
HAL Id: hal-00848514
https://hal.inria.fr/hal-00848514v2

Submitted on 27 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Golo, a Dynamic, Light and Efficient Language for
Post-Invokedynamic JVM

Julien Ponge, Frédéric Le Mouël, Nicolas Stouls

To cite this version:
Julien Ponge, Frédéric Le Mouël, Nicolas Stouls. Golo, a Dynamic, Light and Efficient Language
for Post-Invokedynamic JVM. PPPJ - International Conference on Principles and Practices of Pro-
gramming on the Java platform: virtual machines, lamguages and tools - 2013, Sep 2013, Stuttgart,
Germany. �10.1145/2500828.2500844�. �hal-00848514v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49761146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00848514v2
https://hal.archives-ouvertes.fr

Golo, a Dynamic, Light and Efficient
Language for Post-Invokedynamic JVM

Julien Ponge Frédéric Le Mouël Nicolas Stouls
Université de Lyon

INSA-Lyon, CITI-INRIA F-69621, Villeurbanne, France
firstname.lastname@insa-lyon.fr

Abstract
This paper introduces Golo, a simple dynamic programming lan-
guage for the Java Virtual Machine (JVM) that has been designed
to leverage the capabilities of the new Java 7 invokedynamic in-
struction and API (JSR 292). Golo has its own language constructs
being designed with invokedynamic in mind, whereas existing dy-
namic languages for the JVM such as Groovy, JRuby or Nashorn
have to adapt language constructions which are sometimes hard to
optimize. Coupled with a minimal runtime that directly uses the
Java SE API, Golo is an interesting language for rapid prototyping,
polyglot application embedding, research (e.g., runtime extensions,
language prototyping) and teaching (e.g., programming, dynamic
language runtime implementation). We show that the language de-
sign around invokedynamic allows for a very concise runtime code
base with performance figures that compare favorably against Java
and other dynamic JVM languages. We also discuss its future di-
rections, either as part of Golo or through language and runtime
research extensions.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Multiparadigm languages;
D.3.4 [Programming Languages]: Processors—Compilers

General Terms Languages

Keywords Golo, invokedynamic, Java, JVM

1. Introduction
The JVM ecosystem goes way beyond the sole Java programming
language and a myriad of frameworks and libraries. The JVM itself
provides a proven adaptive, managed and efficient runtime environ-
ment for a wide range of programming languages. While the JVM
had an initial bias that favored statically-compiled languages, the
interest in dynamically-typed languages prompted developments as
part of JSR 292 to better support such languages starting from Java
7 [17, 18]. The runtime of existing dynamic languages are evolving
to take advantage of this, leading to both better performance and
simplification of runtime implementation [3, 4, 6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPPJ’13, September 11–13, 2013, Stuttgart, Germany.
Copyright c© 2013 ACM 978-1-4503-2111-2/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500828.2500844

While working on middleware for dynamic applications, the
authors often felt the need for modifying existing languages. Most
well-known JVM languages have significant code base sizes, which
make them arguably hard to modify or extend. This is one of
the reasons for introducing Golo, a simple dynamic programming
language for the JVM. Golo has simple semantics and a minimal
runtime. It takes advantage of the Java SE API, or any API from
another JVM language. It builds on JSR 292, making it one of the
first language to have been designed around it.

We believe that Golo makes for an appealing language for re-
search purposes, as it is easy to derive dialects from it, or make ex-
periments with new runtime features. We believe that it has some
educational value, both as a programming language and as a refer-
ence of how to build a dynamic language using invokedynamic on
the JVM. We are also convinced that the simple design in Golo
makes it useful in real-world polyglot applications, as the early
community interest shows.

This paper starts with an informal tour of the Golo program-
ming language, showing examples of the current constructions that
it provides. We then focus on the implementation of the Golo run-
time on the JVM, taking advantage of JSR 292 as a building block
for most dispatch and dynamic selection operations. We then pro-
ceed to some early evaluation of the runtime performance based
on micro-benchmarks, showing that it compares favorably against
Java and existing dynamic languages for the JVM. We finally pro-
vide related work and give perspectives.

2. A tour of Golo
This section is an informal tour of Golo, presenting its main con-
structions and features. A complete guide to the language is made
available on the Golo website [2].

2.1 Basics
Golo arranges source code definitions in module files that primarily
define functions. A classic “hello world” example looks as follows:

module hello.world

function main = |args| {
println("Hello, world!")
let a = 1
var b = "Hello"
b = b + 123 + a # b is a mutable reference

}

As one may guess, the main function serves as the program entry
point, and parameters are given between pipe symbols (’|’). The
println function is a predefined function that delegates to Java
System.out.println() under the hood. Golo is a dynamically-
typed language, where all values are objects, according to the JVM

bottom type java.lang.Object. Constant object references are
introduced by the let clause, while mutable references defined by
var. Note that (1 line) comments begin with a sharp symbol (’#’).

Visibility. By default, functions are visible to other modules. A
function visibility can be restricted by prefixing its declaration by
local, meaning that it can only be called from functions declared
within the same module.

Imports. The main function above can be called from another
module function by prefixing the call with the module name, as
in: hello.world.main(someArray). Golo supports import state-
ments to facilitate symbol resolution at runtime. With: import
hello.world, the previous call reduces to: main(someArray).

Import statements are being resolved in order of their declara-
tion in a module. Simply put, when a function is being called and
its name cannot be resolved, each import definition is tried in dec-
laration order to match it against a target.

Operators. Golo provides operators in the tradition of many C-
style languages. Arithmetic operations are made using +, -, *,
/, % operators. Value comparisons use <, <=, ==, !=, >, >=
while reference can be compared using is, isnt. It must be noted
that == in Golo is Object#equals(Object) in Java, and we believe
that the distinction between == and is makes sense as Java de-
velopers frequently confuse reference and value equality. Boolean
expressions can be composed using the logical or, and, not op-
erators. Finally, we provide a orIfNull binary operator which is
especially useful for dealing with null values and provide a default
value to an expression, as illustrated by:

println(null orIfNull "N/A") # => "N/A"

2.2 Creating Java objects from Golo
Golo is not just made to run on top of the JVM: it embraces the
Java Standard API. When a (Java) class provides a public static
method or field, it can be called from Golo as a function, with
the class qualified name acting as a prefix unless a corresponding
import is being used. Object instances are created by calling a class
constructor as if being a Golo function. Calling instance methods
is being done using the ’:’ operator, where the left-hand side is the
receiver object or expression. Here is an example:

let list = java.util.LinkedList()
list: add(1)
list: add(2)
list: add(Integer.MAX_VALUE())
println(list)

It creates an instance of java.util.LinkedList, calls its add
method several times, the last one with the value of the public static
field MAX_VALUE of the java.lang.Integer class.

Golo also provides null-safe method invocations with the
’?:’ operator, also called “elvis operator” in languages such as
Groovy or Kotlin. Invoking a method on a null reference raises a
NullPointerException, but the ?: operator traps those and simply
returns null. Such invocations are especially useful when com-
bined with the orIfNull operator, as it provides a convenient way
to traverse an object graph with potentially null nodes, and return
a default value as in:

let person = dao: findByName("Mr Bean")
let city = person?: address()?: city() orIfNull "n/a"

This single expression consists of chained method calls, and
evaluates to either the city of some entity object retrieved from
some data store, or "N/A" if either of the address or entity is null.
This is arguably cleaner than:

let person = dao: findByName("Mr Bean")
var city = "n/a"
if person isnt null {
let address = person: address()
if address isnt null {
city = address: city() orIfNull "n/a"

}
}

2.3 Control flow
As suggested by the last example, Golo supports conditional
branching using if, else statements. Loops can be expressed us-
ing while, for and foreach constructions. for-loops consist of
strictly 3 parts: initialization, termination condition and iteration
expression.

let a = Array(1, 2, 3)
for (var i = 0, i < a: length(), i = i + 1) {
println(">>> " + a: get(i))

}

foreach-loops can yield to simpler expressions on JVM arrays
and objects implementing java.lang.Iterable:

let a = Array(1, 2, 3)
foreach i in a {
println(">>> " + i)

}

Conditional expressions consisting of many different cases can
be better expressed using case constructs rather than successive
if, else if, ..., else statements:

case {
when a() { ... }
when b() { ... }
...
otherwise { ... }

}

Finally, Golo provides a match statement that evaluates several
conditions and returns a value:

function what_could_it_be = |item| {
return match {
when item: contains("@") then "an email?"
when item: startsWith("+33") then "a phone number?"
when item: startsWith("http://") then "a URL?"
otherwise "I have no clue..."

}
}

Both case and match statements compile equivalently to a cas-
cade of if statements.

2.4 Exceptions
Golo uses Java exceptions, but makes no distinction between
checked and unchecked exceptions. Exception-handling statements
mimic those of Java: try / catch / finally, try / catch and
try / finally. Similarly, exceptions are being thrown using the
throw keyword. Here is a try / catch construct example:

try {
doSomethingDangerous()

} catch (e) {
logger: info(e)
throw e

}

The type of the exception can be checked using the oftype
operator, as in:

try { ... }
catch (e) {
case {
when e oftype IOException.class { ... }
when e oftype SecurityException.class { ... }
otherwise { ... }

}
}

2.5 Class augmentations
Golo provides augmentations to existing Java classes. This is sim-
ilar to extension methods in C#. It acts as “syntactic sugar” to add
methods to existing classes. An augment declaration is defined at
the module level, as the following example shows:

module ConcatenableStrings

augment java.lang.String {
function concatWith = |this, args...| {
var result = this
foreach arg in args {
result = result + arg

}
return result

}
}

An augmentation applies to a fully-qualified Java class, and
consists of several functions, each acting as a “method” to be added.
Each augmentation function must have a first argument that acts as
a receiver object. The previous example adds a concatWith method
to strings. Note that args is a variable argument parameter, and is
dealt with as an array. The following would print "abcd" to the
standard console:

println("a": concatWith("b", "c", "d"))

Augmentations are visible from code within the same mod-
ule. They can be used from other modules too. This requires
an import, so a module gets all possible augmentations from
each module it imports. As a matter of style, it is suggested that
reusable augmentations get isolated in dedicated modules, so as
to avoid accidental availability of an augmentation. Finally, aug-
mentations do not override existing methods: a method such as
java.lang.Object#toString() cannot be overridden by augmen-
tations.

2.6 Functions as first-class objects
Closures. Like many modern languages, functions are handled
as first-class objects. They can be referenced and declared just
like normal objects, and passed as parameters to other functions
and methods. They capture their lexical context (closures), so that
references to objects can be passed to a locally-declared function:

let a = 3
let f = |x| -> x + a
let g = |h, x| -> ">>> " + h(x)
println(f(1)) # => "4"
println(g(f, 1)) # => ">>> 4"

Note that Golo provides a short notation for functions consisting
of a single expression, using -> between arguments and an expres-
sion.

Functions as objects. A closure reference is an instance of
MethodHandle from java.lang.invoke, meaning that we can take
advantage of the combinators API that it provides. As an example,
the following is a partial application that takes advantage of the
MethodHandle#bindTo combinator:

let adder = |a, b| -> a + b
let add2 = adder: bindTo(2)
println(add2(1)) # prints ’3’

Leveraging augmentations. Golo comes with a set of standard
augmentations to enhance Java collections, method handles, iter-
able objects and more. While it would be too lengthy to list them,
the following example illustrates them:

Prints "[3, 5, 7]"
let incr = |x| -> x + 1
println(LinkedList():
append(1, 2, 3, 4, 5, 6):
map(incr: andThen(incr)):
filter(|x| -> (x % 2) == 1))

append is an augmentation on lists that allows adding sev-
eral values at once to a collection. Indeed, the java.util.List
API offers of a void add(Object) method that requires several,
non-chained invocations. map and filter implement the common
eponymous functional operations. Finally, andThen allows to com-
pose function references.

2.7 Dynamic objects
Golo provides dynamic objects, that is, objects whose properties
and methods can be defined on a per-instance basis, like in Groovy,
Python or Ruby [3–5]. They can be used as in:

let mrbean = DynamicObject():
name("Mr Bean"):
email("mrbean@gmail.com"):
define("toString", |this| -> this: name() + " <" +

this: email() + ">")

println(mrbean: name()) # ’getter’
mrbean: name("Sir Mr Bean") # ’setter’
println(mrbean: toString()) # ’method’

Values can be get and set, providing methods with the corre-
sponding name. They can either be set by name, or by calling the
define reserved method. When the value to be set is a function,
then it defines a method, which in turn can be used. Note that such
functions shall have at least a first argument to act as a receiver.

Dynamic objects provide further operations. Properties can be
unset, updated and frozen, in which case a dynamic object becomes
immutable1. A dynamic object can be cloned using the copy()
reserved method. Finally, a dynamic object can be mixed into
another one, as in" obj: mixin(other). This copies every property
of other into those of obj, overwriting existing entries.

3. Implementing Golo on the JVM
This section discusses how the Golo runtime has been designed and
implemented on top of the JVM. After an overview, we discuss how
bytecode is being generated ahead-of-time. Finally, we show how
JSR 292 allows for a thin and efficient runtime design.

1 At least at the level of its own properties. This does not prevent a property
value to be an instance of a mutable class.

3.1 Overview
The Golo runtime and compiler fit into a single uncompressed Jar
archive of 225KB as of version 0-preview4. The grammar of Golo
is written using the LL(k) JJTree / JavaCC parser generator [12],
mainly due to its simplicity and lack of a runtime dependency, as
it generates all the Java code required for a working parser. The
front-end generates an abstract syntax directly from JJTree, which
is then transformed into an intermediate representation based on a
Golo-specific object model, comprising classes to model reference
lookups, functions, common statements and so on.

The intermediate representation is visited by a limited number
of phases. The first one expands closures into synthetic functions,
so that a function f declared as:

let a = 3
let f = |x| -> x + a

yields a synthetic local function $f = |$a, x| ... at the mod-
ule level. The second phase visits the intermediate representation
to verify and assign local references. It checks that symbolic ref-
erences are meaningful within the context in which they are be-
ing used. It assigns each object reference an index number. It also
reports undeclared references as well as assignments to constants
references (let). The third and last phase generates JVM byte-
code from the intermediate representation. Golo uses ahead-of-time
compilation. Code generation is done in a single pass using the
ASM library [8].

3.2 Bytecode generation
The Golo compiler generates one JVM class per Golo module, and
the class name simply matches those of the module. A module
foo.Bar generates a class Bar in package foo. All functions are
compiled to static methods, and type signatures are generic, that
is, they use java.lang.Object. Functions are public static meth-
ods unless they are declared as local. Variable arguments are hon-
ored in the bytecode flags: a function f with parameters |head,
tail...| compiles to a static method Object f(Object head,
Object[] tail). Closures are compiled to private, static methods
whose names are manglings of "__$$_closure_" and incremented
integers.

Each class augmentation is compiled to a separate class. Given
an augmentation on java.lang.String defined in the better.-
Strings module, a class better.Strings$java$lang$String is
being generated. Augmentation functions are being generated to
this class like other functions.

Generated classes embed meta-data in the form of public static
methods. $imports() returns an array of strings that corresponds
to the module imports, in order. This is being used by the Golo
runtime to dynamically resolve names against imports. Similarly,
a $augmentations() method returns an array of strings with the
augmentations that the module provides. Again, this is being used
at runtime to help in missing method resolution. Augmentation-
generated classes only have an $imports() method to provide
meta-data.

3.3 invokedynamic-based call sites
The bytecode produced by Golo is fairly traditional for a lan-
guage on the JVM, except that it makes extensive use of the
invokedynamic instruction for every function and method invo-
cation. invokedynamic instructions are given a generic signature
for the corresponding call site: a function call such as foo(bar,
baz) yields an invokedynamic instruction with the symbolic name
foo and a (Object, Object) Object signature.

invokedynamic instructions are linked to a bootstrap method
whose role is to initialize the corresponding call site the first time

it is being executed. Golo provides the following specialized call
sites, for which we also describe the arguments.

1. Functions support: lookup, name and type.

2. Operator support: lookup, name, type and arity (1 or 2).

3. Method support: lookup, name, type and an integer flag for
whether calls shall be null-safe or not.

4. Class reference: lookup, name and type.

5. Closure reference: lookup, name, type, declaration module
name, arity and an integer flag for variable arguments.

6. Closure invocation support: lookup, name, type.

Most call sites returned by these bootstrap methods are in-
stances or derivatives of MutableCallSite. There are two ex-
ceptions: class and closure reference call sites return instances
of ConstantCallSite, as they remain constant once their initial
lookup has been made.

3.4 Dispatching calls
Function. The dynamic nature of Golo takes advantage of the
call site mutability. The case of function calls is fairly simple, as the
first invocation triggers a lookup, first in the current module, then
by iterating through the imported modules. When a target function
is found, the call site is updated with it and it remains constant
through the execution. Not finding it triggers an exception.

Operators. Operators are implemented using specialized static
methods, e.g., an addition method for (Integer, Integer), (Int-
eger, Long) and so on. Operator call sites construct inline caches
[11] using the guardWithTest method handle combinator of the
java.lang.invoke.MethodHandles class. To do that, they have a
guard condition that looks at the arguments, a method handle to
the specialized static method, and a fallback method handle that
performs another lookup and call site mutation. Consider the case
of additions: when a call site sees arguments of classes Integer
and Integer, it loads a method handle to the static method doing
additions on two integers. The call site uses this method handle for
as long as calls are being performed on two integers. If, say, a call
happens on one integer and a double, the guard check fails, causing
a call site invalidation.

Methods. Method invocations also employ an inline-cache con-
struction. As receiver objects are being discovered at a call site,
method handles to their target methods are being selected and
cached, forming polymorphic inline-cache trees [11] of guard-
WithTest combinators. The corresponding guards test on the re-
ceiver class. The fallback handles perform new lookups as new re-
ceiver classes are being discovered, rewriting call site targets with
a new guardWithTest where the fallback is the previous target, ef-
fectively assembling them in a tree. Because the fallback method
handle has to be generic for different types of call site signatures,
it uses the asCollector combinator to wrap arguments into an ar-
ray, and bindTo to pass the call site as a parameter through partial
application, so that it can be updated with a new target once it has
been found and cached.

Megamorphic call sites. Method dispatch arrange trees of guard-
WithTest combinators up to a depth of 5. Once this limit has been
reached, a method call site turns into a megamorphic state and
changes to a new dispatch strategy. Instead of composing trees on
cache invalidation, it caches method handles in a HashMap. Method
dispatch is then performed by a composition of exactInvoker and
foldArguments combinators. The later performs a lookup into the
cache HashMap, giving a method handle to the former. The lookup
populates the cache as new method handles need to be discovered.
This ensures an amortized dispatch for megamorphic call sites.

Dynamic objects. Method dispatch call sites handle dynamic
objects as a special case. It still employs inline-caches, with a
guardWithTest based on the receiver instance, as caching can only
occur on a per-instance basis. Each dynamic object maintains a
set of SwitchPoint instances that are given to the consuming call
sites. These switch points provide a method handle to the dynamic
object method in use, be it to access a value property or to dis-
patch to a function. Shall the dynamic object property be changed,
all switch points become immediately invalidated. Each fallback
method handle points to the consuming callsite general-purpose
fallback, prompting a new lookup to be made on subsequent dis-
patches.

null-safe method invocations. Method invocations using the
’?:’ operator use the strategies above for polymorphic, megamor-
phic and dynamic objects. It adds a frontal catchException com-
binator on NullPointerException, with a handler method handle
that simply discards all arguments and return null. The advantage
of this solution is that non-null method invocations execute in a
fast path, while occasional null invocations will actually produce a
NullPointerException that will be trapped. Unless null receiver
objects are frequent, our experiments show that this yields better
performance and a simpler design than introducing a further check
in a guardWithTest guard.

Closures invocations. Closures can be referenced by both let
and var references. Their invocation is done in 2-steps: a first call
site provides the target method handle which is being loaded from
the current reference value. The next call sites is an inline-cache,
again built using guardWithTest where the guard is on the method
handle instance and the target an invoker for the call site type. This
provides an efficient dispatch mechanism, as the first call site looks
into a local variable, while the next one is an inline-cache.

4. Early evaluation
Benchmarking a language on the JVM remains difficult. The adap-
tive nature of the runtime makes it hard to predict which optimiza-
tions will be effective, yielding results with deviations over runs.
Also, a benchmark rarely matches the conditions of a real appli-
cation, including the impact of input-output operations, workload
patterns and code base sizes. Nevertheless, micro-benchmarks are
useful to evaluate specific portions of a language runtime.

The Golo source code [2] contains a benchmark folder. It is
organized as a Maven project where benchmarks are written using
JUnitBenchmarks. Each test fixture is run in a fresh JVM instance,
with sufficient warm-up and execution rounds to have low standard
deviation in the measures (worst case observed: 0.15s, most cases
are below 0.01s). Table 1 shows the micro-benchmark results, run
on a 2.66 GHz Intel Core 2 Duo MacBook Pro with 8 GB of RAM
memory with Mac OS X 10.8.3. The Java Runtime Environment
is the Oracle JDK build 1.7.0_17-b02, running HotSpot 64 bits
build 23.7-b01. We obtained similar performance figures using
custom builds of OpenJDK 8. Complete results including measured
standard deviations can be consulted at https://gist.github.
com/jponge/5965512.

The Fibonacci test measures the time to compute fib(40) using
the naive recursive definition of the function. The next step mea-
sures the time to execute a chain of filter, map and reduce opera-
tions over a large list of integers. The monomorphic, trimorphic and
megamorphic stress method call dispatches in presence of respec-
tively a single, three and many (10) receivers types. Finally, the last
test measures the performance of calling closures. Different lan-
guages are being used depending on the test cases: Java (version 7),
Groovy (version 2.1.3), JRuby (version 1.7.3) and Clojure (version
1.5.1). We did our best to stick to the idioms of each language while
providing comparable code constructs. Especially, we did not use

Fibonacci 40

Java 1.00 s
Java (boxing) 1.99 s
Golo 2.92 s
Clojure 8.66 s
JRuby 16.42 s
Groovy 33.56 s

Filter, map, reduce

Golo 0.16 s
Groovy 0.71 s
Clojure 0.73 s
Clojure (lazy collections) 1.12 s
JRuby 1.33 s

Monomorphic dispatch

Java 0.30 s
Golo 0.31 s
Golo (?:) 0.31 s
Golo (?: ≈ 50% null receivers) 0.39 s
Groovy 0.54 s
JRuby 1.25 s

Trimorphic dispatch

Java 0.19 s
Golo 0.20 s
Golo (?: ≈ 21% null receivers) 0.31 s
Groovy 0.71 s
JRuby 1.23 s

Megamorphic dispatch

Java 0.10 s
Golo 0.21 s
Groovy 1.05 s
JRuby 1.21 s

Calling closures

Golo 0.18 s
Java (anonymous inner-classes) 0.24 s
Groovy 1.16 s
JRuby 3.76 s

Table 1. Micro-benchmark results (times are in seconds).

typing or type hints when offered by the language, as Golo can only
be fairly compared to dynamically-typed code. Finally, we ensured
that each language runtime would use invokedynamic support, if
available, which is the case of Groovy and JRuby.

The results show that the Golo runtime performs well on those
benchmarks. This can be explained due to the straightforward us-
age of invokedynamic and the design of the language around it.
Porting an existing language to the JVM, or coping with a long
development history when adapting it to invokedynamic necessar-
ily makes the effort more difficult. Golo is efficient on method and
closure dispatch. The result gap for Golo is bigger on fib(40) than
some other tests when compared to Java. Indeed, Golo suffers from
primitive boxing and unboxing. The evaluation of arithmetic ex-
pressions is near-sighted, and boxing / unboxing happens for every
operator. Expressions such as fib(n − 1) + fib(n − 2) could be
better handled to reduce boxing effects.

Finally, we could expand the micro-benchmark sets to other
dynamic languages. It would be especially interesting to evaluate
Nashorn [6], but since it is still in development and depends on Java
8 which has yet to be finalized, it is better waiting for stabilization.

5. Related work
The Java Virtual Machine has an open specification [14] with an
ecosystem of languages that goes well beyond Java. Extensive
research efforts have been put into the design of efficient adaptive
runtime strategies for the JVM to make it suitable for client and
long-running server applications [9, 13, 15].

It is commonly reported that over 200 languages have been
designed for the JVM, or ported to it, but more realistically only
few of them have been popular. Dynamic languages are popular
choices on the JVM, including Groovy [3], JRuby [4], Jython [5]
or Clojure [1].

The JVM had an initial bias towards statically typed languages
[14], which made it hard for language implementers to design

Figure 1. The Golo Netbeans IDE.

runtimes that would be subject to efficient JIT optimizations. The
situation changed with the JSR 292 and the release of Java 7,
introducing a new opcode called invokedynamic and a support API
[17, 18].

As Golo shows, invokedynamic allows the design of simple
language runtimes while providing hints for the JVM to perform
efficient optimizations. Some of the existing dynamic languages
for the JVM are already porting their runtimes to take advantage
of invokedynamic [3, 4]. Clean-room implementations of runtimes
for existing languages are starting to appear such as Nashorn for
JavaScript [6].

It is especially interesting to note that invokedynamic allows
implementing adaptive runtime techniques that the JVM itself em-
ploys, while staying in a high-level language (Java). Golo makes
heavy usage of inline-caches, which date back to the works on
SmallTalk and Self [10, 11].

Last but not least, invokedynamic is interesting for other pur-
poses than dynamic languages. They are poised to serve in the im-
plementations of lambdas for Java 8. Derivative usage are start-
ing to appear in [7] or the dynamic software modification agent
JooFlux [16].

6. Conclusion and perspectives
This paper introduced Golo, a new dynamic programming language
for the JVM. With simple semantics and a lightweight runtime
based on JSR 292, it is an interesting language for research on
languages, middleware and runtimes. It can also serve in educa-
tion and be useful to the polyglot application programmer. It can
call Java, be called from Java, or more generally from any JVM
language. Last but not least, its runtime performance compares fa-
vorably against Java and the other dynamic languages for the JVM.

Community. Having been released to the public at the end of
March 2013, Golo remains a young language with a nascent com-
munity. Still, it has already received external contributions. Some
are being listed at http://k33g.github.io/nano.golo/, which is
a website maintained by a Golo enthusiast. Contributions include
experiments of Golo as a domain-specific language for testing,
web frameworks or IDE-support. Figure 1 shows a community-
contributed support of Golo in the Netbeans IDE, with code com-
pletion, error reporting, structure overview and run integration. A
similar project is in the works for the Eclipse platform.

Future works. The Golo language will progressively get new
features. Of particular interest at the language level, we would like
to support class definitions, value class definitions and collection

literals. We also plan to add support for API documentation blocks
written in Markdown format. This requires the implementation of a
text template system that we would like to design after ERB in Ruby
[4]. Golo already provides a workers API for concurrent message-
passing, and we would like to investigate how it can be further
improved to facilitate concurrent programming.

As developers discover Golo, we expect it to be tested on larger
code bases. This will be interesting to better reflect on the runtime
performance than just look at micro-benchmarks. Also, the impact
of a large number of invokedynamic call sites has to be investigated
with respect to performance and memory, too.

The authors will experiment with research works where Golo
will serve as a basis for language extensions and a simple runtime
to modify to support, say, isolation, security or ambient computing.
Finally, we invite the larger researchers and practitioners commu-
nity to experiment with Golo, report suggestions, signal potential
issues, and contribute to its development.

Acknowledgments
This work is partially supported by the ARC6 program of Région
Rhône-Alpes. We would like to thank: the initial testers before Golo
was made public, Philippe Charrière for his enthusiasm, Serli and
Ninja Squad for their support, and Rémi Forax for the thoughtful
technical discussions.

References
[1] URL http://clojure.org/.
[2] URL http://golo-lang.org/.
[3] URL http://groovy.codehaus.org/.
[4] URL http://jruby.org/.
[5] URL http://www.jython.org/.
[6] URL http://openjdk.java.net/projects/nashorn/.
[7] M. Appeltauer, M. Haupt, and R. Hirschfeld. Layered method dispatch

with invokedynamic: an implementation study. In Proc. of COP’10.
ACM, 2010.

[8] E. Bruneton, R. Lenglet, and T. Coupaye. Asm: A code manipulation
tool to implement adaptable systems. In Adaptable and extensible
component systems, 2002.

[9] C. Häubl and H. Mössenböck. Trace-based compilation for the Java
HotSpot virtual machine. In Proc. of PPPJ’11, pages 129–138. ACM,
2011.

[10] U. Hölzle and D. Ungar. Optimizing dynamically-dispatched calls
with run-time type feedback. In Proc. of PLDI’94, pages 326–336.
ACM, 1994.

[11] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed
object-oriented languages with polymorphic inline caches. In Proc. of
ECOOP’91, pages 21–38. Springer-Verlag, 1991.

[12] V. Kodaganallur. Incorporating language processing into java applica-
tions: A javacc tutorial. IEEE Software, 21(4):70–77, 2004.

[13] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell,
and D. Cox. Design of the Java HotSpot client compiler for Java 6.
ACM Trans. Archit. Code Optim., 5(1):7:1–7:32, May 2008.

[14] T. Lindholm and F. Yellin. Java Virtual Machine Specification.
Addison-Wesley, 2nd edition, 1999.

[15] M. Paleczny, C. Vick, and C. Click. The Java HotspotTM server
compiler. In Proc. of JVM’01. USENIX, 2001.

[16] J. Ponge and F. Le Mouël. JooFlux: Hijacking Java 7 InvokeDynamic
To Support Live Code Modifications. Research report, INSA-Lyon,
CITI-INRIA, Oct. 2012.

[17] J. R. Rose. Bytecodes meet combinators: invokedynamic on the JVM.
In Proc. of VMIL’09. ACM, 2009.

[18] C. Thalinger and J. Rose. Optimizing invokedynamic. In Proc. of
PPPJ’10, pages 1–9. ACM, 2010.

