
HAL Id: hal-00857881
https://hal.inria.fr/hal-00857881v2

Submitted on 4 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph Repartitioning with both Dynamic Load and
Dynamic Processor Allocation

Clément Vuchener, Aurélien Esnard

To cite this version:
Clément Vuchener, Aurélien Esnard. Graph Repartitioning with both Dynamic Load and Dy-
namic Processor Allocation. International Conference on Parallel Computing - ParCo2013, Sep 2013,
München, Germany. pp.243-252, �10.3233/978-1-61499-381-0-243�. �hal-00857881v2�

https://hal.inria.fr/hal-00857881v2
https://hal.archives-ouvertes.fr

Graph Repartitioning with both Dynamic
Load and Dynamic Processor Allocation

Clément VUCHENER a and Aurélien ESNARD a

aUniv. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France.
CNRS, LaBRI, UMR 5800, F-33400 Talence, France.
HiePACS Project, INRIA, F-33400 Talence, France.

Abstract. Dynamic load balancing is an important step conditioning the
performance of parallel programs, like adaptive mesh refinement codes.
If the global workload varies drastically over time (such that memory is
exceeded), it can be relevant to adjust the number of processors while
maintaining the load balanced. We propose two different solutions, that
extend classic graph repartitioning approaches to accept a variable num-
ber of processors: one based on biased partitioning method and one
based on a diffusive method. We call this problem: the M × N graph
repartitioning problem. Finally, an experimental study on real-life graphs
validates our algorithms against state-of-the-art methods.

Keywords. high-performance computing, parallelism, dynamic load-
balancing, graph partitioning, repartitioning.

1. Introduction

In the field of scientific computing, the load balancing is an important step condi-
tioning the performance of parallel programs. The goal is to distribute the compu-
tational load across multiple processors in order to minimize the execution time.
For some scientific applications, whose load evolution is unpredictable (e.g. adap-
tive mesh refinement), it is required to periodically compute a new balancing at
runtime, using a dynamic load balancing algorithm.

This is a well-known problem [1,2], that is unfortunately NP-hard. The most
common approach to solve it uses graph repartitioning methods. Given a weighted
graph G and an unbalanced partition P of this graph in M parts, the classic
repartitioning problem aims to compute a new partition P ′ of G (in M parts)
that satisfies the following objectives: 1) balancing the load across subdomains,
2) minimizing the edge-cut, and 3) minimizing the migration volume. The first
objective aims to minimize the whole computation time, which consists of dividing
the graph in equal weight subdomains (up to an imbalance tolerance). The second
objective aims to minimize the communication time, which consists of minimizing
the weight of edges cut between subdomains. Finally, the third objective aims to
minimize the migration time, which consists of minimizing the weight of vertices
that are redistributed among subdomains. Therefore, there is a good trade-off to
find between these different criteria.

Increasing load

M = 4 N = 6

Figure 1. Dynamic processor allocation for a single code whose load is increasing.

When the global load of an application varies drastically (such that memory is
exceeded), it can be profitable to adapt the number of processors used at runtime
in order to preserve the parallel code efficiency and/or to improve the resource
consumption (Fig. 1). For instance, in the context of adaptive mesh refinement
(AMR), Iqbal et al. suggest the following approach [3,4]: one usually starts com-
putation on a coarse grid with few processors, then one changes the number of
processors working on the computation at runtime1 as the grid is progressively
refined or coarsened. We call this problem of dynamic load balancing: the M ×N
graph repartitioning problem.

Nowadays, the most common approach for dynamic load balancing of par-
allel adaptative simulations uses graph/hypergraph repartitioning, with popular
methods such as scratch-remap [6], diffusion [7,8] or biased partitioning with fixed
vertices [9,10]. Basically, these methods aim to optimize different primary objec-
tives: scratch-remap first minimizes the edge-cut, while diffusion first minimizes
the migration volume. The biased partitioning tends to find a trade-off between
these two criteria. All these repartitioning methods are currently available in ma-
ture and efficient software tools, such as ParMetis [11], Zoltan [12] or Scotch [13].
Nevertheless, all these methods are limited to the case where the number of pro-
cessors is initially fixed and will not be modified at runtime.

In recent work [14], we focused on this particular problem. We proposed a
new M ×N graph repartitioning algorithm, limited to the case where the initial
partition in M is well balanced. Using a biased partitioning method with fixed
vertices in a similar way to Zoltan [10], our approach enforces an optimal com-
munication scheme for migration, while minimizing the edge-cut as a trade-off.
One proves our communication scheme to be optimal in the way it reaches min-
imal migration volume and minimal number of messages and gives a method to
construct such an optimal migration matrix. Unfortunately, this solution doesn’t
work anymore in the general case where P is initially unbalanced.

In this paper, we first present background definitions and a formal statement
of the M ×N graph repartitioning problem, illustrated by some samples (Sec. 2).
Then, we propose two different and original solutions to solve this problem: one
based on biased partitioning method that extends our previous work (Sec. 3) and
another one based on a diffusive method (Sec. 4). Our methods require two main
steps: first, one constructs a good migration matrix, then one computes a new
partition according to this matrix. Finally, we give experimental results comparing
our approach against state-of-the art partitioning tools (Sec.5).

1Thanks to dynamic processor allocation mechanisms such as those provided by MPI2 (i.e.
MPI_COMM_SPAWN routine) [5].

2. M ×N Graph Repartitioning

In this section, we first give some background definitions about graph partitioning
& repartitioning and describe some metrics for migration matrix. Then, we pro-
pose a formal statement of the M ×N graph repartitioning problem, illustrated
by some samples.

2.1. Background Definitions

Let consider a graph G = (V,E), where V is the vertex set and E is the edge set.
Each vertex v has a weight wv and a size sv, that represent the computational
load and the redistribution cost, respectively. In this paper, we assume that wv

and sv are the same. In addition, each edge e has a weight we, that represents
the communication cost.

A k-way partition of V is a set of k disjoint subsets V1, V2, . . . , Vk, such
as all subsets cover V . The partition imbalance is defined as ub(G,P) =
maxVi∈P (

∑
v∈Vi

wv/(W/k)) with W the total vertex weight of G. A partition
P is said to be balanced if ub(G,P) ≤ (1 + ε) with ε the imbalance tolerance.
A typical imbalance tolerance is ε = 0.05, that means that each part must not
exceed 5% of the ideal weight. The cut size (or edge-cut) of a given partition P
is defined as the weight of edges whose ends belong to two different parts in P :
cut(G,P) =

∑
e∈F we where F = {(a, b) ∈ E, a ∈ Vi ∧ b ∈ Vj ∧ i 6= j}.

We define the quotient graph G/P with respect to the partition P of G, the
graph where vertices from a same part are merged into a single vertex. Therefore,
this quotient graph has as many vertices as there are parts in P and the weight
of an edge is equal to the edge-cut between the two parts.

In the context of graph repartitioning, we consider two partitions of G: the
former partition P in M parts and the newer partition P ′ in N parts. The migra-
tion matrix C is defined as a matrix C = (Ci,j) of size M ×N , where Ci,j is the
weight of vertices in both the former part i and the newer part j. It represents
the amount of data exchanged between the "former" processor i and the "newer"
processor j. In other terms, non-diagonal terms of C represent the amount of
data redistributed to a different processor, while diagonal terms Ci,i represent the
amount of data that remains on the same processor and are not redistributed. As
a consequence, the migration matrix satisfies the following constraints: the weight
of the row i of C is equal to the weight of the former part Vi of P , while the
weight of the column j is equal to the weight of the newer part V ′

j of P ′.
To evaluate the redistribution cost for a given migration matrix C, the com-

mon metrics used are TotalV and MaxV [6,8]. The migration volume TotalV is
defined as the sum of non-diagonal terms, i.e., TotalV =

∑
i 6=j Ci,j . In the same

way, one can define MaxV as the maximum amount of data sent (or received)
by a processor. One introduces in this paper two new metrics, called TotalZ and
MaxZ. First, the total number of migration messages, TotalZ, is defined as the
number of non-diagonal terms in C that are not null. It reflects the number of
messages exchanged between former and newer processors. Then, MaxZ is the
maximum number of messages sent (or received) by a processor.

In the case where both P and P ′ are perfectly balanced and M 6= N ,
we showed in a previous work [14] that TotalZ is minimal for max(M,N) −
GCD(M,N) and that TotalV is minimal for |M −N | ×W/max(M,N).

2.2. Problem Statement

Let us consider an imbalance tolerance ε. Given an unbalanced graph partition
P of G in M parts, the M × N repartitioning problem aims to compute a new
graph partition P ′ of G in N parts that satisfies the following objectives:

1. balancing the load, ub(G,P ′) ≤ 1 + ε,
2. minimizing the communication cost, cut(G,P ′),
3. minimizing the redistribution cost, TotalV .

Firstly, if M = N , this problem is the classic graph repartitioning problem;
secondly, if the initial partition P is already balanced and M 6= N , this is a
particular case we have recently studied in [14]; finally, if P is unbalanced and
M 6= N , this is the general case we investigate in this paper.

1

2

3

(a) Initial partition

1

2

3

(b) Repartitioning 3×3

1 2

34

(c) Repartitioning 3×4

4 0 00 3 0
0 1 4

 3 0 0 10 3 0 0
0 0 3 2

3× 3 3× 4

(d) Migration matrices

Figure 2. Example of graph repartitioning in the cases 3× 3 and 3× 4. The partition is given
by the red line. The redistributed vertices are in red and the edges cut are in dashed red.

The figure 2 presents two examples of M ×N graph repartitioning: one in 3
parts and another in 4 parts. The initial partition in M = 3 parts given on fig-
ure 2a is unbalanced, for the ideal weight of each subdomain should be 4 (assuming
each vertex weight is 1). The figure 2b shows a new balanced partition in N = 3
parts, where 8 edges are cut and only 1 vertex is redistributed (TotalV = 1).
The figure 2c presents another partition in N = 4 parts where the cut is 11, the
migration volume TotalV is 3 (MaxV = 3) and the number of messages TotalZ
is 2 (MaxZ = 2). The figure 2d gives the migration matrices in this two cases.

3. An Extended Biased Partitioning Algorithm for MxN Repartitioning

The first solution we propose is based on a biased partitioning method that ex-
tends our previous solution [14] to the case where P is unbalanced.

3.1. Construction of a Good Migration Matrix

In this section, we describe how to create a good migration matrix that minimizes
both TotalV and TotalZ while respecting the load balance constraint.

step 0 step 4 step 5

39

39

14

34

17
62

65

0 53

1 50

2 50

3 35

4 22

39

39

14

34

17
62

65

0 23

1 20

2 20

3 5

4 22
39

39

14

34

17
62

65

0 20

1 20

2 20

3 0

4 0

0 0 0 0 0 0 0 53
0 0 0 0 0 0 0 50
0 0 0 0 0 0 0 50
0 0 0 0 0 0 0 35
0 0 0 0 0 0 0 22

30 0 0 0 0 0 0 23
0 30 0 0 0 0 0 20
0 0 30 0 0 0 0 20
0 0 0 30 0 0 0 5
0 0 0 0 0 0 0 22

30 0 0 0 3 0 0 20
0 30 0 0 0 0 0 20
0 0 30 0 0 0 0 20
0 0 0 30 5 0 0 0
0 0 0 0 22 0 0 0

step 6 step 7

39

39

14

34

17
62

65

0 0

1 10

2 20

3 0

4 0

39

39

14

34

17
62

65

0 0

1 0

2 0

3 0

4 0

30 0 0 0 3 20 0 0
0 30 0 0 0 10 0 10
0 0 30 0 0 0 0 20
0 0 0 30 5 0 0 0
0 0 0 0 22 0 0 0

30 0 0 0 3 20 0 0
0 30 0 0 0 10 10 0
0 0 30 0 0 0 20 0
0 0 0 30 5 0 0 0
0 0 0 0 22 0 0 0

Figure 3. Illustration of the greedy algorithm on a 5× 7 sample, that constructs iteratively the
7 new parts.

Our algorithm uses a greedy approach to choose which processors communi-
cate together and how much data is moved. It fills the migration matrix element
by element, starting with a null matrix. Adding an element can be seen as taking
vertices from a former part (associated with the row) and giving them to a newer
part (associated with the column). In order to add as few elements as possible in
the matrix, and thus reducing the number of migration messages, each element
added is chosen as large as possible.

Firstly, in order to minimize the migration volume, one tries to maximize
the values on the matrix diagonal by adding an element in the diagonal for each
former part whose weight is higher than the ideal newer part weight. The value of
this element is the ideal newer part weight, thus, as the newer part is complete,
there will be no other non-zero element in this column. This means that this
newer part will be made only from vertices of the same former part.

Then, the remaining columns are filled from several former parts according
to the quotient graph G/P . Only former parts whose row is not yet filled (all
its vertices are not given yet), are considered. Starting from a peripheral former
part, other former parts are added until the newer part has taken enough vertices.
Former parts are chosen according to their connection with the already chosen
former parts in the quotient graph using a score computed from the set Vk of
chosen former parts: |Ek|×

∑
e∈Ek

we with Ek the edges of G/P restricted to Vk.
The figure 3 shows an example execution of this algorithm. At each step, we

present the matrix with, on its right, how many vertices remains for each row
(former part). The sets of former parts Vk that each newer part k takes vertices
from, are drawn over the quotient graph. Starting with an empty matrix at step
0, elements are added on the diagonal until step 4. The former part 4 is too small

to accept a diagonal element. The next newer part at step 5 is built by taking all
the vertices from part 3 and then part 4 and completed with a few vertices from
part 0. Only former parts 0, 1 and 2 still have vertices to give and will be used
to build the two remaining newer parts in a similar way at step 6 and 7.

3.2. Biased Partitioning according to a Migration Matrix

In order to achieve a repartitioning that respects the previously built migration
matrix C, we propose an algorithm that extends the approach used in Zoltan [10]
based on fixed vertices2. A fixed vertex is added for each newer part j and is
connected to all the regular vertices of G belonging to a former part i if and only
if Ci,j is not zero. These new edges added to G are called migration edges. In our
approach, a fixed vertex can be connected to multiple former parts (depending
on the migration matrix), while in the Zoltan method it is strictly connected
to a single former part. Finally, this enriched graph is partitioned in N parts:
when minimizing the edge-cut, the partitioner will try to cut as few as possible
migration edges, enforcing the communication scheme imposed by the migration
matrix [14].

4. An Extended Diffusion-Based Algorithm for MxN Repartitioning

The second solution we propose is based on a diffusive method in a similar way
to ParMetis [7,8], but extended for the M × N case. In the original diffusive
method, vertices are migrated only between two neighboring parts according to
the quotient graph. Hence, it is required to extend this method to make it possible
for vertices to migrate to newer empty parts when N > M . As in the previous
solution (Sec. 3), one first looks for a good migration matrix C, then one computes
the new partition with respect to C, such that it is decided which vertices of G
will move.

We illustrate our algorithm on a simple 5× 7 repartitioning case, running on
a regular grid G (of size 100× 100) shown on figure 4. The initial partition P of
G inM = 5 parts is shown on figure 4a. This partition is unbalanced by changing
vertex weight according to the figure 4b, given a total load increase of +67.8%
with maximum imbalance of 40%3. The quotient graph Q = G/P sums up the
initial state (Fig. 4c).

4.1. Construction of a Good Migration Matrix

The first step of our algorithm must decide where to place the newer parts rel-
atively to the former parts. When N > M , there are K = M − N newer parts
which must be created from zero. Thanks to a greedy heuristic that retains the
spirit of the method explained at section 3.1, one computes a migration model

2When computing a partition, fixed vertices are those previously assigned to a given part,
while regular vertices are free to be assigned in any parts.

3More precisely, one sets a weight of 2 to gray vertices and 3 to red vertices, while all blue
vertices remain unchanged with a weight of 1.

M as shown on figure 4d. Two new parts are added: the part 5 that will take
vertices from former parts {0, 1, 2} and the part 6 that will take vertices from
former parts {2, 4}. Then, one creates a graph Q̃, that enriches the quotient graph
Q by adding K new vertices connected to some vertices of Q according to the
migration modelM (Fig. 4e).

The second step consists in computing the vertex weight Ci,j to be moved
from part i to part j, for all edges (i, j) in Q̃, such that the migration volume
is minimized (TotalV =

∑
i 6=j Ci,j). This is simply computed with a linear pro-

gramming solver (GLPK [15]) in a similar way to [16,17]. The figure 4f shows the
optimal migration matrix C obtained for out chosen modelM, with a migration
volume of 4820 (28.7%).

4.2. Migration of Vertices according to a Migration Matrix

Once we have obtained a good migration matrix C, a classic diffusion-scheme is
performed to choose precisely which vertices will migrate across subdomain fron-
tiers and to compute the new partition P ′. When M < N , our method requires
an additionnal step. Indeed, as the newer parts j (such that M ≤ j < N) are
intially empty, no frontier exists to initiate the migration of vertices. To overcome
this issue, some seeds are computed for those parts as shown on figure 4g. Then,
one performs TotalZ local migration steps between parts taken two by two. For
each step, Ci,j vertex weight must be moved from the source part i to the desti-
nation part j following the classic Fiduccia-Mattheyses gain formula to improve
the edge-cut [18]. The figure 4 shows this 6 steps, that starts to create the new
part 5 on steps 1 to 3, and so on, until to obtain the final partition on step 6 with
an edge-cut of 403 (Fig. 4k).

5. Preliminary Experimental Results

We present in this section some preliminary results for a variety of real-life graphs,
described on table 1. Those graphs are publicly available from the university
of Florida sparse matrix collection [19] except for grid3d, which is a regular
100×100×100 cubic grid. OurM×N graph repartitioning methods, based on bi-
ased partitioning (MxN BIASED) and based on diffusion (MxN DIFF), are com-
pared against state-of-the-art partitioners (Zoltan, Scotch, ParMetis) and against
a Scratch-Remap4 method (SR). We use Zoltan 3.6, ParMetis 4.0.2 and Scotch
6.0 with default parameters and a migration cost fixed to 1. These partitioners
are not designed for M × N repartitioning, but it is still possible to perform a
classic repartitioning in N parts, assuming some parts are empty when M < N .
The MxN BIASED method uses a modified version of Scotch with a k-way greedy
graph growing heuristic as initial partitioning in the multilevel framework. We
prefer such a heuristic compared to the classic recursive bipartitioning, that fails
to handle fixed vertices in some cases.

For each graph, one considers an initial balanced partition in M = 8 (with
respect to an imbalance tolerance ε = 1%). Vertex weights are heterogeneously

4The Scratch-Remap method used for experiments is implemented with Scotch.

(a) Initial partition
(step 0) (b) Unbalance

38
17

36

53
65

2631

0 2685

1 4027

2 46983 2014

4 3356

(c) Quotient graph

3

(d) Migration model

0

1

23

4

5

6

(e) Enriched quotient
graph

2517 0 0 0 0 168 0
0 2516 0 0 0 1511 0
0 0 2397 264 0 599 1438
0 0 0 2014 0 0 0
0 0 0 0 2516 0 840

(f) Migration matrix

(g) Seeds (h) Step 1

(i) Step 2 (j) Step 3

(...)

(k) Step 6

Figure 4. Illustration of the diffusion-based repartitioning algorithm in the case 5 × 7 on a
regular grid.

graph description |V | |E| d

grid3d 3D grid 1,000,000 2,970,000 5.94
cfd2 computational fluid dynamics 123,440 1,482,229 24.02
crankseg_2 structural problem 63,838 7,042,510 220.64
thermal2 thermal problem 1,228,045 3,676,134 5.99
brack2 2D/3D problem 62,631 366,559 11.71
wave 2D/3D problem 156,317 1,059,331 13.55
cage12 DNA electrophoresis 130,228 951,154 14.61

Table 1. Description of the graphs used in benchmark. The value d represents the average degree
of the graph, it is computed from 2×|E|

|V | .

increased such that the global graph load is increased of 50% with a maximum
imbalance of 33% between parts. Then, we increase the number of processors
proportionally to the load, that leads to N = 12. One repeats all experiments 10
times with different weight distributions. The figure 5 presents the results obtained
for different metrics (cut, migration volume, number of messages, repartitioning
time) relatively to the SR method. Error bars show the minimum and maximum
values during the repeated experiments.

As expected, SR gives the lowest cut and the highest migration volume, for
minimizing the cut is its main objective while the migration volume is only opti-

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

brack2

cage12

cfd2
crankseg_2

grid3d

therm
al2

w
ave

(a) Cut

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

brack2

cage12

cfd2
crankseg_2

grid3d

therm
al2

w
ave

(b) Migration Volume (TotalV)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

brack2

cage12

cfd2
crankseg_2

grid3d

therm
al2

w
ave

(c) Number of Messages (TotalZ)

 0

 2

 4

 6

 8

 10

 12

 14

 16

brack2

cage12

cfd2
crankseg_2

grid3d

therm
al2

w
ave

Zoltan
Parmetis

Scotch
M×N BIASED

M×N DIFF
SR

(d) Repartitioning Time

Figure 5. Results obtained for a 8 × 12 repartitioning of several unbalanced graphs, relatively
to the Scratch-Remap method.

mized after the partition is built. Zoltan does not work well for M ×N reparti-
tioning and gives high migration volume and sometimes very high cut. ParMetis
offers some good migration volume. It has a cut slightly higher than other parti-
tioning tools but it is very fast5 and may not perform as many partition refine-
ments as others. Scotch gives a good migration volume with a cut slightly higher
than SR while going as fast. All these partitioners use as many messages as the
SR approach.

The two MxN approaches give the best migration volume and the lowest
number of messages. The MxN BIASED method gives a good migration with a
cut similar to other partitioners, but is slightly slower than other tools because
of the added complexity of the migration edges. On the contrary, the MxN DIFF
method gives a higher cut, but is faster as it does not fully recompute a new
partition. The preliminary results obtained for our approach show it is possible to
optimize the migration phase (by minimizing TotalV and TotalZ) while keeping
the edge-cut quite low as a trade-off.

5ParMetis doesn’t work in sequential; so one runs our experiments with 2 processors.

6. Conclusion and Prospects

We have presented in this two algorithms for repartitioning unbalanced graph with
a dynamic number of processors. Both algorithms provides very good migration
in regard to volume and number of messages, at the cost of a slightly increased
edge-cut. The diffusion scheme could be further improved with a global approach
thus reducing the edge-cut overhead.

In future work, we plan to validate our approaches on more varied and larger
real-life cases. To achieve this, our algorithm should run in parallel. This can
be achieved for the biased repartitioning scheme by using a parallel partitioner
that handle fixed vertices. The performance of the biased repartitioning method
could also be improved by integrating the migration constraints in the partitioner
heuristic instead of adding many edges and thus increasing the size of the graph.
As concern the linear programing solver used in the diffusion-based repartition-
ing method, it can be extended to build migration matrices that optimize other
metrics than TotalV likeMaxV , TotalZ,MaxZ or a linear combination of them.

References

[1] Bruce Hendrickson and Karen Devine. Dynamic load balancing in computational me-
chanics. In Computer Methods in Applied Mechanics and Engineering, volume 184, pages
485–500, 2000.

[2] James D. Teresco, Karen D. Devine, and Joseph E. Flaherty. Partitioning and dynamic
load balancing for the numerical solution of partial differential equations. In Timothy J.
Barth, Michael Griebel, David E. Keyes, Risto M. Nieminen, Dirk Roose, Tamar Schlick,
Are Magnus Bruaset, and Aslak Tveito, editors, Numerical Solution of Partial Differential
Equations on Parallel Computers, volume 51 of Lecture Notes in Computational Science
and Engineering, pages 55–88. Springer Berlin Heidelberg, 2006.

[3] Saeed Iqbal and Graham F. Carey. Performance analysis of dynamic load balancing algo-
rithms with variable number of processors. Journal of Parallel and Distributed Computing,
65(8):934 – 948, 2005.

[4] Saeed Iqbal and GrahamF. Carey. Performance of parallel computations with dynamic
processor allocation. Engineering with Computers, 24:135–143, 2008.

[5] Message-Passing Interface Forum. MPI-2.0: Extensions to the Message-Passing Interface.
MPI Forum, june 1997.

[6] Leonid Oliker and Rupak Biswas. Plum: parallel load balancing for adaptive unstructured
meshes. J. Parallel Distrib. Comput., 52:150–177, August 1998.

[7] Kirk Schloegel, George Karypis, and Vipin Kumar. Multilevel diffusion schemes for repar-
titioning of adaptive meshes. Journal of Parallel and Distributed Computing, 47(2):109 –
124, 1997.

[8] Kirk Schloegel, George Karypis, and Vipin Kumar. Wavefront diffusion and lmsr: Al-
gorithms for dynamic repartitioning of adaptive meshes. IEEE Trans. Parallel Distrib.
Syst., 12(5):451–466, May 2001.

[9] Cevdet Aykanat, B. Barla Cambazoglu, Ferit Findik, and Tahsin Kurc. Adaptive decom-
position and remapping algorithms for object-space-parallel direct volume rendering of
unstructured grids. J. Parallel Distrib. Comput., 67:77–99, January 2007.

[10] Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdağ, Robert T. Heaphy,
and Lee Ann Riesen. A repartitioning hypergraph model for dynamic load balancing. J.
Parallel Distrib. Comput., 69(8):711–724, 2009.

[11] George Karypis. ParMetis. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/
overview.

[12] Zoltan: Parallel partitioning, load balancing and data-management services. http://www.
cs.sandia.gov/Zoltan/Zoltan.html.

[13] François Pellegrini. Scotch. http://www.labri.fr/perso/pelegrin/scotch/.
[14] Clément Vuchener and Aurélien Esnard. Dynamic Load-Balancing with Variable Number

of Processors based on Graph Repartitioning. In HIPC 2012, Pune, India, 2012. 9 pages.
[15] GLPK (GNU Linear Programming Kit). http://www.gnu.org/software/glpk/glpk.html.
[16] Chao-Wei Ou and Sanjay Ranka. Parallel incremental graph partitioning using linear

programming. In Proceedings Supercomputing ’94, pages 458–467, 1994.
[17] Y. F. Hu, R. J. Blake, and D. R. Emerson. An optimal migration algorithm for dynamic

load balancing. Concurrency: Practice and Experience, 10(6):467–483, 1998.
[18] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network

partitions. 19th Design Automation Conference, pages 175–181, 1982.
[19] Timothy A. Davis and Yifan Hu. The university of Florida sparse matrix collection. ACM

Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

