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Abstract—Software systems usually follow many program-
ming rules prescribed in an architectural model. However,
developers frequently violate these rules, introducing archi-
tectural drifts in the source code. In this paper, we present a
data mining approach for architecture conformance based on
a combination of static and historical software analysis. For
this purpose, the proposed approach relies on data mining
techniques to extract structural and historical architectural
patterns. In addition, we propose a methodology that uses the
extracted patterns to detect both absences and divergences
in source-code based architectures. We applied the proposed
approach in an industrial-strength system. As a result we de-
tected 137 architectural violations, with an overall precision
of 41.02%.

Keywords-Software architecture conformance; Frequent
itemset mining; Static analysis; Mining software repositories

I. INTRODUCTION

The architecture of a system prescribes the organization
of its components, their relationships, constraints, and
the principles that guide its design and evolution over
time [1]–[3]. An architectural model is a high-level re-
presentation of the software that documents and transmits
the major decisions and principles that should be followed
during the software development project.

However, during development of a software product,
programming anomalies regarding the proposed architec-
tural model are normally introduced. These anomalies are
classified in this paper as architectural violations [4], [5].
In practice, the introduction of architectural violations is
very common [6]. These violations usually make more
complex subsequent maintenance tasks since the concrete
architecture is not adhering to the planned and documented
architecture [7].

Therefore, in this paper we assume that the inception
of architectural violations in software products is a com-
mon task [8]. Moreover, we assume that some violations
are detected and corrected in future revisions through
inspection and/or quality assure activities. Furthermore,
programs usually follow architectural patterns of imple-
mentation. With this in mind, it is observed that, according
to software design best practices, classes belonging to the
same component follow similar programming conventions.

Based on these assumptions, this paper proposes a
method to detect architectural violations in software pro-
ducts. The proposed solution analyzes structural and his-
torical architectural patterns at the level of structural

dependencies between classes and considering the versions
stored in a version control repository. The ultimate goal
is to identify architectural violations from similar depen-
dency patterns. Particularly, a structural dependency de-
notes any syntactic relation between two classes, including
method calls, field and variables declaration, etc.

The proposed approach extracts architectural patterns
that can be used, for example, as documentation artifacts.
Furthermore, the detection method is statically performed
in a non-invasive way, so it does not impact normal system
programming activities. In order to evaluate our approach,
this paper describes its application in a real information
system used by a major Brazilian university. As result, we
identified 334 evidences of architectural violations in this
system. From such evidences, 137 were confirmed by a
senior software developer, which implies in a precision of
41.02%.

The remainder of this paper is organized as follows.
Section II presents an overview of the proposed approach.
Sections II-A and II-B describe the heuristics to detect ab-
sences and divergences, respectively. Section III presents
an evaluation of the proposed approach in a real system.
Section IV describes related work and Section V presents
the conclusions.

II. PROPOSED APPROACH

This paper proposes a technique for detecting architec-
tural violations in object-oriented software systems. The
proposed approach relies on data mining techniques over
historical dependencies between the classes of a target
system. This historical information is retrieved from the
version control system repository. Basically, the proposed
approach mines structural and historical dependencies
between the classes of the target system.

Figure 1 illustrates our approach for detecting archi-
tectural violations. Initially, a Code Extractor component
retrieves all source code versions from the version con-
trol system repository. Each revision is parsed by the
VerveineJ1 parser that extracts the dependencies from the
source code. Next, the extracted dependencies are stored in
a relational database. The Architectural Miner component
relies on two types of input on the target system: (a)
dependencies database and (b) high-level component spec-
ification. In our approach, we assume that classes are stati-
cally organized in modules (packages in Java terminology)

1https://gforge.inria.fr/projects/verveinej



and modules are logically arranged in coarse–grained
structures called components. The high-level component
specification is essentially a mapping from modules to
the defined components. Next, the Architecture Miner
generates a Prolog database describing the structural and
historical relations available in the source code. After that,
the Architectural Miner uses Prolog queries to convert the
Prolog database into a consistent frequent itemset mining
dataset. Next, an association rule mining algorithm is used
to detect structural and historical architectural patterns.
Finally, the Violation Detector uses such architectural pat-
terns to detect architectural violation evidences according
to the methodology described in Sections II-A and II-B.

Figure 1. Proposed approach

In the proposed component model, high-level compo-
nents are represented as simple regular expressions that
represent the mapping from modules to components.

Our approach is based on a data mining technique
called frequent itemset mining [9], which efficiently finds
frequent itemsets in a dataset. Basically, this technique
defines the support as the number of occurrences of a
subset of items (sub-itemset). A sub-itemset is considered
frequent if its support is greater than a specified threshold
called minimum support. Thus, support counts the number
of times a sub-itemset happens in the itemsets database.

After the frequent itemset has been mined, we can
compute association rules [10], [11]. From the association
rules, we make assumptions that two or more items occur
simultaneously or conditionally. Furthermore, association
rules can be used to discover causal relationships among
elements. Each association rule has a confidence, which
is a metric that represents the probability of a database
transaction covered by a antecedent term (pre-condition of
the rule) be covered by a consequent term (consequence
of the rule).

To calculate frequent itemsets and to generate asso-
ciation rules, we use a FP-tree-based mining algorithm,
called FPGrowth [10]. Instead of generating the complete
set of frequent sub-itemsets, this algorithm generates only
relevant itemset candidates. After the frequent itemsets are
mined, FPGrowth also generates association rules. The
proposed approach to architectural violation detection is

based on the idea that an architectural pattern is frequently
followed and violations represent a small percentage of the
cases.

The remainder of this section is organized as follows:
Section II-A presents the heuristics used to detect evi-
dences of absences; Section II-B describes the heuristics
for divergences.

A. Mining for Absences

An absence is a violation that occurs when a
BaseClass does not depend on a TargetClass, but a
dependency like that is prescribed by the planned architec-
ture. In other words, an absence is a violation that happens
with a dependency defined by the planned architecture but
that does not exist in the source code [4], [12]. Figure 2
illustrates an example of absence. In this case, the planned
architecture prescribes that classes located in a DTO
module must use services provided by a class located in
JPA module. In this case, an absence is counted for each
class in DTO that does not follow this rule.

Figure 2. Example of absence (DTO must use JPA)

In order to detect absences we initially search for
patterns of dependencies that frequently occur. Next, we
search for dependencies that violate such patterns, and
therefore denote minorities at the level of components. We
assume that absences occur in a small percentage of cases,
which are more likely to represent architectural violations.
Additionally, we use the history of versions to mine
for evolutionary architectural patterns. In this case, we
search for patterns in which dependencies are introduced
in classes originally created without such dependencies.

The proposed procedure for detecting absences relies
on two steps. First, we identify architectural patterns that
frequently occur in classes grouped as defined by the
component model provided as input. Second, from classes
in each component, we identify evolutionary architectural
patterns. For instance, considering the example in Figure 2,
we check how frequently classes in the component Model
that depend on Entity (a class of the JPA module) in
the current version of the system were initially created
without this dependency.

The main idea of the evolutionary architectural patterns
is to reinforce the violation evidences suggested by the first
step. The assumption is that absences are frequently de-
tected and fixed (i.e., classes created without a dependency
prescribed by the planned architecture are frequently fixed
in future revisions).

In order to find correlations among the dependencies,
initially it is necessary to compute the frequent itemset



mining dataset. For this purpose, we rely on a dataset
based on Prolog facts, which describes the dependencies
and historical information on the classes of the system
under analysis, as follows:

[component(CompId,CompName).]+
[module(ModId,CompId,ModName).]+
[class(ClassId,ModId,ClassName).]+
[dependency(DepId,BaseClassId,TargetClassId,

CreatedWith,ExistCurrently,AddAny).]+

The component predicate defines the components de-
fined by the architect of the system under analysis.
The module predicate defines the packages, in Java ter-
minology, of classes of the system. The class predi-
cate describes a class in the system. The dependency
predicate defines a dependency relation between two
classes (BaseClassId depends on TargetClassId). In
the dependency predicate, the attribute CreatedWith
informs whether the dependency was created together
with the BaseClassId, the attribute ExistCurrently
informs whether the dependency exists on the last version
of the system, and the attribute AddAny informs if the
dependency existed in some version of the system.

In the first step, each class and its dependencies in the
last version under analysis (attribute ExistCurrently =
true) are written as a row into the itemset database, as
follows:

BaseComponent(bcomp),BaseClass(bclass)
[,TargetModule(tmod),TargetClass(tclass)]*

By mining this itemset database using FPGrowth algo-
rithm, we can find the frequent sub-itemsets and generate
the association rules of the corresponding architectural
pattern, which represent dependencies that are frequently
used together. Moreover, the FPGrowth requires the defini-
tion of a support (Adps) and a confidence (Adpc) threshold.
For instance, suppose a pattern like that:

{BaseComponent(’domain’)}=>
{TargetClass(’Entity’)}

This pattern states that all classes on the component
domain (antecedent term of the association rule) should
depend on the class Entity (consequent term of the
association rule). Therefore, regarding this pattern, classes
in the domain component that do not depend on Entity
represent an absence violation.

The second step is used to reduce the amount of false
violations. For each component in the system, we select
the dependencies and the historical information from the
Prolog facts database. In this particular case, we select
the attributes CreatedWith and ExistCurrently. Each
dependency generates a row in the itemset database as
follows:

BaseComponent(bcomp),TargetClass(tclass),
CreatedWith([true|false]),
ExistCurrently([true|false])

We compute the association rules of the corresponding
dependency evolution patterns using the FPGrowth al-
gorithm, using a given support (Adeps) and confidence
(Adepc) threshold. The results are combined with the

results obtained in the first step. For example, suppose
that in the first step the classes in the Model component
that not depend on Entity were classified as evidences of
absences. Moreover, suppose that in the second step we
found that classes in Model created without a dependency
with Entity frequently (i.e., with a high confidence)
added this dependency during their evolution, which there-
fore reinforces the evidence detected in the first step.

B. Mining for Divergences

A divergence is a violation that happens when a
BaseClass depends on a TargetClass, although such
dependency is not prescribed by the planned architecture.
In other words, a divergence is a violation due to a
dependency that is not allowed by the planned architecture,
but that exists in the source code [4], [12]. Figure 3
illustrates an example of divergence. In this case, the
planned architecture prescribes that classes located in the
BO module must not directly depend on the JPA module.
In this particular example, a divergence is counted for each
class in BO which relies on services provided by the JPA.

Figure 3. Example of divergence (BO cannot use JPA)

Likewise the heuristic for absences, we assume that
divergences happen in a small percentage of cases. There-
fore, a standard frequent itemset mining technique is not
suitable for detecting minorities. However, divergences
frequently do not exist in most classes of a component.
More specifically, the divergences detection relies on two
steps. First, we identify the dependencies that frequently
do not occur in the classes of a given component. In
the second step, we identify how frequently classes in
this component have established and then removed a
dependency like that in the past.

In the first step, we initially select all classes in the
last version of the target system. For each BaseClass,
we select the dependencies that do not exist between
BaseClass and a TargetClass, where TargetClass is
a class used by the component that contains BaseClass.
Then, these items generate a row in the itemset database,
as follows:

BaseComponent(bcomp),BaseClass(bclass)
[,TargetModule(tmod),TargetClass(tclass)]*

Using FPGrowth algorithm, we compute the association
rules, according to a given support (Ddps) and confidence
(Ddpc). For instance, the following association rule states
that classes in the Model component frequently do not
depend on HttpServlet.

{BaseComponent(’model’)}=>
{TargetClass(’HttpServlet’)}



Therefore, the classes in Model that depend on
HttpServlet represent an evidence of divergence.

In the second step, we perform a historical analysis to
reduce the number of false positives. In this case, we select
dependencies from the itemset database including the at-
tributes ExistCurrently and AddAny. This information
generates an itemset in our database as follows:

BaseComponent(bcomp),TargetClass(tclass),
AddAny([true|false]),
ExistCurrently([true|false])

Applying the FPGrowth, using Ddeps and Ddepc as sup-
port and confidence respectively, we obtain the association
rules for the dependency evolution patterns. Then, these
results are combined with the results obtained in the first
step. For instance, suppose that it was previously mined
in the first step that the classes in the Model compo-
nent that depend on HttpServlet represent evidences of
divergences. Moreover, suppose that in this second step
we discover that such classes removed the dependencies
with HttpServlet during their evolution. In this case, the
evidence detected in the first step is reinforced by this
second finding.

III. EVALUATION

To evaluate our approach for detecting absences and
divergences, we performed a study in a information sys-
tem, called SGA, from a major Brazilian university. The
SGA system automates many administrative activities,
including human and material resource management, in-
comes/expenses, among others. The last revision con-
sidered in our study has 1,852 classes and interfaces,
organized in 104 packages, comprising around 127 KLOC.

The SGA system follows a Model-View-Controller
(MVC) architecture. The Model layer has three main
modules: domain, persistence, and service. The
domain module handles business objects, such as Stu-
dents, Professors, etc. The persistence module provides
database transactional methods, such as insert, update,
delete, etc, that are used to persist business objects in
a relational database. The service module handles the
state of the domain objects according to the workflow and
business rules required by the information system.

The V iew layer is implemented in Java Server Pages
and uses JavaServer Faces components. Basically, this
layer provides a way to interact with the system, receiving
and displaying results of the requests made by the users.

The Controller layer provides a bridge between user
interface and business-related components, transferring
and adapting the user inputs.

A. Dataset

To detect absences and divergences, initially we re-
trieved 4,923 revisions of the SGA system, which is
maintained in a Subversion repository. Each revision was
parsed by VerveineJ and the extracted dependencies were
stored in a relational database with 4.5 GB.

Next, an architect defined its high-level component
model. Finally, the high-level components and the dataset
of historical dependencies were used as input to generate
the Prolog facts. We executed our approach as described
in Sections II-A and II-B. Then, the architect of the SGA
system inspected the selected violations in order to classify
them as true or false positives.

B. Results for Absences

As reported in Section II-A, the detection of absences
relies on four thresholds: Adps and Adpc, the support
and confidence of the structural dependency architectural
patterns, and Adeps and Adepc, the support and confidence
of historical dependency evolution patterns. Table I shows
the values used for such thresholds:

Table I
ABSENCES THRESHOLDS.

Threshold Value
Adps 0.1
Adpc 0.9
Adeps 0.1
Adepc 0.6

Basically, we consider as an architectural pattern only
the rules that occurred in at least 10% of the classes
and that present a confidence of at least 90%. For the
architectural evolution patterns, we consider thresholds
of 10% for support and 60% for confidence. Therefore,
we consider as evidence of architectural violation classes
that violated a rule followed by at least 90% of the
other classes. Furthermore, only classes whose historical
evolution rules were higher than 60% were considered as
violations, i.e., at least 60% of the classes created with a
violations regarding the rule have been later refactored to
follow the rule.

C. Results for Divergences

The detection of divergences relies on four thresholds:
Ddps and Ddpc, denoting respectively the support and con-
fidence of the structural dependency architectural patterns,
and Ddeps and Ddepc, denoting respectively the support
and confidence of the historical dependency evolution
patterns. Table II shows the thresholds values used for
divergences.

Table II
DIVERGENCES THRESHOLDS.

Threshold Value
Ddps 0.1
Ddpc 0.9
Ddeps 0.1
Ddepc 0.25

Similarly to the absence detection, for divergences we
consider architectural pattern rules with support of 10%
and confidence of 90%. On the other hand, for the archi-
tectural evolution patterns, we consider the thresholds of
10% and 25% for support and confidence, respectively. In
this case, we select as divergences the classes that violate



both considered architectural patterns. More specifically,
we select classes that depend on a class when at least
90% of the classes in the same component do not follow
this rule. Furthermore, when in the past other classes
added this dependency, in at least 25% of the cases the
dependency was later removed.

D. Results

Our approach was applied in the SGA system using
the thresholds defined in Sections III-B and III-C. The
triggered violations were inspected by the SGA architect,
who classified them as true or false violations.

As we can observe in Table III, we detected 261
evidences of absence, and 101 were classified as true-
positives by the SGA architect. Furthermore, we triggered
73 divergence warnings, which 36 were classified as true-
positives. Thus, the precision was 38.7% and 49.32% to
absences and divergences, respectively. As total, the archi-
tect inspected 334 warnings, which 137 were considered
true-positives, resulting in a global precision of 41.02%.

Table III
ARCHITECTURAL VIOLATIONS OF SGA SYSTEM.

Absence Divergence Total
Warnings (E) 261 73 334
True-positives (TP) 101 36 137
False-positives (FP) 160 37 197
Precision (TP/E) 38.7% 49.32% 41.02%

IV. RELATED WORK

Lint [13] was one of the earliest and most successful
tool to detect bugs and bad smells in software products.
With the success achieved by Lint, many other static ana-
lysis tools to detect questionable programming strategies
have been proposed. FindBugs [14] and PMD [15] are
examples of tools inspired by Lint that highlight among the
most popular tools to detect anomalies on Java programs.
Null pointer dereferences, overflow in arrays, uncaught
exceptions and security vulnerabilities are examples of
suspicious programming constructs and events analyzed
by FindBugs and PMD. However, such tools are not
designed to detect architectural anomalies such as the
ones associated to violations in the planned architecture of
object-oriented systems. Moreover, in previous studies we
concluded that FindBugs present precision rates less than
50%, which are only achieved when the tool is properly
configured to raise particular categories of warnings [16].
In other study, we concluded that there is no static cor-
respondence between field defects and warnings raised by
FindBugs, although it seems to exist a moderate level of
correlation between warnings and such kinds of software
defects [17].

Several tools have been proposed to analyze version
control software repositories and extract programming pat-
terns. Zhou and Zhenmin present a tool, called PR-Miner
(based on the frequent itemset data mining technique)
for automatic extraction of programming rules [18]. The

proposed approach uses a formalism to extract depen-
dencies between functions that are heavily dependent on
procedural languages. The proposed strategy for detecting
violations only considers function call flows, independent
of the modular and/or architectural context in which these
calls occurred. On the other hand, the approach presented
in this paper is focused on the detection of architectural
violations. However, it is important to note that the preci-
sion values presented by PR-Miner were generally lower
than those reported in Section III. For example, from the
60 warnings with higher priority triggered during Linux
analysis, only 16 were true programming errors (bugs).

Mileva et al. conducted an analysis on evolution patterns
between two versions of a system to detect pending
changes in source code [19]. This study is supported
by a tool called Lamarck. Such tool mines evolution
patterns in software repositories by abstracting object
usage into temporal properties in order to detect pending
changes. From the pending changes, they recommend
fixes based on usage patterns. Similarly to the study of
Zhou and Zhenmin the approach used by Mileva et al.
also analyze dependencies between functions. Therefore,
it targets concepts of procedural languages, disregarding
typical object-oriented language dependencies, such as
inheritance. Moreover, in this paper, we take into account,
in addition to the present formalism of object-oriented
languages, the entire history of changes. Despite these
differences in focus and languages, it is important to
note that the approach described in this paper, in general,
was able to discover a greater number of violations. For
example, the approach of Mileva et al. was able to find
only six violations in a case study involving Eclipse 1.0
and 2.0 platforms.

Among architecture conformance techniques, reflexion
models currently highlight as the main technique based
on models. Such approach compares a high-level model,
manually created by the architect, with a concrete model,
automatically extracted from the source code [12], [20].
However, the application of reflexion models for architec-
ture conformance usually requires successive refinements
in the high-level model to reveal the whole spectrum of
absences and divergences. On the other hand, the approach
proposed in this paper is more lightweight, demanding a
simple high-level component specification.

Sarkar et al. [7] conducted a study aiming to discover
layered organization models of software systems. The
architectural model generated was used to detect archi-
tectural violations through dependencies among modules.
They have only detected calls violating layer hierarchical
structures. On the other hand, in this paper, we have also
presented a methodology to detect absences between two
layers and divergences between components, which do not
necessarily need to follow a hierarchical structure.

Besides reflexion models, another common solution for
architecture conformance is centered on domain-specific
languages. In this case, Terra and Valente proposed a
declarative language, called DCL (Dependency Cons-
traint Language), for constraint dependency that statically



checks the architecture of a software in relation to restric-
tions defined by an architect [8]. Therefore, DCL requires
an architect to define constraints, and a tool included in
the solution verifies only what the architect has prescribed.
On the other hand, in our approach the architect does not
need to manually specify architectural constraints, which
invariably tends to be a tedious and error-prone task.

V. CONCLUSION

Software systems frequently follow several program-
ming conventions. During software evolution, the develop-
ment team commonly uses programming strategies that do
not adhere to the planned architecture for the system.

This paper presented an approach that use frequent
itemset mining techniques to architecture conformance.
We consider both dependencies prescribed in the planned
architectural model but absent in the source code, as well
as dependencies presented in the source code but absent
in architectural model.

We evaluated the proposed approach with a large infor-
mation system. We detected 137 architectural violations,
divided in 101 absences and 36 divergences, with precision
of 38.7% and 49.32%, respectively, and a global precision
of precision of 41.02%.

As future work, we intend to extend the study evalu-
ating specific correlations between dependencies as well
as classifying the dependency type, such as attributes,
annotations, inheritance, etc. Additionally, we intend to
conduct a sensibility analysis in order to discover the
best combination of values for the thresholds used by
our approach. Finally, we plan to apply our study in
case studies involving systems using architectural patterns
different from SGA system. We also plan to integrate our
approach for architecture conformance with ArchFix [21],
which is a recommendation tool that suggests refactorings
for repairing architectural violations.
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