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Abstract—A significant percentage of warnings reported by
tools to detect coding standard violations are false positives.
Thus, there are some works dedicated to provide better rules
by mining them from source code history, analyzing bug-fixes or
changes between system releases. However, software evolves over
time, and during development not only bugs are fixed, but also
features are added, and code is refactored. In such cases, changes
must be consistently applied in source code to avoid maintenance
problems. In this paper, we propose to extract system specific
rules by mining systematic changes over source code history,
i.e., not just from bug-fixes or system releases, to ensure that
changes are consistently applied over source code. We focus on
structural changes done to support API modification or evolution
with the goal of providing better rules to developers. Also, rules
are mined from predefined rule patterns that ensure their quality.
In order to assess the precision of such specific rules to detect
real violations, we compare them with generic rules provided
by tools to detect coding standard violations on four real world
systems covering two programming languages. The results show
that specific rules are more precise in identifying real violations
in source code than generic ones, and thus can complement them.

I. INTRODUCTION

Tools to detect coding standard violations in source code
such as PMD [1] and FindBugs [2] are commonly used to
ensure source code quality. The rules provided by these tools
are usually created for generic purposes, such as checking
method complexity (not too many conditional or loop state-
ments), or suggesting the use of best practices. These rules
can be targeted towards several goals, such as reliability or
maintainability [3], but very few are focused on the system
under analysis.

A significant percentage of violations (warnings) reported
by these rules are false positives, and as a result, most
violations are not fixed by developers over time, remaining in
source code [4], [5], [6]. Thus, they pollute the output of the
rule checking tools and contribute to discredit them. Another
limitation of such rules are the false negatives, i.e., real viola-
tions in source code that are not found [7]. On the other hand,
some works suggest that rules are not equal in identifying real
violations; some rules perform better than others [8], [3], [9],
[10], [4], [5]. It means that developers are normally interested
in some rules, i.e., there is in fact an effort to fix warnings
generated by some rules. One important question arise: how
can we provide better rules to the developers?

One solution is to create rules with the help of experts [10],
[6]. Such rules focus on important problems of the system,
but they must be manually defined. Getting access to experts

and capturing their knowledge into rules is a difficult task.
Moreover, in legacy systems this solution may not work due
to the lack of experts.

Another solution is to extract rules using a mining process
given the existence of recurring refactorings in source code
history [11], [12], [13]. To counter the fact that generic rules,
in general, do not prevent introduction of bugs in software [8],
[3], [9], [14], [10], [5], [15], some work is dedicated to mine
rules from source code history by learning from bug-fixes [12],
[16], [13], [17], [18]. Focusing on bug-fixes allows to reduce
the search space to extract rules. Rules can also be extracted
from changes between system releases [11], [19], [20], [13],
not taking into account the whole source code history.

However, it is difficult to extract meaningful rules from bug-
fixes because bugs can be very domain specific, related to the
semantics of things that is not captured by the syntax that rules
look at. Furthermore, software evolves over time, and during
development not only bugs are fixed, but also features are
added, and code might be refactored to improve maintenance.
In such cases, changes must be consistently applied over the
entire code base to avoid maintenance problems [19]. The
code history, i.e., not just bug-fixes or system releases, needs
therefore to be investigated as relevant source of information
to provide more opportunities to extract rules.

In this paper, we propose to extract system specific rules
from source code history by monitoring how API is evolving
with the goal of providing better rules to developers. We
focus on structural changes done to support API modification
or evolution. In this process, information is extracted from
incremental revisions in source code history to avoid loss of
data. Also, rules are mined from predefined rule patterns that
filter and ensure their quality. The proposed approach is vali-
dated on four open-source systems, covering two programming
languages (Java and Smalltalk), from which specific rules
are extracted. Such specific rules are compared with generic
rules provided by tools to detect coding standard violations.
The results show that our specific rules are more precise in
identifying real violations in source code than generic rules. It
means that the specific rules can be used to complement the
set of generic rules. The contributions of this work are:
• A novel approach to mine system specific rules from

source code history (Section II).
• A systematic comparison and evaluation using real-world

systems between specific and generic rules to verify
which one is more likely to point to real violations



(sections III to VI).
The rest of this paper is structured as follows. We propose

research questions for such comparison in Section III. We
define our experiment setting in Section IV, detail the results
of the empirical study in Section V, and discuss the evaluation
of the results in Section VI. Section VII discusses related work,
and we conclude the paper in Section VIII.

II. MINING CHANGES FROM HISTORY

When analyzing source code history, information can be
extracted from system releases or from revisions (commits)
found in source code repositories. Extracting information from
releases is normally done by computing the diff at method
level and representing changes in graph in order to discover
API or object usages, code peers, recurring bug-fixes, among
others. In this process relevant information might be lost.
Consider, for example, working with a first release r1 and
its successor release r2. Some refactorings happened between
releases r1 and r2 in class C. Class C was then deleted and
is absent from release r2. Consequently, information relative
to refactorings in class C, which could be applied to other
classes, is lost. Another problem when adopting system release
changes is the large size of the diff between them, making it
difficult to extract relevant information [19], [16]. Extracting
information at revision level is more reliable as it avoids loss
of data by taking into account incremental changes.

The mining at revision level brings another issue: the great
amount of information to be analyzed. Some work avoid such
issue by only mining changes related to bug-fixes [12], [16],
[13], [17], [18]. This is done by mining commit messages in
the system history to find bug-fix changes. Two approaches
are normally used: searching for keywords related to bug-
fixes [21] or searching for references to bug reports [22].
Identifying a bug-fix commit allows one to identify the code
changes that fixed the bug, and, thus, where the bug was
located in the source code. Lines of code are related to defects
if they are modified by a bug-fix change, since to resolve a
problem the lines were changed or removed [5], [10]. From
such lines, information is extracted to detect similar places in
source code where fixes were not applied. In fact, this limits
the size of the search space but also ignores ordinary commits
(not specific to bug correction). Again, in this situation,
relevant information might be lost when not analyzing ordinary
commits. As software evolves, naturally not just bugs are fixed,
but code is added, removed and refactored. In addition, another
issue is related to how to find bug-fix changes. In fact, adopting
keywords related to bug-fixes and references to bug reports in
commit messages are project specific standards or may not be
adopted by developers.

When comparing the differences between changed source
code, it is important to define the changes to be analyzed
to extract information. For example, one can keep track of
syntactical changes (e.g., when adding or removing conditional
statements, modifying expressions), or structural changes (e.g.,
when adding or removing classes, methods, method invo-
cations). While syntactical changes play important role in

approaches in the context of bug discovering [13], [12], [17],
[18], they have relatively small role in discovering systematic
changes, for which structural changes are better suited since it
does not take into account low level modifications [11], [16].

In this section, we describe the proposed approach for
mining specific rules from source code history. In this process,
first, we extract changes from revisions in source code history
(Subsection II-A). Next, based on predefined patterns, we
generate rules from such extracted changes (Subsections II-B
and II-C). Then, we select rules by filtering the ones which
are relevant (Subsection II-D).

A. Extracting Changes from Revisions

We investigate changes at revision level. Specifically, we
focus on structural changes done to support API modification
or evolution. Consider examples shown in Figures 1 and 2
in which method invocation changes occurred in ArgoUML1

and Apache Ant2 (on top of the figures, the older version of
the code, in the middle of the figures, the newer version of
the code). Figure 1 shows the adoption of a new form to re-
trieve the Facade model, i.e., calls to Facade.getModel(arg)
are replaced by calls to Facade.getRoot(arg). Figure 2
shows the adoption of a standard form for closing files,
i.e., calls to InputStream.close() are replaced by calls to
FileUtils.close(arg). Note that, in such cases, the old re-
placed API is not necessarily deprecated or excluded from
the system (which occurences would make the system failing
at compiling time). For instance, the older form to close
files (i.e.,InputStream.close()) can still be used. In fact,
both modifications are invocation changes which occurred
incrementally in different revisions over time. Then, it is
important to ensure they are consistently applied over source
code to avoid maintenance problems.

Method: NotationUtilityUml.parseModelElement()
Older version (revision 14952)
. . .
Object nspe =

Model.getModelManagementHelper().getElement(path,
Model.getFacade().getModel(me));

. . .
Newer version (revision 14960)
. . .
Object nspe =

Model.getModelManagementHelper().getElement(path,
Model.getFacade().getRoot(me));

. . .
Predicates
deleted-invoc(1, Facade, getModel(arg))
added-invoc(1, Facade, getRoot(arg))

Fig. 1. Adoption of a new form to retrieve the Facade model in ArgoUML.

We represent the changes (delta) between two revisions
with predicates that describe added or deleted method invoca-
tions [11]. The predicates are represented as:

deleted-invoc(id, receiver, signature)
added-invoc(id, receiver, signature)
Where, the predicate deleted-invoc(. . . ) represents a deleted

invocation; the predicate added-invoc(. . . ) represents an added

1http://argouml.tigris.org
2http://ant.apache.org



Method: ProjectHelper2.parse()
Older version (revision 278272)
. . .
InputStream inputStream = null;
. . .
if (inputStream != null) {

try {
inputStream.close();

} catch (IOException ioe) { } }
. . .
Newer version (revision 278319)
. . .
InputStream inputStream = null;
. . .
FileUtils.close(inputStream);
. . .
Predicates
deleted-invoc(2, InputStream, close())
added-invoc(2, FileUtils, close(arg))

Fig. 2. Adoption of a standard form for closing files in Apache Ant.

invocation; id uniquely identifies a change in order to save its
context; receiver is the type of the receiver; and signature is
the signature of the invoked method.

Figures 1 and 2 (bottom parts) show the predicates gener-
ated by the presented changes. We extract predicates from the
changes diff at method level and not from the entire source
code of the revisions. Thus, if there are no changes between
two method revisions, no predicate is generated. Also, in
order to reduce the noise generated by large commits [19],
[16], we just consider modifications where one invocation is
added and/or deleted. Other differences, such as changes in
conditional, are omitted as they have a relatively small role
in discovering systematic changes [11]. In fact, refactorings
presented in Figures 1 and 2 appear surrounded by different
conditionals in other commits.

We use the extracted predicates to mine the rules. These
rules are based on predefined invocation change patterns as
shown in next subsection.

B. Mining Change Patterns

To improve the quality and relevance of extracted rules, we
define change patterns that they must follow. In the case of
method invocation, we defined patterns which are likely to
be related to API modification or evolution. Table I shows
the patterns used in this work. Pattern A finds invocation
modification in which receiver and signature changed. Pattern
B matches invocation modification in which receivers changed
but signatures are the same. Pattern C finds invocation modifi-
cation in which receivers are the same but signatures changed.
Note that there is no overlap between the patterns; each one
represents different changes. Additionally, in all the patterns
we see that they include a deleted and an added invocation.
This is done because we want to assess the violation (deleted
invocation) as well as the possible fix (added invocation). This
is not an exhaustive list and new patterns can be included.

The extracted predicates representing changes between re-
visions (Subsection II-A) are used as a database in which
we want to find instances of the predefined patterns, i.e., the
patterns are queries in such database. When an instance occurs
more than a certain frequency it generates a specific rule.

TABLE I
INVOCATION CHANGE PATTERNS.

A deleted-invoc(id, deletedReceiver, deletedSignature) and
added-invoc(id, addedReceiver, addedSignature)

B deleted-invoc(id, deletedReceiver, signature) and
added-invoc(id, addedReceiver, signature)

C deleted-invoc(id, receiver, deletedSignature) and
added-invoc(id, receiver, addedSignature)

Assume, for example, that refactorings shown in Figures 1
and 2 occur frequently over source history. From refactoring
shown in Figure 1 we find a rule based on Pattern C where
receiver = Facade, deletedSignature = getModel(arg), and
addedSignature = getRoot(arg):

Rule 1: Facade.getModel(arg) → Facade.getRoot(arg)
From Figure 2 we find a rule based on Pattern A:
Rule 2: InputStream.close() → FileUtils.close(arg)
As a first test, we verified whether these change patterns

are frequent enough in practice. We computed them for four
large open-source and real-world systems as shown in Table II.
We conclude that the defined patterns are in fact recurring
over time for the systems under analysis. We provide more
information on such frequency in our experiment sections.

TABLE II
NUMBER OF INVOCATION PATTERNS AND OVERVIEW SIZE OF

OPEN-SOURCE SYSTEMS. (*) NUMBER OF CLASSES IN LAST REVISION.

System Classes* Revisions Pattern A Pattern B Pattern C
Ant 1,203 8,787 598 274 915
Tomcat 1,859 6,248 261 411 684
Lucene 2,888 3,372 1,689 997 2,939
Pharo 3,473 2,972 70 119 126

C. Expanded Rules

We detected that some rules found in source code are
very similar. For example, consider the example in Figure 3
showing a change in Apache Ant and the generated predicates.
This refactoring is in fact a variation of the refactoring shown
in Figure 2 which provides a standard form for closing files.
Note that even if they are surrounded by different source code,
the invocation changes remain similar. In Figure 2 the deleted
receiver is InputStream while in Figure 3 the deleted receiver
is BufferedWriter, thus, generating the rule:

Rule 3: BufferedWriter.close() → FileUtils.close(arg)
Based on this observation, we expand a selected rule, when

it is possible, to obtain more representative rules. The idea is
that for a selected rule, we verify if other rule is its variation.
This variation occurs when the selected rule and the other rule
differentiate by one added or deleted receiver or invocation.

For example, Table III shows the accepted expansions
(variations) for the selected Rule 2. Expansion 1 (in bold)
matches Rule 3. Thus, we obtain a rule merging two similar
refactorings:

Rule 2/3: (InputStream or BufferedWriter).close() →
FileUtils.close(arg)



Method: FTP.transferFiles()
Older version (revision 808350)
. . .
BufferedWriter bw = null;
. . .
if (bw != null)

bw.close();
. . .

Newer version (revision 905214)
. . .
BufferedWriter bw = null;
. . .
FileUtils.close(bw);
. . .

Predicates
deleted-invoc(3, BufferedWriter, close())
added-invoc(3, FileUtils, close(arg))

Fig. 3. Standard form for closing files in Apache Ant (variation of Figure 2).

TABLE III
EXPANSIONS FOR RULE 2. EXPANSION 1 (IN BOLD) MATCHES RULE 3.

Rule 2: InputStream.close() → FileUtils.close(arg)
Expansion 1: *.close() → FileUtils.close(arg)
Expansion 2: InputStream.* → FileUtils.close(arg)
Expansion 3: InputStream.close() → *.close(arg)
Expansion 4: InputStream.close() → FileUtils.*

D. Selecting Relevant Rules

In a real set of source code changes, many rules may be
found. We want to limit this amount by creating relevant ones
in order to avoid rules producing false positives warnings [6],
[4]. Then, we create rules by taking into account their fre-
quency over time and the expanded rules:

Frequency over time. We analyze rules that occur over time,
taking into account their occurrence over different revisions.
Thus, a rule that occurs in two different revisions is more
relevant than another that occurs in just one revision. The idea
is that when rules occur in different revisions, they are in fact
being incrementally fixed by developers. It also means that
such rules are not about refactorings which could have been
detected by the system failing at compile time, since they are
being in fact fixed over time.

Expanded rules. We analyze the proposed approach on
expanding a rule (see Section II-C).

III. RESEARCH QUESTIONS

A significant percentage of warnings reported by generic
rules are false positives, and as a result, most warnings are not
fixed by developers over time, remaining in source code [4],
[5], [6]. However, some works suggest that rules are not
equal in identifying real violations [8], [3], [9], [10], [4], [5].
This means that developers are normally interested in some
rules. Based on that, how can we provide better rules to the
developers? The proposed research questions are intended to
compare the specific rules generated by our approach with
generic ones. We evaluate if our approach can be used to
improve the set of rules provided by tools to detect coding
standard violations, and then provide better rules to developers.

Therefore, firstly, we assess if warnings produced by spe-
cific rules are more likely to point to real violations than
warnings produced by generic rules.

RQ1 Are specific warnings more likely to point to real violations
than generic warnings?

Research question RQ1 does not assess rules individually,
just two groups exist: specific and generic, which are then
compared. However, as aforementioned, rules are not equal in
identifying violations; some rules perform better than others.
Then, it is reasonable to compare rules individually:

RQ2 Are specific rules more likely to point to real violations
than generic rules?

Generic rules are somehow easier to define than specific
ones, because one can create them once for all; every new rule
is a “definitive” contribution. On the other hand, specific rules
must be extracted for each new system. Thus, more generic
warnings is expected and, consequently, also lower precision
(each warning will have a lower probability of indicating a real
violation). Thus, we could expect that generic rules will fare
lower than specific ones, simply because they are more flexible
(i.e., independent of system) and will produce more warnings.
To have a fairer comparison, we perform the same experiments
as the previous two research questions but comparing just the
best rules, i.e., rules which produced at least one true positive
warning. Comparing just the best rules was also previously
used to reduce the amount of rules/warnings [10].

RQ3 Are best specific warnings more likely to point to real
violations than best generic warnings?

RQ4 Are best specific rules more likely to point to real violations
than best generic rules?

IV. EXPERIMENT SETTING

In this section, we plan our experiment to answer the
research questions as suggested in [23]. We have two different
experiments to setup, firstly, to answer research questions RQ1
and RQ3, and secondly, to answer RQ2 and RQ4.

A. Context

The context of the experiment is real systems for which
source code history and generic tools to detect coding standard
violations are available. We need real systems to ensure that
our experiment is meaningful. We need source code history
to extract specific rules and we need generic rules to compare
with the generated specific rules.

We selected three Java systems (Ant, Tomcat3, Lucene4) and
one Smalltalk system (Pharo5) to perform our empirical stud-
ies. They are open-source, real-world, and non-trivial systems,
with a consolidated number of developers and users. Also,
they have relevant source code history and different missions,
covering different domains: Ant is a tool for automating
software build processes, Tomcat is a web server and servlet
container, Lucene is an information retrieval software library,
and Pharo is a Smalltalk-inspired language and environment.
Table II details the size of the systems under analysis.

With respect to the generic tool to detect coding standard
violations in Java, we selected PMD [1], one of the most
adopted Java code analysis tool, and also previously used by

3http://tomcat.apache.org
4http://lucene.apache.org
5http://pharo-project.org



related studies [4], [12]. We used PMD because it only requires
Java source code as its input. Other code analysis tools,
such as FindBugs, depend on Java class files as their input,
which would require to deal with legacy libraries, and source
code compilation for every revision which is computationally
expensive. For Smalltalk, we selected SmallLint [24], the most
adopted Smalltalk code analysis tool, also previously used by
related studies [10], [6].

B. Experiment for RQ1 and RQ3

1) Hypotheses Formulation:
H1,3

0 Specific and generic warnings are equally precise in iden-
tifying violations.

H1,3
a Specific and generic warnings are not equally precise in

identifying violations.

2) Subject Selection and Variable: The subjects for this
experiment are the warnings generated by specific rules on
lines of code. We measure the number of correctly fixed
specific warnings during the experiment timeframe. We also
measure the number of fixed generic warnings.

The dependent variable is the warnings generated by spe-
cific rules. It is categorical and takes two values: true warning
and false warning. A true warning occurs when it points to
a real violation, i.e., a warning that has been fixed at some
moment. A false warning is the one that remains in the source
code and has never been fixed. In this experiment we compare
the number of (true and false) specific warnings with the
number of (true and false) generic warnings, i.e., the expected
values.

3) Experiment Design: To test the hypotheses H1,3 we use
the Chi-square goodness-of-fit test which is used when there
is one categorical variable, with two or more possible values.
This test allows us to test whether the observed proportions for
a categorical variable (true and false specific warnings) differ
from expected proportions (true and false generic warnings).
The null hypothesis is that the number of observed proportions
is equal to the expected proportions. If we cannot reject
the null hypothesis, we conclude that observed and expected
proportions of true and false specific and generic warnings
are equals, i.e., there is no statistically significant difference
between true and false specific and generic warnings. When
we can reject the null hypothesis, we conclude that observed
and expected proportions of true and false specific and generic
warnings are not equals. As is customary, the tests will be
performed at the 5% significance level.

Note that concluding that the proportions are not equals
does not answer RQ1 and RQ3 which state that specific rules
performs better (they could be different but worse). Therefore,
when rejecting the null hypothesis, we also need to check the
residuals: the difference between the observed and expected
warnings. When the absolute value of the residual is greater
than 2.00, it is considered that it is major contributor to the
rejection of the null hypotheses.

We also report the effect size which measures the distance
between the null hypothesis and alternative hypothesis, and is
independent of sample size. Effect size value 0.1, 0.3 and 0.5
are considered small, medium and large effects, respectively.

C. Experiment for RQ2 and RQ4

1) Hypotheses Formulation:
H2,4

0 Specific and generic rules are equally precise in identifying
violations.

H2,4
a Specific rules are more precise in identifying violations

than generic rules.

Note that we make a directional (one-tailed) hypothesis.
This should be made when there is evidence to support such a
direction. This evidence will stem from the results of the first
experiment.

2) Subject Selection and Variable: The subjects for this
experiment are the generic and specific rules. We measure the
precision of each generic and specific rule, i.e., the precision
of the warnings generated by each rule individually. If the
rule does not produce any warning, we cannot compute its
precision, thus it cannot be evaluated. Therefore, two samples
are generated, one sample with precision of generic rules and
other sample with precision of specific rules for the experiment
timeframe. Note that the subjects for this experiment are the
rules while the subjects for the previous experiment are the
warnings.

The independent variable is the rule group. It is categorical
and takes two values: specific or generic. The dependent
variable is the rule precision.

3) Experiment Design: For this experiment, we use an
unpaired setting, which means the rules composing one sample
(specific rules) are not the same than those composing the
other sample (generic rules). To test the hypotheses H2,4 we
use Mann-Whitney test which is used for assessing whether
one of two samples of independent observations tends to
have larger values than the other. It can be used when the
distribution of the data is not normal and there are different
participants (not matched) in each sample. The null hypothesis
is that median rule precision is the same for both samples. If
we cannot reject the null hypothesis, we conclude that there
are not statistically significant differences between precisions
in both samples. Again the tests will be performed at the 5%
significance level. We also report the effect size.

D. Instrumentation

In this section we describe how generic and specific rules
are obtained. For each case, we also detail how the precisions
are calculated.

1) Obtaining Generic Rules: We use PMD and SmallLint
as the tools that provided the generic rules. They are static
code analysis tools, which help developers on detecting cod-
ing standard violations. Such tools provides rules that are
adopted as common coding standards. For PMD, we used
the rule groups: Basic, Clone Implementation, Controversial,
Design, Empty Code, Finalizer, Import Statements, Optimiza-
tion, Strict Exceptions, String and StringBuffer, Security Code
Guidelines, Type Resolution, Unnecessary and Unused Code,
which result in 180 rules. More details on each group can be
found in PMD website6. For SmallLint, we used rules related
to optimization, design flaws, coding idiom violation, bug and

6http://pmd.sourceforge.net/pmd-5.0.2/rules



potential detection, which result in 85 rules. For both tools,
we did not use rules related to code size, naming convention
and comment/style as they can be specific for each project.

For the generic rules, a true positive (TP) warning is the one
which has been removed at some point during the experiment
timeframe, and a false positive (FP) warning is the one which
remains in source code and has never been removed [4],
[5]. Thus, we measure the precision of rule (or a group of
rules) from the portion of warnings removed over all warnings
generated by such rule, i.e., precision = TP/(TP + FP). Also,
we do not take into account removed warnings due to class
deletion, which are not necessarily the result of a fix [5].

2) Obtaining Specific Rules: Differently from the generic
rules, we do not have the specific rules beforehand. To learn
specific rules from project history we make use of the approach
developed by Kim et al. [12] on navigating through revisions
to extract information. It suits well in our approach since it
works by learning from incremental changes in revisions. The
idea is that we walk through the revision history of a project
learning rules and evaluating at each revision how well our
approach works when using only the information available
up to that revision [12]. We learn a rule when it occurs f
times in different revisions. We evaluate at revision n the rules
learned from revisions 1 to n − 1. If the change in revision
n matches the rule, i.e., the modification to obtain revision
n matches the deleted and added invocation in the rule, we
have a true positive (TP) warning. If the fix in revision n
matches the deleted invocation in the rule, but not the added
invocation, we have a false positive (FP) warning. Thus, we
measure the precision of a rule (or a group of rules) from
the portion of warnings correctly predicted over all warnings
generated by such rule, i.e., precision = TP/(TP + FP). In this
process, revision history is represented as predicates described
in Section II-A and the rules follow one of the invocation
change patterns described in Section II-B.

In the learning process we assess (see Subsection II-D):
frequency over time, and expanded rules. Below we describe
how they are used to support discovering relevant rules:

Frequency over time. A rule is frequent when it occurs f
times in different revisions with f ≥ 2.

Expanded rules. When a rule is detected to be frequent in
revision n, it can be expanded to be grouped with similar rules
(see Section II-C). This process can be done in two ways, by
merging the new rule with past or future changes. Past changes
(between revisions 1 and n − 1) mean that we merge the
new rule with other similar ones that we were considering as
candidates. Future changes mean that, in subsequent revisions,
changes similar to the new rule will be merged with it. In this
last case, it means that the rule will keep evolving over time
as similar changes will be found. Note that expanded rules
may also not be used (none).

Table IV shows the results of the learning process as
measured by the number of produced rules and their precision.
For each system, we select the specific rules obtained by the
learning process that produced the best precision and produced
at least 20 rules. Thus, the selected training set is when

adopting frequency f = 2 and expanding rules with future
/ none. It means that a modification following Patterns A, B,
or C is a specific rule when it occurs two times in different
revisions. It also means that such rules are not about changes
which could have been detected by compiling time fails, since
they are being in fact fixed over the revisions. Also, using the
future training improved the precision of the rules for three
systems. This shows that expanded rules can in fact be useful
to have better rules. Note, however, that the precision in this
case is for the group of specific rules, not for rules individually.

TABLE IV
OBTAINING SPECIFIC RULES.

System Frequency Expanding rules Rules Precision
Ant 2 future 31 0.12
Tomcat 2 future 20 0.35
Lucene 2 future 37 0.18
Pharo 2 none 37 0.49

3) Obtaining Best Rules: We also need to assess best
generic and specific rules as described in Section III (see RQ3
and RQ4). The best rules are the ones that generate at least
one true positive warning.

V. EXPERIMENT RESULTS

In this section, we present the results of our empirical study.
We first present the results to answer RQ1 and RQ2 when all
rules are compared. Then, we present the results to answer
RQ3 and RQ4 when just the best are compared.

A. Evaluating All Rules: RQ1 and RQ2
RQ1 Are specific warnings more likely to point to real violations than

generic warnings?
H1
0 Specific and generic warnings are equally precise in identifying

violations.
H1
a Specific and generic warnings are not equally precise in identify-

ing violations.

Table V shows the number of generic (expected values)
and specific (observed values) warnings for the systems under
analysis. When applying the Chi-square goodness-of-fit test
the p-value < 0.001 for the four systems. We can reject the
null hypothesis for such systems with a very small probability
of error, and conclude that specific and generic warnings are
not equally precise in identifying violations. Then, as the null
hypothesis is rejected, we check the residuals: the difference
between the observed and expected warnings. Table V shows
the expected number of specific warnings (based on provided
generic warnings) and residuals for the specific warnings. We
see that residual for true positives (TPs) are positively over-
represented (> 2) so they are the major contributor to the
rejection of the null hypothesis. Finally, the effect size are all
> 0.5 (large effect).

Next, we evaluate generic and specific rules that produced
at least one warning.

RQ2 Are specific rules more likely to point to real violations than
generic rules?

H2
0 Specific and generic rules are equally precise in identifying

violations.
H2
a Specific rules are more precise in identifying violations than

generic rules.



TABLE V
GENERIC AND SPECIFIC WARNINGS (RQ1).

System Analysis TPs FPs Warnings Prec.

Ant

Generic 1,301 37,870 39,171 0.03
Specific 175 1,285 1,460 0.12
Expected 44 1,416
Residual +19.2 -3.5

Tomcat

Generic 5,071 77,123 82,194 0.06
Specific 205 372 577 0.35
Expected 35 542
Residual +30 -7.3

Lucene

Generic 9,025 126,172 135,197 0.07
Specific 334 1,493 1,827 0.18
Expected 128 1,699
Residual +18.2 -5

Pharo

Generic 202 13,315 13,517 0.015
Specific 136 137 273 0.49
Expected 4.1 268.9
Residual +65.2 -8

We set two samples of precision for each system, the first
sample with generic rule precisions, and the second sample
with specific rule precisions. Table VI shows the number of
rules (which produced at least one warning) and the average
precision in each sample. When applying the Mann-Whitney
test in such samples we have p-value < 0.01 for Tomcat and
Pharo, and p-value > 0.05 for Ant and Lucene. We can reject
the null hypothesis and conclude that specific rules are more
precise in identifying violations than generic rules for Tomcat
and Pharo, but we cannot reject the null hypothesis for Ant
and Lucene. Also, the effect size for Tomcat is = 0.19 (small
effect) and for Pharo is 0.48 (medium effect).

TABLE VI
GENERIC AND SPECIFIC RULES (RQ2).

All Generic Rules All Specific Rules
System Rules Avg. precision Rules Avg. precision
Ant 143 0.16 25 0.11
Tomcat 143 0.14 14 0.51
Lucene 142 0.08 32 0.12
Pharo 67 0.03 16 0.52

For the next experiment, we removed Ant because its
RQ2 was rejected and its average precision for specific rules
is lower than the average precision for generic rules (see
Table VI).

B. Evaluating Best Rules: RQ3 and RQ4
In this experiment we evaluate the best rules, i.e., rules that

produced at least one true positive warning.
RQ3 Are best specific warnings more likely to point to real violations

than best generic warnings?
H3
0 Best specific and generic warnings are equally precise in identi-

fying violations.
H3
a Best specific and generic warnings are not equally precise in

identifying violations.

Table VII shows the number of generic (expected values)
and specific (observed values) warnings for the best rules.
Applying the Chi-square goodness-of-fit test gives a p-value
< 0.001 for Tomcat, Lucene and Pharo. We can reject the null
hypothesis for such systems. Then, as the null hypothesis is
rejected, we check the residuals. Table V also shows expected
number of specific warnings and residuals for the specific
warnings. We see that residual for true positives (TPs) are
positively over-represented (> 2) and they are the major

contributor to the rejection of the null hypothesis. Finally, the
effect size for Tomcat and Pharo is > 0.5 (large effect), and
for Lucene = 0.37 (medium effect).

TABLE VII
BEST GENERIC AND SPECIFIC WARNINGS (RQ3).

System Analysis TPs FPs Warnings Prec.

Tomcat

Generic 5,071 53,334 58,405 0.09
Specific 205 151 356 0.58
Expected 32 324
Residual +30.5 -9.6

Lucene

Generic 9,025 45,559 54,584 0.16
Specific 334 794 1,128 0.30
Expected 180 948
Residual +11.4 -4

Pharo

Generic 202 3,077 3,279 0.06
Specific 136 104 240 0.56
Expected 14.4 225.6
Residual +32 -8.1

Finally, we test if best specific rules are better than best
generic rules when they are compared individually.

RQ4 Are best specific rules more likely to point to real violations than
best generic rules?

H4
0 Best specific and generic rules are equally precise in identifying

violations.
H4
a Best specific rules are more precise in identifying violations than

best generic rules.

We set two samples of precision for each system, the first
sample with best generic rule precisions, and the second
sample with best specific rule precisions. Table VIII shows
the number of rules (which produced at least one true positive
warning) and the average precision in each sample. Applying
the Mann-Whitney test in such samples gives a p-value < 0.01
for Tomcat and Pharo and = 0.10 for Lucene. We can reject
the null hypothesis for Tomcat and Pharo, but we cannot reject
the null hypothesis for Lucene. Also, the effect size for Tomcat
is = 0.28, for Lucene is = 0.14 (small effects), and for Pharo
is = 0.15 (large effect). Even if we cannot reject the null
hypothesis for Lucene, we still see a small effect.

TABLE VIII
BEST GENERIC AND SPECIFIC RULES (RQ4).

Best Generic Rules Best Specific Rules
System Rules Avg. precision Rules Avg. precision
Tomcat 78 0.26 10 0.71
Lucene 61 0.18 11 0.36
Pharo 22 0.10 12 0.69

VI. DISCUSSION

In this section, we discuss the results of our experiments.
We also present the threats to the validity of these experiments.

A. Evaluating Rules
1) All Rules: We studied whether specific warnings are

more likely to point to real violations than generic ones. The
outcome of this experiment is that specific warnings are in
fact more likely to point to real violations (RQ1). This was
true for all the case studies. As expected, in general, tools
to detect coding standard violations produce too many false
positives [6], [4], [5]. In this case, precision of generic warn-
ings remained between 0.015 and 0.07 (which is coherent with
previously published results [5], [10], [12]), while precision of
specific warnings remained between 0.12 and 0.49.



However, rules are not equal in identifying real violations,
i.e., some rules perform better than others. Thus, we also
studied whether specific rules are more likely to point to real
violations than generic ones. This was true for Tomcat and
Pharo (RQ2). We could not show that the specific rules per-
formed better than the generic ones for Ant and Lucene. This
was mostly because warnings generated by some generic rules
in these systems were almost all fixed during the experiment
timeframe. For instance, in Ant, warnings generated by six
rules7 were all fixed.

We conclude that, for the case studies under analysis,
specific warnings are more effective to point to real violation
in source code than generic ones. When comparing rules
individually it depends of the case study.

2) Best Rules: In this experiment we are fairer to both
goups, since we compare just rules which produced at least one
true positive warning, thus excluding “bad” rules. We studied
whether best specific warnings are more likely to point to
real violations than best generic ones. The outcome of this
experiment is that best specific warnings can be in fact more
likely to point to real violations (RQ3). This was true for all
the systems under analysis. In this case, precision of generic
warnings remained between 0.06 and 0.16, while specific
rule precisions remained between 0.30 and 0.58. Finally, we
studied whether specific best rules are more likely to point to
real violations than best generic ones. It was true for Tomcat
and Pharo, but we could not show that for Lucene (RQ4).

It is important to note that in this experiment we are
comparing the just discovered specific rules with generic rules
that are known to be “good” rules. This means that in fact
there was an effort to fix warnings generated by such generic
rules, so they are important for developers and in software
maintenance. Thus, with the results showed in this experiment,
we are able to find specific rules as good as (in Lucene) or
even better (in Tomcat and Pharo) than such best generic rules.

We conclude that, for the case studies, best specific warnings
are the more effective to point to real violation than best
generic ones. When comparing rules individually, we are able
to detect specific rules as good as or even better than the best
generic rules, and thus complement them.

B. Concrete Cases
An important outcome of our experiments is that rules can

be in fact extracted from code history. As shown in Table IV
a total of 125 specific rules following Patterns A, B and C
were extracted from the four case studies. In this subsection
we discuss concrete cases we found during the experiments.

In Ant, we detected the rules described in Figures 2 and 3
with respect to the adoption of a standard form for closing
files. This feature was introduced in Ant in class FileUtils
in revision 276747 (Aug 2004). The idea was to adopt this
refactoring in source code to avoid code duplication as pointed
by the committer. We firstly detected this refactoring in class
Echo in revision 276748 (Aug 2004), just after the feature was
indroduced. We keep seeing such modification in, for example,
class AntClassLoader in revision 533214 (Apr 2007) and in
class KeySubst in revision 905214 (Feb 2010). In addition,
such modification came not just from source code originally

7PMD id for the rules: BrokenNullCheck, CloseResource, FinalizeShould-
BeProtected, IdempotentOperations, MisplacedNullCheck, UnnecessaryCon-
versionTemporary

created before the feature addition, but also from source code
created after the feature addition. This means that source
code was inserted wrongly even when it was possible to be
correctly inserted since the feature could have been used. In
practice this refactoring has never been fully adopted as even
almost six years later, in revision 905214 (Feb 2010), the
refactoring was still being applied. This rule produced 100
warnings from which just 37 were fixed by developers over
time. Our approach caught it and thus can be used to avoid
similar maintenance problems.

In Tomcat, our approach detected some rules defined by
FindBugs such as “DM_NUMBER_CTOR: Method invokes
inefficient Number constructor; use static valueOf instead”.
It is applied to constructors such as Long, Integer, and
Character. This rule is intended to solve performance issues
and it states that using valueOf is approximately 3.5 times
faster than using constructor. In fact, our approach detected
such rules because Tomcat developers have been using Find-
Bugs over time. Even if there was an effort to fix such
warnings, they were not completely removed. For instance,
class GenericNamingResourcesFactory in its last revision
1402014 (Oct 2012) still contains such warnings. Moreover, in
the same class, some revisions before (in 1187826), a similar
FindBugs warning (also detected by our approach) was fixed,
but the one cited (DM_NUMBER_CTOR) remained in source
code. This means that some developers may not be aware
of common refactorings even when tools to detect coding
standard violations are adopted. Also, the great amount of
warnings generated by such tools in real-world systems is not
easy to manage [6], [4], [5]. This rule produced 59 warnings
from which 35 were fixed by developers. Our approach caught
this refactoring and again it can be used to avoid similar
problems where changes are not consistently applied.

In Lucene, rules are related, for example, to structural
changes (e.g., replace Document.get() by StoredDocu-
ment.get()) and to internal guidance to have better per-
formance (e.g., replace Analyzer.tokenStream() by Ana-
lyzer.reusableTokenStream(), replace Random.nextInt() by
SmartRandom.nextInt()). The Java systems also produced
rules related to Java API migrations such as the replacement of
calls from the classes Vector to ArrayList, Hashtable to Map,
and StringBuffer to StringBuilder, which were incrementally
fixed by developers, and thus also detected by our approach.

In Pharo, some rules are also related to structural
changes (e.g., replace FileDirectory.default() by FileSys-
tem.workingDirectory()). None of the parts that should be
replaced of the rules involved explicitly deprecated methods,
i.e., there is no overlap between discovered rules and depre-
cated methods. In some cases, the methods involved with the
parts that should be replaced are no more presented in the last
release. This means that warnings generated by such rules are
in fact real bugs8. Also, some rules point to methods which are
strong candidates to be removed or deprecated. For example,
in the rule stating to replace OSPlatform.osVersion() by
OSPlatform.version(), the the part that should be replaced is
kept in the system for compatibility with the previous release,
but it should be soon deprecated as stated in its comment;
in the rule stating to replace RPackageOrganizer.default()

8Notice that invocations to methods not presented in the system do not fail
at compiling time because Smalltalk is dynamic typed.



by RPackageOrganizer.organizer(), the part that should be
replaced is kept for special reasons, and it must be invoked
only in strict cases as stated in its comment. By analysing
incremental changes we were able to discover important rules,
and then provide more focused rules to developers

C. Threats to Validity
1) Internal Validity: The specific rules extracted from

source code history may become “obsolete” over time. This
problem is also common in other studies related to mining
information from code history. We try to minimize this prob-
lem by expanding rules, i.e., merging small variations of the
same rule such that the rule keeps evolving. Most importantly,
we minimize it in our experiments because we validate the
rules incrementally over the revisions. It means that when
a rule is valid it will be validated accordingly, and if the
same rule becomes obsolete it will not produce warnings. By
adopting this approach, we are able to validate all the rules
that happened over the history, so we are fairer to them.

The patterns used to extract rules from source code history
may be an underestimation of the real changes occurring in
commits: some changes are more complex, only introduce
new code, or only remove old code. We do not extract rules
from such cases, and they might represent relevant sources of
information. Dealing with larger changes remains future work.

2) External Validity: Ant, Tomcat, Lucene, and Pharo are
credible case studies as they are open-source, real-world and
non-trivial systems with a consolidated number of developers
and users. They also come from different domains and include
a large number of revisions. Despite this observation, our
findings – as usual in empirical software engineering – cannot
be directly generalized to other systems, specifically to systems
implemented in other languages or to systems from different
domains. Closed-source systems, due to differences in the
internal processes, might have different properties in their
commits. Also, small systems or systems in initial stage may
not produce information sufficient to generate specific rules.

With respect to the generic rules, PMD and Smalllint
are related to common coding standards. However, we did
not use rules related to code size, naming convention and
comment/style as they can be specific for each project.

VII. RELATED WORK

Williams and Hollingsworth [18] focus on discovering
warnings which are likely real bugs by mining code history.
They investigate a specific type of warning (checking if return
value is tested before being used), which is more likely to
happen in C programs. They improve bug-finding techniques
by ranking warnings based on historical information. While
the authors investigate a single known type of warning, we are
intended to discover new system specific types of warnings.
Another similar research in the sense that authors use historical
information to improve ranking mechanism is proposed by
Kim and Ernst [5]. They propose to rank warnings reported
by static analysis tools based on the number of times such
warnings were fixed over the history. Again, they focus on
defined rules while we focus on new system specific rules
that are not included in static analysis tools.

Kim et al. [12] aims to discover system specific bugs based
on source code history. They analyze bug-fixes over history
extracting information from bug-fix changes. Information is

extracted from changes such as numeric and string literals,
variables and method calls, and stored in a database. The
evaluation of their approach, like our study, is done by navigat-
ing through revisions and evaluating in subsequent revisions
what was previously learned. This is done to simulate the
use of their approach in practice where the developer receiver
feedback based on previous changes. Our approach and the
related work are intended to find system specific warnings.
However, there are important differences between the two
approaches in the way this is performed and provided to
developers. While the authors check revision changes related
bug-fixes in the learning process, we check all the revisions.
Also, when extracting calls from changes, the type of the
receiver is not considered, while this is done by our approach.
Most importantly, our approach is based on predefined change
patterns and expansions to discover rules. It means that we
materialize warnings in rules, while the related work stores
warnings in a database, which is can be then accessed.
Comparing our approach with theirs is not suited because they
are not intended to produce rules.

Livshits and Zimmermann [16] propose to discover system
specific usage patterns over code history. These patterns are
then dynamically tested. In order to support discovering such
pattern, they use the data mining technique Apriori. Results
show that usage patterns, such as method pairs, can be found
from history. Our approach and the related work are intended
to find system specific patterns. While the related work ex-
tract usage patterns to understand how methods should be
invoked, we extract invocation changes patterns to understand
how invocations should be updated due API modification or
evolution. Also, the related work does not establish a fixed
pattern to be found. As they use the data mining technique
Apriori, they have more pattern flexibility. On the other hand,
with our predefined patterns, we have less flexibility (because
they are fixed) but we have more expressivity (because we can
vary receiver and signature, and also expand rules).

Other studies focus on extracting information by analyzing
the differences between two releases/versions of a system.
Nguyen et al. [13] aim to discover recurring bug-fixes by
analyzing two versions of a system. Then, they propose to
recommend the fix according to learned bug-fixes. Our work is
not restricted to bug-fix analysis and we also extract rules from
the system history. Mileva et al. [19] focus on discovering
changes which must be consistently applied in source code.
These changes are obtained by comparing two versions of the
same project, determining object usage, and deriving patterns.
In this process they compare object usage models and temporal
properties from each version. By learning systematic changes,
they are able to find places in source code where changes
were not correctly applied. Although the idea of our research
is similar to theirs, our focus is different. Both approaches are
intended to ensure changes to be consistently applied in source
code. However, we focus on invocation changes (in order to
produce rules) while the related work focus on object usage.
Also, while they extract changes between two versions, we
extract changes from incremental versions.

Kim and Notkin [11] propose a tool to support making
differencing between two system versions. Each version is
represented with predicates that capture structural differences.
Based on the predicates, the tool infers systematic structural
differences. While they use predicates to infer logic rules,



we also adopt predicates to support the definition of change
patterns. Sun et al. [17] propose to extend static analysis by
discovering specific rules. They focus on mining a graph, with
data or control dependences, to discover specific bugs. We
focus on mining changes to deal with API evolution. While
they extract data from a single version, we extract from code
history. Also, we are not restricted to bug-fix analysis.

Other studies focus on recovering rules from execution
traces [25], [26]. While such studies extract rules via dynamic
analysis of a single system version to produce temporal rules
(e.g., every call to m1() must be preceded by a call to m2()), we
extract rules via static analysis of changes from incremental
versions to produce evolution rules (e.g., every call to m1()
must be replaced by a call to m2()).

Finally, one can compare our approach with auto-refactoring
functions of existing IDEs. Our approach is intended to dis-
cover new rules while auto-refactoring functions are intended
to apply “rules”. In addition, suppose that at some moment a
change should have been done by the developer. Then, if the
developer used the auto-refactoring to perform the change, it
is important to ensure such change to be also followed by
subsequent versions or by client systems. If the developer
partly used the auto-refactoring to perform the change, it
is also important to ensure changes are consistently applied
(e.g., the Ant and Tomcat cases shown in Section VI-B). Our
approach is also suited to support in such two cases.

VIII. CONCLUSION

In this paper, we proposed to extract system specific rules
from source code history by monitoring how API is evolving
with the goal of providing better rules to developers. The rules
are extracted from incremental revisions in source code history
(not just from bug-fixes or system releases). Also, they are
mined from predefined rule patterns that ensure their quality.
The extracted rules are related to API modification or evolution
over time and are used to ensure that changes are consistently
applied in source code to avoid maintenance problems.

We compared specific rules, extracted from four systems
covering two programming languages (Java and Smalltalk),
with generic rules provided by two static analysis tools (PMD
and SmallLint). We showed that the analysis of source code
history can produce rules as good as or better than the overall
generic rules and the best generic rules, i.e., rules which are
known to be relevant to developers. Thus, specific rules can be
used to complement the generic ones. All the results reported
in this comparison were statistically tested, and they are not
due to chance. With the reported results, we expect more
attention to be given to specific rules extracted from source
code history in complement to generic ones.

As future work, we plan to extend this research by intro-
ducing new patterns. Also, we plan to extract rules from other
structural changes such as class access and inheritance.
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