
HAL Id: hal-00858004
https://hal.inria.fr/hal-00858004

Submitted on 4 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting SIMDization Opportunities through
Static/Dynamic Dependence Analysis

Olivier Aumage, Denis Barthou, Christopher Haine, Tamara Meunier

To cite this version:
Olivier Aumage, Denis Barthou, Christopher Haine, Tamara Meunier. Detecting SIMDization Oppor-
tunities through Static/Dynamic Dependence Analysis. PROPER - 6th Workshop on Productivity
and Performance - 2013, Sep 2013, Aachen, Germany. �hal-00858004�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49757891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00858004
https://hal.archives-ouvertes.fr

Detecting SIMDization Opportunities through

Static/Dynamic Dependence Analysis

Olivier Aumage, Denis Barthou, Christopher Haine, and Tamara Meunier

Inria – University of Bordeaux, France

firstname.lastname@labri.fr

Abstract. Using SIMD instructions is essential in modern processor architec-

ture for high performance computing. Compilers automatic vectorization shows

limited efficiency in general, due to conservative dependence analysis, complex

control flow or indexing. This paper presents a technique to detect SIMDization

opportunities, complementing in a more detailed way compiler optimization re-

ports. The method is based on static and dynamic dependence analysis, able to

analyze codes not vectorized by a compiler. This method generates user-hints to

help vectorize applications. We show on TSVC benchmark the benefits of this

approach.

Keywords: SIMDization, performance tuning, dependence analysis

1 Introduction

For modern multi-core architectures, the Single Instruction, Multiple Data (SIMD) in-

structions are essential in order to reach high levels of performance. With the increase

of vector width – up to 16 floats for Intel Xeon Phi SIMD vectors for instance – SIMD

instructions are real performance multipliers. Several options are given to the appli-

cation developer in order to vectorize a code: explicit vectorization through assembly

instructions, intrinsics, GCC vector extensions or other language extensions (such as

Intel SPMD Program compiler for instance [20]) or implicit vectorization through the

automatic vectorizer of the compiler.

Explicit vectorization, however, is complex and time consuming, assembly and

intrinsics-based approaches also are not portable and GCC extensions only offer a lim-

ited subset of arithmetic operations. Consequently, the vectorization effort for most

applications is delegated to the compiler, which may not entirely succeed or even com-

pletely fail to meet the programmer expectations, depending on the code structure and

complexity. Indeed, an over-conservative dependence analysis, an incomplete static in-

formation concerning the control-flow or a strided data layout are among the main rea-

sons why the compiler may not generate vector code, even though the code actually is

vectorizable. Therefore, determining whether the code is vectorizable, independently of

any compiler limitations, as well as pinpointing the issues that may hinder vectorization

and the transformations required to enable it are critical capabilities for the developer.

This paper proposes a new approach for detecting vectorization opportunities for

application innermost loops. This approach is based on a twofold static and dynamic

dependence analysis of the binary code, and generates vectorization hints for the user.

By combining a static and dynamic dependence analysis, our method identifies the lim-

iting factors for vectorization, such as misaligned data, non contiguous data together

with opportunities to vectorize, obtained through rescheduling, loop transformations,

reduction rewriting and vectorizable idiom rewriting. The runtime analysis is essen-

tial in capturing dependences in presence of complex control flow or structure index-

ing. Our technique provides feed-back to the user, pinpointing at the origin line in the

source (using debugging DWARF information). This approach is complementary to

what compiler optimization reports can provide, bringing a more detailed analysis of

vectorization opportunities, in particular of the opportunities missed by the compiler.

We show the benefits of the hints generated through a study of the extended TSVC

benchmarks[14] (Note: The extended TSVC suite of 151 loops is itself based on the

original TSVC suite [3] of 135 loops). While our method primarily targets SIMDiza-

tion efforts, it would be applicable to more general vector computing hardware.

Section 2 first presents the implementation background we use, Section 3 describes

the hybrid dependence analysis, using both static and dynamic analysis. Section 4 uses

this analysis to perform SIMDization analysis and generate hints. Finally, we show in

Section 5 the results obtained on TSVC benchmarks.

2 MAQAO Background

The analyses proposed in this paper are implemented within MAQAO and use the com-

pression scheme in MAQAO for memory traces. We briefly recall their features used in

the following.

MAQAO is a performance tuning tool [2], that analyzes the binary code of applica-

tions, written in C/C++ or Fortran. MAQAO builds the control flow graph and the call

graph of the code. It proposes an API to instrument statically a binary code and gener-

ate a new binary. This instrumentation is able to capture any value in the code, and in

particular can be used to trace memory accesses, count loop iterations, capture function

parameters. Compared to PIN [12], a tool with similar functionalities, MAQAO per-

forms only static analysis of binaries and static rewriting (from binary to binary). PIN,

on the contrary, dynamically rewrites binary codes while they execute, and performs

analysis on the fly. As the static analysis of MAQAO is offline, as well the instrumenta-

tion process, the overall cost for analyzing a binary with MAQAO is much smaller than

with PIN.

MAQAO captures memory streams by instrumenting all instructions that access

memory. For each instruction instrumented, the flow of addresses captured is com-

pressed on-the-fly using a lossless algorithm, NLR, designed by Ketterlin and Clauss[8]:

The successive values captured by the instrumentation are represented by a program

with loops and expressions. The expressions describe memory addresses and depend

on the surrounding loop counters. Figure 1 shows an example of traces for a simple

code, assuming elements of the arrays 4-byte long floats. Expressions can only depend

linearly on the loop counters, and loop bounds only depend linearly on surrounding

loop counters. The memory addresses described form union of polytopes. Hence the

method not only captures the memory workingset, it also captures a schedule for the

accesses.

for(i=1; i<100; i++)
C[i] = C[i - 1] + B[2 * i];

(a) Code example

for i0 = 0 to 98
read 0x2ba1a3bd4428 + 4 * i0

(c) Compressed trace for C[i-1]

for i0 = 0 to 98
write 0x2ba1a3bd442c + 4 * i0

(b) Compressed trace for C[i]

for i0 = 0 to 98
read 0x2ba1a4000000 + 8 * i0

(d) Compressed trace for B[2 * i]

Fig. 1. Example of trace compression using NLR. For the code in (a), one compressed trace per

memory access is produced, (b), (c) and (d).

Three important features for these traces are used in this paper: (i) Regular strides

are captured. This is important for SIMD optimization, since this will decide whether

data layout restructuration is needed or not. In Figure 1.(b), the stride is 4, meaning

data of array C is contiguously accessed in this write. For the array B, the stride of

8 shows that one float out of 2 is read, data is not contiguously accessed. (ii) Regular

streams are fully traced, in a compact form. This enables the computation of dependence

distances. (iii) For multi-dimensional data, memory expressions provide spatial locality

information through the ordering of the strides. This can be used in order to propose

loop restructuring hints.

For irregular patterns, new loops are created, possibly leading to a trace with no

compression if no regularity is found.

3 Hybrid Static/Dynamic Dependence Graph

The dependence analysis we propose is a combination of a static dependence analysis,

for registers, and dynamic dependence analysis for memory dependences. The static de-

pendence analysis on registers is already implemented in MAQAO and corresponds to

an SSA analysis. Memory dependences are obtained by tracing with MAQAO all mem-

ory accesses within the innermost loops, and then computing dependence distances.

Static, Register-Based Dependence Graph. The dependence graph on registers is re-

sulting from an SSA (static single assignment form[4]) analysis, proposed by MAQAO.

Besides, MAQAO handles special cases for dependences on x86:

– xor instructions, applied twice to the same register, set the value of this register to

0. While the operation is reading a register, this is not considered as a read access.

– SIMD instructions can operate only on the lower or higher part of a SIMD reg-

ister. Operations that operate on different parts of a register are not considered in

dependence.

In addition to the existing analysis, we tag all dependences where a register is read

for an address computation. The graph is then partitioned according to these edges

(cutting the graph through these edges), usually in two parts: Instructions preceding

these edges are address computation instructions (such as index computation, update of

address registers), while instructions after these edges are actual computation (memory

accesses, floating point operations, . . .) for which SIMDization may be applied. When

an indirection occurs, the dependence graph has a path with two tagged edges and

can therefore be partitioned into three or more subgraphs. The partition of instructions

following all tagged edges is said to be the computational part of the graph, while the

other instructions are part of the address computation part of the graph. In the rare cases

where it is not possible to cut the graph following tagged edges, we assume there is no

computational part.

Dynamic Dependence Graph. Dynamic dependences are essential to capture what the

compiler may have missed, concerning the control flow or the way data structures are

indexed. The dynamic dependence graph is built from the memory trace for each read

and write instructions in innermost loops.

Algorithm 1 describes how dependence distances are computed. w.trace denotes the

trace captured for an instruction w. For each couple of read and write accesses in a loop,

we first perform an interval test, based on their trace (line 2), and then compute a de-

pendence distance. The dependence distance is defined as the number of loop iterations

between two instructions accessing the same memory location. When two traces have

the same loop structure, the substraction between the traces (line 4) substracts the ex-

pressions that are at the same position in the trace. If the result is not the same constant

value for all substractions, then ∗ is returned, otherwise the constant value is returned.

The special ∗ dependence distance notation between two instructions denotes the fact

that their dependence distance is not constant during the execution of the program. Note

that only uniform dependences are captured this way but as far as SIMDization is con-

cerned, this captures all vectorization opportunities that do not require non-local code

transformation.

Algorithm 1: Dynamic Dependence computation for an innermost loop L

1 for w, a write and r, a read in L do
2 if w.trace∩ r.trace 6= /0 then
3 if loops of w.trace = loops of r.trace then
4 return r.trace−w.trace;
5 else
6 return ∗;
7 end

8 else
9 return 0 ;

10 end

11 end

For the example in Figure 1.b and 1.c, both traces have the same structure, the same

strides, and the difference between the read and the write addresses is an offset of −4.

Then we evaluate how this difference can be compensated by a variation in the loop

indices (here i0). We find a unique solution within the loop bounds, 1 and this shows

that the dependence distance between the write and the read is 1. In general, finding the

vector of iteration counters that compensate for the offset between the read and the write

leads to a multi-dimensional dependence vector. Only read after write dependences are

evaluated, and the sequential order of the assembly code is used to compare relative

for (int i = 1; i < LEN2; i++) {

for (int j = 1; j < LEN2; j++) {

bb[j][i] = bb[j][i-1] + cc[j][i];

}

0x4077d8 : MOVSS	0x849094(% RCX, % RAX,1), % XMM0

stride : 1024, 4

0x4077e1 : ADDSS	0x76cc94(% RSI,% RAX,1),% XMM0

stride : 1024, 4

0

0x4077ea : MOVSS	 % XMM0,0x76cc94(% RCX, % RAX,1)

stride : 1024, 4

0 1, 0

0x4077f3 : ADD	 $ 0x4, % RAX

1

1

1

1

0x4077f7 : CMP	 $ 0x3fc, % RAX

0

0x4077fd : JNE	4077d8

Fig. 2. Code and dependence graph for one loop of function s2233 in TSVC benchmark.

positions for reads and writes. Note that all distances for register dependences corre-

spond in this case to innermost loop carried dependences. Figure 2 presents the s2233

function from TSVC and its dependence graph, combining both the static and dynamic

graphs. The nodes each represent an assembly instruction, along with its strides when it

is a memory access. The dashed edges in red represent dependences for registers used

in address computation. Cutting the graph along these edges separates the computa-

tional part (left nodes) from the address computation and control part. The bold blue

edge, labelled with 1,0 represents the memory dependence corresponding to bb, di-

rectly computed from the trace. The strides denoted on the edges have two values: 1024

and 4. The first one corresponds to the stride for the innermost loop, j, and the second

to the i loop. This shows that here, none of the accesses have good spatial locality.

4 SIMDization Analysis

The SIMDization analysis is in two steps: First, we determine whether the code has a

parallelism compatible with a SIMDization, independently of any data layout or control

limitations (such as large stride). Then, we refine the analysis to detect special cases and

accordingly guide the programmer towards enabling and improving the vectorizability

of the code.

Vectorizable Dependence Graph. The dependence graph (static and dynamic) is first

partitioned according to address computation edges as described previously. The graph

is said vectorizable if one of the three conditions applies to the computational part of

the graph:

– There is no cycle.

– There is a cycle, with a cumulative weight greater than the width of SIMD vectors.

– There is a cycle, with a cumulative weight smaller than the width of SIMD vectors,

and the instructions of the cycle all are of one of the following types: add, mul,

max, min. The cycle corresponds to a reduction.

A code with a vectorizable dependence graph may require transformations in order to

be SIMDizable. This is detailed in the following section.

Code Transformation Hints. We propose to identify a number of transformations re-

quired for the SIMDization of the code, depending on the dependence graph, on the

stride expressions, and on the control flow graph.

Data alignment: When the graph is vectorizable without cycle, misaligned data is

detected by comparing the starting address of all memory streams with the width of

SIMD vectors. In the simpler case, the user can either change memory allocation of

heap-allocated data structures, or use pragmas for aligning stack-allocated data. When

for instance A[i] and A[i+ 1] occur in the same code, one of the two accesses is mis-

aligned. This would require shuffle instructions, or unaligned loads/stores whenever

they exist.

Rescheduling: When the graph is vectorizable without cycle, there may still exist

some dependences with non-null distance. Due to the fact that the analysis is performed

on assembly code, this may require some modifications at the source code such as

some rescheduling of loads/stores and computations, splitting some larger instructions.

A template of the vector code is generated by our tool (an example is given in the

following section), giving a correct instruction schedule after SIMDization.

Loop transformations: Loop interchange is proposed when all accesses within the

loop have a large innermost loop stride, and another loop counter in the expression

corresponding to the same outer loop has a stride 4 (for floats and ints). Interchanging

these two loops would result in better locality and enable SIMDization.

Loop reversal: Traces with negative stride expressions lead to this hint. Note that if

other reads for instance have a positive stride, the reversal is not beneficial any more.

Data reshaping required: This is a fallback hint for large innermost loop strides,

and for codes with indirection (detected on the static dependence graph). On the Sandy-

bridge and Xeon Phi architectures, instructions for loading or storing non-consecutive

elements into/from SIMD vector have been added to the ISA (GATHER on Xeon Phi

and Sandybridge and SCATTER on Xeon Phi). Use of these instructions, through as-

sembly code or intrinsics, is an alternative to data reshaping.

Versioning required: The static analysis on the code may lead to a conclusion dif-

ferent from the trace analysis. For instance, the trace may find a regular stride for a

memory stream whereas statically, this stream results from an indirection, or depends

on a parameter. Similarly, the dynamic control flow (the real path taken) may be a subset

of a more complex static control flow. In these cases, the trace may have captured only

one behavior of the code, for a particular input. The vectorization may only be possible

in this case through the versioning of the loop, depending on the values of the array, of

a parameter.

Idiom Recognition: When the code is vectorizable, with 0 dependence distances

or with reductions, the dependence graph can match a predefined dependence graph

representing a well known computation. The shape of the dependence graph and the

for (int i = 0; i < LEN - 1; i++)

xx[i+1] = array[i] + a[i];

0x40c310 : MOVSS	0x829c90(% RAX), % XMM0

stride : 4

0x40c318 : ADDSS	0x612070(% RAX),% XMM0

stride : 4

0

0x40c320 : MOVSS	 % XMM0,0x4(% RDX, % RAX,1)

stride : 4

0 64

0x40c326 : ADD	 $ 0x4, % RAX

0x40c32a : CMP	 $ 0x1f3fc, % RAX

0

1

1

1

1

0x40c330 : JNE	40c310

Fig. 3. Code and dependence graph for the loop in function s424 of TSVC benchmark. array is

aliased with xx with an offset of 63 floats.

instructions themselves are matched with the predefined graphs. In this case, the user

can call a library function instead of trying to vectorize the actual code.

The predefined functions considered are so far: dot product, daxpy, copy, sparse

copy (copy with an indirection either in the load or in the store), but more complex

functions can be added with ease.

5 Tests on TSVC Benchmark

The TSVC benchmark has 151 codes with small loops, illustrating different vectoriza-

tion difficulties. We first present the output generated by our method on one example

and then show aggregated results for all TSVC benchmarks.

5.1 Output example

Figure 3 presents a code with an alias between two arrays. This kind of alias can hinder
automatic vectorization and only dynamic dependence analysis or possibly interproce-
dural alias and points-to analysis are able to cope with such situation. Here, the dynamic
dependence shows that the dependence distance between the write of x[i+1] and the
read of array[i] is 64 iterations. Thus vectorization is possible as long as vector width
is < 64. The output generated by our method is the following:

Loop at lines 4443-4444 of tsc.c:

vectorizable

contiguous data

code template:

load (i:i+4) line 4444

load (i:i+4) and add line 4444

store (i+64:i+68) line 4444

The source line and name of the file are provided by MAQAO and extracted from

debug information. User-friendly names are associated for most frequent instructions

found in the computational part of TSVC. The dependence between the store and load

is represented by the dependence vector on the indices.

5.2 SIMDization Opportunities

Table 5.2 presents the overall hints generated by the analysis on all TSVC benchmarks.

Out of the 151 functions to analyze, 123 are detected as SIMDizable, with 0, 1 or more

hints provided by MAQAO. If we focus on the codes that are said vectorizable and are

not vectorized by GCC, for 23 of them, speed ups greater than 2 are obtained through

hand vectorization, compared to GCC generated codes.

Tool Maqao GCC ICC

Detected vectorizable cases 123 46 104

Corresponding MAQAO hint

- Reduction 30 15 24

- Idiom 8 3 7

- Data alignment issue 11 4 4

- Code restructuration 53 6 39

- Loop interchange or data tranpose 9 4 7

- Rescheduling 9 1 1

- Control 23 0 17

Table 1. MAQAO vs GCC and Intel ICC compilers

6 Related Works

With the advent of short vector SIMD instructions in modern processors, SIMDizabil-

ity and automated SIMDization have been the topic of several research efforts. Indeed,

making use of these SIMD units has early been recognized as key for performance [11].

Compilers such as from Intel, IBM or PGI, as well as GNU GCC [18, 17, 16, 22] have

received much auto-vectorization effort to enable and extend their capabilities [9, 9, 5,

1]. Scout [10] has been designed to vectorize at a higher level, by translating scalar

statements to vectorized statements using SIMD intrinsics. However, Malecki et al.

showed in their SIMDization tests [14] on the TSVC suite that many potentially vec-

torizable constructs are left unaddressed by state of the art compilers, either because

some known theoretical techniques have not yet been implemented, because no known

theoretical techniques exist for codes with complex structure, or because the compiler

must act conservatively as a consequence to a lack of available information at compile-

time [19].

The purpose of tools based on dynamic dependency graph analysis [13] such as

our MAQAO approach is therefore to explore SIMDizability from an entirely different

point of view. As such, MAQAO is a complementary analyser with respect to vector-

izing compilers, for application programmers to investigate where and how their code

could be restructured to enable or improve vectorization by the compiler. Holewinski et

al. propose a similar approach [7], which is the closest from our own work, to the best

of our knowledge so far. However, their implementation does not preserve structural

information about the application such as iterated memory references inside loop nests.

This limits the amount of details that can be reported to the programmer, and this also

limits the richness of the information that could be injected back inside a vectorizing

compiler to improve its output. Our approach instead preserves such key information,

which distinguishes from prior efforts. An hybrid compile-time/run-time approach is

proposed by Nuzman et al. [15] using a two-step vectorization scheme. The compile-

time step performs expensive analysis operations. The run-time, specialization step is

performed by an embedded just-in-time compiler. This approach enables some degree

of adaptiveness to the hardware at run-time. However, the run-time step does not alter

the vectorizability status using dynamic dependency information. Adaptiveness is also

explored by Park et al. [6] by guiding the application of optimizations in a predictive

manner through a machine-learning approach, and by Tournavitis et al. [21] in a tech-

nique associating profile-driven auto-parallelization together with machine-learning.

7 Conclusion and Future Work

We have presented in this paper a new method to help users vectorize their code. The

approach generates hints identifying what are the vectorization opportunities, and what

are the bottlenecks in the code preventing SIMDization. The technique we propose is

unique with respect to other efforts on the topic in that it uses a static dependence

analysis on the binary code, at the register level, enriched with a dynamic dependence

analysis for memory accesses. The combination of both provides a detailed picture of

vectorization and possible transformations necessary for SIMDization. We have shown

on TSVC benchmark the accuracy of our analysis.

As future work we plan to expand the range and quality of our analysis by detect-

ing other loop transformations automatically (such as loop distribution or reroll) for

SIMDization, and also to test this approach to larger, varied application codes.

References

1. Allen, R., Kennedy, K.: Optimizing Compilers for Modern Architectures: A Dependence-

Based Approach. Morgan Kaufmann (2002)

2. Barthou, D., Rubial, A.C., Jalby, W., Koliai, S., Valensi, C.: Performance tuning of x86

OpenMP codes with MAQAO. In: Tools for High Performance Computing. Springer Berlin

Heidelberg (2010)

3. Callahan, D., Dongarra, J., Levine, D.: Vectorizing compilers: a test suite and results. In:

Conference on Supercomputing (1988)

4. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently computing

static single assignment form and the control dependence graph. ACM Transactions on Pro-

gramming Languages and Systems (1991)

5. Eichenberger, A.E., Wu, P., O’Brien, K.: Vectorization for SIMD architectures with align-

ment constraints. In: ACM SIGPLAN Conf. on Programming Language Design and Imple-

mentation (2004)

6. Eunjung Park, L.N.P., Cavazos, J., Cohen, A., Sadayappan, P.: Predictive modeling in a poly-

hedral optimization space. In: ACM/IEEE Intl. Conf. on Code Generation and Optimization

(2011)

7. Holewinski, J., Ramamurthi, R., Ravishankar, M., Fauzia, N., Pouchet, L.N., Rountev, A.,

Sadayappan, P.: Dynamic trace-based analysis of vectorization potential of applications. In:

ACM SIGPLAN Conf. on Programming Language Design and Implementation (2012)

8. Ketterlin, A., Clauss, P.: Prediction and trace compression of data access addresses through

nested loop recognition. In: ACM/IEEE Intl. Conf. on Code Generation and Optimization.

pp. 94–103. ACM, New York, NY, USA (2008)

9. Kong, M., Veras, R., Stock, K., Franchetti, F., Pouchet, L.N., Sadayappan, P.: When polyhe-

dral transformations meet SIMD code generation. In: ACM SIGPLAN Conf. on Program-

ming Language Design and Implementation (2013)

10. Krzikalla, O., Feldhoff, K., Muller-Pfefferkorn, R., Nagel, W.E.: Scout: a source-to-source

transformator for SIMD-optimizations. In: Workshop on Productivity and Performance

(2011)

11. Larsen, S., Amarasinghe, S.: Exploiting superword level parallelism with multimedia instruc-

tion sets. In: ACM SIGPLAN Conf. on Programming Language Design and Implementation

(2000)

12. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi, V.J.,

Hazelwood, K.: Pin: building customized program analysis tools with dynamic instrumen-

tation. In: ACM SIGPLAN Conf. on Programming Language Design and Implementation

(2005)

13. Mak, J., Mycroft, A.: Limits of parallelism using dynamic dependency graphs. In: Interna-

tional Workshop on Dynamic Analysis (2009)

14. Maleki, S., Gao, Y., Garzarn, M.J., Wong, T., Padua, D.A.: An evaluation of vectorization

compilers. In: International Conference on Parallel Architectures and Compilation Tech-

niques (PACT) (2011)

15. Nuzman, D., Dyshel, S., Rohou, E., Rosen, I., Williams, K., Yuste, D., Cohen, A., Zaks,

A.: Vapor SIMD: Auto-vectorize once, run everywhere. In: ACM/IEEE Intl. Conf. on Code

Generation and Optimization (2011)

16. Nuzman, D., Henderson, R.: Multi-platform auto-vectorization. In: ACM/IEEE Intl. Conf.

on Code Generation and Optimization (2006)

17. Nuzman, D., Rosen, I., Zaks, A.: Auto-vectorization of interleaved data for SIMD. In: ACM

SIGPLAN Conf. on Programming Language Design and Implementation (2006)

18. Nuzman, D., Zaks, A.: Autovectorization in GCC-two years later. In: Proceedings of the

GCC Developers Summit (2006)

19. Petersen, P.M., Padua, D.A.: Static and dynamic evaluation of data dependence analysis. In:

International Conference on Supercomputing (1993)

20. Pharr, M., Mark, W.R.: ispc: A SPMD compiler for high performance CPU programming.

In: Conf. InPar (2012)

21. Tournavitis, G., Wang, Z., Franke, B., OBoyle, M.F.: Towards a holistic approach to auto-

parallelization: integrating profile-driven parallelism detection and machine-learning based

mapping. In: ACM SIGPLAN Conf. on Programming Language Design and Implementation

(2009)

22. Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., Rosen, I.: Polyhedral-model guided loop-

nest auto-vectorization. In: International Conference on Parallel Architectures and Compila-

tion Techniques (2009)

