)

With Eq. (44) and (14), periodical boarder conditions and the assumption Ċ = 0,
a value for C can be determined to:

C =
kd(σI)2

2Tkr

Tη − Tθ
η2 + kd(σI)2

2Tkr
(Tη − T ]θ)

(46)

with the expressions:

η =
1

τ
+ σI0, θ =

(1− α0)(1− αI)
T (1− α0αI)

, αI = e−( 1
τ
+σI0)T , α0 = e−

T
τ (47)
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Knowing the value of C, the integrals in Eq. (43) can be resolved and B can be
formulated as:

B̄fast =
σI0
2

η − θ + τδθ

η2 + kd(σI)2

2kr
(η − θ)

(48)

A3. Proof of Monotony

Low Frequency

It can be shown, that the function:

Φ(x, a, b) =
(1− e−ax)((1− e−bx))

x(1− e−(a+b)x)
(49)

is strictly monotonic decreasing in x and it holds Φ(x, a, b) > 0 for a > 0, b >
0, x > 0.

Further, B̄slow(I, T ) can be defined as follows:

B̄slow(I, T ) =

(
1 +

δ(I)

kr
Φ(T, kr, χ)

)
· B̄SS/2 (50)

with χ = kr +kd
(σI)2

1+τσI , consequently, B̄slow is strictly monotonic decreasing in T .

High frequency

B̄fast can be written as:

B̄fast =
σI0
2

η − Φ(1/τ, η, T ) + τηΦ(1/τ, η, T )

η2 + kd(σI)2

2kr
(η − Φ(1/τ, η, T ))

(51)

Derivation with respect to T yields:

∂B̄fast
∂T

=
η2(kdσI

2

2kr
+ σIτ)

(η2 + kd(σI)2)2

2kr
(η − Φ(1/τ, κ, T ))2

· ∂Φ(1/τ, η, T )

∂T
(52)

Taking into account the parameters, it is clear that the fraction is positive.
With the property ∂Φ(1/τ,η,T )

∂T < 0, it is shown that B̄fast is strictly monotonic
decreasing with respect to T .


