
HAL Id: hal-00676178
https://hal.inria.fr/hal-00676178v2

Submitted on 25 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Early Nested Word Automata for XPath Query
Answering on XML Streams

Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom Sebastian,
Mohamed Zergaoui

To cite this version:
Denis Debarbieux, Olivier Gauwin, Joachim Niehren, Tom Sebastian, Mohamed Zergaoui. Early
Nested Word Automata for XPath Query Answering on XML Streams. 18th International Conference
on Implementation and Application of Automata, Jul 2013, Halifax, Canada. pp.292-305. �hal-
00676178v2�

https://hal.inria.fr/hal-00676178v2
https://hal.archives-ouvertes.fr

Early Nested Word Automata for

XPath Query Answering on XML Streams

Denis Debarbieux1,3, Olivier Gauwin4,5, Joachim Niehren1,3

Tom Sebastian2,3, and Mohamed Zergaoui2

No Institute Given

Abstract. Algorithms for answering XPath queries on Xml streams
have been studied intensively in the last decade. Nevertheless, there still
exists no solution with high efficiency and large coverage. In this paper,
we introduce early nested word automata in order to approximate earliest
query answering algorithms for nested word automata in a highly efficient
manner. We show that this approximation can be made tight in practice
for automata obtained from XPath expressions. We have implemented
an XPath streaming algorithm based on early nested word automata in
the Fxp tool. Fxp outperforms most previous tools in efficiency, while
covering more queries of the XPathMark benchmark.a

1 Introduction

Xml is a major format for information exchange besides Json, also for Rdf

linked open data and relational data. Therefore, complex event processing for
Xml streams has been studied for more than a decade [12,7,19,20,5,17,13,9,18].
Query answering for XPath is the most basic algorithmic task on Xml streams,
since XPath is a language hosted by the W3C standards Xslt and XQuery.

Memory efficiency is essential for processing Xml documents of several giga
bytes that do not fit in main memory, while high time efficiency is even more
critical in practice. Nevertheless, so far there exists no solution for XPath query
answering on Xml streams with high coverage and high efficiency. The best
coverage on the usual XPathMark benchmark [8] is reached by Olteanu’s Spex
[19] with 24% of the use cases. The time efficiency of Spex, however, is only
average, for instance compared to Gcx [20], which often runs in parsing time
without any overhead (since the cpu can work in parallel with file accesses to
the stream). We hope that this unsatisfactory situation can be resolved in the
near future by pushing existing automata techniques forwards [12,17,9,18].

In contrast to sliding window techniques for monitoring continuous streams
[3,15], the usual idea of answering queries on Xml streams is to buffer only alive
candidates for query answers. These are stream elements which may be selected
in some continuation of the stream and rejected in others. All non-alive elements
should be either output or discarded from the buffer. Unfortunately, this kind
of earliest query answering is not feasible for XPath queries [6], as first shown

a Thanks to the QuiXProc project of Inria and Innovimax and theCnrs Sosp project.

by adapting counter examples from online verification [14]. A second argument
is that deciding aliveness is more difficult than deciding XPath satisfiability
[9], which is coNP-hard even for small fragments of XPath [4]. The situation
is different for queries defined by deterministic nested word automata (Nwas)
[1,2], for which earliest query answering is feasible with polynomial resources
[17,10]. Many practical XPath queries (without aggregation, joins, and nega-
tion) can be compiled into small Nwas [9], while relying on non-determinism
for modeling descendant and following axis. This, however, does not lead to an
efficient streaming algorithm. The problem is that a cubic time precomputation
in the size of the deterministic Nwa is needed for earliest query answering, and
that the determinization of Nwas raises huge blow-ups in average (in contrast
to finite automata).

Most existing algorithms for streaming XPath evaluation approximate earli-
est query answering. Most prominently, Spex’s algorithm on basis of transducer
networks [19], Saxon’s streaming Xslt engine [13], and Gcx [20] which imple-
ments a fragment of XQuery. The recent XSeq tool [18], in contrast, restricts
XPath queries by ruling out complex filters all over. In this way, node selec-
tion can always be decided with 0-delay [11] once having read the attributes
of the node (which follow its opening event). Such queries are called begin-tag
determined [5] if not relying on attributes. In this paper, we propose a new algo-
rithm approximating earliest query answering for XPath queries that is based
on Nwas. One objective is to improve on previous approximations, in order to
support earliest rejection for XPath queries with negation, such as for instance:

//book[not(pub/text()=’Springer’)][contains(text(),’Lille’)]

When applied to an Xml document for an electronic library, as below, all books
published from Springer can be rejected once its publisher was read:

<lib>...<book>...<pub> Springer </pub>

...<content>...Lille...</content>...</book>...</lib>

Spex, however, will check for all books from Springer whether they contain the
string Lille and detect rejection only when the closing tag </book> is met. This
requires unnecessary processing time and buffering space.

As a first contribution, we provide an approximation of the earliest query an-
swering algorithm for Nwas [10,17]. The main idea to gain efficiency, is that se-
lection and rejection should depend only on the current state of an Nwa but not
on its current stack. Therefore, we propose early nested word automata (eNwas)
that are Nwas with two kinds of distinguished states: rejection states and se-
lection states. The query answering algorithm then runs eNwas for all possible
candidates while determinizing on-the-fly, and using a new algorithm for sharing
the runs of multiple alive candidates. Our stack-and-state sharing algorithm for
multi-running eNwas is original and nontrivial. As a second contribution, we
show how to compile XPath queries to eNwas by adapting the previous trans-
lation to Nwas from [9], mainly by distinguishing selection and rejection states.
The third contribution is an implementation of our algorithms in the Fxp 1.1

system, that is freely available. It covers 37% of the use cases in XPathMark,
while outperforming most previous tools in efficiency. The only exception isGcx,
which does slightly better on some queries, probably due to using C++ instead
of Java. Our approximation of earliest query answering turns out to be tight for
XPath in practice: it works in an earliest manner in the above example and
for all supported queries from XPathMark with only two exceptions, which
contain valid or unsatisfiable subfilters (as for the counter examples in [9]).

Outline. Section 2 starts with preliminaries on nested word automata and
earliest query answering. Section 3 introduces eNwas. Section 4 recalls the tree
logic Fxp which abstracts from Forward XPath. Section 5 sketches how to com-
pile Fxp to eNwa queries. Section 6 presents our new query answering algorithm
for eNwas with stack-and-state sharing. Section 7 sketches our implementation
and exprimental results. We refer to the Appendix of the long versionb for miss-
ing proofs and further details on constructions and experiments.

2 Preliminaries

Nested Words and XML Streams. Let Σ and ∆ be two finite sets of tags
and internal letters respectively. A data tree over Σ and ∆ is a finite ordered
unranked tree, whose nodes are labeled by a tag in Σ or else they are leaves
containing a string in ∆∗, i.e., any data tree t satisfies the abstract gram-
mar t ::= a(t1, . . . , tn) | ”w” where a ∈ Σ, w ∈ ∆∗, n ≥ 0, and t1, . . . , tn
are data trees. A nested word over ∆ and Σ is a sequence of internal letters
in ∆, opening tags <a>, and closing tags , where a ∈ Σ, that is well
nested so that every opening tag is closed properly. Every data tree can be lin-
earized in left-first depth-first manner into a unique nested word. For instance,
l(b(p(”ACM ”), c(...)), ...) becomes <l><p>ACM</p><c> . . .</c> . . . </l>.
We will restrict ourselves to nested words that are linearizations of data trees.
The positions of nested words are called events, of which there are three kinds:
opening, closing, and internal, depending on the letter at the event. Note also,
that every node in a data tree corresponds to a pair of an opening event and
a corresponding closing event. The correspondence is established by a parser
processing a nested word stream.

The Xml data model provides data trees with five different types of nodes:
element, text, comment, processing-instruction, and attributes.c The latter four
are always leaf nodes. Any sequence of children of element nodes starts with a
sequence of attribute nodes, followed by a sequence of nodes of the other 4 types.
For an Xml data tree t the “child” relation cht relates all element nodes to their
non-attribute children. Attribute nodes are accessed by the attribute relation
@t, which relates all element nodes to their attribute nodes. The “next-sibling”
relation nst relates non-attributes nodes in t to their non-attribute next-sibling
node. In that sense attributes in the Xml data model are unordered. An Xml

stream contains a nested word obtained by linearization of Xml data trees.

b The long version can be found at http://hal.inria.fr/hal-00676178.
c Attributes are nodes of data trees but not nodes in terms of the Xml data model.

http://hal.inria.fr/hal-00676178

Nested Word Automata. A nested word automaton (Nwa) is a pushdown
automaton that runs on nested words [2]. The usage of the pushdown of an
Nwa is restricted: a single symbol is pushed at opening tags, a single symbol is
popped at closing tags, and the pushdown remains unchanged when processing
internal letters. Furthermore, the stack must be empty at the beginning of the
stream, and thus it will also be empty at its end. More formally, a nested word
automaton is a tuple A = (Σ,∆,Q, I, F, Γ, rul) where Σ and ∆ are the finite
alphabets of nested words, Q a finite set of states with subsets I, F ⊆ Q of initial
and final states, Γ a finite set of stack symbols, and rul is a set of transition
rules of the following three types, where q, q′ ∈ Q, a ∈ Σ, d ∈ ∆ and γ ∈ Γ :

(open) q
〈a〉:γ
−−−→ q′ can be applied in state q, when reading the opening tag <a>.

In this case, γ is pushed onto the stack and the state is changed to q′.

(close) q
〈/a〉:γ
−−−−→ q′ can be applied in state q when reading the tag with γ

on top of the stack. In this case, γ is popped and the state is changed to q′.

(internal) q
d
−→ q′ can be applied in state q when reading the internal letter d.

One then moves to state q′.

A configuration of an Nwa is a state-stack pair in Q× Γ ∗. A run of an Nwa on
a nested word over Σ and ∆ must start in a configuration with some initial state
and the empty stack, and then rewrites this configuration on all events of the
nested word according to some rule. A run is successful if it can be continued
until the end of the nested word, while reaching some final state. Note that the
stack must be empty then. The language L(A) of an Nwa A is the set of all
data trees with some successful run on their linearization. See Figs. 1 and 2 for
an example of an Nwa and a successful run on the nested word of a data tree.

An Nwa is called deterministic or a dNwa if it is deterministic as a push-
down automaton. In contrast to more general pushdown automata, Nwas can
always be determinized [2], essentially, since they have the same expressiveness
as bottom-up tree automata. In the worst case, the resulting automata may have
2|Q|2 states. In experiments, we also observed huge size explosions in the average
case. Therefore, we will mostly rely on on-the-fly determinization.
Automata Queries. We restrict ourselves to monadic (node selection) queries
for data trees with fixed alphabets Σ and ∆. A monadic query over these al-
phabets is a function P that maps all data trees t over these alphabets to some
subset P (t) of nodes of t. We will use Nwas to define monadic queries (as usual
for showing that tree automata capture MSO queries). The idea is that an Nwa

should only test whether a candidate node is selected by the query on a given
tree, but not generate the candidate by itself. Therefore, a unique candidate
node is assumed to be annotated on the input tree by some external process.
We fix a single variable x for annotation and set the tag alphabet of such Nwas
to {a, ax | a ∈ Σ}. Letters ax are called annotated (or “starred” in the termi-
nology of [17]) while letters a are not. A monadic query P can then be defined
by all Nwas that recognize the set of all trees t annotated at some single node
belonging to P (t). An example for a deterministic Nwa is given in Fig. 1, while

q0 q1

q2

q3

q4 q5

q6 q7 q8 q9

〈book〉 : α

〈/book 〉 : α
〈∗〉 : β 〈∗〉 : γ

〈/∗〉 : γ
∗∆

〈/∗〉 : β

〈auth
x 〉 : β

〈/aut
h
x 〉 : β

〈title
〉
:
α

〈auth〉 : α

〈/auth〉 : α

X M L

〈∗〉 : γ
〈/∗〉 : γ

∗∆

∗∆

〈∗〉 : α
〈/∗〉 : α

∗∆

〈∗〉 : β
〈/∗〉 : β

∗∆

〈∗〉 : α
〈/∗〉 : α
〈/∗〉 : β
〈/∗〉 : γ

∗∆

Fig. 1. An Nwa for XPath query //book[starts-with(title,’XML’)]/auth, which
selects all authors of book nodes having a title that starts with “XML”. It runs on
well-formed libraries as in the introduction, where the children of book nodes contain
the sequence of authors followed by the title. We add the special symbol ∗ to Σ that
captures all infinitely many other tags non-specified at the same state, and similarly a
special symbol ∗∆ to ∆ that captures all other internal letters not mentionned there.

lib

book

auth authx title

...q9 q9

“A”
q2 q3 q7 q8 q9

“B” “XML”

q0 γ
q0

α
q1

β
q2 q1

β α
q3 q4

q9

q9

q6 q9

Fig. 2. An example run of the Nwa in Fig. 1.

a successful run of this Nwa is depicted in Fig. 2, on a library in which the
second author of the first book is annotated by x.

Earliest Query Answering. Let P be a query, t a data tree with node π, and
e an event of the nested word of t such that the opening event of π is before
or equal to e. We call π safe for selection at e if π is selected for all data trees
t′ (π ∈ P (t′)) whose nested word is a possible continuation of the stream of t
at event e, i.e., of the prefix of the nested word of t until e. We call π safe for
rejection at e if π is rejected for all data trees t′ (π 6∈ P (t′)) such that the nested
word of t′ is a possible continuation of the stream of t beyond e. We call π alive at
e if it is neither safe for selection nor rejection at e. An earliest query answering
(eqa) algorithm outputs selected nodes at the earliest event when they become
safe for selection, and discards rejected nodes at the earliest event when they
become safe for rejection. Indeed, an eqa algorithm buffers only alive nodes. The
problem to decide the aliveness of a node is exptime-hard for queries defined by
Nwas. For dNwas it can be reduced to the reachability problem of pushdown
machines which is in cubic time [9]. This, however, is too much in practice with
Nwas of more than 50 states, 50 stack symbols, and 4 ∗ 502 = 10.000 transition
rules, so that the time costs are in the order of magnitude of 10.0003 = 1012.

3 Early Nested Word Automata

We will introduce early Nwas for approximating earliest query answering for
Nwas with high time efficiency. The idea is to avoid reachability problems of
pushdown machines, by enriching Nwas with selection and rejection statesd, so
that aliveness can be approximated by inspecting states, independently of the
stack. As we will see in Section 5, we can indeed distinguish appropriate selection
and rejection states when compiling XPath queries to Nwas.

A subset Q′ of states of an Nwa A is called an attractor if any run of A that
reaches a state of Q′ can always be continued and must always stay in a state
of Q′. It is easy to formalize this condition in terms of necessary and impossible
transition rules of A.

Definition 1. An early nested word automaton (eNwa) is a triple E = (A,S,R)
where A is an Nwa, S is an attractor of A of final states called selection states,
and R an attractor of non-final states called rejection states. The query defined
by E is the query defined by A.

In the example Nwa in Fig. 1, we can define S = {q9} and R = ∅. We could
add a sink state to the automaton and to the set of rejection states. Also all
selection and respectively rejection states can be merged into a single state.

An eNwa defines the same language or query as the underlying Nwa. Let
us consider an eNwa E defining a monadic query and a data tree with some
annotated node π. Clearly, whenever some run of E on this annotated tree
reaches a selection state then π is safe for selection. By definition of attractors,
this run can always be continued until the end of the stream while staying in
selection states and thus in final states. In analogy, whenever all runs of E reach
a rejection state, then π is safe for rejection, since none of the many possible
runs can ever escape from the rejecting states by definition of attractors, so none
of them can be successful. For finding the first event, where all runs of E either
reach a rejection state or block, it is advantageous to assume that the underlying
Nwa is deterministic. In this case, if some run reaches a rejection state or blocks,
we can conclude that all of them do.

We call an eNwa deterministic if the underlying Nwa is. We next lift the
determinization procedure for Nwas to eNwas. Let E = (A,S,R) be an eNwa

and A′ the determinization of A. The deterministic eNwa E′ = (A′, S′, R′) is
defined such that S′ contains the pair sets, for which some pair has the second
component in S, while R′ contains the pair sets, for which all pairs have a second
component in R. From the construction of A′ it is not difficult to see that S′ and
R′ are attractors of A′. Notice that the selection delay is preserved by eNwa

determinization, so that we can decide whether all runs of E reach a rejection
state at event e, by running the determinized version until event e.

d The semantics of selection states is identical with the semantics of final states in
the acceptance condition for Nwas in [2]. The idea of analogous rejection states,
however, is original to the present paper to the best of our knowledge.

Formulas F ::= F ∧ F | F ∨ F | ¬F | true | A(F) | L(F) | K(F) | O(T,s)
Axes A ::= @ | ch | ch+ | ch∗ | ns | fs | fo
Labels L ::= x | a | nspa
Types K ::= element | text | comment | processing-instruction
Comparisons O ::= equals | contains | starts-with | ends-with
Texts T ::= textx(F)

Fig. 3. Abstract syntax of Fxp where x ∈ V is a variable, a ∈ Σ is a label, attribute,
or namespace, and s ∈ ∆∗ a string data value.

Lemma 1. For any event e of the stream of a tree t, there exists a run of E
going into S at event e if and only if there is a run of E′ going into S′ at e.
Likewise all runs of E go into R at event e iff all runs of E′ go into R′ at e.

4 FXP Logic

Rather than dealing with XPath expressions directly, we first compile a frag-
ment of XPath into the hybrid temporal logic Fxp [9]. Even though the trans-
lation from XPath to Fxp is mainly straightforward, it leads to a great sim-
plification, mainly due to the usage of variables for node selection. We are go-
ing to compile a larger fragment of XPath than previously [9], since support-
ing node types, attributes, strings data values and patterns, and all forward
axes of XPath, we also need to extend Fxp accordingly. The XPath query
//book[starts-with(title,’XML’)]/auth, for example, will be compiled to
the following Fxp formula with one free variable x:

ch∗(book (starts-with(texty(ch(title(y(true)))), XML) ∧ ch(auth(x(true)))))

Fxp formulas will talk about data trees t satisfying the Xml data model based
on its typed relations: attribute @t, child cht, descendant (ch+)t = (cht)+,
descendant-or-self (ch∗)t = (cht)∗, next-sibling nst, following-sibling fst = (nst)∗,
and following fot = ((cht)∗)−1 ◦ (nst)+ ◦ (cht)∗. The abstract syntax of Fxp for-
mulas with alphabets Σ, ∆ and a set of variables V is given in Fig. 3. There is a
single atomic formula true. A non-atomic formula can be constructed with the
usual boolean operators, or be a test for a variable x(F), a node label a(F), a
namespace nspa(F), or an Xml node type K(F). There are also formulas A(F)
for navigating with any typed relation At supported by the Xml data model. Fi-
nally there are various comparisons O(T, s) between string data values texty(F)
accessed from the y-node in the data tree and string constants s ∈ ∆∗, but no
more general comparisons as needed for join operations. The formal semantics of
Fxp is defined in Fig. 4. Given an Xml data tree t, a node π of t, and a variable
assignment µ to nodes of t, a formula F evaluates to a truth value JF Kt,π,µ. For-
mulas F with one free variable define monadic queries. For compiling XPath,
we restrict ourselves to formulas where all subformulas contain at most one free
variable. Also there may be some bound variables y introduced by texty(F).

JF1 ∧ F2Kt,π,µ ⇔ JF1Kt,π,µ ∧ JF2Kt,π,µ

JF1 ∨ F2Kt,π,µ ⇔ JF1Kt,π,µ ∨ JF2Kt,π,µ

J¬F Kt,π,µ ⇔ ¬ JF Kt,π,µ

JtrueKt,π,µ ⇔ true

JA(F)Kt,π,µ ⇔ ∃π′∈ JAKt,π,µ s.t. JF Kt,π′,µ

JL(F)Kt,π,µ ⇔ JF Kt,π,µ ∧ JLKt,π,µ

JK(F)Kt,π,µ ⇔ JF Kt,π,µ ∧ JKKt,π,µ

JO(T, s)Kt,π,µ ⇔ O(JT Kt,π,µ , s)

JAKt,π,µ = At(π)

JxKt,π,µ ⇔ π = µ(x)

JaKt,π,µ ⇔ label of π in t is a

JnspaKt,π,µ ⇔ namespace of π in t is a

JKKt,π,µ ⇔ π has type K in t

Jtextx(F)Kt,π,µ = data value of µ(x): JF Kt,π,µ

Fig. 4. Semantics of Fxp formulas F for an Xml data tree t with node π and variable
assignment µ to nodes of t.

5 Compiler from FXP to Early Nested Word Automata

We sketch a compiler from Fxp formulas to eNwas, that follows the usual
approach of compiling tree logics such as Mso into tree automata. Compared to
previous compilers into Nwas in [10,17], the most novel part is the distinction
of appropriate selection and rejection states. It should also be noticed, that our
compiler will heavily rely on non-determinism, in order to compile formulas A(F)
where A is a recursive axis such as the descendant or following axis. However,
we will try to preserve determinism as much as possible, so that we can compile
many formulas ¬F without having to determinize the eNwa for F .

The construction is by recursion on the structure of F . Given an Fxp formula
F with n free variables, the compiler produces an eNwa with node labels in
Σ × 2V that defines the same n-ary query. With n = 1 as for Fxp formulas
obtained fromXPath, this yields eNwas defining monadic queries by identifying
Σ×2{x} with {a, ax | a ∈ Σ}. Let F and F ′ be two formulas that were compiled
to E = (A,S,R) and E′ = (A′, S′, R′) with state sets Q and Q′ respectively.
The Nwa for a conjunction F ∧ F ′ is the product of A and A′. We choose
selection states S × S′, since a node is safe for selection for F ∧ F ′ iff it is
safe for selection for both F and F ′. As rejection states we choose (R × Q′) ∪
(Q×R′), which may lead to a proper approximation of earliest query answering.
Also a large number of conjunctions may lead to an exponential blow-up of
the states. The Nwa of a disjunction F ∨ F ′ is the union of A and A′. As
selection states we use S ∪ S′ which is exact, and as rejection states R ∪ R′.
Note that we compile conjunctions and disjunctions differently, since unions may
introduce non-determinism while products do not. For negations ¬F , where E
is deterministic, we simply swap the final states of E, and exchange selection
and rejection states. This is correct since we maintain pseudo-completeness as an
invariant (see [9]), and remains exact, since a node is safe for selection for ¬F iff
it is safe for rejection for F , and conversely. Otherwise, we determinize E in a first
step, which is exact by Lemma 1, and second apply the previous construction.
The eNwas for navigation formulas A(F) for the various axes A guess an A-
successor of the root and then run E starting from there. The selection and
rejection states remain unchanged except for the treatment of the root. A better

construction preserving determinism is available for formulas ch(F) under the
condition that F contains only the axis ch and ch∗ (see [9] again). There is
also an optimized construction for attribute access @(F) which uses internal
transitions only. Further optimizations are possible based on node typing of
the Xml data model (such as that attribute children precede all children of
other node types). Node label and type testers L(F) and K(F) work as usual.
They may add new rejection states to R while preserving the selection states
S. eNwas for string comparisons at the root O(texty(y), s) can be obtained
from a dfa with accepting and rejecting states that recognizes all strings s′ such
that O(s′, s). General string comparisons O(texty(F), s) can be reduced to the
previous case, since they are equivalent to F [y/O(textz(z), s)].

6 Early Query Answering

We show how to use eNwas for evaluating monadic queries onXml streams. Our
basic algorithm generates all possible answer candidates, and runs the eNwa on
them based on on-the-fly determinization. We then improve this algorithm so
that configurations and runs of multiple answer candidates may be shared.
On-the-fly Determinization. Let E be an eNwa that defines a monadic
query, i.e., with tag alphabet {a, ax | a ∈ Σ} where x is a fixed variable. Rather
than running E, we want to run its determinization E′. This can be done while
generating E′ on the fly. At any time point, we store the subset of the states
and transitions of E′ that was used before. If a missing transition rule is needed
then one we compute it from E and adds it to E′. It should be noticed that each
transition can be computed in polynomial time (but not in linear time). Recall
also that the states of E′ are sets of pairs of states of E. For efficiency reasons,
we will substitute such sets by integers, so that the known transitions of E′ can
be executed as efficiently as if E was deterministic at beforehand. Therefore, we
will assume in the sequel that E is deterministic. We will also assume that it is
pseudo-complete, so that runs can never get blocked.
Buffering Possibly Alive Candidates. Suppose we are given a stream con-
taining a nested word of some data tree, and that we want to compute the answer
of the query defined by E on this data tree in an early manner. That is, we have
to find all nodes of the data tree that can be annotated by x, so that E can
run successfully on the annotated data tree. At any event e of the stream, our
algorithm maintains a finite set of candidates in a so called buffer. A candidate
is a triple that contains a value for x, a state of E that is neither selecting nor
rejecting, and a stack of E. The value of x can either be a node opened before
the current event e, or “unknown” which we denote by •. At the start event,
there exists only a single candidate in the buffer, which is (•, q0,⊥) where q0 is
the unique initial state of E and ⊥ the empty stack. At any later event, there
will be at most one candidate containing the •.
Lazy Candidate Generation. New candidates are generated lazily under su-
pervision of the automaton. This can happen at all opening events for which
there exists a bullet candidate (which then is unique). Consider the <a> event of

〈lib〉

〈book〉

〈auth〉

〈title〉

“XML”

x state stack out

• q0 ⊥

x state stack out

• q0 γ

x state stack out

• q1 γα

x state stack out

• q2 γαβ
3 q3 γαβ

...

...

x state stack out

• q2 γαβ
3 q6 γαα
4 q6 γαα

x state stack out

• q2 γαβ
3 q9 γαα 3
4 q9 γαα 4

1lib

2book ...

3auth 4auth 5title

“A” “B” “XML”

Fig. 5. Evolution of the buffer for the eNwa from Fig. 1 when answering the XPath

query //book[starts-with(title,’XML’)]/auth on a sample document.

some node π and let (•, q, S) be the bullet candidate in the buffer at this event.

The algorithm then computes the unique pair (γ, q′) such that q
〈ax〉:γ
−−−−→ q′ is a

transition rule of E. If q′ is a selection state, then π is an answer of the query,
so we can output π directly. If q′ is a rejection state, then π is safe for rejection
(since E is deterministic), so we can ignore it. Otherwise, π may still be alive,
so we add the candidate (π, q′, Sγ) to the buffer.

Candidate Updates. At every event, all candidates in the buffer must be up-
dated except for those that were newly created. First, the algorithm updates the
configuration of the candidate by applying the rule of E with the letter of the
current event to the configuration of the candidate. If a selecting state is reached,
the node of the candidate is output and discarded from the buffer. If a rejection
state is reached, the candidate is also discarded from the buffer. Otherwise, the
node may still be alive, so the candidate is kept in the buffer.

Example. We illustrate the basic algorithm in Fig. 5 on the eNwa from Fig. 1
and the document from Fig. 2. Initially the buffer contains a single candidate
with an unknown node •, that starts in the initial state of the eNwa with
an empty stack. According to opening tags 〈lib〉 and 〈book 〉 we launch open
transitions and apply state and stack changes. At the opening event of node 3,
i.e. when reading the open tag 〈auth〉 in state q1, a new candidate is created. This

is possible, since there exists the transition rule q1
〈authx〉:β
−−−−−−→ q3 in the eNwa and

since q3 is neither a rejection nor a selection state. Similarly a new candidate
will be created for node 4 at its opening event. Only after having consumed the
text value of the title node 5, a selection state is reached for the candidates with
node 3 and 4, such that they can be output and removed from the buffer.

Stack and State Sharing. For most queries of the XPathMark benchmark,
the buffer will contain only 2 candidates at every event, of which one is the • can-
didate. It may happen though that the number of candidates grows linearly with
the size of the document. An example is the XPath query /a[following::b]

on a document whose root has a large list of only a-children. There the process-
ing time will grow quadratically in the size of the document. All candidates (of
which there are O(n) for documents of size n) must be touched for all following
events on the stream (also O(n)). A quadratic processing time is unfeasible even
for small documents of some megabytes, so this is a serious limitation.

βα

α

γ

state x-es

q2 {•}
q6 {3, 4}

Fig. 6. Buffer of <title>

β′ β

α

state x-es

q {•}

q′ {1}

q
〈a〉:γ
−−−→ q

q′
〈a〉:γ′

−−−−→ q′′

q
〈ax〉:γ′

−−−−→ q′′

γ′

β′

γ

β

α

state x-es

q {•}

q′′ {(2, β), (1, β′)}

q
〈/a〉:γ
−−−−→ q

q′′
〈/a〉:γ′

−−−−→ q′′′

q′′
〈/ax〉:γ′

−−−−−→ q′′′
β′ β

α

state x-es

q {•}

q′′′ {2}
{1}

Fig. 7. Data structures for the state sharing algorithm.

We next propose a data structure for state and stack sharing, that allows to
solve this issue. The idea is to share the work for all candidates in the same state,
by letting their stacks evolve in common. Thereby the processing time per event
for running the eNwa on all candidates will become linear in the number of states
and stack symbols of the eNwa, instead of linear in the number of candidates
in the buffer. In addition to this time per event, the algorithm must touch each
candidate at most three times, once for creation, output, and deletion. We will
use a directed acyclic graph (Dag) with nodes labeled in Γ for sharing multiple
stacks in the obvious manner. In addition, we use a table B : Q × Γ → Aggreg
relating a state and a root of the Dag through an aggregation of nodes or •. The
shared representation of the buffer at the <title>-event in Fig. 5 is illustrated
in Fig. 6 for instance. Here we have B(q6, α) = {3, 4}, B(q2, β) = {•}. In this
case, the aggregations are set of candidate nodes or the •, but this will not be
enough in general (see example below). Whenever a selection state is reached
in the B-table, the nodes in the aggregate of this state will be output and the
aggregate will be deleted from the data structure. For rejection states, we only
have to discard the aggregate. Note that rejected or selected nodes get deleted
entirely from the data structure this way, since no node may appear twice in
different aggregates, again due to determinism.

The precise functioning of our Dag-based buffering is illustrated by example
in Fig. 7. There one has to store enough information when sharing at opening
events, so that one can undo the sharing properly at closing events. From the first
configuration, we reach the second with the <a> event for node 2, for which a new
candidate will be buffered. This candidate 2 will be created from the •-candidate
whose configuration has β on top of the stack, goes into state q′′, and pushes γ′.
However, there is also the candidate for node 1 which will go into the same state
q′′ while pushing the same stack symbol γ′, but from a configuration with β′ on
top of the stack. The pairs (2, β) and (1, β′) must be stored in the aggregation,
so we define B(q′′, γ′) = {(2, β), (1, β′)}. The next event has the letter ,
where we have to undo the sharing. Now we decompose the aggregate, to update
the data structure to B(q′′′, β) = {2}, B(q′′′, β′) = {1} and B(q, β) = {•}.

Theorem 1. For any deterministic eNwa E with state set Q defining a monadic
query P and data tree t, the time complexity of our streaming algorithm to com-
pute P (t) is in O(|E|+ |Q| |t|) and its space complexity in O(|E|+depth(t) |Q|+
C), where C is the maximal number of buffered candidates of P on t at any event.

A1 A2 A3 A4 A5 A6 A7 A8 B1 B2 B3 B4 B5 B6 B7 B11 B12 B13 B14 B15
Fxp 2.7 2.5 2.4 2.3 3.5 3.4 3.4 2.4 2.8 2.2 3.3 3.7 2.1 2.4 1.9 1.9 2.2 2.2 2.0 1.6

Spex 0.7 1.5 1.1 0.9 0.9 0.9 0.8 0.9 0.9 1.1 0.4 0.8 – – – – – 0.6 – –
Saxon 1.7 1.8 1.8 – – 1.6 – – – – – – – – – – – – – –

Gcx 2.5 3.0 2.9 – – – – 3.3 – – – – – 2.3 3.3 – – – – –

Table 1. Throughput on XPathMark queries in millions of events per second.

7 Implementation and Experimental Results

The Fxp tool is released under the version 1.1 and is available under the GPL
licence at http://fxp.lille.inria.fr. A compiler from XPath to Fxp is freely avail-
able in the QuiXPath tool at http://code.google.com/p/quixpath. It covers a
slightly larger fragment of XPath than discussed here. In particular it supports
top-level aggregations, which are reduced to earliest query answering for n-ary
queries (and not only monadic queries). QuiXPath also supports backwards axes
such as Spex. We eliminated them at the cost of forward axis and regular closure.
As noticed in [16] conditional regular axes are not enough.

We also implemented the static determinization algorithm for Nwas, which
explodes for most practical queries, even if restricted to accessible states, but
do not need it for evaluating the queries of the XPathMark benchmark. In
contrast, on-the-fly determinization explores only small fragments of the deter-
minized Nwas. One should also mention that we obtain high efficiency results
also due to projection, where parts of the input documents are projected accord-
ing to the content of the query. This precise projection algorithm is new and of
interest but out of scope of this present paper.

We tested our system against the revisede version of XPathMark query
set [8]. It turns out that all queries are answered in an earliest manner with
two exceptions, that use valid or unsatisfiable subfilters. The query from the
introduction is also treated in an earliest manner, so Fxp improves on Spex

in this respect. We have also compared our Fxp tools to various systems on
XPathMark, such as Spex, Saxon, and Gcx. Input documents were produced
by the XMark generator. We give in Table 1 a collection of XPath queries,
where we report for each system the throughput obtained on a 1.1GB XMark
file. There “–” states that the query was not supported. Notice however that the
Gcx system competes very well. Nevertheless we believe that we obtain good
results with respect to that the Gcx system was done in C++, in contrast to
Fxp, developed in Java.

Conclusion and Future Work. We have shown how to approximate earliest
query answering for XPath on Xml streams by using eNwas. An implementa-
tion of our algorithms is freely available in the Fxp system. Our practical solu-
tion outperforms existing algorithms in performance and coverage. In follow-up
work, we extended the coverage of our XPath fragment by aggregate queries,
arithmetic operations, and float comparisons. For this we propose networks of

e http://users.dimi.uniud.it/˜massimo.franceschet/xpathmark/index.html

http://fxp.lille.inria.fr
http://code.google.com/p/quixpath
http://users.dimi.uniud.it/~massimo.franceschet/xpathmark/index.html

automata registrations, such that each of them can evaluate one subquery in a
query decomposition. For future work we hope that we can extend this approach
to cover database joins, and thereby reach over 90% coverage of XPathMark.

References

1. R. Alur and P. Madhusudan. Visibly pushdown languages. In 36th ACM Sympo-
sium on Theory of Computing, pages 202–211. ACM-Press, 2004.

2. R. Alur and P. Madhusudan. Adding nesting structure to words. Journal of the
ACM, 56(3):1–43, 2009.

3. D. Barbieri, D. Braga, S. Ceri, E. Della Valle, M. Grossniklaus. C-SPARQL: a conti-
nuous query language for RDF data streams. Semantic Computing, 4(1):3–25, 2010.

4. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
Journal of the ACM, 55(2):1–79, 2008.

5. M. Benedikt and A. Jeffrey. Efficient and expressive tree filters. In FSTTCS, vol.
4855 of LNCS, pages 461–472. 2007.

6. M. Benedikt, A. Jeffrey, and R. Ley-Wild. Stream Firewalling of XML Constraints.
In ACM SIGMOD, pages 487–498. 2008.

7. M. Fernandez, P. Michiels, J. Siméon, and M. Stark. XQuery streaming à la carte.
In ICDE, pages 256–265, 2007.

8. M. Franceschet. XPathMark: An XPath benchmark for the XMark generated data.
In 3rd International XML Database Symposium, 2005.

9. O. Gauwin and J. Niehren. Streamable fragments of forward XPath. In CIAA,
vol. 6807 of LNCS, pages 3–15. 2011.

10. O. Gauwin, J. Niehren, and S. Tison. Earliest query answering for deterministic
nested word automata. In FCT, vol. 5699 of LNCS, pages 121–132. 2009.

11. O. Gauwin, J. Niehren, and S. Tison. Queries on XML streams with bounded
delay and concurrency. Information and Computation, 209:409–442, 2011.

12. A. K. Gupta and D. Suciu. Stream processing of XPath queries with predicates.
SIGMOD Conference, pages 419–430. 2003.

13. M. Kay. A streaming XSLT processor. In Balisage: The Markup Conf., vol 5, 2010.
14. O. Kupferman and M. Y. Vardi. Model checking of safety properties. Formal

Methods in System Design, 19(3):291–314, 2001.
15. D. Le Phuoc, M. D. Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive

approach for unified processing of linked streams and linked data. In International
Semantic Web Conference (1), vol. 7031 of LNCS, pages 370–388, 2011.

16. C. Ley and M. Benedikt. How Big Must Complete XML Query Languages Be? In
12th International Conference on Database Theory, pages 183–200. 2009.

17. P. Madhusudan and M. Viswanathan. Query automata for nested words. In MFCS,
vol. 5734 of LNCS, pages 561–573. 2009.

18. B. Mozafari, K. Zeng, and C. Zaniolo. High-performance complex event processing
over XML streams. In ACM SIGMOD, pages 253–264. 2012.

19. D. Olteanu. SPEX: Streamed and progressive evaluation of XPath. IEEE Trans.
on Know. Data Eng., 19(7):934–949, 2007.

20. M. Schmidt, S. Scherzinger, C. Koch. Combined static and dynamic analysis for
effective buffer minimization in streaming XQuery evaluation. In ICDE, 2007.

21. T. J. Green, A. Gupta, G. Miklau, M. Onizuka, and D. Suciu. Processing XML
streams with deterministic automata and stream indexes. ACM Trans. Database
Syst., 29(4):752–788, Dec. 2004.

22. M. Onizuka. Processing XPath queries with forward and downward axes over XML
streams. EDBT ’10, pages 27–38, New York, NY, USA, 2010. ACM.

23. F. Peng and S. S. Chawathe. XSQ: A streaming XPath engine. ACM Transactions
on Database Systems, 30(2):577–623, 2005.

	Early Nested Word Automata for XPath Query Answering on XML Streams

