
HAL Id: inria-00628318
https://hal.inria.fr/inria-00628318v2

Submitted on 1 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0
International License

A Dynamic Logic for Privacy Compliance
Guillaume Aucher, Leendert van der Torre, Guido Boella

To cite this version:
Guillaume Aucher, Leendert van der Torre, Guido Boella. A Dynamic Logic for Privacy Compliance.
Artificial Intelligence and Law, Springer Verlag, 2011, 19 (2-3), pp.187-231. �10.1007/s10506-011-9114-
3�. �inria-00628318v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49759316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00628318v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

A Dynamic Logic for Privacy Compliance

Guillaume Aucher · Guido Boella · Leendert van

der Torre

Abstract Knowledge based privacy policies are more declarative than traditional action

based ones, because they specify only what is permitted or forbidden to know, and leave

the derivation of the permitted actions to a security monitor. This inference problem is

already non trivial with a static privacy policy, and becomes challenging when privacy

policies can change over time. We therefore introduce a dynamic modal logic that permits

not only to reason about permitted and forbidden knowledge to derive the permitted ac-

tions, but also to represent explicitly the declarative privacy policies together with their

dynamics. The logic can be used to check both regulatory and behavioral compliance, re-

spectively by checking that the permissions and obligations set up by the security monitor

of an organization are not in conflict with the privacy policies, and by checking that these

obligations are indeed enforced.

1 Introduction

The UN Declaration of Human Rights (United Nations General Assembly, 1948) stipu-

lates that “No one shall be subjected to arbitrary interference with his privacy, family,

home or correspondence, nor to attacks upon his honour and reputation” (our emphasis).

However, there is no consensus on what privacy precisely means. In the nineteenth cen-

tury, Warren and Brandeis (1890), quoting the judge Thomas M. Cooley, defined the right

This paper corrects a minor mistake in the Definition 7 of the article published in the Journal of Artificial Intelli-

gence and Law (2011): the reflexivity of the knowledge accessibility relation was not preserved during an update

with the promulgation operation.

G. Aucher

IRISA, INRIA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France

E-mail: guillaume.aucher@irisa.fr

G. Boella

Dipartimento di Informatica, Università di Torino, Cso Svizzera 185 10149 Torino

E-mail: guido@di.unito.it

L. van der Torre

Computer Science and Communications (CSC), University of Luxembourg, 6, rue Richard Coudenhove - Ka-

lergi, L-1359 Luxembourg

E-mail: leon.vandertorre@uni.lu

2 Guillaume Aucher et al.

to privacy as “the right to be let alone”. More recently, Westin (1968) defines privacy as the

ability for people to determine for themselves when, how, and to what extent, information

about them is communicated to others. Despite this lack of consensus in the legislation,

numerous privacy policies have recently been developped. In 2001, 68% of the Direct

Marketing Association member companies appoint Chief Privacy Officers responsible for

privacy issues and policies. They design their internal activities and information practices

to simultaneously serve their customers effectively and manage risks from disclosure of

sensitive information. A much debated example of privacy policy in the United States is

the Health Insurance Portability and Accountability Act (HIPAA) (Office for Civil Rights,

2003). Personal health information must be used to provide effective health care, but it

must also be protected from indiscriminate sharing to respect the privacy of patients. Other

examples are the Children’s Online Privacy Protection Act (COPPA) (Federal Trade Com-

mission, 1998) for e-business, and the Gramm-Leach-Bliley Act (GLBA) (Federal Trade

Commission, 1999) for financial institutions.

In general, privacy policies can be defined either in terms of permitted and forbidden

knowledge, or in terms of permitted and forbidden actions. For example, it may be forbid-

den to know the medical data of a person, or it may be forbidden to disclose these data.

Both of these approaches have their advantages and disadvantages. Implementing a pri-

vacy policy based on permitted and forbidden actions is relatively easy, since we can add a

filter on the system checking the outgoing messages. Such a filter is an example of a secu-

rity monitor. If the system attempts to send a forbidden message, then the security monitor

blocks the sending of that message. However, the price to pay for this relatively straight-

forward implementation is that it is difficult to determine privacy policies using permitted

and forbidden actions only, in the sense that it is difficult to decide which actions are per-

mitted or forbidden so that a piece of information is not disclose. For example, it is a well

known database problem that you may be able to find out my identity without asking for

it explicitly, for example by asking a very detailed question (all the people who are born

in Amsterdam on September 11 1986, who drive a blue Mercedes, and who are married

to a person from Paris on November 9, 2009), or by combining a number of queries on

a medical database (Sweeney, 2002). In this paper we are therefore interested in privacy

policies expressed in terms of permitted and forbidden knowledge.

Expressing a privacy policy in terms of permitted and forbidden knowledge is rela-

tively easy, since it lists the situations which should not occur. These situations are typi-

cally determined by the fact that it may not be permitted to know some sensitive informa-

tion. In many cases it is more efficient or natural to specify that a given piece of informa-

tion may not be known, than explicitly forbidding the different ways of communicating it.

The policies are more declarative, more concise and therefore easier to understand by the

user. They may also cover unforeseen sequences of actions leading to forbidden situation.

However, implementing a privacy policy based on permitted and forbidden knowledge

is relatively difficult, since the system has to reason about the relation between permit-

ted knowledge and actions. The challenge is that the exchange of messages changes the

knowledge, and the security monitor therefore needs to reason about these changes.

To express privacy policies in terms of permitted and forbidden knowledge, we use

modal logic, since both knowledge and obligations (and permissions) are traditionally and

naturally modeled in branches of modal logic called epistemic and deontic logic respec-

tively. Cuppens introduced in 1993 a modal logic for a logical formalization of secrecy

(Cuppens, 1993), and together with Demolombe he developed a logic for reasoning about

A Dynamic Logic for Privacy Compliance 3

confidentiality (Cuppens and Demolombe, 1996) and a modal logical framework for se-

curity policies (Cuppens and Demolombe, 1997). The logic models the knowledge of the

users of the system, and allows the security monitor to reason about them. It expresses for-

mulas such as ‘the user knows the address of someone’, and epistemic norms, i.e. norms

regulating what is permitted to know. The security monitor is able to foresee the infer-

ences that the users can do by combining their knowledge. For example, if the user knows

street name, number, town and state of a person, then he knows his address. Moreover,

since privacy policies are specified in terms of knowledge that the recipient of informa-

tion is permitted/forbidden to have, we can represent violations. This is an advantage over

privacy policy languages modeling norms as strict constraints that cannot be violated, be-

cause in some situations it is necessary to cope with violations. These violations can be

due for example to occasional and unintentional disclosures, or to the creation of new more

restrictive norms.

The main task of a security monitor reasoning about a situation given a privacy policy

is to check compliance – regardless of whether these policies are expressed in terms of

permitted and forbidden actions or permitted and forbidden knowledge. In our approach,

to check compliance one has therefore to be able to derive the permitted, obligatory and

forbidden actions in a given context, just like a decision maker needs to know whether

his alternative actions do not violate norms and may therefore be subject to sanctions. In

this paper, we further distinguish between regulatory compliance and behavioural compli-

ance. Regulatory compliance checks whether the permissions and obligations set up by the

security monitor of an organization (e.g., company, web-service . . .) are compliant with

respect to the privacy policies set up by the law/policy makers. Behavioural compliance

checks whether these very obligations and permissions are indeed enforced in the system

by the security monitor of the organization.

Despite its strengths, the Cuppens-Demolombe logic cannot express whether the sit-

uation is (regulatory or behaviourally) compliant with respect to a privacy policy. The

problem is that the logic can define privacy policies in terms of the permitted and for-

bidden knowledge of the resulting epistemic state of the recipient of information, but it

cannot derive the permitted messages nor the obligatory messages by combining and rea-

soning on this knowledge. Our modal logic addresses these problems and extends the

Cuppens-Demolombe logic with dynamic update operators inspired from the ones of dy-

namic epistemic logic (van Ditmarsch et al, 2007). These dynamic operators model both

the dynamics of knowledge and of privacy policies. They can add or remove norms from

the policy, and we add constants expressing whether the system is regulatorily and be-

haviourally compliant with a policy, i.e., there is no violation.

The paper is organized as follows. In Section 2, we describe the range of phenomena

under study, and we give a number of examples to provide some intuitions. In Section 3,

we introduce our Dynamic Epistemic Deontic Logic (DEDL). We start with the static

part, defining epistemic norms and privacy policies, and we then add dynamics, defining

permitted (and obligatory) messages and enforcements of privacy policies. In Section 4,

we propose a new logic based on the logic of Section 3 which is more appropriate for

checking compliance.

4 Guillaume Aucher et al.

2 Our scenario of privacy policies

In this paper, we consider a single agent (Sender) communicating information from a

knowledge base to another agent (Recipient), with the effect that the Recipient knows

the information. The Sender is subject to privacy policies which restrict the messages he is

permitted to send to the Recipient. The Sender is therefore a security monitor. We illustrate

the distinction between norms of transmission of information and epistemic norms with

an example:

Example 1 Consider a Sender s, e.g., a web server, which is subject to a privacy regula-

tion: he should not communicate the address a of a person to the Recipient r. We could

write this as a norm of transmission of information, regulating the sending of a message:

¬Ps(Send a), which denotes the denial that the Sender sends message a. Instead, in an

epistemic norm perspective, this prohibition can be derived from the prohibition for the

Sender that the Recipient comes to know the address: Kra. This is expressed by a deon-

tic operator indexed by the Sender and having as content the ideal knowledge Kr of the

Recipient: ¬PsKra.

This distinction is bridged by modelling sending actions performed by the Sender

which update the knowledge of the Recipient.

Example 2 The action of sending the message, [Send a], expresses that the Sender sends

to the Recipient the address a. The result of this action is that the Recipient knows a: Kra.

Since Kra is not permitted by the epistemic norm ¬PsKra, the Sender during his decision

process derives that also the action [Send a] is not permitted: ¬Ps(Send a). Analogously,

all other possible actions leading to the forbidden epistemic state Kra, if any, are prohibited

too. For example, if the address is composed by street m, number n and town t such that

(m∧ n∧ t)↔ a, then the sequence of messages [Send m][Send n][Send t] leads to the

forbidden epistemic state Kra.

Given the assumptions made in this paper, there is an asymmetry in the modeling of

what the Sender and the Recipient know. In the current model we consider only one source

of information, so the Sender’s point of view is the objective one and can be represented

as factual knowledge, e.g., we read a as the Sender knows the address. We assume also

that the Sender never lies, so we talk about “knowledge” of the Recipient: the result of

Sender’s actions on the epistemic state of the Recipient is knowledge rather than belief:

Kra implies a, i.e., that the Sender holds a as true. If instead we allowed the Sender to lie

to protect some secrets (as, e.g., Bonatti et al (1995) do), then the result of the action of

sending messages would be a mere belief of the Recipient: the result of [Send a] would

be that the Recipient believes a, but a - from the point of view of the Sender - would not

follow from this.

A logical approach to privacy provides a natural solution to the so-called inference

problem (Hinke, 1988), i.e., how further permissions propagate from permitted informa-

tion:

Example 3 Assume it is prohibited to know the street where some person lives. Thus, it

must be prohibited to know the address of this person. If m∧n∧ t ↔ a, then ¬PsKrm im-

plies ¬PsKra. Viceversa, if it is permitted to know the address, then it must be permitted to

A Dynamic Logic for Privacy Compliance 5

know the street. The same kind of reasoning is transferred at the level of norms of trans-

mission of information. For example, ¬Ps(Send m) implies ¬Ps(Send a): if it is prohibited

to send the name of the street, it is prohibited to send the entire address.

Note that to attribute knowledge to the Recipient, it is neither necessary to have user

profiles nor to have any uncertainty. This stems from the assumption that the Sender is

for the Recipient the only source of information concerning the knowledge base. The only

knowledge that should be considered is the one derived from the past interactions between

the two agents, i.e., the information already disclosed by the Sender. Assuming for sim-

plicity that the Sender is rational and sends only information consistent with his previous

messages, there is no need to introduce some kind of belief revision.

When the forbidden state is achieved by a sequence of messages, there is the possibility

that each message of the sequence is permitted while the resulting state is prohibited: this

is a new kind of the Chinese wall problem (Brewer and Nash, 1989), considered from

the double perspective of both knowledge of the Recipient and messages by the Sender.

A Chinese wall security policy is an example of aggregation exception. The exception is

given by a system that maintains two pieces of information and a user is authorized to

access one or the other, but not both.

Example 4 (Website example) Consider the information about websites contacted by a

user (the Recipient), which are available on a server (the Sender) logfile. The list of web-

sites for each user is clearly a sensitive information which he would not like to disclose.

However, knowing which websites have been visited is a valuable information, for exam-

ple, for the configuration of a firewall, or to make statistics. Thus it has become anonym

by replacing the names of the users with numbers by means of a hashcode (h). So even

if one knows the list of users one cannot understand who contacted which website. How-

ever, from the association between users and numbers and between numbers and websites

the original information can be reconstructed. Therefore the mappings from the users to

the numbers (c) and from the numbers to the websites (e) can be distributed individually

but not altogether since their association would allow to reconstruct the mapping from the

users to the websites they visited (v): c∧ e→ v.

A solution to enforce this privacy policy could be to forbid the distribution of a map-

ping if the other one has been already distributed, using a language like the one proposed

by Barth et al (2007), which is able to express policies about the flow of information

referring to actions already performed. This solution, however, requires two rules corre-

sponding to the possible permutations of messages. Moreover, this solution is not gen-

eral, because there can be further ways of making the forbidden information available,

for example by distributing the hash function h used. Expressing a flexible policy on all

the alternative combinations of actions becomes soon unfeasible. Moreover, new ways of

computing the forbidden information could be devised later, which would not be taken

into account by the policy.

In this situation we have that it is permitted to know the individual pieces of informa-

tion, but not what is implied by the conjunction of them:

PsKrc,PsKre,¬PsKrv.

It states that it is permitted to know the mapping between users and numbers (PsKrc), it

is permitted to know the mapping between numbers and websites visited (PsKre) but it is

not permitted to know the mapping between users and their websites visited (¬PsKrv). We

6 Guillaume Aucher et al.

have the same situation from the point of view of permissions concerning actions: it is per-

mitted to send the messages c and e individually, but not their combination: Ps(Send c)∧
Ps(Send e) but ¬Ps(Send (e∧c)) otherwise the epistemic norm ¬PsKrv would be violated.

This means that after sending one of the two messages, the other one becomes prohibited:

[Send e]¬Ps(Send c) and [Send c] ¬Ps(Send e).

Some privacy policies prescribe not only which messages are forbidden, but also which

messages are obligatory. We can lift these obligations at the level of epistemic norms:

Example 5 (Spyware Example) Assume that the list of websites mentioned in e and sent

by Sender can disclose websites where it is possible to download software. If Sender knows

that there is the risk that such software contains spyware (y), then the Recipient should

‘know’ it. This privacy policy is expressed by a single epistemic norm:

y∧Kre→ OsKry

We can generalize this kind of policies to situations where the Sender should inform

the Recipient whether a piece of information has some property or not:

Example 6 When the knowledge base contains classified information and the Recipient

has some specific role, then the Sender should inform the Recipient whether the message

p he sent contains classified information (c) or not:

role(r)∧Kr p→ Os(Krc∨Kr¬c)

The policy does not contain in the antecedent the fact that Sender communicated p, but

only that Recipient knows p: recall that we assume that the only source of information for

the Recipient is the sender, so this epistemic state must be the result of a previous message

by the Sender.

Note that in this example we have that the norm is applicable only in a context where

the Recipient plays a given role. Indeed, as discussed by Barth et al (2007) in the theory of

contextual integrity, privacy norms are relevant only in some context, usually defined by

roles played by Sender and Recipient.

When introducing the new notions of permitted and obligatory epistemic states and

the corresponding permissions and obligations to send a message, it is necessary to clarify

what the notion of compliance becomes.

Example 7 A message is permitted (Ps(Send a)), if sending it does not lead to a non-

compliant situation: i.e., if sending it does not violate some epistemic obligation. For ex-

ample, sending the message a ([Send a]) leads to a state where Kra while at the same time

¬PsKra (i.e., Os¬Kra). A message is obligatory (Os(Send a)) when the Recipient does not

already know the information (¬Kra), it is permitted to send the message (Ps(Send a)) and

it is obligatory that the Recipient knows the content of the message (OsKra)

Many privacy policy languages, like Barth et al (2006), view norms as strict constraints

which cannot be violated. This reduces the flexibility since in some situations it is neces-

sary to cope with violations.

A Dynamic Logic for Privacy Compliance 7

Example 8 Assume that the Sender discloses some prohibited information (e.g., ¬PsKra),

and this leads to a non-compliant situation: [Send a](Kra∧¬PsKra). In this situation, the

Sender is subject to further requirements, for example to make the Recipient know that the

information is classified c: Kra→ OsKrc.

The possibility of nesting formulas with epistemic and deontic modalities allows us to

express meta-policies, i.e., policies concerning the disclosure of policies, as proposed for

example by Bonatti et al (1995):

Example 9 Sometimes, informing the Recipient about the prohibition to send some in-

formation might lead him to infer something he should not know. For example, if the

Recipient asks whether a person is a secret agent (p), replying “I cannot tell this to you” to

the question makes the Recipient infer that the person is actually a secret agent, otherwise

the answer would have been “no”. To avoid this case, it should be prohibited to let the

Recipient know the policy that knowing p is prohibited:

¬PsKr¬PsKr p

In contrast, if a policy is permitted to be known, it can even be communicated to the

Recipient. If PsKrPsKr p then it is permitted to send the message PsKr p: Ps(Send PsKr p).
This illustrates also that policies can be the content of messages.

Finally, policies have a dynamic character for several motivations. A major source of

modification in policies is due to the internal IT system management, to new user require-

ments or to adapt the system against new possible security threats. Moreover, it is well

known that law has a dynamic character since it is subject both to continuous change by

the legislator and to the interpretation process of law in courts (see Boella et al (2010) for

a formal model of interpretation). The two problems are interconnected, since changes of

policies not due to changes in law must be assured to be compliant with laws and further

changes may be due to ensure this compliance.

For these reasons in our model, we consider how to introduce new norms in policies

composed by epistemic norms.

Example 10 In case of attack by some hacker, the privacy policies can be made more strict.

For example, the Sender can decide to strengthen the privacy policy P of Example 4 to

PsKrc,¬PsKre,¬PsKrv

where PsKre has been replaced by ¬PsKre: it is now prohibited to disclose the mapping

from numbers to visited web-sites. In the same way as we have message sending actions,

we introduce promulgation actions which update the set of norms. The above new privacy

policy can be enforced by the Sender through the update [Prom ¬Kre].

3 Dynamic epistemic deontic logic

The logic for privacy policy reasons about obligation, permission, knowledge, and infor-

mation exchange. To deal with these notions altogether, we first extend in Section 3.1 the

logic of Cuppens and Demolombe (1997), and in Section 3.2 we add dynamics.

8 Guillaume Aucher et al.

3.1 ‘Static’ privacy policies

3.1.1 Epistemic Deontic Logic (EDL)

We split our language into two kinds of formulas: circumstances and epistemic practi-

tions. The former cannot be in the scope of an obligation operator Os whereas the latter

are always within the scope of a deontic operator Os. Formulas of LEDL are called circum-

stances and formulas of L α
EDL are called epistemic practitions. The formula Osα reads as

‘it is obligatory for the Sender that α .’ The formula Psα is an abbreviation for ¬Os¬α and

reads as ‘it is permitted for the Sender that α .’ The formula Krφ reads as ‘the Recipient

knows that φ .’ Pure circumstances are circumstances without obligation operators Osα ,

we call them LEL. In other words, pure circumstances are just (standard) epistemic for-

mulas. This duality between practitions and proposition is derived from Castañeda’s well

known approach to deontic logic, who observed the grammatical duality of expressions

depending whether they are within or without the scope of deontic operators (Castañeda,

1981) (see the appendix for more details). This yields the following language.

Definition 1 (Syntax of LEDL) Let Φφ be a set of propositionnal letters. The language

LEDL is defined inductively as follows.

LEDL : φ ::= p | ¬φ | φ ∧φ | Krφ | Osα

L
α

EDL : α ::= Krφ | ¬α | α ∧α

where p ranges over Φφ .

We have that practitions are also epistemic propositions, in the sense that L α
EDL ⊂

LEDL. The duality between practitions and epistemic propositions is illustrated by the

following example.

Example 11 The following formulas are members of both LEDL and L α
EDL:

– Kra: the receiver knows the address.

– KrKra→ KrOsKra: if the Recipient knows that he knows the address, then he knows

that it is obligatory for the Sender that he knows the address.

The following formulas are members of LEDL but not L α
EDL:

– ¬PsKra: it is not permitted for the Sender that the Recipient knows the address.

– y∧Kre→OsKry: If Sender knows that there is the risk that software contains spyware

(y), then the Recipient should ‘know’ it.

– role(r)∧Kr p→Os(Krc∨Kr¬c): If the Recipient has some specific role and Recipient

knows p, then the Sender should inform the Recipient whether the message p he sent

contains classified information (c) or not.

– Kra→ OsKrc: if the Recipient knows the address, then the Sender is subject to fur-

ther requirements, for example to make the Recipient know that the information is

classified.

The following formulas are not members of LEDL:

– OsOsKr p: there is no nesting of two operators Os without an operator Kr in between.

– Os p: only epistemic formulas are allowed in the scope of a deontic operator.

A Dynamic Logic for Privacy Compliance 9

Consequently, the formula OsKr p→ Os p does not belong to the language LEDL. This

formula is known as Åqvist’s paradox (Åqvist, 1967).

Definition 2 (Semantics of LEDL) An EDL-model M is a tuple M = (W,D,R,V), where

W is a non-empty set of possible worlds, R : W → 2W and D : W → 2W are accessibility

relations on W , D being serial, and R being reflexive1, and V : Φφ → 2W is a valuation.

An EDL-frame is an EDL-model without valuation V . The truth conditions are defined

inductively as follows.

M,w |= p iff w ∈V (p)
M,w |= φ ∧ψ iff M,w |= φ and M,w |= ψ
M,w |= ¬φ iff not M,w |= φ
M,w |= Osα iff for all v ∈ D(w), M,v |= α.
M,w |= Krφ iff for all v ∈ R(w), M,v |= φ

We write M |= φ when for all w ∈W , M,w |= φ . (M,w) is called a pointed EDL-model. If

P is a set of formulas, we write M,w |= P when M,w |= φ for all φ ∈P .

Theorem 1 (Soundness and completeness) The logic LEDL axiomatized by the following

axiom schemes and inference rules is sound and complete for the language LEDL with

respect to the semantics of EDL-models. We write ⊢ φ for φ ∈ LEDL.

A1 All propositional tautologies based on Φφ

A2 ⊢ Osα → Psα
A3 ⊢ Krφ → φ
A4 ⊢ Os(α → α ′)→ (Osα → Osα

′)
A5 ⊢ Kr(φ → φ ′)→ (Krφ → Krφ

′)
R1 If ⊢ α then ⊢ Osα
R2 If ⊢ φ then ⊢ Krφ
R3 If ⊢ φ ∗→ ψ∗ and ⊢ φ ∗ then ⊢ ψ∗

Proof It follows straightforwardly from the Sahlqvist correspondence theorem (Sahlqvist,

1975) because Axioms A2 and A3 are Sahlqvist formulas. QED

Axiom A2 models the fact that an obligation for the Sender should always be permitted.

Axiom A3 models the fact that if the Recipient knows a fact then this fact must be true: it is

an essential property of knowledge. The other axioms model the fact that obligations and

knowledge are closed under logical consequences. We could perfectly add other conditions

on accessibility relations and their corresponding axioms, such as knowledge introspection

(⊢ Krφ → KrKrφ), and all the results of this paper would still hold. We remain unspecific

about these epistemic issues because we prefer to focus in this paper on our contribution,

which is of a different nature.

Let M be a finite EDL-model and φ be a formula of LDEDL. We define ||M||, the size

of M, to be the sum of the number of possible worlds in M and the number of pairs in R

and D. We define |φ |, the size of φ , to be the number of symbols in φ .2 For a given function

1 An accessibility relation R is serial if and only if R(w) 6= /0 for all worlds w. An accessibility relation R is

reflexive if and only if w ∈ R(w) for all w ∈W . See Blackburn et al (2001) for details.
2 Formally, |φ | is defined inductively as follows: |p| = 1, |¬φ | = |Krφ | = 1+ |φ |, |φ ∧ φ ′| = 1+ |φ |+ |φ ′|,
|Osα|= 1+ |α|, |[Send ψ]φ |= 1+ |ψ|+ |φ |, |[Prom α]φ |= 1+ |α|+ |φ |.

10 Guillaume Aucher et al.

g(n), we denote by O(g(n)) the set of functions

O(g(n))=

{

f (n)

∣

∣

∣

∣

there are constants c and n0 such that O≤ f (n)≤ cg(n) for all n≥ n0

}

.

Thus, for example, when we say that the running time of model checking whether M,w |=
φ is O(||M|| × |φ |), this means that there is some constant c, independant of the EDL-

model M and the formula φ , such that for all pointed EDL-models (M,w) and formulas φ ,

the time to check if M,w |= φ is at most c×||M||× |φ |.

Theorem 2 (Decidability and complexity) The satisfiability problem for LEDL is decid-

able and PSPACE-complete. There is an algorithm that, given a finite pointed EDL-model

(M,w) and a formula φ ∈LEDL, determines, in time O(||M||× |φ |), whether M,w |= φ .

Proof To prove decidability, one shows that LEDL has the finite model property by adapting

the selection method (Blackburn et al, 2001). The proof that the satisfiability problem is

PSPACE can easily be adapted from Halpern and Moses (1992). The algorithm for the

model checking problem is the same as in Fagin et al (1995). QED

3.1.2 Privacy policies and compliance in EDL.

As discussed by Barth et al (2007) in the theory of contextual integrity, privacy norms are

relevant only in some context, usually defined by roles played by Sender and Recipient.

This leads us to define the following notions.

Definition 3 (Epistemic norm and privacy policy) An epistemic norm is a formula of the

form i→ Osα or i→ Psα where i is a pure circumstance and α is an epistemic practition.

The set of epistemic norms is written E N . A privacy policy P is a LEDL-consistent set

of epistemic norms.

Example 12 The following formulas of LEDL can be elements of a privacy policy:

– Os¬Kra: it is not permitted for the Sender that the Recipient knows the address.

– y∧Kre→OsKry: If Sender knows that there is the risk that software contains spyware

(y), then the Recipient should ‘know’ it.

– role(r)∧Kr p→Os(Krc∨Kr¬c): If the Recipient has some specific role and Recipient

knows p, then the Sender should inform the Recipient whether the message p he sent

contains classified information (c) or not.

– Kra→ OsKrc: if the Recipient knows the address, then the Sender is subject to fur-

ther requirements, for example to make the Recipient know that the information is

classified.

Note that obligations and permissions concern the knowledge of the Recipient. This fact

should not let the reader think that a privacy policy concerns the behavior of the Recipient.

Indeed, the beliefs of the Recipient are only modified by actions of the Sender, so these

policies regulate the behavior of the Sender who might disclose information or not to the

Recipient depending on whether or not this disclosure is in conflict with the privacy policy.

The following formulas of LEDL cannot be elements of a privacy policy:

– Kra: no deontic operator

– KrKra→ KrOsKra: deontic operator preceded by a knowledge operator

A Dynamic Logic for Privacy Compliance 11

– KrOsKry∧Kre→ OsKry: condition is not a pure circumstance since it contains a de-

ontic operator

Privacy policies are typically set up by a law/policy maker and are imposed to the security

monitor (Sender), although they might also be set up by the Sender himself/herself. They

should be enforced in any case.

The set of epistemic norms is not necessarily complete. As a result, the Sender can

perfectly add other epistemic norms as long as they are consistent with the privacy policy,

depending on the particular situation at stake. This leads us to define the following no-

tions of permissive and restrictive privacy policies. Intuitively, a restrictive privacy policy

is a policy where only the permissions of the security policies hold, everything else being

forbidden. A permissive privacy policy is a policy where only the prohibitions of the se-

curity policy hold, everything else being permitted. These definitions are similar with the

definitions of permissive and restrictive approach of Cuppens and Demolombe (1997).

Definition 4 (Permissive and restrictive privacy policy) Let P be a privacy policy. The

set E (M,w) = {φ ∈LEL |M,w |= φ} represents the epistemic state of the Recipient.

– The privacy policy P is restrictive if for all EDL-models (M,w), if E (M,w)∪P 0
Psα , then M,w |= ¬Psα .

– The privacy policy P is permissive if for all EDL-models (M,w), if E (M,w)∪P 0
¬Psα , then M,w |= Psα .

Note that specifying whether a privacy policy P is restrictive or permissive specifies

completely what is permitted and forbidden to know for the Recipient in the pointed EDL-

model (M,w). As we said, in the general case, the privacy policy P does not specify all

the obligations that should hold in a situation (M,w).
We therefore define four notions of compliance. The first notion of compliance, called

regulatory compliance, checks whether the permissions and obligations set up by the se-

curity monitor (Sender) of an organization are consistent with the current privacy policy

P set up by the law/policy maker. The second notion of compliance, called behavioural

compliance, checks whether the obligations Osα strictly following from the privacy policy

P given the epistemic state E (M,w) are enforced. The third notion of compliance, sim-

ply called compliance, corresponds to the conjunction of the regulatory and behavioural

compliance. The fourth notion of compliance, called strong compliance, checks regula-

tory compliance and whether all the obligations set up by the security monitor (Sender)

are enforced.

Definition 5 (Compliance) Let (M,w) be a pointed EDL-model and P a privacy policy.

– The situation (M,w) is regulatory compliant with respect to the privacy policy P if

and only if M,w |= Osα for all i→ Osα ∈P and M,w |= Psα for all i→ Psα ∈P .

– The situation (M,w) is behaviourally compliant with respect to the privacy policy P

if and only if M,w |= i→ α for all i→ Osα ∈P .

– The situation (M,w) is compliant with respect to the privacy policy P if and only if it

is regulatory and behaviourally compliant with respect to P .

– The situation (M,w) is strongly compliant with respect to P if and only if it is regula-

tory compliant with respect to P and M,w |= Osα → α for all α ∈L α
EDL.

12 Guillaume Aucher et al.

When the privacy policy P is finite, we can express with a single formula whether the

current situation (M,w) is regulatory compliant, behaviourally compliant and compliant

with respect to P .

Proposition 1 Let P be a finite privacy policy. Let RegComp=
∧

i→Osα∈P
Osα∧

∧

i→Psα
Psα ,

BehComp =
∧

i→Osα∈P
(i→ α) and Comp = RegComp∧BehComp. Then,

– (M,w) is regulatory compliant with respect to P if and only if M,w |= RegComp;

– (M,w) is behaviourally compliant with respect to P if and only if M,w |= BehComp;

– (M,w) is compliant with respect to P if and only if M,w |=Comp.

The following proposition shows that for permissive privacy policies compliance is the

same as strong compliance. It also gives a semantic counterpart to the syntactic notion of

strong compliance: an epistemic state (represented by (M,R(w))) is strongly compliant

if there exists a corresponding ideal epistemic state (represented by (M,R(v)) for some

v ∈ D(w)) containing the same information (i.e. bisimilar3).

Proposition 2 Let (M,w) be a finite pointed EDL-model and P a privacy policy.

– If P is permissive, then (M,w) is compliant with respect to P if and only if (M,w) is

strongly compliant with respect to P .

– The situation (M,w) is strongly compliant with respect to P if and only if there exists

v ∈ D(w) such that (M,R(w)) and (M,R(v)) are bisimilar.

Proof

– The proof of the first item stems from the fact that if P is permissive, then for

all pointed EDL-models (M,w), M,w |= Osα for some α ∈ L α
EDL if and only if

E (M,w)∪P ⊢ Osα . The right to left direction trivially trivially holds. Assume to-

wards a contradiction that M,w |= Osα and E (M,w)∪P 0 Osα . Then, because P is

permissive M,w |= ¬Osα , which is impossible.

– Let (M,w) be a finite pointed EDL-model strongly compliant with respect to P . As-

sume towards a contradiction that for all v ∈ D(w), R(w) and R(v) are not bisimi-

lar. Then there is v′ ∈ R(v) such that for all w′ ∈ R(w), (M,v′) and (M,w′) are not

bisimilar. Therefore, because M is finite, there is φ v ∈LEDL such that M,v′ |= φ v and

M,w′ |= Kr¬φ v. Then for all v ∈ D(w), M,v |= ¬Kr¬φ v and M,w |= Kr¬φ v. Hence,

M,w |= Os

(

∨

v∈D(w)
¬Kr¬φ v

)

and M,w |=
∧

v∈D(w)
Kr¬φ v. Let α =

∨

v∈D(w)
¬Kr¬φ v, we

3 Two pointed models (M,v) and (M′,v′) are bisimilar if there is a relation Z on W ×W ′ such that vZv′ and

satisfying the following conditions:

Base: if wZw′, then for all p ∈Φφ , w ∈V (p) iff w′ ∈V ′(p);
Forth R: if wZw′ and u ∈ R(w), then there is u′ ∈ R(w′) such that uZu′;

Back R: if wZw′ and u′ ∈ R(w′), then there is u ∈ R(w) such that uZu′;

Forth D: if wZw′ and u ∈ D(w), then there is u′ ∈ D(w′) such that uZu′;

Back D: if wZw′ and u′ ∈ D(w′), then there is u ∈ D(w) such that uZu′.

If two pointed Kripke models are bisimilar then the formulas true at these two pointed models are the same,

i.e. then contain the same information (see Blackburn et al (2001) for more details). Two multi-pointed models

(M,S) and (M′,S′), where S⊆M and S′ ⊆M′, are bisimilar if for all w ∈ S there is w′ ∈ S′ such that (M,w) and

(M′,w′) are bisimilar, and for all w′ ∈ S′ there is w ∈ S such that (M,w) and (M′,w′) are bisimilar.

A Dynamic Logic for Privacy Compliance 13

e,c,v

R

¬e,c,¬v

L

L

L

L

L

L

L

L

L

L

¬e,c,¬v

��

�� ��
�� ��w : e,c,voo

yy ��

e,¬c,v

e,¬c,v

J

J

J

J

J

J

J

J

J

v : e,c,v

OO

// e,¬c,voo e,¬c,¬v

¬e,c,¬v

Fig. 1 Website example.

then have that M,w |= Osα ∧¬α . This contradicts the assumption of strong compli-

ance.

Let (M,w) be a finite pointed EDL-model regulatory compliant with respect to P ,

and assume that there exists v ∈D(w) such that (M,R(w)) and (M,R(v)) are bisimilar.

Let α ∈L α
EDL, then there are α i

0,α
i
1, . . . ,α

i
ni
∈L α

EDL such that α ↔
∨

i∈{1,...,k}
(Krα

i
0 ∧

¬Kr¬α i
1∧ . . .∧¬Kr¬α i

n) ∈ LEDL by definition of L α
EDL. Assume that M,w |= α . Then

there is i ∈ {1, . . . ,k} such that M,w |= Krα
i
0 ∧ ¬Kr¬α i

1 ∧ . . . ∧ ¬Kr¬α i
ni

. Because

(M,R(w)) and (M,R(v)) are bisimilar, we have that M,v |= Krα
i
0 ∧¬Kr¬α i

1 ∧ . . .∧
¬Kr¬α i

ni
. Indeed, assume towards a contradiction that M,v |= ¬Krα

i
0. Then there is

v′ ∈ R(v) such that M,v′ |= ¬α i
0. Therefore, by our definition of bisimilarity, there

is w′ ∈ R(w) such that M,w′ |= ¬α i
0, which contradicts the fact that M,w |= Krα

i
0.

The same reasoning holds if we assume that M,v |= Kr¬α i
j. So, M,v |= α , and hence

M,w |= Pα . Therefore, we have proved that for all α ∈L α
EDL, M,w |= α → Psα , i.e.,

for all α ∈L α
EDL, M,w |= Osα → α . So, (M,w) is strongly compliant with respect to

P .

QED

Example 13 (Website example continued) Consider Example 4, where we have the map-

pings from the users to the numbers (c) and from the numbers to the websites (e), the

related mapping from the users to the websites they visited (v) such that c∧ e→ v. We

express the privacy policy P1 as:

P1 = {PsKrc,PsKre,¬PsKrv}

It states that it is permitted to know the mapping between users and numbers (PsKrc), it is

permitted to know the mapping between numbers and websites visited (PsKre) but it is not

permitted to know the mapping between users and their websites visited (¬PsKrv). In the

pointed EDL-model (M,w) of Figure 1, the accessibility relation R is represented by plain

lines and the accessibility relation D is represented by dashed lines. So for example, when

we have a plain line between two possible worlds w and v, it means that w ∈ R(v) and

v ∈ R(w), and when we have a dashed arrow from a possible world w to another possible

world v, it means that v ∈ D(w). Even if we do not represent it in the figure, we also have

that v∈R(v) for all worlds v∈M, and v∈D(v) for all worlds v∈M−{w}. Besides, it holds

14 Guillaume Aucher et al.

¬e,y ¬e,¬y

v : e,y �� ��
�� ��w : e,yoo e,¬y

Fig. 2 Spyware example.

that M |= c∧ e→ v. This pointed EDL-model (M,w) represents semantically a situation

which is compliant with respect to the privacy policy P1. Indeed, M,w |= P1, so the

situation is regulatory compliant with respect to P1. Moreover, the prohibition ¬PsKrv, or

equivalently the obligation Os¬Krv, of the privacy policy P1 is enforced because M,w |=
¬Krv. So the situation (M,w) is also behaviourally compliant. In fact the situation (M,w)
is also strongly compliant because, by application of Proposition 2, (M,R(w)) is bisimilar

to (M,R(v)) and v ∈ D(w).

Example 14 (Spyware example) Consider a situation where e is the list of websites men-

tioned and y is the fact that websites might contain risky software. The privacy policy is

expressed by a unique epistemic norm:

P2 = {y∧Kre→ OsKry}

It states that if the Recipient knows a list of websites (Kre) which might contain some risky

softwares (y), then the Recipient should know that some of these websites might contain

some risky softwares (OsKry). Note that the condition of this epistemic norm contains an

epistemic formula. In Figure 2 is depicted a situation compliant with this privacy policy.

Like in Figure 1, the accessibility relation R in this pointed EDL-model (M,w) is repre-

sented by plain lines and the accessibility relation D is represented by dashed lines. So for

example, when we have a plain line between two possible worlds w and v, it means that

w ∈ R(v) and v ∈ R(w), and the dashed arrow stemming from the possible world w to the

possible world v means that v ∈ D(w). Reflexive arrows are omitted, which means in this

EDL-model that for all v ∈ M, we have v ∈ R(v) and for all v ∈ M−{w}, {v} = D(v).
The situation is compliant with respect to the privacy policy P2. Indeed, the situation

is regulatory compliant because M,w |= P2. It is also behaviourally compliant, because

M,w |= y∧Kre→ Kry since M,w |= ¬(y∧Kre). However, it is not strongly compliant

because (M,w) is not bisimilar to (M,v).

We can generalize this kind of policies to stronger policies where the Sender has to inform

the Recipient whether a piece of information has some property or not as in Example 6.

3.2 The dynamic turn

3.2.1 Dynamic Epistemic Deontic Logic (DEDL)

We now add dynamics to the picture by means of messages sent to the Recipient and by

means of promulgations that change the obligations of the Sender. These actions affect the

situation respectively in two ways: either they affect the epistemic realm (represented in an

EDL-model by the relation R) or they affect the normative realm (represented in an EDL-

model by the relation D). This leads us to enrich the language LEDL with two dynamic

A Dynamic Logic for Privacy Compliance 15

operators [Send φ] and [Prom α], yielding the language LDEDL. The formula [Send ψ]φ
reads as ‘after the Recipient learns ψ , φ holds’, and [Prom α]φ reads as ‘after the Sender

promulgates α , φ holds’.

Definition 6 (Syntax of LDEDL) The language LDEDL is defined inductively as follows:

LDEDL : φ ::= p | ¬φ | φ ∧φ | Krφ | Osα | [Send φ]φ | [Prom α]φ

L
α

DEDL : α ::= Krφ | ¬α | α ∧α | [Send φ]α | [Prom α]α

where p ranges over Φφ .

We also have that L α
DEDL ⊂LDEDL, just as we had L α

EDL ⊂LEDL.

Example 15 The following formulas are members of LDEDL:

– [Send a]Kra The result of the Sender sending to the Recipient the address a is that the

Recipient knows a.

– [Send a](Kra∧¬PsKra): the Sender discloses some prohibited information a (because

¬PsKra), and this leads to a non (strongly) compliant situation.

– [Prom ¬Kre](PsKrc∧¬PsKre∧¬PsKrv): the Sender enforced the new privacy policy

P = {PsKrc,¬PsKre,¬PsKrv}.

The semantics of these dynamic operators is defined below, it is inspired by the logical

framework of Baltag et al (1998); Baltag and Moss (2004).

In the multi-agent setting of Baltag and Moss (2004), one is interested in modeling

the effect of (epistemic) actions on the beliefs of several agents. The perception of the

agents concerning these actions when they occur is represented by action models. An

example of action model is the one for private announcement whereby an agent B learns

ψ while the other agent A believes nothing is happening. The action model of this private

annoucement is the same as the EDL-frame Aψ of Figure 3, except that the accessibility

relation R has to be replaced by the epistemic accessibility relation of agent B and that

the accessibility relation D has to be replaced by the epistemic accessibility relation of

agent A. As a result of this private announcement, the beliefs of agent B are updated by ψ ,

whereas the beliefs of the agent A remain unchanged. This update is captured formally in

Baltag and Moss (2004) by an update product ⊗ taking as argument an epistemic model

and an action model, and yielding a new epistemic model. The definition of their update

poduct ⊗ is formally the same as our definition of the update products ⊕ and ⊙ below;

the only difference here is our intuitive interpretation of the action model and the update

product. As a result of the update⊕ by the EDL-frame Aψ , the knowledge of the Recipient

is updated by ψ whereas the obligations and permissions of the Sender remain unchanged.

Dually, as a result of the update ⊙ by the action model Aα , the obligations of the Sender

are updated by α whereas the knowledge of the Recipient remains unchanged. To this, we

add the condition that if the information sent to the Recipient is not true then it is ignored,

and the condition that if the norm to be promulgated is not true then it is also ignored.

Definition 7 (Semantics of LDEDL) Let M = (W,D,R,V,w) be a pointed EDL-model,

ψ ∈LEDL and α ∈L α
EDL. Let Aψ = (Wψ ,Dψ ,Rψ) be the EDL-frame depicted in Figure 3

and defined by Wψ = {wψ ,w⊤}, Dψ = {(wψ ,w⊤),(w⊤,w⊤)} and R= {(wψ ,wψ),(w⊤,w⊤)}.
Let Aα = (Wα ,Dα ,Rα) be the EDL-frame depicted in Figure 3 and defined by Wα =
{wα ,w⊤}, Dα = {(wα ,wα),(w⊤,w⊤)} and R = {(wα ,w⊤),(w⊤,w⊤)}. We define the

EDL-models (M,w)⊕ψ and (M,w)⊙α as follows.

16 Guillaume Aucher et al.

wψ

��

��

wα

��

��
w⊤

R,D

ZZ w⊤

R,D

ZZ

Fig. 3 EDL-frames Aψ (left) and Aα (right).

– If M,w 2 ψ then (M,w)⊕ψ = (M,w), otherwise (M,w)⊕ψ = (M,w)⊗Aψ .

– If M,w 2 α then (M,w)⊙α = (M,w), otherwise (M,w)⊙α = (M,w)⊗Aα .

Let (M,w) be a pointed EDL-model and Aφ∗ = (Wφ∗ ,Dφ∗ ,Rφ∗) be an EDL-frame of the

form Aψ or Aα . The update product (M,w)⊗Aφ∗ = (W ′,D′,R′,V ′) is defined as follows.

– W ′ = {(w,wφ∗),(v,w⊤)
∣

∣ w,v ∈W,M,w |= φ ∗};
– (v,v∗) ∈ D′(w,w∗) iff v ∈ D(w) and v∗ ∈ Dφ∗(w∗);
– (v,v∗) ∈ R′(w,w∗) iff v ∈ R(w) and v∗ ∈ Rφ∗(w∗);
– (w,w∗) ∈V ′(p) iff w ∈V (p).

The truth conditions of the dynamic operators [Send ψ] and [Prom α] are defined as fol-

lows.

M,w |= [Send ψ]φ iff M⊕ψ,w⊕ |= φ
M,w |= [Prom α]φ iff M⊙α,w⊙ |= φ .

where w⊕ = (w,wψ) if M,w |= ψ , and w⊕ = w otherwise; and w⊙ = (w,wα) if M,w |= α ,

and w⊙ = w otherwise.

Example 16 In Figure 4 is given an example of update with a formula of LEDL (i.e. a

circumstance) and in Figure 5 is given an example of update with a formula of L α
EDL

(i.e. an epistemic practition). As in the previous representation of Figure 1, we omit in all

these EDL-model the accessibility relations s ∈ R(s), for all s ∈ M, and s ∈ D(s) for all

s ∈M−{w}.

In Figure 4, the update by e just removes the world accessible from w by R where e

does not hold, namely the world v. The rest of the model remains unchanged because all

the other worlds are accessible from w by a deontic accessibility relation D.

In Figure 5, the update by ¬Kre just removes the world accessible from w by D where

¬Kre does not hold, namely the worlds u and t. The rest of the model remains unchanged

because all the other worlds are either accessible from w via a world accessible by the

relation D and making ¬Kre true, or they are accessible from w by the accessibility relation

R.

Theorem 3 (Soundness and completeness) The logic LDEDL axiomatized by the follow-

ing axiom schemes and inference rules is sound and complete for LDEDL with respect to

the semantics of EDL-models. The symbol 2 below stands either for [Send ψ] or [Prom α].

A Dynamic Logic for Privacy Compliance 17

e,c,v

R

¬e,c,¬v

K

K

K

K

K

K

K

K

K

K

¬e,c,¬v

��

�� ��
�� ��w : e,c,voo

yy ��

e,¬c,v ⊕ e =

e,¬c,v

J

J

J

J

J

J

J

J

J

v : e,c,v

OO

// e,¬c,voo e,¬c,¬v

¬e,c,¬v

e,c,v

R

¬e,c,¬v

��

�� ��
�� ��e,c,voo

yy ��

e,¬c,v

e,¬c,v

K

K

K

K

K

K

K

K

K

e,c,v

OO

// e,¬c,voo e,¬c,¬v

¬e,c,¬v

Fig. 4 Website example of Figure 1 updated by e.

e,c,v

R

¬e,c,¬v

K

K

K

K

K

K

K

K

K

K

¬e,c,¬v

��

�� ��
�� ��w : e,c,voo

yy ��

e,¬c,v ⊙ ¬Kre =

e,¬c,v

J

J

J

J

J

J

J

J

J

v : e,c,v

OO

// e,¬c,voo e,¬c,¬v

¬e,c,¬v

e,c,v

R

¬e,c,¬v

K

K

K

K

K

K

K

K

K

¬e,c,¬v

��

�� ��
�� ��e,c,voo

yy

e,¬c,v

e,¬c,v

K

K

K

K

K

K

K

K

K

e,c,v

OO

¬e,c,¬v

Fig. 5 Website example of Figure 1 updated by the epistemic practition ¬Kre.

18 Guillaume Aucher et al.

We write ⊢ φ for φ ∈ LDEDL.

LEDL All the axiom schemes and inference rules of LEDL

A6 ⊢ ψ → ([Send ψ]Krφ ↔ Kr (ψ → [Send ψ]φ))
A7 ⊢ ¬ψ → ([Send ψ]φ ↔ φ)
A8 ⊢ [Send ψ]Osα ↔ Osα
A9 ⊢ [Prom α]Krφ ↔ Krφ
A10 ⊢ α → ([Prom α]Osα

′↔ Os(α → α ′))
A11 ⊢ ¬α → ([Prom α]φ ↔ φ)
A12 ⊢2p↔ p

A13 ⊢2¬φ ∗↔¬2φ ∗

A14 ⊢2(φ ∗→ ψ∗)→ (2φ ∗→2ψ∗)
R4 If ⊢ φ ∗ then ⊢2φ ∗

Proof We first prove a lemma.

Lemma 1 For all φ ∈LDEDL there is φ ′ ∈LEDL such that ⊢ φ ↔ φ ′. For all α ∈L α
DEDL

there is α ′ ∈L α
EDL such that ⊢ α ↔ α ′.

Proof of Lemma First, note that if ψ is a formula with dynamic operator then one shows

by induction on ψ using A6 to A14 that 2ψ is provably equivalent to a formula ψ ′ without

dynamic operator. Now, if φ is an arbitrary formula with n dynamic operators, it has a

subformula of the form 2ψ where ψ is without dynamic operators which is equivalent to

a formula ψ ′ without dynamic operators. So we just substitute 2ψ by ψ ′ in φ and we get a

provably equivalent formula thanks to A14 and R4 with n−1 dynamic operators. We then

iterate the process. QED

As usual in dynamic epistemic logic, we use the previous key lemma to prove the theorem.

The soundness part is routine. Let φ ∈LDEDL such that |= φ . Then there is φ ′ ∈LEDL such

that ⊢ φ ↔ φ ′ by Lemma 1, and therefore |= φ ↔ φ ′ by soundness. But ⊢ φ ′ by Theorem

1, so ⊢ φ as well. QED

Axioms A9 to A11 model the fact that the operation of promulgation does not change

the knowledge of the Recipient but only the obligations and permissions of the Sender.

Axioms A6 to A8 model the fact that sending a message changes only the actual knowledge

of the Recipient. In particular, if we focus on the propositional knowledge of the Recipient,

then the combination of Axioms A6 and A7 boils down to

⊢ [Send ψ]Krφ ↔ ((ψ → Kr (ψ → φ))∧ (¬ψ → Krφ)) (1)

In other words, in this propositional case, if the message sent is not true then the knowledge

of the Recipient remains the same as before the sending, so the message is just ignored. But

if the message sent is true, then the knowledge of the Recipient is just conditionalized with

this new message. In particular, we can derive the following theorem for all propositional

formula ψ:

⊢ ψ → [Send ψ]Krψ (2)

This theorem means that after the Sender sends any truthful message to the Recipient, the

Recipient knows this message. The same line of reasoning holds for Axiom A10 and A11:

if the imperative α is not permitted then it is just ignored, but if α is permitted then the

obligations of the Sender are conditionalized by this imperative. These axioms entail that

A Dynamic Logic for Privacy Compliance 19

sending a message does not change the privacy policy (as a consequence of A8) in case

the antecedent of epistemic norms is propositionnal. They also entail that sending a mes-

sage does not change regulatory compliance. This is as expected: regulatory compliance

checks that the obligations and permissions set up by an organization (e.g. web-service,

institution) are compliant with respect to the privacy policy set up by a law/policy maker.

Therefore, this compliance should be independent from the context and the particular state

of the organization at a particular point in time, and therefore also independent from the

knowledge of the recipient at a particular point in time. The following proposition illus-

trates it.

Proposition 3 For all epistemic norms χ = i→ Osα or χ = i→ Psα where i is proposi-

tionnal, and for all ψ ∈LDEDL, we have that

⊢ χ → [Send ψ]χ (3)

Besides,

⊢ RegComp↔ [Send ψ]RegComp (4)

Proof We prove this property using the axioms of LDEDL.

1 ⊢ χ → χ
2 ⊢ χ → (i→ Osα)
3 ⊢ χ → ([Send ψ]i→ [Send ψ]Osα) by Axioms A8, A12 and A13

4 ⊢ χ → (¬[Send ψ]i∨ [Send ψ]Osα)
5 ⊢ χ → (¬[Send ψ]¬(¬i)∨ [Send ψ]Osα)
6 ⊢ χ → (¬[Send ψ]¬(¬i)∨¬[Send ψ]¬Osα) by Axiom A13

7 ⊢ χ →¬[Send ψ]¬(¬i∨Osα) by normality of [Send ψ]
8 ⊢ χ → [Send ψ](¬i∨Osα) by Axiom A13

7 ⊢ χ → [Send ψ](i→ Osα)
8 ⊢ χ → [Send ψ]χ

QED

Dually, promulgating a norm does not change the knowledge of the Recipient (as a

consequence of axiom A9).

The following theorem tells us that the model checking problem of our logic is tractable

and the same as for the language LEDL without the dynamic operators [Send ψ] and

[Prom α] (see Theorem 2).

Theorem 4 (Decidability and complexity) The satisfiability problem for LDEDL is de-

cidable. There is an algorithm (Algorithm 1) that, given a finite pointed EDL-model (M,w)
and a formula φ ∈LDEDL, determines, in time O(||M||× |φ |), whether M,w |= φ .

Proof Decidability (just as completeness of the axiomatization) comes from Lemma 1

because LEDL has the finite model property.

The model checking algorithm 1 works as follows. We label the worlds of the EDL-

model M with subformulas of φ in a particular order. We start with the formulas χ and α
appearing in the subformulas of φ of the form [Send χ]ψ and [Prom α]ψ . Then, we label

the other subformulas of φ . In particular, we use the reduction axioms A6 to A13 to label

formulas involving dynamic operators [Send χ]ψ or [Prom α]ψ . This step is made possible

20 Guillaume Aucher et al.

Algorithm 1 Model-Check((M,w),φ)

Input: A pointed EDL-model (M,w), φ ∈LDEDL

Output: True if M,w |= φ , False otherwise

Stack S = Empty Stack

Add1(S,φ)
Add2(S,φ)

5: while not Empty(S) do

ψ ← Pop(S)
for all w ∈M do

if ψ = p then

if w ∈V (p) then

10: Label(w,ψ)
end if

else if ψ = ¬ψ ′ then

if ψ ′ /∈ Label(w) then

Label(w,ψ)
15: end if

else if ψ = ψ ′ ∧ψ ′′ then

if ψ ′ ∈ Label(w) and ψ ′′ ∈ Label(w) then

Label(w,ψ)
end if

20: else if ψ = Krψ ′ then

Boolean b← True

for all (w,v) ∈ R do

if ψ ′ /∈ Label(v) then

b← False

25: end if

end for

if b = True then

Label(w,ψ)
end if

30: else if ψ = Osα then

Boolean b← True

for all (w,v) ∈ R do

if α /∈ Label(v) then

b← False

35: end if

end for

if b = True then

Label(w,Osα)
end if

40: else if ψ =2p then

if p ∈ Label(w) then

Label(w,ψ)
end if

else if ψ =2¬ψ ′ then

45: if 2ψ ′ /∈ Label(w) then

Label(w,ψ)
end if

else if ψ =2(ψ ′ ∧ψ ′′) then

if 2ψ ′ ∈ Label(w) and 2ψ ′′ ∈ Label(w)
then

50: Label(w,2(ψ ′ ∧ψ ′′))
end if

else if ψ = [Send χ]Krψ ′ then

if χ ∈ Label(w) then

Boolean b← True

55: for all (w,v) ∈ R do

if χ ∈ Label(v) and [Send χ]ψ ′ /∈
Label(w) then

b = False

end if

end for

60: if b = True then

Label(w, [Send χ]Krψ ′)
end if

else if Krψ ′ ∈ Label(w) then

Label(w, [Send χ]Krψ ′)
65: end if

else if ψ = [Send χ]Osα then

if Osα ∈ Label(w) then

Label(w, [Send χ]Osα)
end if

70: else if ψ = [Prom α]Krψ ′ then

if Krψ ′ ∈ Label(w) then

Label(w, [Prom α]Krψ ′)
end if

else if ψ = [Prom α]Osα
′ then

75: if α ∈ Label(w) then

Boolean b← True

for all (w,v) ∈ D do

if α ∈ Label(v) and [Prom α]α ′ /∈
Label(w) then

b = False

80: end if

end for

if b = True then

Label(w, [Prom α]Osα
′)

end if

85: else if Osα
′ ∈ Label(w) then

Label(w, [Prom α]Osα
′)

end if

end if

end for

90: end while

if φ ∈ Label(w) then

Return True

elseReturn False

end if

The symbol 2 in lines 43-51 stands for

[Send ψ] or [Prom α]. We use this notation

in order to avoid repeating the same instruc-

tions twice.

A Dynamic Logic for Privacy Compliance 21

Algorithm 2 Add1(S,φ)

Input: A Stack S and a formula φ
Output: The stack S added with the subformulas of φ ,

ignoring the subformulas χ and α of φ appearing

in dynamic operators [Send χ] and [Prom α] .

Push(S,φ)
if φ = ψ ∧ψ ′ then

Add1(S,ψ)
5: Add1(S,ψ

′)
else if φ = Krψ,¬ψ then

Add1(S,ψ
′)

else if φ = Osα then

Add1(S,α)
10: else if φ = [Send ψ]p then

Add1(S, p)
else if φ = [Send ψ]ψ ′ ∧ψ ′′ then

Add1(S, [Send ψ]ψ ′)
Add1(S, [Send ψ]ψ ′′)

15: else if φ = [Send ψ]¬ψ ′ then

Add1(S, [Send ψ]ψ ′)
else if φ = [Send ψ]Osα then

Add1(S,Osα)
else if φ = [Send ψ]Krψ ′ then

20: Add1(S, [Send ψ]ψ ′)
Add1(S,Krψ ′)

else if φ = [Prom α]p then

Add1(S, p)
else if φ = [Prom α]ψ ∧ψ ′ then

25: Add1(S, [Prom α]ψ)
Add1(S, [Prom α]ψ ′)

else if φ = [Prom α]¬ψ then

Add1(S, [Prom α]ψ)

else if φ = [Prom α]Osα
′ then

30: Add1(S, [Prom α]α ′)
Add1(S,Osα

′)
else if φ = [Prom α]Krψ then

Add1(S,Krψ)
end if

Algorithm 3 Add2(S,φ)

Input: A stack S and a formula φ
Output: The stack S added with the subformulas

χ and α of φ appearing in dynamic operators

[Send χ] or [Prom α]

if φ = ψ ∧ψ ′ then

Add2(S,ψ)
Add2(S,ψ

′)
5: else if φ = Osα then

Add2(S,α)
else if φ = Krψ,¬ψ then

Add2(S,ψ)
else if φ = [Send ψ]ψ ′ then

10: Push(S,ψ)
Add1(S,ψ)
Add2(S,ψ)
Add2(S,ψ)

else if φ = [Prom α]ψ then

15: Push(S,α)
Add1(S,α)
Add2(S,α)
Add2(S,ψ)

end if

because we already labelled the worlds of the EDL-model with the formulas χ and α .

This order of labelling is implemented by a stack S in algorithms 2 and 3 (Add1(S,φ) and

Add2(S,φ)). Algorithm Add1(S,φ) adds on the stack the subformulas of φ by ignoring the

content of messages χ and promulgation α . Besides, to make use of the reduction axioms,

dynamic formulas [Send χ]ψ and [Prom α]ψ are decomposed according to the reduction

axioms A6 to A13. Then the algorithm Add2(S,φ) adds on the stack the content of message

χ and promulgation α , which are themselves decomposed into subformulas by means of

Add1(S,χ) and Add1(S,α).

Termination of algorithms 1, 2 and 3 is ensured by the fact that within each of these

algorithms, calls to other algorithms are made with a formula of degree strictly smaller.

Correctness of these algorithms can be proved by induction using the truth conditions

of Definition 2 and the soundness of Axioms A6 to A13. As for complexity, we first

prove by induction that the running time of Add1(S,φ) is in O(|φ |1), and that the run-

ning time of Add2(S,φ) is in O(|φ2|). Informally, |φ |1 is the size of φ ignoring the dy-

namic operators [Send χ] and [Prom α].4 Dually, |φ |2 is the size of φ considering only

the formulas χ and α in the dynamic operators [Send χ]ψ and [Prom α]ψ in the sub-

4 Formally, |φ |1 is defined inductively as follows: |p|1 = 1, |¬φ |1 = |Krφ |1 = 1+ |φ |1, |φ ∧φ ′|1 = 1+ |φ |1 +
|φ ′|1, |Osα|1 = 1+ |α|1, |[Send ψ]φ |1 = 1+ |φ |1, |[Prom α]φ |1 = 1+ |φ |1.

22 Guillaume Aucher et al.

formulas of φ .5 One can show by induction on φ that |φ | = |φ |1 + |φ |2. We only prove

the case [Send χ]Krψ for algorithm 2. By definition of Add1 and by induction hypoth-

esis, the running time of Add1(S, [Send χ]Krψ) is in O(|[Send χ]φ |1)+O(|Krψ|1)+ 1,

i.e. O(|ψ|1)+O(|Krψ|1)+ 1, i.e. O(|Krψ|1)+ 1, i.e. O(|[Send χ]Krψ|1). We only prove

the case [Send χ]φ for algorithm 3. By definition of Add2 and by induction hypothe-

sis, the running time of Add2(S, [Send χ]φ) is in 1 + O(|χ|1) + O(|χ2|) + O(|φ |2), i.e.

1+O(|χ|)+O(|φ |2), i.e. O(|χ|)+O(|φ |2), i.e. O(|[Send χ]φ |2).
We show that the running time of Model−Check(M,φ) is in O(||M||× |φ |). We show

the following invariant I:

Invariant I: at the start of each iteration of the while loop, of lines 5-90, the total

running time of the while loop is in O(||M||×x), where x is equal to the size of the

formula removed from the stack S in the previous loop and equal to 0 if none has

been removed yet.

We prove the Invariant by induction on the size of the previously removed formula. The

base case holds trivially. We prove the induction step only for the case where the previously

removed formula is of the form ψ = [Send χ]Krψ
′. One can easily show that for every

pair of formulas ρ,ρ ′ in stack S such that ρ ′ is on the top of ρ , we have that |ρ ′| < |ρ|.
Therefore, the total running time of the while loop before the removal of ψ is in O(||M||×
|ψ ′|), and therefore also in O(||M||× (|ψ|−1)). Now, the worlds of M have already been

labelled by the formulas χ , [Send χ]ψ and Krψ , because these formulas were placed on top

of [Send χ]Krψ in the stack S by definition of Add1 and Add2 (lines 3 and 4). Therefore,

we have to determine the complexity of the part of the algorithm between the lines 53 and

69. The running time of this part of algorithm 1 is in O(|R|), i.e. O(||M||). Hence, the total

running time of the while loop is in O(||M||×(|ψ|−1))+O(||M||) = O(||M||×|ψ|). This

proves the induction step.

Since the last formula removed from the stack is φ , we have that the total running time

of the while loop at the end of algorithm 1 is in O(||M|| × |φ |). Since the total running

time of Add1 and Add2 in lines 3 and 4 is in O(|φ |), we have that the total running time of

algorithm 1 is in O(||M||× |φ |). QED

3.2.2 Permitted and obligatory messages

Now that we have defined the notion of compliance and the dynamic operation [Send ψ] of

message sending and the way this message affects the knowledge of the recipient, we can

naturally derive and define the notions of permitted, prohibited and obligatory messages.

Obviously, given a privacy policy and a situation, some messages might not be permitted

by the privacy policy, because they might lead to a non-compliant situation. Moreover,

because we assumed that the Sender sends only truthfull message, a message permitted by

the privacy policy should be truthfull. This leads us to the following definition.

Definition 8 (Permitted message) Let φ ∈LDEDL, P be a privacy policy and (M,w) an

EDL-model representing a given situation. We say that it is permitted for the Sender to

send message φ according to P in (M,w), written M,w |= Ps(Send φ), if M,w |= φ and

(M⊕φ ,w) is compliant with respect to P .

5 Formally, |φ |2 is defined inductively as follows: |p|2 = 0, |¬φ |2 = |Krφ |2 = |φ |2, |φ ∧ φ ′|2 = |φ |2 + |φ
′|2,

|Osα|2 = |α|2, |[Send ψ]φ |2 = |ψ|+ |φ |2, |[Prom α]φ |2 = |α|+ |φ |2.

A Dynamic Logic for Privacy Compliance 23

Example 17 The following formulas illustrate permissions to send.

– ¬Ps(Send a): the Sender’s action [Send a] is not permitted.

– ¬Ps(Send m)→¬Ps(Send a): if it is prohibited to send the name of the street, then it

is prohibited to send the entire address.

– [Send e]¬Ps(Send c) and [Send c] ¬Ps(Send e):after sending one of the two messages,

the other one becomes prohibited.

– A message is permitted (Ps(Send a)), if sending it does not lead to a non-compliant

situation: i.e., if sending it does not violate some epistemic obligation (of the privacy

policy). For example, sending the message a ([Send a]) leads to a state where Kra while

at the same time ¬PsKra (i.e., Os¬Kra).

The definition of an obligatory message is a bit more tricky. Typically, the Sender is

obliged to send a message when the situation is not compliant with respect to the privacy

policy and sending this message restores compliance. Besides, the amount of information

that the Sender should send in this context has to be minimal. For example, if it is oblig-

atory for the editor of the Journal of Artificial and Law that we know that the submission

deadline of the paper is the first of June, then he can either tell us that “the submission

deadline is the first of June” or “the submission deadline is the first of June and there

might be an extension”. The first announcement is obligatory but the second one is not

because the amount of information sent is not minimal, unless we should also know that

there might be an extension. This leads us to define the following notions.

Definition 9 (Informativeness of a formula) Let φ ,φ ∈ LDEDL and (M,w) an EDL-

model representing a given situation. We say that φ is more informative than φ ′ for the

Recipient in the situation (M,w), written M,w |= φ ≥ φ ′, if M,w |= Kr(φ → φ ′). φ is

strictly more informative than φ ′ for the recipient in the situation (M,w), written M,w |=
φ > φ ′, when M,w |= φ ≥ φ ′ but not M,w |= φ ′ ≥ φ .

Equipped with this notion of minimal information, we can now define formally the

notion of obligation to send.

Definition 10 (Obligatory message) Let φ ∈LDEDL, P be a privacy policy and (M,w)
an EDL-model representing a given situation. We say that it is obligatory for the Sender

to send message φ according to P in (M,w), written M,w |= Os(Send φ), if the situation

(M,w) is not compliant, sending φ restores compliance, and sending a message φ ′ strictly

less informative than φ does not restore compliance. Formally, M,w |= Os(Send φ) if

and only if M,w |= ¬Comp∧Ps(Send φ) and for all φ ′ ∈LDEDL, if M,w |= φ > φ ′ then

M,w 2 [Send φ ′]Comp.

Note that the notions of permitted and obligatory message in Definitions 8 and 10 are

both based on the notion of compliance. However, because of Proposition 3, this notion

could be replaced by the notion of behavioural compliance.

Remark 1 In fact, one could also replace this notion of compliance by the notion of strong

compliance. This would yield a stronger and a weaker notion of permitted and obliga-

tory message respectively. In the same line, we could also define the notions of permitted

promulgation and obligatory promulgation by replacing in these definitions the sending

of message [Send φ] with a promulgation [Prom α] and by replacing the notion of (be-

havioural) compliance with the more appropriate notion of regulatory compliance.

24 Guillaume Aucher et al.

Example 18 (Website example continued) In Example 13, we have:

M,w |= Ps(Send c)∧Ps(Send e).

So it is permitted to send the mappings from the users to the numbers (c) and it is permitted

to send the mapping from the numbers to the web-sites (e). However, we also have

M,w |= [Send e]¬Ps(Send c) and M,w |= [Send c]¬Ps(Send e)

which means that after sending the mapping from the numbers to the web-sites (e) it is

not permitted to send the mapping from the users to the numbers (c), and vice versa for

the second conjunct. This is because in both cases we would violate the epistemic norm

¬PsKrv:

M,w |= [Send e][Send c](Krv∧¬PsKrv) and

M,w |= [Send c][Send e](Krv∧¬PsKrv).

We also have

M,w |= ¬Ps(Send (e∧ c)).

Our approach is flexible because it is applicable in infinitely many other contexts than

the one of the above example, once the privacy policy is fixed. For example, assume that

the hash function computing the mapping from users to numbers is now available (h) and

that the Recipient is able to apply it to get the mapping from numbers to users (c):

M |= h→ c.

Applying the same reasoning, we would get:

M,w |= [Send e]¬Ps(Send h)

M,w |= ¬Ps(Send (e∧h))

and so we derive the forbidden messages without having to introduce explicitly new pro-

hibitions or permissions on h.

Privacy policies do not only concern which information are permitted to be disclosed,

but also which information should be disclosed. Example 15 illustrates that we can express

such policies due to the fact that our epistemic deontic logic can express obligations about

knowledge, unlike the one of Cuppens and Demolombe.

Example 19 (Spyware Example continued) After sending the message e in the previous

situation represented by the pointed EDL-model (M,w) of Figure 2 we obtain the pointed

EDL-model (M⊕e,w) depicted in Figure 6. The corresponding situation (M⊕e,w) is still

regulatory compliant with respect to P2 = {y∧Kre→ OsKry}, because M⊕ e,w |= P2.

However, it is not behaviorally compliant with respect to P2, because M,w |= (y∧Kre)∧
¬Kry. Therefore, it was forbidden to disclose e:

M,w |= ¬Ps(Send e)

But it is now obligatory (with respect to P2) to disclose y:

M⊕ e,w |= Os(Send y)

So we have that

M,w |= [Send e]Os(Send y)

M,w |= ¬Ps(Send e)∧Ps(Send (e∧ y)).

As it turns out, after sending the message y we reach a compliant situation.

A Dynamic Logic for Privacy Compliance 25

e,y �� ��
�� ��e,yoo e,¬y

Fig. 6 Spyware example updated.

The above example suggests that even if it is prohibited to send message e, it might

still be permitted to send message e as long as it is followed by another message y. We

leave the investigation of the permissibility of iterative messages for future work.

In privacy policies, the permission to disclose the names of users also allows to disclose

their family names (which are part of their name). This problem, discussed in Example 3,

is known as the inference problem, and is in general difficult to model (see for instance

Barth et al (2006)). In our logical framework it follows easily from the fact that the Re-

cipient has reasoning capabilities. The following proposition illustrates this point. In this

proposition, a propositional privacy policy is a privacy policy where all antecedent i of

epistemic norms are propositional and all α in i→ Osα are of the form Krψ or ¬Krψ ,

where ψ is a propositional formula.

Proposition 4 Let P be a propositional privacy policy and φ ,φ ′ ∈LDEDL,

⊢Comp→
(

(φ ≥ φ ′)→
(

Ps(Send φ)→ Ps(Send φ ′)
))

(5)

Therefore,

If ⊢ φ → φ ′ then ⊢Comp→
(

Ps(Send φ)→ Ps(Send φ ′)
)

(6)

Proof Assume that M,w |= φ and that for all i→ Osα ∈P , M,w |= i→ α and M,w |=
[Send φ](i→ α), i.e. M,w |= i→ [Send φ]α by Axioms A12−A14. We have to show that

for all i→ Osα ∈P , M,w |= [Send φ ′](i→ α), i.e. M,w |= i→ [Send φ ′]α by Axioms

A12−A14.

– If M,w |= ¬i then trivially M,w |= i→ [Send φ ′]α .

– If M,w |= i then we have to show that M,w |= [Send φ ′]α .

– if α = Krψ , then M,w |= Krψ by assumption. Therefore, M,w |= Kr(φ
′ → ψ).

Therefore, M,w |= [Send φ ′]Krψ by Axiom A6, i.e. M,w |= [Send φ ′]α .

– if α = ¬Krψ , then M,w |= [Send φ]¬Krψ by assumption. Therefore, M,w |=
K̂r(φ ∧¬ψ) by Axioms A6 and A13. However, because M,w |= φ ≥ φ ′, we also

have that M,w |= K̂r(φ
′ ∧¬ψ). Then, M,w |= [Send φ ′]¬Krψ by Axioms A6 and

A12−A14. Therefore, M,w |= [Send φ ′]α .

In any case, we have proved that for all i→Osα ∈P , M,w |= [Send φ ′](i→α). Therefore

M,w |= [Send φ ′]BehComp.

Now, because the privacy policy P is propositional, we also have that M,w |= [Send φ ′]
RegComp because M,w |= RegComp. So, finally, M,w |= [Send φ ′]Comp, and so M,w |=
Ps(Send φ ′). QED

Example 20 (Website example continued) Assume we have a situation modeled by an

EDL-model M such that M |= v→ v′: the association between the users’ name and the

web-sites they visited (v) induces the association between the users’ family name and the

web-sites they visited (v′). So if M,w |= Ps(Send v) then M,w |= Ps(Send v′): if it is per-

mitted to disclose the name of the users in association with the websites they visited, it is

26 Guillaume Aucher et al.

also permitted to disclose their family name in association with the websites they visited.

Dually, if M |= v→ v′, then M,w |= ¬Ps(Send v′) implies M,w |= ¬Ps(Send v): if it is

prohibited to disclose their family names in association with the websites they visited then

it is also prohibited to disclose their names in association with the websites they visited.

The following property connects the notions of permitted and obligatory messages: for

all φ ,φ ′ ∈LDEDL,

⊢ φ > φ ′→
(

Os(Send φ)→¬Ps(Send φ ′)
)

(7)

This proposition illustrate the minimality feature of our definition of obligatory mes-

sage: if φ is strictly more informative that φ ′, then the obligation to send φ entails that

sending φ ′ will not lead to a compliant situation. Moreover, note that Os(Send φ) and

Ps(Send φ) are not dual operators:

0 Os(Send φ)↔¬Ps(Send ¬φ) (8)

This is intuitively correct: in Example 19 it is prohibited to disclose e but it does not entail

that it is obligatory to disclose ¬e. We also have the following property:

0 Ps(Send φ)∧Ps(Send ψ)→ Ps(Send (φ ∧ψ)) (9)

Indeed, in Example 18 we had M,w |= Ps(Send e)∧Ps(Send c)∧¬Ps(Send (e∧ c)). The

next example describes the interaction between meta-policy and actions.

Example 21 Consider the meta-policy of Example 9, where p should not be known and it

is prohibited to let the Recipient know the policy that knowing p is prohibited:

P4 = {¬PsKr p,¬PsKr¬PsKr p}

In this situation, not only sending the message [Send p] but also sending the message

[Send ¬PsKr p] lead to a violation:

⊢P4→¬Ps(Send PsKr p).

As shown in Proposition 3, the privacy policy persists during the sending of the message.

However, our logic LDEDL does not allow us to derive that sending to the Recipient the

piece of information whereby he should not know that p implies that as a result of this

sending he actually knows p:

0 P4→ [Send ¬PsKr p]Kr p.

This is nevertheless a theorem in an extension of our logic spelled out in the appendix.

A Dynamic Logic for Privacy Compliance 27

e,c,v

R

¬e,c,¬v

K

K

K

K

K

K

K

K

K

¬e,c,¬v

��

�� ��
�� ��e,c,voo

yy

e,¬c,v

e,¬c,v

K

K

K

K

K

K

K

K

K

e,c,v

OO

¬e,c,¬v

Fig. 7 Website example of Figure 1 updated by ¬Kre.

3.2.3 Enforcing privacy policies: [Prom α]

The hierarchical superior of the Sender or the Sender himself might decide to change the

policy privacy from P to P ′. As a result, the sender needs to enforce this new privacy

policy P ′. This enforcement is captured in our formalism by [Prom α].

Example 22 (Website Example) In case of attack by some hacker, the privacy policies can

be made more strict. For example, the Sender can decide to strengthen the privacy policy

P1 of Example 13 to

P5 = {PsKrc,¬PsKre,¬PsKrv}

where PsKre has been replaced by ¬PsKre: it is now prohibited to disclose the mapping

from numbers to visited websites. This new privacy policy P5 can be enforced by the

Sender through the update [Prom ¬Kre]. We get the EDL-model (M⊙¬Kre,w) visualized

in Figure 7 which is compliant with respect to P5.

4 A privacy logic for security monitors

If the Sender, viewed as a security monitor, wanted to use our logic in real situations to

decide which actions to execute in order to enforce and maintain a privacy policy, then he

could implement an EDL-model representing the current epistemic and deontic state of

affairs. He could then check compliance with respect to a given policy and determine

which actions can and should be done to enforce and maintain this privacy policy by

model checking this EDL-model. However, with the current language LDEDL, the Sender

would have to face some problems. For example, he could not check whether a situation

is regulatory or behaviourally compliant with respect to a given privacy policy P because

privacy policies are not represented in (the syntax of) the language LDEDL. This language

LDEDL would not allow him to express that an epistemic norm is added or removed to/from

the privacy policy by the law/policy maker. This language would not allow him to decide

which actions he needs to do so that the new situation is regulatory compliant. It would

not allow him to express that under the current privacy policy he is permitted to disclose

φ . These kinds of statements are all needed if we want the security monitor (Sender) to

be able to enforce and maintain a privacy policy in real situations. So we need to define

a new language based on LDEDL more appropriate in the context of privacy policy. This

28 Guillaume Aucher et al.

language should allow the security monitor to refer explicitly to the current privacy policy,

which was not explicitly introduced in the previous language. We propose the following

language LPL.

Definition 11 (Syntax of LPL) The language LPL is defined inductively as follows:

LPL : φ ::= ψ | (χ ∈P) | RegComp | BehComp |Comp | Ps(Send ψ) |

[Send ψ]φ | [Prom α]φ | [+χ]φ | [−χ]φ | ¬φ | φ ∧φ

where ψ ranges over LDEDL, α ranges over L α
DEDL and χ ranges over E N . We assume

here that the set of epistemic norms E N is finite.

So we have seven new kinds of formulas referring each of them directly or indirectly to

privacy policies: (χ ∈P), RegComp, BehComp, Comp, [+χ]φ , [−χ]φ and Ps(Send ψ).
The formula (χ ∈P) reads as ‘χ is an epistemic norm of the current privacy policy’.

The formula RegComp reads as ‘the current situation is regulatory compliant with respect

to the current privacy policy’. The formula BehComp reads as ‘the current situation is

behaviourally compliant with respect to the current privacy policy’. The formula Comp

reads as ‘the current situation is compliant with respect to the current privacy policy’.

Note that this constant Comp is similar in spirit to the violation constant v of Anderson

(1958): Comp is somehow equivalent to ¬v. The formula [+χ]φ reads as ‘after adding

the epistemic norm χ to the current privacy policy, φ holds’. The formula [−χ]φ reads

as ‘after removing the epistemic norm χ from the current privacy policy, φ holds’. The

formula Ps(Send ψ) reads as ‘sending the message ψ is permitted’. This language allows to

express all the new kinds of statement we wanted to express above. For example, ¬Comp∧
[Send ψ]Comp means that the current situation is not compliant with respect to the privacy

policy but if ψ is disclosed then the situation becomes compliant with this privacy policy.

The semantics for this language is a bit different from the semantics of LDEDL because

we have to refer explicitly in the language to privacy policies. Intuitively, {(M,w),P} in

the definition below is the situation (M,w) which has to comply with the privacy policy

P .

Definition 12 (Semantics of LPL) A (pointed) privacy model is a pair {M,P} (resp.

{(M,w),P}) composed of an EDL-model M (resp. (M,w)) together with a privacy policy

P . The truth conditions are defined inductively as follows:

{(M,w),P} |= ψ iff M,w |= ψ
{(M,w),P} |= (χ ∈P) iff χ ∈P

{(M,w),P} |= RegComp iff M,w |= Psα for all i→ Psα ∈P and

M,w |= Osα for all i→ Osα ∈P

{(M,w),P} |= BehComp iff M,w |= i→ α for all i→ Osα ∈P

{(M,w),P} |=Comp iff {(M,w),P} |= RegComp∧BehComp

{(M,w),P} |= Ps(Send ψ) iff M,w |= ψ and {(M,w),P} |= [Send ψ]Comp

{(M,w),P} |= [Send ψ]φ iff {(M⊕ψ,w⊕),P} |= φ
{(M,w),P} |= [Prom α]φ iff {(M⊙α,w⊙),P} |= φ
{(M,w),P} |= [+χ]φ iff {(M,w),P ∪{χ}} |= φ
{(M,w),P} |= [−χ]φ iff {(M,w),P−{χ}} |= φ

A Dynamic Logic for Privacy Compliance 29

Note that the semantics of RegComp, BehComp and Comp correspond exactly to the

definitions of these notions we gave in Definition 5. Likewise, the semantics of Ps(Send ψ)
corresponds to the definition of this notion we gave in Definition 8.

Theorem 5 (Soundness and completeness) The logic PL axiomatized by the following

axiom schemes and inference rules is sound and complete for the language LPL with

respect to the semantics of privacy models. The symbol [±χ] below stands either for [+χ]
or [−χ]. The symbol 2 stands either for [Send ψ] or [Prom α].

LDEDL All the axioms schemes and inference rules of LDEDL

P1 ⊢ BehComp↔
∧

χ=i→Osα∈E N

((χ ∈P)→ (iχ → αχ))

P2 ⊢ RegComp↔
∧

χ=i→Osα∈E N

((χ ∈P)→ Osα)∧
∧

χ=i→Psα∈E N

((χ ∈P)→ Psα)

P3 ⊢Comp↔ (RegComp∧BehComp)
P4 ⊢ Ps(Send ψ)↔ (ψ ∧ [Send ψ]Comp)
P5 ⊢2(χ ∈P)↔ (χ ∈P)
P6 ⊢2¬φ ↔¬2φ
P7 ⊢2(φ → φ ′)→ (2φ →2φ ′)
P8 ⊢ [+χ](χ ∈P)
P9 ⊢ [−χ]¬(χ ∈P)
P10 ⊢ [±χ](χ ′ ∈P)↔ (χ ′ ∈P) for all χ ′ ∈ E N −{χ}
P11 ⊢ [±χ]ψ ↔ ψ
P12 ⊢ [±χ]¬φ ↔¬[±χ]φ
P13 ⊢ [±χ](φ → φ ′)→ ([±χ]φ → [±χ]φ ′)
RP If ⊢ φ then ⊢ [±χ]φ

Proof (sketch) Soundness is routine, we only prove completeness. We use the same method

as for the proof of Theorem 3. Axioms P5 to P13 and rule RP allow to reduce any PL-

consistent formula φ of LPL to a PL-consistent formula φ ′ of LPL without dynamic oper-

ators, i.e. a formula which is a boolean combination of ψ ∈LDEDL and (χ ∈P). We can

then equivalently rewrite this formula φ ′ in disjunctive normal form:

φ ′ =
∨

i∈{1,...,k}

(

ψ i∧ (χ i
1 ∈P)∧ . . .∧ (χ i

m ∈P)∧¬(χ i′

1 ∈P)∧ . . .∧¬(χ i′

n ∈P)
)

where for all i∈ {1, . . . ,k}, ψ i ∈LDEDL and all j, χ i
j,χ

i′

j ∈ E N . Because φ ′ is consistent,

there must be a i ∈ {1, . . . ,k} such that ψ i ∧ (χ i
1 ∈P)∧ . . .∧ (χ i

m ∈P)∧¬(χ i′

1 ∈P)∧

. . .∧¬(χ i′

n ∈P) is PL-consistent. Then, ψ i is PL-consistent, and therefore also LDEDL-

consistent. Henceforth, by Theorem 3, there is a pointed EDL-model (M,w) such that

M,w |= ψ i. Besides, it suffices to define P as P = {χ i
j

∣

∣ j ∈ {1, . . . ,m}} to finally have

that {(M,w),P} |= φ ′. Therefore, because ⊢ φ ↔ φ ′ and by soundness of PL, we also

have that {(M,w),P} |= φ . So φ is satisfiable in a privacy model. QED

If φ ∈ LPL, we define |φ |, the size of φ , to be the number of symbols in φ .6 If P is a

finite privacy policy then |P|= |
∧

P|. The following theorem states in particular that the

6 Formally, |φ | is defined inductively as follows: if φ = ψ ∈ LDEDL, then |φ | is defined as in Footnote 2;

otherwise, |φ | = 1+ |φ |, |φ ∧ φ ′| = 1+ |φ |+ |φ ′|, |(χ ∈P)| = 1, |RegComp| = 1, |BehComp| = 1, |Comp| =
1, |Ps(Send ψ)|= 1+ |ψ|, |[Send ψ]φ |= 1+ |ψ|+ |φ |, [+χ]φ |= 1+ |χ|+ |φ |, |[−χ]|φ = 1+ |χ|+ |φ |

30 Guillaume Aucher et al.

computational complexity of the model checking problem for our new language LPL is

basically the same as for the language LDEDL except that the size of the privacy policy P

has to be added to the size of the model M and the formula φ in O(||M||×|φ |) of Theorem

4.

Theorem 6 (Decidability and complexity) The satisfiability problem for LPL is decid-

able. There is an algorithm (Algorithm 4) that, given a pointed privacy model {(M,w),P}
and a formula φ ∈ LPL, determines, in time O((||M||+ |P|)× (|φ |+ |P|)), whether

{(M,w),P} |= φ .

Proof Algorithms AddP
1 and AddP

2 (i.e. algorithms 5 and 6) called on lines 3 and 4 are

given in the appendix. Because they terminate, algorithm 4 also terminates. Correctness

of algorithm 4 is ensured by the truth conditions of language LPL which are spelled out

in Definition 12. As for complexity, the proof is similar to Theorem 4. First, at each iter-

ation of the while loop, there are at most O(||M||+ |P|) operations, the worst case being

obtained between lines 9 and 22. Now, we have to determine the size of the stack S. This

size corresponds to the number of times the procedure Push is called in algorithms 5 and

6. As one can easily notice, by definition of algorithm 5, the number of times this happens

in AddP
1 (S,(φ ,P)) is |φ |1

P
, where |φ |1

P
is defined as follows:

|ψ|1
P

= |ψ| |[Send ψ]φ |1
P

= |φ |1
P

|¬φ |1
P

= 1+ |φ |1
P

|[Prom α]φ |1
P

= |φ |1
P

|φ ∧φ ′|1
P

= 1+ |φ |1
P
+ |φ ′|1

P
|[+χ]φ |1

P
= 1+ |φ |1

P∪{χ}

|BehComp|1
P

= 1+ |
∧

i→Osα∈P
(i→ α)| |[−χ]|1

P
= 1+ |φ |1

P−{χ}

|RegComp|1
P

= 1+ |
∧

i→Osα∈P
Osα ∧

∧

i→Psα∈P
Psα| |(χ ∈P)|1

P
= 1

|Comp|1
P

= 1+ |
∧

i→Osα∈P
Osα ∧

∧

i→Psα∈P
Psα ∧

∧

i→Osα∈P
(i→ α) |1

P

|Ps(Send ψ)|1
P

= 1+ |[Send ψ](
∧

i→Osα∈P
(i→ α)∧ (

∧

i→Osα∈P
Osα ∧

∧

i→Psα∈P
Psα))|1

P

Similarly, the number of times the procedure Push is called in AddP
2 (S,φ ,P) is |φ |2

P
,

where |φ |2
P

is defined as follows:

|ψ|2
P

= 0 |Comp|2
P

= 0

|¬φ |2
P

= |φ |2
P

|Ps(Send ψ)|2
P

= 1+ |ψ|2
P
+ |ψ|1

P

|φ ∧φ ′|2
P

= |φ |2
P
+ |φ ′|2

P
|[Send ψ]φ |2

P
= 1+ |ψ|1

P
+ |ψ|2

P
+ |φ |2

P

|(χ ∈P)|2
P

= 0 |[Prom α]φ |1
P

= 1+ |α|1
P
+ |α|2

P
+ |φ |2

P

|RegComp|2
P

= 0 |[+χ]φ |2
P

= |φ |2
P∪{χ}

|BehComp|2
P

= 0 |[−χ]φ |2
P

= |φ |2
P−{χ}

Therefore, the size of the stack S after the call of AddP
1 (S,(φ ,P)) and AddP

2 (S,φ ,P)
is |φ |1

P
+ |φ |2

P
. However, one can easily prove by induction on φ that for all φ ∈ LPL,

A Dynamic Logic for Privacy Compliance 31

Algorithm 4 Model-Check({(M,w),P},φ)

Input: A privacy model {(M,w),P}, φ ∈ LPL. The

privacy policy P is implemented by a list.

Output: True if {(M,w),P} |= φ , False otherwise

StackS← EmptyStack

AddP
1 (S,(φ ,P))

AddP
2 (S,φ ,P)

5: while not Empty(S) do

(ψ,P)← Pop(S)
if ψ ∈LDEDL then

Model−CheckP ((M,w),(ψ,P))
else if ψ = (χ ∈P) then

10: Boolean b← False

χ ′←P.head

while P 6= NULL and not b do

if χ ′ = χ then

b← True

15: end if

χ ′←P.next

end while

if b then

for all w ∈M do

20: Label(w,(ψ,P))
end for

end if

else

for all w ∈M do

25: if ψ = RegComp then

if (
∧

i→Osα∈P
Osα,P) ∈ Label(w)

and(
∧

i→Psα∈P
Psα,P) ∈ Label(w) then

Label(w,(ψ,P))
end if

30: else if ψ = BehComp then

if (
∧

i→Osα∈P
(i→ α) ,P) ∈ Label(w)

then

Label(w,(ψ,P))
end if

else if ψ =Comp then

35: if (
∧

i→Osα∈P
Osα,P) ∈ Label(w)

and(
∧

i→Psα∈P
Psα,P) ∈ Label(w)

and(
∧

i→Osα∈P
(i→ α) ,P) ∈ Label(w) then

Label(w,(ψ,P))
end if

else if ψ = ¬ψ ′ then

40: if (ψ ′,P) /∈ Label(w) then

Label(w,ψ,P)
end if

else if ψ = ψ ′ ∧ψ ′′ then

if (ψ ′,P) ∈ Label(w) and (ψ ′′,P) ∈
Label(w) then

45: Label(w,(ψ,P))
end if

else if ψ = Ps(Send ψ ′) then

if (ψ,P) ∈
Label(w)and[Send ψ]

∧

i→Osα∈P
(i→ α) ∧

∧

i→Osα∈P
Osα ∧

∧

i→Psα∈P
Psα,P) ∈ Label(w)

then

Label(w,(ψ,P))
50: end if

else if ψ =2(χ ∈P) then

if ((χ ∈P),P) ∈ Label(w) then

Label(w,(ψ,P)
end if

55: else if ψ =2¬ψ ′ then

if (2ψ ′,P) /∈ Label(w) then

Label(w,(ψ,P))
end if

else if ψ =2(ψ ′ ∧ψ ′′) then

60: if (2ψ ′,P) ∈ Label(w) and

(2ψ ′′,P) ∈ Label(w) then

Label(w,(ψ,P))
end if

else if ψ = [+χ]ψ ′ then

if (ψ ′,P ∪{χ}) ∈ Label(w) then

65: Label(w,(ψ,P))
end if

else if ψ = [−χ]ψ ′ then

if (ψ ′,P−{χ}) ∈ Label(w) then

Label(w,(ψ ′,P))
70: end if

end if

end for

end if

end while

75: if φ ∈ Label(w) then

Return True

elseReturn False

end if

The algorithm Model−CheckP is the same

as algorithm 1 except that all the ex-

pressions of the form Label(w,ψ) have

to be subsituted in Model −CheckP by

Label(w,(ψ,P)) and all the expressions of

the form ψ ∈ Label(w) have to be sub-

stituted by (ψ,P) ∈ Label(w). The algo-

rithms AddP
1 and AddP

2 are defined in the

appendix as algorithms 5 and 6 respectively.

The symbol 2 in lines 43-51 stands for

[Send ψ] or [Prom α]. We use this notation

in order to avoid repeating the same instruc-

tions twice.

32 Guillaume Aucher et al.

|φ |1
P
+ |φ |2

P
= |φ |P , where |φ |P is defined inductively as follows:

|ψ|P = |ψ| |[+χ]φ |P = 1+ |φ |P∪{χ}
|¬φ |P = 1+ |φ |P |[−χ]φ |P = 1+ |φ |P−{χ}
|φ ∧φ ′|P = 1+ |φ |P + |φ ′|P |Ps(Send ψ)|P = |[Send ψ]Comp|P
|(χ ∈P)|P = 1 |[Send ψ]φ |P = 1+ |ψ|P + |φ |P
|BehComp|P = 1+ |

∧

i→Osα∈P
(i→ α)| |[Prom α]φ |P = 1+ |α|P + |φ |P

|Comp|P = 1+ |
∧

i→Osα∈P
Osα ∧

∧

i→Psα∈P
Psα ∧

∧

i→Osα∈P
(i→ α) |

|RegComp|P = 1+ |
∧

i→Osα∈P
Osα ∧

∧

i→Psα∈P
Psα|

Now, one proves by induction on φ ∈LPL that |φ |P = O(|φ |+ |P|). We only prove

the cases |BehComp|P and |[−χ]φ |P : |BehComp|P = 1+ |
∧

i→Osα∈P
(i→α)|= 1+O(|

∧

χ∈P
χ|)=

1 + O(|P|) = |BehComp|+ O(|P|); |[−χ]φ |P = 1 + |φ |P−{χ} = 1 + |φ |+ O(|P −
{χ}|) = 1+ |φ |+O(|P|) = O(1+ |φ |+ |P|) = O(1+ |φ |+ |χ|+ |P|) = O(|[−χ]φ |+
|P|).

Hence, the total running time of the while iteration between lines 5 and 74 is in

O((||M||+ |P|)× (|φ |+ |P|)). One proves similarly as above and by induction that

the running time of AddP
1 and AddP

2 (i.e. algorithms 5 and 6) is in O(|φ |+ |P|), tak-

ing into account the fact that the instructions of lines 49 and 51 are executed in time

O(1) and O(P) respectively. So, finally, the total runing time of algorithm 4 is in time

O((||M||+ |P|)× (|φ |+ |P|)). QED

Example 23 The mechanisms involved in the website example can be better analysed and

understood with this new language. In Example 13, the initial situation is compliant with

respect to the current privacy policy:

{(M,w),P1} |=Comp.

Note that it was not possible to express this with the previous language LDEDL. The Sender

then learns by the security administrator that the new privacy policy is P5. This change

boils down to first removing the epistemic norm PsKre ([−PsKre]) and then adding the

epistemic norm ¬PsKre ([+¬PsKre]). The situation is no longer compliant with this new

privacy policy because it is not regulatory compliant anymore with the privacy policy P5:

{(M,w),P1} |= [−PsKre][+¬PsKre]¬RegComp.

Therefore, the Sender now has to enforce this new privacy policy P5 by means of a pro-

mulgation. He does so by promulgating the norm ¬Kre. That was the process described in

Example 22:

{(M,w),P5} |= ¬RegComp∧ [Prom ¬Kre]Comp.

We see in the above example that the language LPL really allows the security monitor to

reason about which actions he can perform so that a new privacy policy be enforced or so

that the situation be compliant with respect to the privacy policy.

A Dynamic Logic for Privacy Compliance 33

5 Related work

Comparison with the Cuppens-Demolombe logic. Cuppens and Demolombe (1996) ex-

tend their original framework (Cuppens, 1993) by using an epistemic deontic logic to

model security in databases. Their modal language is actually a restriction of our language

LEDL and is defined as follows:

L : φ ::= p | ¬φ | φ ∧φ | PsKuψ | OsKuψ

where ψ ranges over propositional formulae and p over Φφ . Their semantics in terms of

Kripke models is the same as ours. However, their accessibility relation for the modality

Kuφ is not reflexive because it stands for “the user knows that the database believes φ” and

is therefore the combination of two modalities, the modality for knowledge being reflexive

and the modality for belief being serial. Nevertheless, if we assume that our modality Kr is

serial and give it the same reading as their reading, then our formalism clearly embeds their

formalism. Overall, we improve the Cuppens-Demolombe logic in the following respects:

Actions. Our logic also deals with actions. They just define privacy policies in terms of

the permitted and forbidden knowledge of the recipient of information, but they do not

derive the permitted messages by combining and reasoning on this knowledge like us.

Obligations. Our logic also deals with obligations. This is a desirable feature since, as

Barth et al (2006) notice, privacy laws actually specify which counter measures should

apply in case a situation is not compliant with a privacy policy. We can express in our

logic not only that it is obligatory to know whether something holds but also that it is

obligatory to send a message.

Meta-policies. Our logic can also express meta-policies. These are policies about how to

access the policy itself, like for example PsKrPsKr p. In our logic, we can even send a

message stating that it is permitted that the Recipient knows p. The problem is that in

some cases some sensitive information may be deduced by the Recipient by disclosing

the policy itself.

Policy change. Our logic also deals with change of privacy policy. They cannot express

that a new epistemic norm is added or removed from the current privacy policy, as we

illustrated it in Example 23.

Planning/Enforcement. Given that their logic does not deal with actions, they cannot a

fortiori reason about the effects of actions and plan which action should be executed in

order to enforce a given privacy policy. This is possible in our logic, and we illustrate

it in Example 23.

Given that our approach is based on their model, their solutions to several problems can

naturally be transferred in our setting. For example, they show that multi-level security

policies which assign a degree of clearance l to formulae φ and which might be incomplete

can be expressed in their framework by indexing the modality PsKrφ with the degree of

clearance l: the formula PsKrlφ reads as ‘an agent r cleared at level l is explicitly permitted

to know that the database believes φ ’. They also avoid possible conflicts between roles

and policies by defining the role of an agent as an index i of the modality PsKriφ and by

introducing an external structure on these roles.

Other related work. Languages for access control in security have been used for modeling

privacy regulations too (Bishop, 2003). However, they are not easily adapted to the new

34 Guillaume Aucher et al.

task, because they do not provide ways of reasoning about the information and about

effects of messages. Moreover, they rarely consider the context of communication.

Specific languages for privacy policies have been proposed, but have some limitations.

Extensible Access Control Markup Language XACML’s policies (Moses, 2005) can lead

to obligations, but “obligation” is just an uninterpreted symbol which receives meaning

at the point of policy enforcement. Enterprise Privacy Authorization Language EPAL’s

policies (Karjoth and Schunter, 2002) are concerned with a single sender (the enterprise

itself) and a single recipient role. EPAL structures obligations with a subsumption relation

rather than allowing to reason about knowledge. The Platform for Privacy Preferences

(P3P) language (Cranor, 2002) contains only positive norms and a temporal dimension

restricted to opt-in and opt-out conditions.

Bonatti et al (1995) use a similar logical framework for reasoning about security in

database access. They explicitly model the beliefs of the user of the database and the

actions which change these beliefs. However, again they only use combined epistemic

and deontic operators, in the sense that they do not make an explicit distinction between

epistemic and deontic modalities, with resulting limitations such as the impossibility to

model permissions and obligations about actions. Moreover, the belief change mechanism

is superimposed to Kripke semantics, while we use a general dynamic epistemic logic

approach and we are also able to change permissions and obligations and not only beliefs.

As they do, by distinguishing the point of view of the database (Sender) from the beliefs of

the user (Recipient), we could model situations where the sender of information is lying,

even if this possibility seems less useful in the context of privacy policies. Finally, we can

model meta-policy in our framework, to specify that it is prohibited to know the privacy

policy. Differently from their work, we also provide a semantics to meta-policy since we

allow nestings of epistemic and deontic modalities.

Barth et al (2006) propose a formalization of the theory of privacy called contextual

integrity. They introduce positive and negative norms, depending on whether they refer

to actions that are allowed or disallowed. Temporal conditions are modelled by means of

linear temporal logic with past and future operators to express, for example, that certain in-

formation may be disclosed only if the subject mentioned has previously given permission

or that if certain information is made public, notification must be sent to the concerned

party. These norms are interpreted in a model of agents who respect the norms if the trace

history of their communication satisfies a temporal formula constructed from the norms by

taking the disjunction over positive norms and the conjunction over negative norms. Their

language constitutes an advancement with respect to other policy languages, both for the

temporal aspect and for including a relation enabling agents to combine messages to com-

pute additional information about the subject, (e.g., computing postal code from postal

address), elucidating the notion of a “data hierarchy” found in P3P and EPAL. However,

their privacy policies cannot be changed. On the other hand, we do not consider the tem-

poral aspect yet: to incorporate this aspect in our model it might be necessary to resort to

an epistemic temporal logic, as in Pacuit et al (2006). Pacuit et al (2006) also introduce a

logic combining deontic and epistemic notions but they can express only particular epis-

temic norms called knowledge-based obligations of the form Krφ → Osψ , where ψ does

not contain any knowledge operator.

DeYoung et al (2010) extend Barth et al (2006) to apply the model to privacy laws

such as HIPAA and GLBA, including support for self-reference, purposes of uses and dis-

closures, some dynamics concerning roles and beliefs of principals. This extension goes

A Dynamic Logic for Privacy Compliance 35

in the direction of our work, showing the need to introduce dynamics and epistemic oper-

ators, while we leave for future work the treatment of self-references such as “except as

otherwise provided in this subchapter”.

A problem of Barth et al (2006) is the obscurity of the formalism used to model legal

norms, which in turn present ambiguities and difficulties. To cope with this problem, Lam

et al (2009) propose a more readable formalism based on logic programming. Our modal

logic aims at improving readability too, but at the same time it allows to study precisely

the properties of the deontic operators.

Logic or logic programming used in the papers discussed above (see also Barker

(2002)) are not the only methodologies to formalize privacy policies. May et al (2006) use

an extension of access control matrix operations to include operations for notification and

logging and constructs that ease the mapping between legal and formal language. They ap-

ply their methodology to HIPAA policies of health insurance. Nielson and Nielson (2007)

propose to use π-calculus for privacy in the context of service oriented architectures.

A further issue in privacy is the interaction between policies and the organizations

which have to enforce them. This is addressed, e.g., by Barth et al (2007) and Kanovich

et al (2007). Our plan to address this problem is to extend the modal language to a multi-

agent language in order to express obligations, beliefs, knowledge and goals of the differ-

ent parties involved.

In dynamic epistemic logic, Balbiani et al (2009) focus in a multi-agent setting on the

notion of permission to announce. They provide a sound, complete and decidable logic

by enriching public announcement logic with the operator P(ψ,φ) which reads ‘after ψ
has been publicly announced, it is permitted to say φ ’. There is no privacy policy nor

compliance, although the specification of such a policy could be somehow derived via the

specification of their operator P(ψ,φ) (whose first argument handles the dynamic charac-

ter of the situations they consider). But as in all the other approaches mentioned, the (im-

plicit) privacy policy is specified directly on the announcements/actions and the epistemic

character of the situations they consider does not really play a role. Finally, in their logic,

privacy policies cannot change and they do not have a notion of obligatory announcement

or enforcement.

Other work in dynamic deontic logic (Meyer, 1988; Van der Meyden, 1996) extends

dynamic logic with obligations using a violation constant, and define that an action is

obliged if the absence of occurence of the action leads to a violation state. They are inter-

ested in particular in logical relations among obligations, and therefore in obligations of

complex actions such as sequences of actions.

This paper is an extended and revised version of Aucher et al (2010b). In a companion

paper (Aucher et al, 2010a) we show how to express the distinction between descriptive

and prescriptive obligations in dynamic epistemic deontic logic.

6 Conclusion

Summary. Classical problems of security such as the Chinese wall problem (Brewer and

Nash, 1989) need a more fined-grained analysis taking into account the dynamic context.

It might be permitted to know something but not to send a message containing this piece

of information, depending on the particular situation. In our website example, which is an

instance of this Chinese wall problem, even if it is permitted to know the mapping of users

36 Guillaume Aucher et al.

with their respective numbers (PsKrc) it is not permitted to send it (Ps(Send c)) if the map-

ping of numbers with the visited websites (e) is already known or has been sent before. On

the other hand, privacy policies are often defined in terms of permitted messages (actions),

for example in traditional access control languages (Bishop, 2003; Cranor, 2002; Moses,

2005; Karjoth and Schunter, 2002), but this direct representation of privacy policies in

terms of permitted messages is difficult to manage in a dynamic context. Instead, in this

paper we derived the permitted (and obligatory) messages from ‘static’ privacy policies

defined in terms of permitted and obligatory knowledge. To specify and reason about such

privacy policies, we extended a multi-modal logic introduced by Cuppens and Demolombe

with update operators modeling the dynamics of both knowledge and privacy policies. We

then defined a richer language that allows us to check whether a situation is compliant with

respect to a privacy policy and to determine which actions should be executed in order to

enforce a privacy policy. We axiomatized and proved the decidability of our logic and we

studied its complexity properties.

Potential application. In order to use this logic in real situations, the security monitor

(Sender) would need to implement a privacy model representing the current epistemic and

deontic state of affairs. He could then check compliance with respect to a given policy and

determine which actions can and should be done by model checking this privacy model

with algorithm 4. The low complexity of this algorithm is a sign that this kind of applica-

tion of our logic is feasible and realistic.

Future work. A topic for further research is to deal with multi-agent scenarios involving

more agents than just a Sender and a Recipient, each agent having its own privacy policy

to comply with. Many privacy issues deal with more persons than only a sender and re-

ceiver. For example, you may be permitted to know your medical file, while it may not

be permitted that someone not being a doctor sends you your medical file. Or you may

be permitted to know the budget, while at the same time being forbidden to know who

else knows the budget. You may tell your poker agent never to inform your opponents

about your cards to hide your bluff strategy, or tell your medical database that it may give

only generic information, not information about specific individuals. . . In this multi-agent

setting, the distinction between permitted action and knowledge is still relevant: you may

tell your web agent never to reveal to your boss which websites you have visited either by

specifying that your boss may never know which websites you visited, or by specifying

directly that it may not send your boss a list of the websites you have visited.

Another topic for further research is to enrich the dynamics to allow not only oper-

ations which promulgate norms but also operations which contract (derogate) or revise

norms. Indeed, even if our language LPL allows us to remove or add epistemic norms

from/to the privacy policy, sometimes promulgation might not be enough to enforce these

new epistemic norms and we might need to resort to more fine-grained dynamics like con-

traction or revision, as in AGM theory of belief change (Alchourrón et al, 1985). This

enrichment of the dynamics would allow for example to model declassification of docu-

ments.

Finally, we plan to study the consequences of our logic for deontic logic. The distinc-

tion between permitted and forbidden knowledge and permitted and forbidden actions is

known in the deontic logic literature as the distinction between ought-to-be and ought-to-

do, expressed respectively by O(p) and O(α), where O is a modal operator, p a proposi-

A Dynamic Logic for Privacy Compliance 37

tions, and α an action. It is well known that the translation of ought-to-be to ought-to-do

and vice versa is a non-trivial challenge (Horty, 2001).

Acknowledgements We thank the anonymous reviewers of this paper for their extensive and helpful comments.

References

Alchourrón C, Gärdenfors P, Makinson D (1985) On the logic of theory change: Partial

meet contraction and revision functions. Journal of Symbolic Logic 50(2):510–530

Anderson A (1958) A reduction of deontic logic to alethic modal logic. Mind 67:100–103

Åqvist L (1967) Good samaritans, contrary-to-duty imperatives, and epistemic obligations.

Nôus 1:361–379

Aucher G, Boella G, van der Torre L (2010a) Prescriptive and descriptive obligations in

dynamic epistemic deontic logic. In: AI approaches to the complexity of legal systems

(AICOL 2009), Springer, Berlin, LNAI, vol 6237, pp 150–161

Aucher G, Boella G, van der Torre L (2010b) Privacy policies with modal logic: the

dynamic turn. In: Governatori G, Sartor G (eds) Deontic Logic in Computer Science

(DEON 2010), Springer, Berlin, LNCS, vol 6181, pp 196–213

Balbiani P, van Ditmarsch H, Seban P (2009) Reasoning about permitted announcements.

In: ESSLLI 2009 workshop Logical Methods for Social Concepts, Bordeaux

Baltag A, Moss L (2004) Logic for epistemic programs. Synthese 139(2):165–224

Baltag A, Moss L, Solecki S (1998) The logic of common knowledge, public announce-

ment, and private suspicions. In: Gilboa I (ed) Proceedings of the 7th conference on

theoretical aspects of rationality and knowledge (TARK98), pp 43–56

Barker S (2002) Protecting deductive databases from unauthorized retrieval and update

requests. Data and Knowledge Engineering 43(3):295–315

Barth A, Datta A, Mitchell JC, Nissenbaum H (2006) Privacy and contextual integrity:

framework and applications. In: IEEE Symposium on Security and Privacy, IEEE Com-

puter Society, Los Alamitos (CA), pp 184–198

Barth A, Mitchell JC, Datta A, Sundaram S (2007) Privacy and contextual integrity: frame-

work and applications. In: IEEE Computer Security Foundations Symposium CSF’07,

IEEE Computer Society, Los Alamitos (CA), pp 279 – 294

Bishop M (2003) Computer Security: Art and Science. Addison Wesley Professional

Blackburn P, de Rijke M, Venema Y (2001) Modal Logic, Cambridge Tracts in Computer

Science, vol 53. Cambridge University Press

Boella G, Governatori G, Rotolo A, van der Torre L (2010) A logical understanding of

legal interpretation. In: Principles of Knowledge Representation and Reasoning: Pro-

ceedings of the Twelfth International Conference, KR 2010, AAAI Press

Bonatti P, Kraus S, Subrahmanian V (1995) Foundations of secure deductive databases.

IEEE Transactions on Knowledge and Data Engineering 7(3):406–422

Brewer DFC, Nash MJ (1989) The chinese wall security policy. In: IEEE Symposium on

Security and Privacy, IEEE Computer Society, Los Alamitos (CA), pp 206–214

Castañeda HN (1981) The paradoxes of deontic logic: the simplest solution to all of them

in one fell swoop. In: Hilpinen R (ed) New studies in deontic logic: norms, actions, and

the foundations of ethics, Synthese library, Reidel publishing co., pp 37–86

38 Guillaume Aucher et al.

Castañeda HN (1988) Knowledge and epistemic obligation. Philosophical perspectives

2:211–233

Cranor L (2002) Web Privacy with P3P. O’Reilly and Associates Inc.

Cuppens F (1993) A logical formalization of secrecy. In: IEEE Computer Security Foun-

dations Workshop CSFW’93, IEEE Computer Society, Los Alamitos (CA)

Cuppens F, Demolombe R (1996) A deontic logic for reasoning about confidentiality. In:

Deontic Logic, Agency and Normative Systems, Third International Workshop on De-

ontic Logic in Computer Science (DEON 1996), Springer, Berlin

Cuppens F, Demolombe R (1997) A modal logical framework for security policies. In: Ras

Z, Skowron A (eds) Foundations of Intelligent Systems, 10th International Symposium,

ISMIS ’97, Springer, Berlin, LNCS, vol 1325, pp 579–589

DeYoung H, Garg D, Jia L, Kaynar D, Datta A (2010) Experiences in the logical specifi-

cation of the HIPAA and GLBA privacy laws. In: Proceedings of the 9th annual ACM

Workshop on Privacy in the Electronic Society, ACM, New York, NY, USA, WPES ’10,

pp 73–82

van Ditmarsch H, van der Hoek W, Kooi B (2007) Dynamic Epistemic Logic, Synthese

library, vol 337. Springer, Berlin

Fagin R, Halpern J, Moses Y, Vardi M (1995) Reasoning about knowledge. MIT Press

Federal Trade Commission (1998) Children’s Online Privacy Protection Act of 1998

(COPPA). http://www.ftc.gov/ogc/coppa1.htm

Federal Trade Commission (1999) Gramm-Leach-Bliley Act (GLBA). http://www.

ftc.gov/privacy/glbact/glbsub1.htm

Halpern J, Moses Y (1992) A guide to completeness and complexity for modal logics of

knowledge and belief. Artificial Intelligence 54(3):311–379

Hinke TH (1988) Database inference engine design approach. In: Database Security DB-

Sec, pp 247–262

Horty J (2001) Agency and deontic logic. Oxford University Press, USA

Kanovich M, Rowe P, Scedrov A (2007) Collaborative planning with privacy. In: IEEE

Computer Security Foundations Symposium CSF’07, IEEE Computer Society, Los

Alamitos (CA), pp 265–278

Karjoth G, Schunter M (2002) A privacy policy model for enterprises. In: IEEE Com-

puter Security Foundations Workshop CSFW’02, IEEE Computer Society, Los Alami-

tos (CA)

Lam P, Mitchell J, Sundaram S (2009) A formalization of HIPAA for a medical messaging

system. In: Trust, Privacy and Security in Digital Business, TrustBus 2009, Springer,

Berlin, pp 73 – 85

May M, Gunter C, Lee I (2006) Privacy APIs: Access control techniques to analyze

and verify legal privacy policies. In: IEEE Computer Security Foundations Symposium

CSF’06, IEEE Computer Society, Los Alamitos (CA), pp 85–97

Van der Meyden R (1996) The dynamic logic of permission. Journal of Logic and Com-

putation 6:465–479

Meyer JJC (1988) A different approach to deontic logic: deontic logic viewed as a variant

of dynamic logic. Notre Dame Journal of Formal Logic 29(1)

Moses T (2005) Extensible Access Control Markup Language (XACML) ver-

sion 2.0. http://docs.oasis-open.org/xacml/2.0/access_

control-xacml-2.0-core-spec-os.pdf

http://www.ftc.gov/ogc/coppa1.htm
http://www.ftc.gov/privacy/glbact/glbsub1.htm
http://www.ftc.gov/privacy/glbact/glbsub1.htm
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

A Dynamic Logic for Privacy Compliance 39

Nielson H, Nielson F (2007) A flow-sensitive analysis of privacy properties. In: IEEE

Computer Security Foundations Symposium CSF’07, IEEE Computer Society, Los

Alamitos (CA), pp 249–264

Office for Civil Rights (2003) Summary of the HIPAA privacy rule. http:

//www.hhs.gov/ocr/privacy/hipaa/understanding/summary/

privacysummary.pdf

Pacuit E, Parikh R, Cogan E (2006) The logic of knowledge based obligation. Synthese

149(2):311–341

Sahlqvist H (1975) Completeness and correspondence in the first and second order se-

mantics for modal logics. In: Kanger S (ed) Proceedings of the 3rd Scandinavian Logic

Symposium 1973, North Holland, no. 82 in Studies in Logic

Sweeney L (2002) k-anonymity: a model for protecting privacy. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems 10(5):557–570

United Nations General Assembly (1948) Universal Declaration of Human Rights

(UDHR). http://www.un.org/en/documents/udhr/index

Warren S, Brandeis L (1890) The right to privacy. Harvard Law Review 193(4):193–220

Westin A (1968) Privacy and freedom, 5th edn. Atheneum, New York, U.S.A.

A An extension of Castañeda’s deontic logic

In this appendix, we give an extension of our epistemic deontic logic embedding Castañeda’s deontic logic

(Castañeda, 1981). Starting from a linguistic analysis, the insight of Castañeda is to acknowledge the grammatical

duality of expressions depending on whether they are within or without the scope of an obligation operator. This

leads him formally to introduce two sets of formulas: circumstances which cannot alone be the foci of deontic

operators, unlike what he calls practitions. The former are usually expressed grammatically in the indicative

form and the latter are usually expressed grammatically in the infinitive/subjunctive form. For example, “Freud

cures Anna O” in the indicative form is a circumstance, but the same sentence in “it is obligatory that Freud

cures Anna O” in subjunctive/infinitive form is a practition. Just as practitions are the foci of deontic operators,

circumstances are dually the foci of knowledge operators, as pointed out by Castañeda (1988). In that respect,

note that an expression φ in the scope of a knowledge operator Krφ is always in the indicative form and never in

the subjunctive/infinitive form, even if Krφ is in the scope of a deontic operator O.

We extend Castañeda (1988)’s intuition to the context of epistemic permissions and obligations. In a deontic

setting the reading of the term knowledge or belief can be twofold: either as a circumstance or as a practition.

On the one hand, in the sentence “it is obligatory that John knows / for John to know that there is an infinity

of prime numbers”, the verb ‘to know’ is the focus of a deontic operator and is in the subjunctive/infinitive

form. On the other hand, the sentence “John knows that there is an infinity of prime numbers” alone describes a

circumstance and the interpretation of the verb ‘to know’ in the indicative form matches the one usually studied

in epistemic logic. The former use of the term knowledge within the scope of a deontic operator is not studied

in epistemic logic. For these reasons we enrich the language of Castañeda with two knowledge modalities, one

for circumstances Kr and the other one for epistemic practitions K′r . This allows us to express new kinds of

statements which cannot be expressed directly with our language LDEDL, such as

Os(Krφ → K′rψ) (10)

Formula 10 reads as ‘it is obligatory for the Sender that, if the Recipient knows φ then he also knows ψ’.

In our language LDEDL, this statement would be expressed by the intuitively equivalent but formally different

expression:

Krφ → OsK
′
rψ (11)

Formula 11 reads as ‘if the Recipient knows φ then it is obligatory for the Sender that the Recipient also knows

ψ’. Both of these formulations 10 and 11 are intuitively equivalent, but they are both intuitively different from

the following expression:

Os(K
′
rφ → K′rψ) (12)

http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
http://www.hhs.gov/ocr/privacy/hipaa/understanding/summary/privacysummary.pdf
http://www.un.org/en/documents/udhr/index

40 Guillaume Aucher et al.

Formula 12 reads as ‘if it is obligatory for the Sender that the Recipient knows φ then it is also obligatory for the

Sender that the Recipient knows ψ’. Note that this last formulation 12 is itself also quite similar to the reading

of the formula OsK
′
rφ → OsK

′
rψ . Formulas 10 is not a well-formed formula of our language LDEDL, but it is a

well-formed formula of the following language LDL.

Definition 13 Let Φα be a set of propositionnal letters. The language LDL = L
φ ′

EDL ∪L α ′

EDL, whose formulas

are denoted φ∗ in general, is defined inductively as follows.

L
φ ′

EDL : φ ::= p | ¬φ | φ ∧φ | Krφ | Osα

L
α ′

EDL : α ::= β | Krφ | ¬α | α ∧α | α ∧φ | φ ∧α

where p ranges over Φφ and β over Φα .

The only difference with the language LDL is that we now have pure practitions Φα and that practitions can now

be of the form φ ∧α or φ → α where φ is a circumstance. Pure practitions Φα are expressions in the scope of a

deontic operator that cannot be expressed with a knowledge operator, such as ‘to cure Anna O’ in ‘it is obligatory

to cure Anna O’. Therefore, just as epistemic practitions, they are in the subjunctive/infinitive form. Moreover,

with this definition of practitions we can also express formulas of the form Os(φ → α) and in particular Formula

10 above. Obviously, we would like to have the following validity:

|= Os(φ → α)↔ (φ → Osα)

which is a generalization to the epistemic case of Castañeda’s key validity. For example, “it is obligatory that if

Freud knows that Anna O is sick, then he cures her” (Os(Krφ → α)) has the same meaning as “if Freud knows

that Anna O is sick, then it is obligatory that he cures her” (Krφ → Osα). This would also make Formulas 10

and 11 formally equivalent. To obtain this validity, we need to add an extra condition (∗) in our definition of

EDL-model and so define EDL-model’.

Definition 14 An EDL-model’ M is a tuple M = (W,D,R, R′,V), where W is a non-empty set of possible worlds,

R : W → 2W , R′ : W → 2W and D : W → 2W are accessibility relations on W , D being serial. V : Φφ ∪Φα → 2W

is a valuation such that:

for all w ∈W , all v,v′ ∈ D(w)∪{w}, (M,v) is RD-bisimilar to (M,v′).7 (∗)

The truth conditions are defined as in Definition 14.

The semantic condition (∗) intuitively means that the (epistemic) context where a normative system applies is

fixed. One can easily show that any Castañeda model (Castañeda, 1981) can be embedded into an EDL-model’,

in the sense that the Castañeda model and the corresponding EDL-model’ satisfy the same formulas of L ′
EDL

without epistemic operators Kr or K′r . One can also show that the semantics of L ′
EDL is sound and complete with

respect to the logic LEDL to which we add the axiom scheme ⊢ Os(φ → α)↔ (φ → Osα).

Theorem 7 The semantics of L ′
EDL is sound and complete with respect to the logic L

′
EDL axiomatized as follows.

The symbol K below stands either for Kr or K′r .

A1 All propositional tautologies based on Φφ

A2 ⊢ Os(φ → α)↔ (φ → Osα)
A3 ⊢ Osα → Psα
A4 ⊢ Os(α → α ′)→ (Osα → Osα

′)
A5 ⊢ K(φ∗→ ψ∗)→ (Kφ∗→ Kψ∗)
R1 If ⊢ α then ⊢ Osα
R2 If ⊢ φ∗ then ⊢ Kφ∗

R3 If ⊢ φ∗→ ψ∗ and ⊢ φ∗ then ⊢ ψ∗

7 Two pointed models (M,v) and (M′,v′) are RD-bisimilar if there is a relation on W ×W ′ satisfying the base

condition for Φφ and the back and forth conditions for R and D (see footnote 3 or Blackburn et al (2001) for

details).

A Dynamic Logic for Privacy Compliance 41

Proof Soundness is routine. We prove completeness by building the canonical model of our logic. Let W be the set

of all maximal L
′
EDL-consistent subsets of LDL. For all Γ ,Γ ′ ∈W , we set Γ ′ ∈ R(Γ) iff for all Krφ ∈ Γ ,φ ∈ Γ ′.

We define Os and R′ similarly. Besides, for all Γ ∈W , Γ ∈ V (p) iff p ∈ Γ , and Γ ∈ V (β) iff β ∈ Γ . We have

therefore defined the canonical model M = (W,D,R,R′,V). We now show by induction on φ the ‘truth lemma’:

for all Γ ∈W and φ ∈LDL, M,Γ |= φ iff φ ∈ Γ (1). If Γ = p then (1) holds. The other boolean cases work

by induction hypothesis. Assume φ = Krφ ′. If Krφ ′ ∈ Γ then for all Γ ′ ∈ R(Γ), φ ′ ∈ Γ ′ by definition of R.

So M,Γ ′ |= φ ′ for all Γ ′ ∈ R(Γ) by induction hypothesis, i.e., M,Γ |= Krφ ′. If M,Γ |= Krφ ′ then assume that

S ⊆ {φ ∈LDL | Krφ ∈ Γ }∪{¬φ ′} is consistent. It follows that there is Γ 0 ∈W such that S ⊆ Γ 0. So there is

Γ 0 ∈ R(Γ) such that ¬φ ′ ∈ Γ 0. Therefore M,Γ |= ¬Krφ ′ which is absurd. So S is inconsistent and so there must

be φ 1, . . . ,φ n ∈ S such that ⊢ (φ 1 ∧ . . .∧ φ n)→ φ ′. By R2 and A5 we get ⊢ (Krφ 1 ∧ . . .∧Krφ n)→ Krφ ′ and

because Krφ i ∈Γ , we finally have Krφ ′ ∈Γ . The proof is similar for the operators Os and K′r . One can also show

that D is serial.

Now we have to show that condition (∗∗) holds in our canonical model M. We first show that for all Γ ∈W ,

all Γ ′,Γ ′′ ∈D(Γ)∪{Γ }, Γ ′! Γ ′′,i.e., for all φ ∈L
φ ′

EDL, φ ∈ Γ ′ iff φ ∈ Γ ′′. Let φ ∈L
φ ′

EDL and assume φ ∈ Γ ′.
If φ /∈ Γ then ¬φ ∈ Γ , and Osα ∈ Γ for some α ∈L α

EDL. So M,Γ |= ¬φ ∧Osα , therefore M,Γ |= Os(¬φ ∧α).
Then M,Γ ′ |= ¬φ ∧α , and so ¬φ ∈ Γ ′. This is impossible, so φ ∈ Γ . By the same reasoning we get that φ ∈ Γ ′′.
Likewise vice versa. We now show that ! is a RD-bisimulation relation. Assume Γ ! Γ ′. The base case for

Φφ clearly works. We prove the forth condition for R. Let Γ1 ∈ R(Γ) and let Γ ∗1 = {φ ∈ L
φ ′

EDL | φ ∈ Γ1} and

assume that for all Γ ′1 ∈ R(Γ ′) it is not the case that Γ1 ! Γ ′1 , i.e., Γ ∗1 * Γ ′1 . Let S1 = Γ ∗1 −
⋃

Γ ′1∈R(Γ ′)

Γ ′1 and let us

define S = S1 ∪S2 where S2 = {φ ∈L
φ ′

EDL | Krφ ∈ Γ }. S is consistent, because S ⊆ Γ1. So there is Γ2 ∈W such

that S⊆ Γ2. But {φ ∈L
φ ′

EDL | Krφ ∈ Γ ′}= {φ ∈L
φ ′

EDL | Krφ ∈ Γ ′}= {φ ∈L
φ ′

EDL | Krφ ∈ Γ } because Γ ! Γ ′.
Γ2 ∈ R(Γ ′) and S1 ⊆ Γ2 which is impossible by assumption. So there is Γ ′1 ∈ R(Γ) such that Γ ∗ ⊆ Γ ′1 , i.e., such

that Γ1 !Γ ′1 . The same reasoning applies for the back condition. It also applies for the back and forth conditions

for D by replacing S2 by S′2 = {α ∈L α ′

EDL | Osα ∈ Γ }. QED

Axioms A1 to A4 and rules R1 and R3 provide an alternative axiomatization of Castañeda’s language. We can

then derive in this logic the following theorems. In particular, note that our notion of knowledge is truthful, even

if it was not explicitly mentionned in the axiomatization.

Proposition 5 For all φ ∈LEDL,

⊢ K′rφ → φ (13)

⊢ Krφ → φ (14)

⊢ OsK
′
rφ → φ (15)

⊢ ¬PsK
′
rφ → φ (16)

Equation 16 allows us to derive that as a result of informing the recipient that he should not know that φ holds,

this very Recipient actually learns that φ holds. Indeed, as a result of sending this message, the Recipient knows

that he should not know φ (Kr¬PsK
′
rφ), and therefore by application of Equation 16, he also knows that φ (Krφ).

This derivation was not possible in our logic LDEDL, as we noted it in Example 9.

B Algorithms AddP
1 and AddP

2

Algorithms AddP
1 andAddP

2 below (i.e. algorithms 5 and 6) are called in algorithm 4. They are adapted from

algorithms Add1 and Add2 (i.e. algorithms 2 and 3) to take into account the presence of the privacy policy P in

the language LPL.

42 Guillaume Aucher et al.

Algorithm 5 AddP
1 (S,(φ ,P))

Input: A Stack S, a formula φ ∈ LPL and a privacy

policy P

Output: The stack S added with the subformulas of

φ , ignoring the subformulas ψ and α of φ ap-

pearing in dynamic operators [Send ψ], [Prom α]
and Ps(Send ψ), and replacing the subformulas

RegComp,BehComp,Comp and Ps(Send ψ) by

their definition.

Push(S,(φ ,P))
if φ = ψ ∧ψ ′ then

AddP
1 (S,(ψ,P))

5: AddP
1 (S,(ψ ′,P))

else if φ = Krψ,¬ψ then

AddP
1 (S,(ψ ′,P))

else if φ = Osα then

AddP
1 (S,(α,P))

10: else if φ = (χ ∈P) then

AddP
1 (S,((χ ∈P),P))

else if φ = [Send ψ]p then

AddP
1 (S,(p,P))

else if φ = [Send ψ]ψ ′ ∧ψ ′′ then

15: AddP
1 (S,([Send ψ]ψ ′,P))

AddP
1 (S,([Send ψ]ψ ′′,P))

else if φ = [Send ψ]¬ψ ′ then

AddP
1 (S,([Send ψ]ψ ′,P))

else if φ = [Send ψ]Osα then

20: AddP
1 (S,(Osα,P))

else if φ = [Send ψ]Krψ ′ then

AddP
1 (S,([Send ψ]ψ ′,P))

AddP
1 (S,(Krψ ′,P))

else if φ = [Prom α]p then

25: AddP
1 (S,(p,P))

else if φ = [Prom α](χ ∈P) then

AddP
1 (S,((χ ∈P),P))

else if φ = [Prom α]ψ ∧ψ ′ then

AddP
1 (S,([Prom α]ψ,P))

30: AddP
1 (S,([Prom α]ψ ′,P))

else if φ = [Prom α]¬ψ then

AddP
1 (S,([Prom α]ψ,P))

else if φ = [Prom α]Osα
′ then

AddP
1 (S,([Prom α]α ′,P))

35: AddP
1 (S,(Osα

′,P))
else if φ = [Prom α]Krψ then

AddP
1 (S,(Krψ,P))

else if φ = RegComp then

AddP
1 (S,(

∧

i→Psα∈P
Psα ∧

∧

i→Osα∈P
Osα,P))

40: else if φ = BehComp then

AddP
1 (S,(

∧

i→Osα∈P
i→ α,P))

else if φ =Comp then

AddP
1 (S,RegComp,P))

AddP
1 (S,(

∧

i→Osα∈P
Osα ∧

∧

i→Psα∈P
Psα ∧

∧

i→Osα∈P
(i→ α) ,P))

45: else if φ = Ps(Send ψ) then

AddP
1 (S,([Send ψ](

∧

i→Osα∈P
(i→ α) ∧

∧

i→Osα∈P
Osα ∧

∧

i→Psα∈P
Psα),P))

else if φ = [+χ]φ then

P ←P ∪{χ}
AddP

1 (S,(φ ,P))
50: else if φ = [−χ]φ then

P ←P−{χ}
AddP

1 (S,(φ ,P))
end if

Algorithm 6 AddP
2 (S,φ ,P)

Input: A stack S, φ ∈PPL, and a privacy policy P

Output: The stack S added with the subformulas ψ
and α of φ appearing in dynamic operators of the

form [Send ψ], [Prom α] or Ps(Send ψ)

if φ = ψ ∧ψ ′ then

AddP
2 (S,(ψ,P))

AddP
2 (S,(ψ ′,P))

5: else if φ = Osα then

AddP
2 (S,(α,P))

else if φ = Krψ,¬ψ then

AddP
2 (S,(ψ,P))

else if φ = [+χ]ψ then

10: AddP
2 (S,(ψ,P ∪{χ}))

else if φ = [−χ]ψ then

AddP
2 (S,(ψ,P−{χ}))

else if φ = [Send ψ]ψ ′ then

Push(S,ψ)
15: AddP

1 (S,(ψ,P))
AddP

2 (S,(ψ,P))
AddP

2 (S,(ψ ′,P))
else if φ = [Prom α]ψ then

Push(S,α)
20: AddP

1 (S,(α,P))
AddP

2 (S,(α,P))
AddP

2 (S,(ψ,P))
else if φ = Ps(Send ψ) then

Push(S,ψ)
25: AddP

1 (S,(ψ,P))
AddP

2 (S,(ψ,P))
end if

	Introduction
	Our scenario of privacy policies
	Dynamic epistemic deontic logic
	A privacy logic for security monitors
	Related work
	Conclusion
	An extension of Castañeda's deontic logic
	Algorithms Add1P and Add2P

