
HAL Id: hal-00856160
https://hal.inria.fr/hal-00856160

Submitted on 30 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPREPI: Selective Prediction and REplay for predicated
Instructions

Nathanaël Prémillieu, André Seznec

To cite this version:
Nathanaël Prémillieu, André Seznec. SPREPI: Selective Prediction and REplay for predicated In-
structions. [Research Report] RR-8351, INRIA. 2013, pp.25. �hal-00856160�

https://hal.inria.fr/hal-00856160
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
83

51
--

FR
+E

N
G

RESEARCH
REPORT
N° 8351
Aout 2013

Project-Team ALF

SPREPI: Selective
Prediction and REplay
for Predicated
Instructions
Nathanaël Prémillieu, André Seznec

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

SPREPI: Selective Prediction and REplay for

Predicated Instructions

Nathanaël Prémillieu∗, André Seznec†

Project-Team ALF

Research Report n° 8351 � Aout 2013 � 22 pages

Abstract: ARM ISA-based processors are no longer low-cost low-power processors. Nowadays
ARM ISA based processor manufacturers are struggling to implement medium-end to high-end
processor cores, and this implies implementing a state-of-the-art out-of-order execution engine.
Unfortunately providing e�cient out-of-order execution on legacy ARM codes may be quite chal-
lenging due to predicated instructions.
In this paper, we propose a new hardware solution, Selective Prediction and REplay for Predicated
Instructions (SPREPI), to provide e�cient out-of-order execution of codes featuring predicated
instructions. Predicting the predicated instructions addresses the so-called multiple de�nition
problem. Predicated instructions are predicted using either a global branch-and-predicate history
predictor or a global history predictor. But systematic usage of predicate prediction sometimes
impairs the performance dramatically. E�cient �lters are proposed to disable predicate prediction
uses when they are likely to be counter-productive. Moreover predicate misprediction penalty can
be as high as the branch mispenalty. To reduce this penalty we introduce a speci�c selective replay
hardware component targeting mispredicted predicated instructions.
SPREPI is shown to allow high out-order execution performance on ARM codes generated even
with a compiler applying if-conversion only to very short branches. Moreover since SPREPI pre-
dicts most of the predicated instructions, a relatively ine�cient hardware solution is su�cient for
executing the few predicated instructions on which prediction is not used.

Key-words: prediction, predicated instructions, predication, seletive, replay, out-of-order exe-
cution, ARM

∗ IRISA/Université de Rennes 1
† IRISA/INRIA

SPREPI : prédiction et rejeu sélectif pour les instructions

prédiquées

Résumé : Les processeurs basés sur le jeu d'instructions ARM ne sont plus seulement des pro-
cesseurs à petit budget et à faible consommation. De nos jours, les concepteurs de processeurs
ARM cherchent à créer des coeurs d'exécution à performances moyennes voire hautes, impliquant
l'implémentation de l'état de l'art d'un moteur d'exécution dans le désordre. Cependant, per-
mettre une exécution dans le désordre e�cace peut se révéler di�cle sur les codes ARM anciens
à cause des instructions prédiquées.

Dans cet article, nous proposons une nouvelle solution matérielle, la prédiction et le rejeu
sélectif pour les instructions prédiquées (SPREPI) pour permettre une exécution e�cace de
codes avec des instructions prédiquées. Prédire les instructions prédiquées permet de résoudre
le problème appelé le problème des dé�nitions multiples. Elles sont prédites en utilisant soit
un prédicteur à historique global des branchements et prédicats soit un prédicteur à historique
des branchements seul. Cependant, l'utilisation systématique de la prédiction entraîne parfois
des pertes de performances dramatiques. Des �ltres e�caces sont proposés pour désactiver
l'utilisation de la prédiction quand il y a des chances qu'elle soit contre-productive. De plus,
une mauvaise prédiction de prédicat peut être aussi coûteuse qu'une mauvaise prédiction de
branchement. Pour réduire ce coût, nous proposons un mécanisme matériel spéci�que de rejeu
sélectif ciblant les instructions prédiquées mal prédites.

Nous montrons que SPREPI permet une exécution dans le désordre performante sur du code
ARM, même lorsque le compilateur n'applique la transformation de if-conversion qu'aux branche-
ments très courts. De plus, comme SPREPI prédit la plupart des instructions prédiquées, une
solution matérielle relativement ine�cace su�t à exécuter les quelques instructions prédiquées
pour lesquelles la prédiction n'est pas utilisée.

Mots-clés : prédiction, instructions prédiquées, prédication, sélectif, rejeu, exécution danns le
désordre, ARM

SPREPI 3

1 Introduction

On the low-end and low power (general purpose) processor segment, in-order pipelined execution
has been privileged. The ARM-v7 ISA is dominating this market segment. With the rise of
mobile devices (smartphones, tablets), the demand for higher performance on these processors
is very high. Manufacturers are now adapting all the concepts that were used in high end
microprocessors to the ARM ISA. And new high-end ARM based processors feature out-of-order
execution. However, providing e�cient out-of-order execution on legacy ARM codes may be
quite challenging due to predicated instructions1.

The ARM ISA features predicated instructions, i.e. instructions whose execution is condi-
tional. For the compiler, predicated instructions allow to limit the number of branches in the
binary code through guarding the execution of some instructions by a condition computed at
execution time. At compile time, if-conversion [1] can be used to transform control dependencies
into data dependencies. Instructions that were on the taken path are controlled through a pred-
icate which is true if the branch was to be taken; the not-taken path instructions are controlled
through the opposite predicate. Instructions from both paths can be intermingled in a single
basic block. At execution only the correct instructions will be e�ectively validated. On pipelined
processors or on in-order execution superscalar processors, the use of if-converted branches may
bring some performance bene�t 1) it allows to launch at the same time the sequencing (fetch,
decode, operand reads) of instructions from both paths 2) it removes the (maybe hard-to-predict)
branch from the execution path. However, it is not possible nor always desirable to if-convert all
branches.

Most instruction sets o�er a limited form of predicated instructions, generally the conditional
move, e.g. X86 ISA, Alpha, MIPS, SPARC V9, ... For these instruction sets, the compiler
has limited facility to generate if-converted branches, and in practice, the number of predicated
instructions in codes is quite limited. The impact of predicated instructions on the e�ective
performance of the processor is also limited. On the other hand, other instruction sets such as
ARM or IA64 have taken a much more radical approach: (nearly) all instructions can be pred-
icated. Therefore the compiler has much more opportunity to generate predicated instructions.
On out-of-order execution superscalar processors implementing such a fully predicated instruc-
tion set, the e�ective performance on legacy code may signi�cantly depend on the performance
of predicated instructions.

Handling predicated instructions e�ciently on a superscalar out-of-order processor is a chal-
lenge. The main issue is known as the multiple de�nition problem [24]. This issue arises when the
last instruction that may have written an architectural register Ri was a predicated instruction.
In that case, when renaming the registers for a subsequent instruction I which uses Ri as an
operand, the di�culty is to determine the e�ective physical register which will provide the value
of Ri to instruction I. A working yet not e�cient solution is to insert an extra non-architectural
instruction after the predicated instruction [11]. This non-architectural instruction a�ects either
the result of the operation of the predicated instruction or the old value depending on the dy-
namic predicate (see Figure 3 in Section 2.3). However, this solution hurts performance as it
serializes the execution of possibly independent instructions e.g. when the same register is writ-
ten on both paths of a branch that has been if-converted, thus reducing the available instruction
level parallelism. More aggressive solutions [14, 5] have been proposed to handle the multiple
de�nition problem, but induce a signi�cant hardware overhead.

In this paper, we address out-of-order execution of predicated instructions through a two-
component micro-architectural solution, Selective Prediction and Replay for Predicated Instruc-
tions (SPREPI). As in [7, 16], SPREPI builds upon state-of-the-art branch prediction (e.g. TAGE

1The handling of predicated instructions in out-of-order execution processors is largely undocumented.

RR n° 8351

4 Prémillieu & Seznec

[18]) to predict predicates and to avoid execution of predicated false instructions. The predictor
uses either a global branch-and-predicate history or a global branch history. The predicate pre-
diction is used to solve the multiple de�nition problem. However, while this predicate prediction
turns out to be quite performance e�ective on some applications, systematic predicate prediction
use may turn into performance losses on other applications. Therefore, SPREPI requires �lters
on the predicate prediction use to decrease its misprediction rate. Misprediction penalties on
predicated instructions might also impaired performance. To address this issue, we introduce a
cost e�ective selective replay mechanism derived from the SYRANT proposal [15] that allows
to repair the execution by just re-executing the necessary instructions when resuming execution
after a mispredicted predicated instruction.

The ARM ISA has been chosen to illustrate our proposal since it is the most widespread fully-
predicated ISA, and, in addition of the Cortex A-15 ARM, several manufacturers are working on
delivering high performance out-of-order implementation for this ISA. However SPREPI could
be adapted to any predicated instruction set.

Simulations results show that SPREPI allows performance bene�ts on ARM code generated
by a compiler applying if-conversion only to very short branches. Our simulations also show
that since SPREPI transforms most of the predicated instructions in conventional instructions
through prediction, aggressive implementation of predicated instruction execution is not worth
the extra hardware complexity and power consumption.

The remainder of this paper is organized as follows. Section 2 provides background on the
problems that arise when dealing with predicated instructions and how they are currently tackled
in a standard ARM core. Section 3 presents several related works on predicated instructions and
the multiple de�nition problem. Section 4 details the SPREPI proposition and describes the
selective replay mechanism. Section 5 presents simulation results on ARM codes generated with
a standard gcc compiler. Finally, Section 6 concludes this study.

2 Executing Predicated Instructions on an Out-of-order En-

gine

2.1 Registers Renaming (no predication)

In an out-of-order execution engine, the mapping table is used to store the links between architec-
tural registers and their associated physical registers value. This mapping table is used to avoid
false dependencies between instructions that write to the same architectural register. Hence, for
each instruction, at the rename stage, the architectural destination registers are assigned a new
physical register and the architectural source registers are renamed in order to read the physical
register corresponding to their correct occurrences. A physical register P associated with archi-
tectural register R is considered as dead when the next write on R has been committed; at this
time it can be inserted in the free list and may be used again for renaming.

Figure 1 illustrates an example of the register renaming process. Instruction I reads from
architectural registers R1 and R2, and writes in architectural register R3. To obtain the renamed
form of instruction I, one has to read the mapping table. In this example, R1 is mapped to P12
and R2 to P15. The result register R3 is assigned to the �rst physical register available of the
free list of physical register, P22 in this case. Then, the renamed form of I is I : P22 ← P12,
P15.

All these steps are performed at the renaming stage, before executing the instructions.
Though renaming is applied to multiple instructions in parallel, the process preserves the in-
order semantic and conserves the correct dependencies in the program.

Inria

SPREPI 5

Figure 1: Illustration of register renaming process in an out-of-order processor.

Figure 2: The multiple de�nition problem on an out-of-order execution engine.

2.2 The multiple de�nition problem

When considering a predicated instruction, one can not determine at the rename stage which
instruction will be the last dynamic writer of its (conditional) architectural register target.

Figure 2 illustrates this, known as the multiple de�nition problem [24]. I1 conditionally
writes to architectural register R1, I1 being predicated with the predicate p. After renaming,
I1 conditionally writes to P1. I2 reads from R1, but it is not possible to know whether the
correct physical register associated with R1 is P1 or P11 before the predicate associated with I1
is computed.

2.3 Dealing with the Multiple De�nition Issue

2.3.1 A working solution

A working yet not e�cient solution [11] consists in splitting the predicated instruction in two
consecutive micro-operations: the �rst micro-operation implementing the computation and the
second micro-operation implementation the selection between the previous target register value
and the result of the �rst micro-operation. The operation executed by this instruction is

Pafter = (predicate) ? Pnew : Pbefore

This is illustrated in Figure 3. Figure 3 also illustrates the serialization of the sequence of
accesses on the registers, as well as the arti�cial creation of long dependency chains. Even if

RR n° 8351

6 Prémillieu & Seznec

Figure 3: Dealing with the multiple de�nition problem: for each predicated instruction, a second
instruction chooses between the new value created by the instruction or the old value.

instructions I1 and I2 were executed on the same cycle T , the operand for I3 is only available
after the extra instruction for I1 is executed (cycle T + 1) and after the extra instruction for I2
is executed (cycle T + 2).

Such an implementation is acceptable when predicated instructions are quite infrequent (e.g.
when the instruction set only allows conditional moves), but may impair performance when a
signi�cant amount of predicated instructions are executed.

2.3.2 Aggressive multiple de�nition handling

A more aggressive solution [14, 5] to the multiple de�nition problem consists in packing the
two micro-operations considered above in a single micro-operation. That is at rename time, the
instruction is translated in:

Pafter = (predicate) ? Operation(Op1, Op2) : Pbefore

This solution also serializes the execution of the two instructions in Figure 3, but saves two
cycles (Figure 4).

However, we would like to point out that this implementation requires an extra physical
register read for each predicated instruction. Therefore implementing such an aggressive multiple
de�nition handling will lead to quite high complexity in the physical register design (an extra
register port per way), on operand tracking in the issue logic and on the bypass network.

Apart in Section 5.4.5, our simulations in Section 5 will assume this aggressive multiple
de�nition handling.

2.4 Predication in the ARM ISA

Most of the previous related works on out-of-order execution of predicated instructions assume
the Intel Itanium ISA [10] For this ISA, the predicate of a predicated instruction is the boolean
value contained in a predicate registers.

As our study is illustrated with the ARM ISA, we present here the speci�cities of the predicate
model of the ARM ISA. Instructions are predicated through a boolean value computed from the
value of four �ags: the Negative �ag (N), the Zero �ag (Z), the Carry �ag (C) and the Over�ow

Inria

SPREPI 7

Figure 4: Aggressive dealing with the multiple de�nition problem: each predicated instruction
is added an extra register operand: the old value of the target operand

�ag (V). These �ags are written by speci�c instructions, like compare instructions and speci�c
arithmetic instructions [2]. Table 1 summarizes the possible predicates in the ARM ISA. Thus,
the value of these predicates is not directly known through reading a register, but also requires
to evaluate the logical formula associated to the predicate.

Predicate Mnemonic Logical Formula

EQ Z == 1
NE Z == 0
CS C == 1
CC C == 0
MI N == 1
PL N == 0
VS V == 1
VC V == 0
HI (C == 1) && (Z == 0)
LS (C == 0) || (Z == 1)
GE N == V
LT N != V
GT (Z == 0) && (N == V)
LE (Z == 1) || (N != V)
AL (always true)

Table 1: ARM ISA possible predicates for predicated instructions

3 Related Works

E�ciently dealing with control instructions in a processor has always been a challenge. Two
directions have been proposed, using prediction to know in advance the direction and the target
of the branch [20], and using predicated instructions.

If-conversion was proposed by Allen et al. [1]. They de�ne an algorithm to convert control
dependencies into data dependencies by replacing branches and their dependent instructions by
predicated instructions.The predicated instructions are only executed if their predicate is eval-

RR n° 8351

8 Prémillieu & Seznec

uated to true. This conversion algorithm is often called if-conversion. If-conversion allows to
merge the taken and not-taken paths in the binary, It removes a branch, and allow to sequence
both paths at the same time. However, it is not possible to if-convert all conditional branches.
It is not always performance e�ective either, since both paths are fetched thus increasing con-
sumption of the processor resources. Thus, one should only if-convert a subset of the convertible
branches. Often compilers only if-convert short branches.

Combining branch prediction and predication has been proposed in several studies [13] [12]
[5]. The main idea is to use prediction for easy-to-predict branches and if-convertion for hard-
to-predict branches. This reduces the number of mispredicted branches and should increase
performance. Chang et al. [5] use pro�ling to identify the hard-to-predict branches to convert.
They show that pro�ling is e�cient at identifying hard-to-predict branches.

Kim et al. [13] propose to reduce the potential dynamic instruction overhead induced by
predication by storing two versions of the code, the predicated and the non-predicated code
in the binary. Then, the runtime chooses which version is executed, based on a con�dence
estimation. So, contrary to [5], using if-converted code is decided at runtime, with more precise
information.

Several studies [14] [22] points out that removing branches by if-conversion can have an
in�uence on the accuracy of branch predictors. One of the main e�ects is the reduction in
correlation as there are less branches. Simon et al. [19] show that the outcome of some branches
can be directly related to the value of some predicates. They also propose to add the predicate
predictions in the global branch history to try to capture the correlation lost by the if-conversion.

As we already pointed out, a major issue for out-of-order execution of predicated code is the
multiple de�nition problem.

Wang et al. [24] propose to introduce a new instruction, the select-µ op instruction to solve
this problem. This instruction is conceptually similar to the φ-function used in the Single Static
Assignment analysis [8]. It is used to merge the multiple predicated de�nition of an architectural
register into one, removing the renaming ambiguity for this register. The select-µ op source
operands are the multiple predicated de�nitions of the architectural register and its destination
register will contain the correct value based on the predicate values of the multiple de�nitions.
Compared with the solution presented in the previous section, this allows to postpone the e�ective
selection of the register to be used by an instruction to the e�ective �rst consumption of the
register.

Predicate prediction is an other way to solve the multiple de�nition problem. Chuang and
Calder [7] propose a predicate predictor, derived from a branch predictor, with a replay mech-
anism. Indeed, contrary to branch prediction, on predicate misprediction, there is no need to
squash the entire pipeline. It is only necessary to re-rename the instruction stream, starting from
the mispredicted instruction. The authors also propose a selective replay mechanism, where only
the instructions that depend on the mispredicted instruction are re-executed. Selective replay is
handled by keeping tags that are used to serialize the predicated instructions during replay.

Quiñones et al. [16] proposed to selectively predict predicates instead of always using the
predicate prediction. This selection is based on a con�dence estimator. If the con�dence is high
enough, the predicate is predicted. If not, the predicated instruction is handled as suggested as
described in Section 2.3.2.

Quiñones et al. [16] is the closest related work on predicate prediction to our study. Com-
pared with previous work, our SPREPI proposition addresses the ARM ISA. It also presents
the advantage of very high accuracy enabled by adapting state-of-the-art TAGE predictor to
predicate prediction. We also introduce the use of global branch-and-predicate history instead of
simple global branch history. Selective predication is enabled either by switching the prediction
use on and o� (global branch-and-predicate history) or through predicate prediction use on high

Inria

SPREPI 9

con�dence only (global branch history).

Moreover, our study proposes an e�cient selective replay mechanism speci�cally targeting
predicated instructions.

4 Selective Prediction and Replay for Predicated Instruc-

tions

Our proposal, Selective Prediction and Replay for Predicated Instructions (SPREPI), aims at
handling e�ciently predicated instructions in an out-of-order execution engine. SPREPI is based
on two major components: a predicate predictor and a speci�c selective replay engine adapted
to handle predicate mispredictions.

4.1 Selective Predicate Prediction

Predicate prediction solves the multiple de�nition problem. Only predicated instructions with
predicate predicted true are renamed while the instructions with predicate predicted false are
transformed as noop instructions at rename. Therefore there is a single valid de�nition for any
particular architectural register.

Predicting predicate can be implemented similarly as predicting conditional branches. In our
study, we are using a predicate predictor derived from the state-of-the-art global history branch
predictor TAGE [18].

The quality and accuracy of the prediction ensured by a predictor highly depends on the
quality of the vector information it uses as an input. We experimented two major alternatives the
global branch history and the global branch-and-predicate history, i.e. inserting both branches
and predicates in the history.

4.1.1 Predicated group

If-conversion tends to generate several predicated instructions using the same predicate or the
opposite predicate � the original taken and not-taken paths. This leads us to the concept of a
predicated group of instructions: the group of predicated instructions that use the same predicate
value or its opposite. A predicated group is associated with the use of the same occurrence of a
speci�c predicate. These instructions are not necessarily contiguous in the code since if-conversion
leads to encapsulate and schedule instructions from the taken path, instructions from the not-
taken path and instructions common to both paths in the same basic block. Our study targets
the ARM ISA, therefore, for our study, a predicated group starts at the �rst use of a predicate
and ends when a �ag-de�ning instruction is encountered.

Figure 5 illustrates an example of two predicated groups. A single predicate prediction is
performed for each predicated group in the front-end pipeline before rename. In the following, a
predicated group will be represented by its �rst instruction.

The predicate has to be predicted for the �rst instruction in the predicate group and some
logic is needed to propagate the predicate value to the whole predicated group at rename time.
In the remainder of the paper, when referring to the global branch-and-predicate history vector,
we assume that the predicate is appended only once to the history on its �rst encountering in
the instruction �ow, even when the same predicate occurs multiple times.

RR n° 8351

10 Prémillieu & Seznec

Figure 5: Predicated groups are groups of instructions that use the same predicate value (or its
contrary). They end when a �ag-de�ning instruction is encountered.

4.1.2 Selective Predicate Prediction

Branch vs Branch-and-Predicate history The accuracy of a branch or a predicate pre-
dictor depends on the prediction scheme, on the predictor size and also on the quality of the
vector of information that the predictor is exploiting. Global branch history was shown to be
a very high quality information vector to predict branches. TAGE [18] is generally considered
as state-of-the-art global history branch predictor. Therefore we use TAGE-based predictors to
predict predicates.

There is a correlation of predicate values with previous branch outcomes but also with pre-
vious predicate values. Therefore global branch-and-predicate history is a natural candidate to
predict predicates instead of global branch history. In the remainder of the paper, we will refer
to the predictor using global branch-and-predicate history as BrPred.

An alternative approach is to use the conventional global branch history to predict the pred-
icates. In the remainder of the paper, we will refer to the predictor using global branch history
as BrO.

In our experiments (see Section 5, Figure 8), assuming systematic usage of predicate pre-
diction we observe that global branch-and-predicate history slightly outperforms global branch
history. But we also observe that some applications exhibit very high predicate misprediction
rates. This induces performance losses compared with our baseline architecture where predicated
instructions are handled by the serialization described in Section 2.3.2. This tends to indicate
that in case of hard-to-predict predicates, it is more e�cient to execute the predicated instruction
through this serialization instead of predicting it.

Selective Predicate Prediction To discriminate hard-to-predict predicate occurrences from
easy-to-predict, con�dence estimators are the natural vehicle. Such a cost-e�ective con�dence
estimator was proposed for the TAGE predictor [17]. Using predicate predication only on high
con�dence and the serialization process described in Section 2.3.2 for other con�dence levels is
quite e�ective as illustrated by our experiments using BrO (see Section 5, Fig 9). In the remainder
of the paper, we will refer to using BrO with the high con�dence prediction estimation as BrO-
HighConf.

Unfortunately, the high con�dence �lter cannot be applied on BrPred using the global branch-
and-predicate history due to corruptions on the speculative global branch-and-predicate history.
Prediction is e�ective and accurate if the predictor is accessed with the same information vector
(history + PC) at read time, i.e. prediction time, and update time, i.e. commit time. If the
prediction of a predicate instruction is not used at run-time and the execution of the instruction

Inria

SPREPI 11

Figure 6: Corrupted branch-and-predicate history leads to read wrong predictor entry

handled through serialization then the speculative global branch-and-predicate history becomes
possibly corrupted for subsequent instructions (see Figure 6). The high con�dence �lter would
result in such a corrupted �lter.

Therefore for BrPred, we use a coarse grain mechanism to decide whether or not predicate
prediction will be used, i.e. we use a dual-mode with predicate-prediction use on and predicate-
prediction use o�. Switching from o� mode to on mode necessitates to drain the pipeline and
to restart with a correct speculative global branch-and-predicate branch history. Therefore one
can not switch mode too often. We found that the simple coarse grain mode switching heuristic
described below is quite e�ective.

BrPred is continuously updated and monitored at commit time, and the on or o� mode for
predicate prediction use is selected periodically. The chosen interval is 10,000 committed pred-
icated instructions. Predicate-prediction use is enabled if the number of BrPred mispredictions
in the interval is smaller than 500. In the remainder of the paper, we will refer to using BrPred
using this OnO� �lter as BrPred-OnO�.

4.1.3 Prediction usage

As already mentioned, predicate prediction is systematically used to neutralize the predicated
false instructions in BrPred or in On mode for BrPred-OnO� while in BrO-HighConf only high
con�dence predictions are used. Moreover, if the predicate is already known at rename, the
e�ective predicate is used.

On our simulator model, even a predicted false predicated instruction is stored in the issue
queue. This predicted false instruction stays in the issue queue till the predicate prediction is
checked. On a misprediction, execution has to be repaired.

4.2 Selective Replay for Predicate Mispredictions

In case of a predicate misprediction, some instructions following the mispredicted predicated
instruction may have already been executed. A selective replay mechanism can be used to
correct the execution instead of just squashing the pipeline and re-executing the whole sequence
of instructions. The selective replay identi�es and re-executes only the instructions which are in
the dependency chain of the mispredicted instructions. On current high-end (x86) processors,
selective replay is implemented to deal with events like L1 cache hit/miss misprediction or L1
cache bank con�icts.

However in case of a mispredicted predicate, a major di�culty arise: the register renaming
is now incorrect. In order to deal with this issue without completely �ushing the pipeline on

RR n° 8351

12 Prémillieu & Seznec

each mispredicted predicate, we propose to adapt SYRANT [15], a hardware mechanism that
was initially proposed for exploiting control independence on a non-predicated instruction set.

4.2.1 Symmetric Resource Use

In order to allow the exploitation of control independence, SYRANT [15] enforces the same
out-of-order engine resource consumption on both the taken and not-taken paths of a branch,
the resource being the physical registers, the ROB entries and the load-store queue entries. To
enable this, SYRANT allocates the same number of entries for both paths. Forcing this equal
allocation is quite complex for conditional branches.

However, in this study, we only consider exploiting control independence from predicated
instructions. In this case, the equal allocation of resource to both paths (predicate true and
predicate false) is immediate: registers, ROB entries, LSQ entries are allocated even if the
predicate is predicted false. That is renaming of instruction results does not depend on the
predicate prediction and a ROB entry is always allocated. The (predicted) dependency chain at
rename time still depends on the predicate prediction. Therefore the renaming of the register
operands has to be replayed.

4.2.2 Initiation of a replay on a predicate misprediction

In case of a repair on a predicate misprediction, the sequence of fetched instructions with the
correct prediction is exactly the same as the predicted sequence. Therefore our model assumes a
bu�er where all fetched instructions are stored. This bu�er size is equal to the maximum number
of in�ight instructions in the processor.

The renaming is re-instantiated from this bu�er at full speed and with the correct value of
the predicate. At the same time, the prediction of the predicates is re-initiated with the correct
history (when executing in BrPred mode).

4.2.3 Identifying valid instruction results

Some instructions following the mispredicted predicated instruction have already been executed.
In order to save their results, our mechanism preserve the register renaming allocation and the
LSQ allocation. However, one has also to assert the validity of the preserved results: this is
illustrated on Figure 7.

On this example, I3 must be re-executed since one of its operand registers has changed, its
result is therefore invalid. Despite using the same operand registers, instruction I4 must also be
re-executed since one of its operand register (produced by I3) is invalid.

To resolve this result validity issue, we implement the exact same rename-sequence tag so-
lution that was described for SYRANT [15]. This mechanism preserves the results of data
independent instructions that follow the mispredicted instruction.

5 Experimental study

The experimental study for validating our propositions was built upon the Gem5 simulator [4].

5.1 Simulator parameters

Unless otherwise mentioned, the simulator models an aggressive 4-way superscalar processor with
a 128-entry ROB, a 64-entry Load Queue, 64-entry Store Queue and 256 physical integer and

Inria

SPREPI 13

Figure 7: Instructions that do not have the same rename form before and after the correction
need to be re-executed. Instructions depending on these re-executed instructions also need to be
re-executed.

�oating point registers. The processor also features a state-of-the-art conditional branch predic-
tor, the TAGE predictor described in [18]. The store sets predictor [6] is used to predict memory
dependencies. A mechanism is used to improve the management of the Return Address Stack
(RAS) [23]. When not predicted, predicated instructions are executed through the aggressive
mechanism described in Section 2.3.2. The other characteristics are summarized in Table 2. We
will refer to this con�guration as the base con�guration (BASE).

5.2 Benchmarks

The simulated benchmarks constitute a subset of the Spec 2006 benchmarks set [21] listed in Table
3. To reduce the amount of simulation time, we use the Simpoint methodology [9] to summarize
each benchmark in a set of 100 millions instructions slices. Each slice is representative of a part
of the benchmark execution and is a�ected a weight representing the portion that it represents in
the execution. For each benchmark, the illustrated results are the weighted mean of simulations
on the set of slices. Table 3 display the weighted mean of the Instruction Per Cycle (IPC) count
for each benchmark, for the 4-way and 8-way BASE con�gurations.

As we have been targeting the ARM instruction set, some of the benchmarks or some of their
input sets are missing. There are three reasons why some benchmarks are missing: 1) the binary
produced by our cross-compiler is not executable on a native ARM architecture, 2) the binary is
not executable on qemu-arm [3] which was used to compute the basic block vector (BBV) needed
to compute the simpoints 3) the simulator is not able to run them. In the end, we were able to
run 12 integer benchmarks (the complete integer benchmarks) and 7 �oating point benchmarks.
Some benchmarks are used with several inputs (all the inputs that are working are used). In
total, we were able to simulate 38 di�erent workloads.

The binaries were generated with the gcc compiler using the O3 optimization level. Gcc
decision to if-convert a branch mainly depends on the number of instructions that are controlled
by the branch. By default, for the ARM target, this number is set to 4.

5.3 Benchmarks ratio of predicated instructions

Table 3 also list the ratio of predicated instructions per benchmark. The �rst column presents
the total percentage of predicated instructions. This includes the conditional branches which are
not predicted by the predicate predictor. The second column excludes conditional branches.

RR n° 8351

14 Prémillieu & Seznec

OoO@1GHz 4-way 8-way

Memory
100 cycles

12.8GBps, Across a 128B bus

Caches

L1D 4-way 64KB, 64B, 1 cycle
L1I 4-way 64KB, 64B, 1 cycle
L2 8-way 4MB, 64B, 8 cycles
Stride Prefetcher for the L2

TLBs Perfect, 4K pages

ROB 128 entries 256 entries
IQ 128 entries 256 entries
LSQ 128 entries (64L/64S) 256 entries (196L/64S)

Width
4 8

(F/D/R/I/E/W/C)
Pipeline 12 stages

FU(latency)
IntAlu(1) 3 6

IntMultDiv(3/12*) 1 2
FpAlu(5) 2 4

FpMultDiv(4/9*) 2 4
Ld/Str(2) 2 4

Branch Predictor

BTB 4-way, 1K entries
RAS, 16 entries, WP corruption detection

TAGE 1+12 components,
15K entries total

Misprediction penalty 15 cycles 15 cycles

Table 2: Simulator con�guration overview. *not pipelined.

For all benchmarks, conditional branches instructions represent a large part of the predicated
instructions. However, some benchmarks like 401.bzip2, 403.gcc, 445.gobmk and 456.hmmer
contain a signi�cant portion of e�ective predicated instructions. Some other benchmarks, like
436.cactusADM, 459.GemsFDTD and 470.lbm feature nearly no e�ective predicated instructions.

A simple optimization to save energy would be to monitor at run-time the ratio of e�ec-
tive predicated instructions and to turn-o� the predicate prediction when this ratio is under a
prede�ned threshold.

5.4 Simulation Results

We report simulation results (speed-ups over the base con�guration) assuming a 4-way super-
scalar processor, except in Section 5.4.4 which shows that trends are ampli�ed for a 8-way
superscalar processor.

5.4.1 Branch history vs Branch-and-Predicate

First experiments assuming systematic use of predicate prediction (Figure 8) shows that using
branch-and-predicate history allows in general slightly higher performance than using branch
history only. In some cases, the di�erence is quite signi�cative, e.g. on 462.libquantum or
401.bzip.liberty.

Inria

SPREPI 15

IPC %
Benchmarks Input (BASE) predicated

with without
4-way 8-way branches branches

400.perlbench
checkspam 1.46 1.82 17.17 4.57
di�mail 1.31 1.57 16 4.68

401.bzip2

chicken 2.21 3.01 15.17 3.49
combined 1.73 2.16 15.77 5.20
liberty 2.33 3.38 17.98 5.72
program 1.85 2.23 14.82 3.92
source 1.66 2.02 17.75 5.45
text 2,11 3.15 17.28 4.29

403.gcc

166 1,7 2.37 35.91 24.23
200 1.58 2.1 31.07 18.69

c-typeck 1.65 2.41 44.44 34.27
cp-decl 1.72 2.46 37.1 25.9
expr 1.84 2.71 38.16 26.12
scilab 1.47 1.92 29.96 17.6

416.gamess
cytosine 2.62 4.6 7.01 2.85
h2ocu2+ 2.76 5.09 6.39 2.93

429.mcf ref 0.7 0.81 24.5 6.10
435.gromacs ref 2.81 4.74 4.62 1.02

436.cactusADM ref 2.26 4.3 0.09 0.02
444.namd ref 2.49 3.95 8.54 5.18

445.gobmk

13x13 1.75 2.27 18.92 7.39
nngs 1.73 2.24 18.02 6.79
trevorc 1.71 2.22 18.39 7.13
trevord 1.87 2.52 16.86 6.11

453.povray ref 1.48 2 8.09 1.9

456.hmmer
nph3 2.62 5.21 17.18 14.55
retro 2.48 4.61 17.64 14.78

458.sjeng ref 1.82 2.38 18.76 7.05
459.GemsFDTD ref 2.17 3.89 1.06 0.001
462.libquantum ref 1.82 2.31 23.56 13.42

464.h264ref
baseline 2.04 3.59 6.45 2.68
main 1.7 2.99 6.75 2.42
sss 1.68 3.05 5.99 2.13

470.lbm ref 1.88 2.36 0.6 0.02
471.omnetpp ref 0.8 0.92 17.1 4.33

473.astar
BigLakes 1.29 1.57 15.53 3.88
rivers 1.42 1.69 15.7 3.29

483.xalancbmk ref 1.81 2.49 21.09 3.4

Table 3: Benchmarks, their inputs, their IPC for the BASE 4-way and 8-way con�gurations and
the ratio of predicated instructions over the total number of instructions.

Note that for some applications, the ratio of non-branches predicate instructions is rather
low, but the performance improvement is signi�cant e.g. 429.mcf or 471.omnetpp.ref

RR n° 8351

16 Prémillieu & Seznec

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

400.perlbench.checkspam

400.perlbench.diffmail

401.bzip2.chicken

401.bzip2.combined

401.bzip2.liberty

401.bzip2.program

401.bzip2.source

401.bzip2.text

403.gcc.166

403.gcc.200

403.gcc.c-typeck

403.gcc.cp-decl

403.gcc.expr

403.gcc.scilab

416.gamess.cytosine

416.gamess.h2ocu2+

429.mcf.ref

435.gromacs.ref

436.cactusADM.ref

444.namd.ref

445.gobmk.13x13

445.gobmk.nngs

445.gobmk.trevorc

445.gobmk.trevord

453.povray.ref

456.hmmer.nph3

456.hmmer.retro

458.sjeng.ref

459.GemsFDTD.ref

462.libquantum.ref

464.h264ref.baseline

464.h264ref.main

464.h264ref.sss

470.lbm.ref

471.omnetpp.ref

473.astar.BigLakes

473.astar.rivers

483.xalancbmk.ref

%
 IP

C
 im

pr
ov

em
en

t o
ve

r B
A

S
E

-37,68
-37.50

-33,31
-32.45

BrPred
BrO

Figure 8: Speedups using BrPred (branch-and-predicate history) and BrO (branch history)

However in many cases (e.g. 444.namd, 445.gobmk, 464.h264ref, ...), systematic use of pred-
icate prediction induces performance losses compared with the base con�guration. This per-
formance loss can be quite high e.g. 37% on 456.hmmer and therefore systematic predicate
prediction use should not be considered for implementation in real hardware.

5.4.2 Filtering predicate predictions

We have proposed two di�erent ways for selectively using predicate predictions, the main goal
being to avoid the dramatic performance losses described above.

When using global branch history, BrO-HighConf selects the predicate prediction use at very
�ne grain based on the con�dence of the predicate prediction. When using global branch-and-
predicate, BrPred-OnO� enables the predicate prediction use at a coarse grain granularity.

Figures 9 and 10 illustrate the associated experiments. As expected, these �lters essentially
remove the performance losses induced by high predicate misprediction rates. However they also
maintain and sometimes enhance the performance bene�ts enabled by predicate prediction when
encountered.

When using BrO (i.e global branch history only), the encountered performance losses com-
pared with baseline are now becoming marginal (maximum 2.2% on 456.hmmer). But also,
through removing many of the mispredictions, but preserving most of the correct predictions, the
high con�dence �lter allows signi�cant improvement on most of the benchmarks (e.g. 401.bzip2
or 403.gcc).

When using BrPred (i.e. global branch-and-predicate history), the OnO� �lter removes all
the performance loss at the exception of 444.namd (1.9%). The OnO� �lter is also very e�ective
at removing the predicate mispredictions and enables some performance improvements.

5.4.3 Bene�ts of Selective Replay

Our selective replay mechanism intends to reduce the performance loss associated with predica-
tion misprediction. This is illustrated in Figures 11 and 12.

For both BrO and BrPred, some marginal performance improvement is obtained (generally
less than 1%). In practice, the high con�dence �lter and the OnO� �lters are quite radical at
eliminating the use of prediction of hard-to-predict predicates, thus the general bene�t that can
be obtained on reducing predicate misprediction penalty is low. However (not illustrated) prelim-
inary experiments on systematic use of predicate prediction and our selective replay were showing

Inria

SPREPI 17

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

400.perlbench.checkspam

400.perlbench.diffmail

401.bzip2.chicken

401.bzip2.combined

401.bzip2.liberty

401.bzip2.program

401.bzip2.source

401.bzip2.text

403.gcc.166

403.gcc.200

403.gcc.c-typeck

403.gcc.cp-decl

403.gcc.expr

403.gcc.scilab

416.gamess.cytosine

416.gamess.h2ocu2+

429.mcf.ref

435.gromacs.ref

436.cactusADM.ref

444.namd.ref

445.gobmk.13x13

445.gobmk.nngs

445.gobmk.trevorc

445.gobmk.trevord

453.povray.ref

456.hmmer.nph3

456.hmmer.retro

458.sjeng.ref

459.GemsFDTD.ref

462.libquantum.ref

464.h264ref.baseline

464.h264ref.main

464.h264ref.sss

470.lbm.ref

471.omnetpp.ref

473.astar.BigLakes

473.astar.rivers

483.xalancbmk.ref

%
 IP

C
 im

pr
ov

em
en

t o
ve

r B
A

S
E

-37.50
-32.45

BrO
BrO HighConf

Figure 9: Speedups using BrO-HighConf (selective prediction and branch history)

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

400.perlbench.checkspam

400.perlbench.diffmail

401.bzip2.chicken

401.bzip2.combined

401.bzip2.liberty

401.bzip2.program

401.bzip2.source

401.bzip2.text

403.gcc.166

403.gcc.200

403.gcc.c-typeck

403.gcc.cp-decl

403.gcc.expr

403.gcc.scilab

416.gamess.cytosine

416.gamess.h2ocu2+

429.mcf.ref

435.gromacs.ref

436.cactusADM.ref

444.namd.ref

445.gobmk.13x13

445.gobmk.nngs

445.gobmk.trevorc

445.gobmk.trevord

453.povray.ref

456.hmmer.nph3

456.hmmer.retro

458.sjeng.ref

459.GemsFDTD.ref

462.libquantum.ref

464.h264ref.baseline

464.h264ref.main

464.h264ref.sss

470.lbm.ref

471.omnetpp.ref

473.astar.BigLakes

473.astar.rivers

483.xalancbmk.ref

%
 IP

C
 im

pr
ov

em
en

t o
ve

r B
A

S
E

-37,68
-33,31

BrPred
BrPred OnOff

Figure 10: Speedups using BrPred-OnO� (selective prediction and branch-and-predicate history)

RR n° 8351

18 Prémillieu & Seznec

-2

 0

 2

 4

 6

 8

 10

400.perlbench.checkspam

400.perlbench.diffmail

401.bzip2.chicken

401.bzip2.combined

401.bzip2.liberty

401.bzip2.program

401.bzip2.source

401.bzip2.text

403.gcc.166

403.gcc.200

403.gcc.c-typeck

403.gcc.cp-decl

403.gcc.expr

403.gcc.scilab

416.gamess.cytosine

416.gamess.h2ocu2+

429.mcf.ref

435.gromacs.ref

436.cactusADM.ref

444.namd.ref

445.gobmk.13x13

445.gobmk.nngs

445.gobmk.trevorc

445.gobmk.trevord

453.povray.ref

456.hmmer.nph3

456.hmmer.retro

458.sjeng.ref

459.GemsFDTD.ref

462.libquantum.ref

464.h264ref.baseline

464.h264ref.main

464.h264ref.sss

470.lbm.ref

471.omnetpp.ref

473.astar.BigLakes

473.astar.rivers

483.xalancbmk.ref

%
 IP

C
 im

pr
ov

em
en

t o
ve

r B
A

S
E

BrPred OnOff NoReplay
BrPred OnOff Replay

Figure 11: SPREPI: Selective replay and BrPred-OnO�

-4

-2

 0

 2

 4

 6

 8

 10

400.perlbench.checkspam

400.perlbench.diffmail

401.bzip2.chicken

401.bzip2.combined

401.bzip2.liberty

401.bzip2.program

401.bzip2.source

401.bzip2.text

403.gcc.166

403.gcc.200

403.gcc.c-typeck

403.gcc.cp-decl

403.gcc.expr

403.gcc.scilab

416.gamess.cytosine

416.gamess.h2ocu2+

429.mcf.ref

435.gromacs.ref

436.cactusADM.ref

444.namd.ref

445.gobmk.13x13

445.gobmk.nngs

445.gobmk.trevorc

445.gobmk.trevord

453.povray.ref

456.hmmer.nph3

456.hmmer.retro

458.sjeng.ref

459.GemsFDTD.ref

462.libquantum.ref

464.h264ref.baseline

464.h264ref.main

464.h264ref.sss

470.lbm.ref

471.omnetpp.ref

473.astar.BigLakes

473.astar.rivers

483.xalancbmk.ref

%
 IP

C
 im

pr
ov

em
en

t o
ve

r B
A

S
E

BrO HighConf NoReplay
BrO HighConf Replay

Figure 12: SPREPI: Selective replay and BrO-HighConf

that it absorbs quite well the misprediction penalty: for instance, it reduces the performance loss
on 456.hmmer from 37% to 9%.

5.4.4 Bene�ts of SPREPI on a wide issue superscalar processor

SPREPI speedups on a 4-way superscalar processor is limited to a few percent (up to 9% on
two of our workloads). However, this advantage is growing when one considers a more aggressive
implementation featuring a wide issue out-of-order engine. Figure 13 illustrates this on a 8-way
superscalar processor for BrPred. The speedup over an 8-way base superscalar grows to up to
17% and the relative speedup is systematically higher for 8-way issue than for 4-way issue for
nearly every benchmark.

5.4.5 Aggressive vs non-aggressive predicated instruction execution

Performance of out-of-order execution of predicated code depends on how multiple de�nition
issue is handled. So far we have assumed the quite aggressive predicated instruction execution
described in Section 2.3.2. Simulations were also run assuming the much less aggressive working
solution described in Section 2.3.1.

Inria

SPREPI 19

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

400.perlbench.checkspam

400.perlbench.diffmail

401.bzip2.text

401.bzip2.source

401.bzip2.chicken

401.bzip2.program

401.bzip2.liberty

401.bzip2.combined

403.gcc.expr

403.gcc.c-typeck

403.gcc.cp-decl

403.gcc.166

403.gcc.scilab

403.gcc.200

416.gamess.cytosine

416.gamess.h2ocu2+

429.mcf.ref

435.gromacs.ref

436.cactusADM.ref

444.namd.ref

445.gobmk.trevorc

445.gobmk.trevord

445.gobmk.13x13

445.gobmk.nngs

453.povray.ref

456.hmmer.retro

456.hmmer.nph3

458.sjeng.ref

459.GemsFDTD.ref

462.libquantum.ref

464.h264ref.foreman.baseline

464.h264ref.foreman.main

464.h264ref.sss

470.lbm.ref

471.omnetpp.ref

473.astar.rivers

473.astar.BigLakes2048

483.xalancbmk.ref

%
 IP

C
 im

pr
ov

em
en

t o
ve

r B
A

S
E

Figure 13: Bene�ts of SPREPI on a 8-way issue superscalar processor

Figure 14 illustrates the relative performance of a non aggressive predicated instruction ex-
ecution labeled BASE Non Aggressive, SPREPI on top of the non aggressive implementation
and SPREPI on top of the aggressive implementation compared with the BASE implementation
(aggressive predicated instruction execution).

At a �rst point, the performance di�erence between BASE aggressive and BASE non-aggressive
implementation is already quite limited. A few percent (< 4%) performance loss is sometimes
encountered, but many of our benchmarks only su�er from a very marginal performance loss.
470.lbm even encounters a performance bene�t; however since 470.lbm exhibits only 0.02% non-
branch predicated, this result is probably associated with some scheduling artifact.

Since most of the predicated instructions are predicted, the performance di�erence between
SPREPI Aggressive and SPREPI non-aggressive is becoming even less signi�cant: less than 1 %
except for 458.sjeng.ref in our experiments.

The performance di�erence between BASE aggressive and BASE non-aggressive would not
probably justify the extra hardware complexity and power consumption for BASE aggressive
(extra register ports, wider bypass network, more complex issue logic, ..). When considering
SPREPI on top of these two possible implementations, an aggressive implementation is obviously
not worth this extra hardware complexity and power consumption.

6 Conclusion and Perspective

ARM based processors are becoming ubiquitous in many modern appliance including smart-
phones and tablets. The demand for high performance pushes manufacturers of ARM processors
to use the same techniques that have been used for the two last decades on PCs and servers
processors including wide-issue superscalar processors. 32-bit ARM ISA features predicated
instructions. Providing an e�cient solution to e�ciently execute predicated instructions out-of-
order is challenging due to the multiple de�nition problem.

In this paper, we have shown that state-of-the art branch prediction solutions can be adapted
to predicate prediction. Predicate prediction resolves the multiple de�nition problem and per se
brings some extra performance on some applications with a reasonable predicate prediction accu-
racy; using branch-and-predicate history instead of branch history further improves performance.
However, systematic predicate prediction use is not always e�ective and applications/section of
codes with high predicate misprediction rates perform generally worse than without predicate

RR n° 8351

20 Prémillieu & Seznec

-4

-2

 0

 2

 4

 6

 8

 10

400.perlbench.checkspam

400.perlbench.diffmail

401.bzip2.chicken

401.bzip2.combined

401.bzip2.liberty

401.bzip2.program

401.bzip2.source

401.bzip2.text

403.gcc.166

403.gcc.200

403.gcc.c-typeck

403.gcc.cp-decl

403.gcc.expr

403.gcc.scilab

416.gamess.cytosine

416.gamess.h2ocu2+

429.mcf.ref

435.gromacs.ref

436.cactusADM.ref

444.namd.ref

445.gobmk.13x13

445.gobmk.nngs

445.gobmk.trevorc

445.gobmk.trevord

453.povray.ref

456.hmmer.nph3

456.hmmer.retro

458.sjeng.ref

459.GemsFDTD.ref

462.libquantum.ref

464.h264ref.baseline

464.h264ref.main

464.h264ref.sss

470.lbm.ref

471.omnetpp.ref

473.astar.BigLakes

473.astar.rivers

483.xalancbmk.ref

%
 IP

C
 im

pr
ov

em
en

t o
ve

r B
A

S
E

BASE NonAggressive
SPREPI NonAgressive
SPREPI Aggressive

Figure 14: Aggressive vs Non-aggressive predicated instruction execution

prediction. We have shown that e�cient �ltering of predicate prediction use can be implemented
for both predicate prediction using branch history and predicate prediction using branch-and-
predicate history.

As the second contribution of the paper, we have adapted the SYRANT selective replay
mechanism [15] to selective replay mispredicted predicate instructions. SYRANT was initially
designed for exploiting general control independence in out-of-order processors. Adapting it to
handle only predicated instructions is straightforward and greatly simpli�ed the design. This
selective predicated instruction replay reduces the performance penalty associated with predicate
misprediction.

The combination of these two mechanisms, Selective Prediction and Replay for Predicated
Instructions (SPREPI) achieves speed-ups on codes generated with the gcc standard compiler.
This performance gain is within a few percent for a 4-way superscalar processor, but grows with
issue width (up to 17% on some applications with a 8-way issue processor).

Through transforming the execution of most of the predicated instructions in execution of
non-predicated instructions (at the risk of misprediction), SPREPI reduces the number of seri-
alizations due to predicated instructions. SPREPI almost annihilates the performance bene�t of
hardware optimizing these serializations, thus enabling a more cost and power e�ective imple-
mentation.

Standard solutions to implement out-of-order execution of predicated ISA tend to push com-
piler writers to avoid using predicated instructions since those instructions are likely to induce
some serialization on the execution. On the other hand, our SPREPI proposal could allow the
compiler to use if-conversion more aggressively. Our initial study (out-of-the-scope of this paper)
on increasing the size of the potential if-converted branches in the gcc compiler tends to indicate
that this is a direction that might be explored if a SPREPI-like mechanism was implemented in
e�ective hardware.

References

[1] J. R. Allen, K. Kennedy, C. Porter�eld, and J. Warren, �Conversion of control dependence
to data dependence,� in Proceedings of the 10th ACM SIGACT-SIGPLAN symposium on
Principles of programming languages, 1983, pp. 177�189.

[2] ARM, �Arm architecture reference manual. arm v7-a and arm v7-r edition.�

Inria

SPREPI 21

[3] F. Bellard, �QEMU,� http://wiki.qemu.org/Main_Page.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, �The gem5 simulator,� SIGARCH Comput. Archit. News, vol. 39, no. 2, pp.
1�7, Aug. 2011.

[5] P.-Y. Chang, E. Hao, Y. N. Patt, and P. P. Chang, �Using predicated execution to improve
the performance of a dynamically scheduled machine with speculative execution,� Interna-
tional Journal of Parallel Programming, vol. 24, no. 3, pp. 209�234, 1996.

[6] G. Z. Chrysos and J. S. Emer, �Memory dependence prediction using store sets,� in ISCA
'98: Proceedings of the 25th annual international symposium on Computer architecture,
1998, pp. 142�153.

[7] W. Chuang and B. Calder, �Predicate prediction for e�cient out-of-order execution,� in
Proceedings of the 17th annual international conference on Supercomputing, 2003, pp. 183�
192.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, �E�ciently comput-
ing static single assignment form and the control dependence graph,� ACM Trans. Program.
Lang. Syst., vol. 13, no. 4, pp. 451�490, 1991.

[9] G. Hamerly, E. Perelman, J. Lau, and B. Calder, �Simpoint 3.0 : Faster and more �exible
program phase analysis,� Journal of Instruction Level Parallelism, vol. vol. 7, September
2005.

[10] Intel Corp, �Intel itanium architecture software developer's manual. volume 3: Instruction
set reference,� 2002.

[11] R. E. Kessler, �The alpha 21264 microprocessor,� IEEE Micro, vol. 19, no. 2, pp. 24�36,
1999.

[12] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt, �Diverge-merge processor (dmp): Dynamic
predicated execution of complex control-�ow graphs based on frequently executed paths,� in
Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
2006, pp. 53�64.

[13] H. Kim, O. Mutlu, J. Stark, and Y. N. Patt, �Wish branches: Combining conditional branch-
ing and predication for adaptive predicated execution,� in Proceedings of the 38th annual
IEEE/ACM International Symposium on Microarchitecture, 2005, pp. 43�54.

[14] D. N. Pnevmatikatos and G. S. Sohi, �Guarded execution and branch prediction in dynamic
ilp processors,� in Proceedings of the 21st annual international symposium on Computer
architecture, ser. ISCA '94, 1994, pp. 120�129.

[15] N. Premillieu and A. Seznec, �Syrant: Symmetric resource allocation on not-taken and taken
paths,� ACM Trans. Archit. Code Optim., vol. 8, no. 4, pp. 43:1�43:20, Jan. 2012.

[16] E. Quiñones, J.-M. Parcerisa, and A. Gonzalez, �Selective predicate prediction for out-of-
order processors,� in Proceedings of the 20th annual international conference on Supercom-
puting, 2006, pp. 46�54.

RR n° 8351

http://wiki.qemu.org/Main_Page

22 Prémillieu & Seznec

[17] A. Seznec, �Storage free con�dence estimation for the tage branch predictor,� in Proceedings
of the 17th International Symposium on High-Performance Computer Architecture, 2011,
pp. 443�454.

[18] A. Seznec and P. Michaud, �A case for (partially) tagged geometric history length branch
prediction,� Journal of Instruction Level Parallelism, February 2006.

[19] B. Simon, B. Calder, and J. Ferrante, �Incorporating predicate information into branch pre-
dictors,� in Proceedings of the 9th International Symposium on High-Performance Computer
Architecture, 2003, pp. 53�64.

[20] J. E. Smith, �A study of branch prediction strategies,� in Proceedings of the 8th annual
symposium on Computer Architecture, 1981, pp. 135�148.

[21] SPEC, �SPEC CPU2006,� http://www.spec.org/ cpu2006/ , 2006.

[22] G. S. Tyson, �The e�ects of predicated execution on branch prediction,� in Proceedings of
the 27th annual international symposium on Microarchitecture, 1994, pp. 196�206.

[23] H. Vandierendonck and A. Seznec, �Speculative return address stack management revisited,�
ACM Trans. Archit. Code Optim., vol. 5, no. 3, pp. 15:1�15:20, Dec. 2008.

[24] P. H. Wang, H. Wang, R.-M. Kling, K. Ramakrishnan, and J. P. Shen, �Register renam-
ing and scheduling for dynamic execution of predicated code,� in Proceedings of the 7th
International Symposium on High-Performance Computer Architecture, 2001, pp. 15�25.

Inria

http://www.spec.org/cpu2006/

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Executing Predicated Instructions on an Out-of-order Engine
	Registers Renaming (no predication)
	The multiple definition problem
	Dealing with the Multiple Definition Issue
	A working solution
	Aggressive multiple definition handling

	Predication in the ARM ISA

	Related Works
	Selective Prediction and Replay for Predicated Instructions
	Selective Predicate Prediction
	Predicated group
	Selective Predicate Prediction
	Prediction usage

	Selective Replay for Predicate Mispredictions
	Symmetric Resource Use
	Initiation of a replay on a predicate misprediction
	Identifying valid instruction results

	Experimental study
	Simulator parameters
	Benchmarks
	Benchmarks ratio of predicated instructions
	Simulation Results
	Branch history vs Branch-and-Predicate
	Filtering predicate predictions
	Benefits of Selective Replay
	Benefits of SPREPI on a wide issue superscalar processor
	Aggressive vs non-aggressive predicated instruction execution

	Conclusion and Perspective

