
HAL Id: hal-00858701
https://hal.inria.fr/hal-00858701

Submitted on 5 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of pattern overlaps and exact computation of
P-values of pattern occurrences numbers: case of

Hidden Markov Models
Mireille Régnier, Evgenia Furletova, Victor Yakovlev, Mikhail Roytberg

To cite this version:
Mireille Régnier, Evgenia Furletova, Victor Yakovlev, Mikhail Roytberg. Analysis of pattern overlaps
and exact computation of P-values of pattern occurrences numbers: case of Hidden Markov Models.
Algorithms for Molecular Biology, BioMed Central, 2014, 9 (1), �10.1186/s13015-014-0025-1�. �hal-
00858701�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49757257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00858701
https://hal.archives-ouvertes.fr


Pattern occurrences Pvalues, Hidden Markov Models and
Overlap Graphs
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Abstract

Background: Finding new functional fragments in biological sequences is a challenging problem. Methods

addressing this problem commonly search for clusters of pattern occurrences that are statistically significant. A

measure of statistical significance is the P -value of a number of pattern occurences, i.e. the probability to find

at least S occurrences of words from a pattern H in a random text of length N generated according to a given

probability model.

Results: We present a novel algorithm SufPref computing an exact P -value for Hidden Markov model

(HMM). The algorithm inductively traverses specific data structure - overlap graph (OvGraph). Nodes of the

graph are associated with the overlaps of words from H. Edges are associated to the prefix and suffix relations

between ovelaps. An originality of our data structure is that pattern H need not be explicitely represented in

nodes or leaves. The algorithm relies on the Cartesian product of the overlap graph and the graph of HMM

states; the approach is analogous to the automaton approach from [1]. The gain in size of SufPref data

structure leads to significant space and time complexity improvements. We suppose that all words in the pattern

H are of the same length m. The algorithm SufPref was implemented as a C++ program; it can be used

both as Web-server and a stand alone program for Linux and Windows; the program is available at

http://lpm.org.ru/biosymbol/.
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Background

Recognition of functionally significant fragments in biological sequences is a key issue in computational

biology. Many functionally significant fragments are characterized by a set of specific words that is called a

pattern and denoted H below. Patterns represent different biological objects, such as transcription factor

binding sites [2–4], polyadenylation signals [5], protein domains, etc... Functional fragments recognition

problem can be solved by finding sequences in which the words from a given pattern are overrepresented.

Defining a meaningful significance criteria for this overrepresentation is a delicate goal, that, in turn,

requires a clarification of the probability model. A current criteria is the so-called P -value computed as the

probability that a random sequence of length N contains at least S occurrences of a pattern. There are a

lot of methods for P -value computation designed for Bernoulli or Markov models. However, Hidden

Markov models (HMM) were considered in few papers only [6, 7] despite the models are widely used in

bioinformatics. This is a motivation to develop methods for P -value calculation with respect to HMMs.

Existing methods for P -value calculation can be divided into several groups, reviews of the methods can be

found in [8–10]. Studies on word probabilities started as early as Eighties with the seed paper [11] that

introduces basic word combinatorics and derives inductive equations for a single word and a uniform

Bernoulli model. Some works in the same vein, reviewed in [12] follow for several words, multi-occurrences

and/or extended probability models. The time complexity is proportional to the text length N and the

desired number of occurrences S : computations are carried out by induction for n ranging over 1 · · ·N

and, for a given n, by induction on the number of occurrences. Although these “mathematics-driven”

approaches allow for mathematical formula derivation, actual computation suffers from a combinatorial

explosion when |H| or Markov order increase.

Later on, a first group of methods [13–17] formalizes systematically these inductions by the introduction of

bivariate generating functions. Coefficients are the P -values to be computed. Expectations and variances

for the number of occurrences of the different words in pattern H can be expressed explicitly in terms of

these generating functions [14,15,18]. Moreover, coefficients may be computed from the analytical

expression, when it is available, or through a suitable manipulation of a functional equation, where the
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theoretical time complexity reduces to S logN . Nevertheless, computing the generating function, or the

functional equation, requires the computation of a system of equations or, equivalently, the determinant of

a matrix of polynomials of size O(|H|). It takes O(|H|3) operations and it is the main drawback of this

approach.

A second group consists of asymptotic methods. They rely on convergence results to the normal law

proved by [19] or [20]. An approximated P -value is derived, based on on Gaussian approximations [21] or

Poisson approximations [22–25]. Nevertheless, this approximation is not suitable for exceptional words,

when observed number of occurrences p significantly differs from the expected. This was proved

experimentally by [26] or theoretically [27]. Large deviation principles are used in [28,29] with a much

better precision. Nevertheless, no computable formula are available for large sets.

A third group of methods revisits recursive P -value computation, with a O(S ×N) time complexity. They

avoid combinatorial explosion by a suitable use of appropriate data structures, tightly related to word

overlap properties. Therefore, loss in time dependency to N or S is compensated by a gain on data

structure size. A significant part of algorithms in this group are based on traversals of a specific graph.

The graph may not be defined explicitly [30]. It can be based on the graph corresponding to the finite

automaton recognizing the given pattern, see algorithms AhoPro [31], Spatt [25, 32] and

Regexpcount [17]. MotifRank [33] that is designed for first order Markov models makes use of suffix

sets. In [25,32], a Markov chain embedding technique was suggested. Counting occurrences of regular

patterns in random strings produced by Markov chains reduces to problems regarding the behavior of a

first-order homogeneous Markov chain in the state space of a suitable deterministic finite automaton

(DFA). In a recent paper [7], a probabilistic arithmetic automaton for computing P -values for a HMM was

proposed. In this paper two algorithms were suggested. The first one has a time complexity

O(|Q|2 ×N × S × |Ω| × |A|) and a space complexity O(|Q| × S × |Ω|), where |Q| is the number of states of

the HMM, |Ω| is the number of states of the automaton recognizing the given pattern, |A| is the alphabet

size. The second algorithm has a time complexity O(|Q|3 × log(N)× S2 × |Ω|3) and a space complexity

O(|Q|2 × S × |Ω|2). This algorithm uses the ”divide and conquer” technique. The drawback is the lack of

control on the number of states |Ω| when |H| increases. Finally, despite these great efforts, existing

methods perfom badly for rather big patterns. Besides this, most of the proposed algorithms are not

implemented or implemented only for Bernoulli model or Markov models of small orders. Therefore,

pattern occurrences probability problem is open.

The present paper provides an algorithm supporting HMM probability model. It assumes that all words
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have the same length m and that a HMM with |Q| states is given. It is a generalization of algorithm

SufPref designed in [34] for Bernoulli models and Markov models of order K. It relies on recurrent

equations based on overlap graph, whose vertices are associated with the overlaps of words from H, and

edges correspond to the prefix and suffix relations between overlaps. Time complexity is

O(|Q|2 ×N × S × (|OV (H)|+ |H|)) and space complexity is

(|Q|2 × (|OV (H)|+ |H|) + |Q| × S ×m× |OV (H)|+m× |H|). In the case of a Markov model of order K,

where K ≤ m, bounds above can be reduced to O(N × S × (K × |A|K+1 + |OV (H)|+ |H|)) for time and to

O(S ×K × |A|K+1 + S ×m× |OV (H)|+m× |H|) for space. Algorithm SufPref is implemented as a

Web-server, see http://lpm.org.ru/biosymbol, and a stand-alone program for Windows and Linux. The

program is available by request from the authors.

The paper is organized as follows. Basic notions on word overlaps are introduced, that lead to an overlap

graph that is the main data structure to be used. Then, one recalls Hidden Markov models definition, and

a probabilistic automaton is defined. Main text sets are defined and equations for their probabilities are

derived. Next section describes the algorithm SufPref that computes these equations using the overlap

graph as a main data structure. Finally, space and time complexity are analysed and our algorithm is

compared with other methods [4, 24,31,35,36].

Overlap words

Our approach strongly relies on overlaps of words from a given pattern. In this section we provide

necessary definitions for these overlaps, following [34] notations.

Definition 1 Given a pattern H over an alphabet V, a word w is an overlap (an overlap word) for H if

there exist words H and F in H such as w is a proper suffix of H and w is a proper prefix of F . The set of

overlaps of the pattern H is denoted OV (H).

Example: Let H be the set

H = {ACATATA,ATACACA,ATACACA,ATAGATA,

CATTATA,CTTTCAC,CTTTCCA, TACCACA} .

Overlap set is

OV (H) = {ε, A,C,AC,CA, TA,ACA,ATA} .
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Notation: For a word w in OV (H), one denotes

H(w) = {H ∈ H | H ends with w} ,

with the convention H(ε) = H.

Notation: v′ v v (v′ ⊂ v) means that v′ is a suffix (proper suffix) of v; v′ � v (v′ ≺ v) means that v′ is a

prefix (proper prefix) of v. The elements of OV (H) that are proper prefixes (respectively suffixes) of a

given word are totally ordered. The empty string is the minimal element. The maximal elements are

crucial for our algorithms and data structures.

Definition 2 Given a word w in H ∪OV (H) \ {ε}, one denotes

lpred(w) = max{x|x ∈ OV (H) and x ≺ w} ;

rpred(w) = max{x|x ∈ OV (H) and x ⊂ w} .

Two words H and F from the pattern H are equivalent if they satisfy

lpred(H) = lpred(F) ,

rpred(H) = rpred(F) .

Notation: Given two words x and w in OV (H), let H∗(x,w) denote the equivalence class consisting of all

words H ∈ H such that lpred(H) = x and rpred(H) = w. Let P(H) denote the set of all equivalence

classes on H.

Definition 3 An overlap w ∈ OV (H) is called a left deep node, respectively a right deep node, if there

exists a word H ∈ H such that w = lpred(H), respectively w = rpred(H). The sets of all left and right deep

nodes are denoted by DLOV (H) and DROV (H).

Order relations are commonly associated to oriented graphs.

Notation: For a right deep node r ∈ DROV (H), one denotes

H̃(r) = {H ∈ H | r = rpred(H)} .

Definition 4 The overlap graph of a given pattern H is an oriented graph where the set of nodes is

OV (H) and the set of edges, E(H), contains the left, right and deep edges, that are defined as follows:
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• A left edge links node s to node t iff s = lpred(t);

• A right edge links node s to node t iff s = rpred(t);

• A deep edge links node s to node t iff exists a non-empty class H∗(s, t) in P(H).

It is denoted OvGraph.

Definition 5 Let w be in (OV (H) ∪H) \ ε.

The set of non-empty prefixes of w that belong to OV (H) is noted OverlapPrefix(w). For any prefix x in

OverlapPrefix(w), let Back(x,w) denote the suffix of w that satisfies the equation

w = x ·Back(x,w) .

Let Back(w) denote Back(lpred(w), w).

Also for H∗(x,w) ∈ P(H) we note

Back(H∗(x,w)) =
⋃

H∈H∗(x,w)

Back(H) .

Remark: One can ascribe to each deep edge (s, t) the class H∗(s, t) and to each left edge (lpred(w), w) a

word label Back(w).

Probability models

We suppose that the probability distribution is described by a Hidden Markov Model (HMM). In this

section, we recall some basic notions about HMMs and introduce the needed notations. In fact, it is shown

in [7] that our definition is equivalent to the classical definition of HMM [37].

Definition 6 A HMM G is a triple G =< Q, q0, π >, where Q is the set of states, q0 ∈ Q is an initial

state, and π is a function: Q×V×Q→ [0, 1] such that π(q̃, a, q) is the probability, being in state q̃, to

generate symbol a and traverse to state q. For any state q̃ in Q, the function π meets the condition:

∑
a∈V

∑
q∈Q

π(q̃, a, q) = 1 . (1)

A HMM G is called deterministic if for any (q̃, a) in Q×V there is only one state q such that π(q̃, a, q) > 0.

In this case the function π can be described with two functions:

1. a transition function φ : Q×V→ Q;
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2. a probability function ρ : Q×V→ [0, 1].

Namely, φ(q̃, a) is equal to the unique state q such that π(q̃, a, q) > 0 and ρ(q̃, a) is π(q̃, a, q).

A HMM G =< Q, q0, π > can be represented as a graph where Q is the set of vertices. Each edge is

assigned with a label a ∈ V and with a probability p ∈ (0; 1]. There exists an edge from q̃ to q with the

label a and probability p iff π(q̃, a, q) > 0 and p = π(q̃, a, q). The graph is called the traversal graph of

HMM G.

Definition 7 Let h be a path in the traversal graph of the HMM G. The label of h is the concatenation of

the labels of edges that constitute the path h. The probability Prob(h) of a path h is the product of the

probabilities of the edges that constitute the path h.

Definition 8 The probability Prob(w) of a word w with respect to the HMM G is the sum of probabilities

of all paths that start in the initial state q0 and have the label w.

Let q and q̃ belong to Q and w be a word. By definition, the probability Prob(q̃, w, q) to move from the state

q̃ to the state q with the emmited word w is the sum of probabilities of all paths starting in the state q̃,

ending in the state q and having the word label w.

To describe effective algorithms related to HMMs, we need the notion of reachability.

Definition 9 Given a state q̃ and a string t, one notes

ReachState(q̃, t) = {q|Prob(q̃, t, q) 6= 0} .

Given a state q and a string t, one notes

StartState(q, t) = {q̃|Prob(q̃, t, q) 6= 0} .

A state q is called t-reachable from state q̃ iff Prob(q̃, t, q) 6= 0.

Definition 10 For a given word w, AllState(w) is the set of states that are reached from initial state q0

by at least one text with suffix w.

Remark:

AllState(w) = ∪t∈V ∗.wReachState(q0, t) . (2)
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HMM and probabilistic automata

The definition of HMM is very close to the definition of probabilistic automaton PA, [38], see also the

textbook [39]. The main difference is in the interpretation of the behavior of a model. For a HMM, one

considers a label as a symbol emitted by the HMM; for automata, one imagines an automaton that

proceeds a given word letter by letter. Another difference connected with the previous one is that PAs are

typically used to describe word sets; thus, for a given PA, the subset of accepting states is defined. HMMs

are mainly used to describe probability models and thus have no accepting states.

In applications, one often uses the probabilistic automata constructed as a Cartesian product of a

deterministic automaton accepting a given set of words and an HMM describing the word probabilities, see

e.g. [1, 7]. We use a similar construction in our work. In fact, we describe generalized probabilistic

automata, GPA. As opposed to PAs, the edges in a graph that represents our automaton are labeled with

words rather than with letters, and thus it can be named a generalized probabilistic automaton,

analogously to the definition of generalized HMM [40].

An originality of SufPref is that words from pattern H, or classes, that represent terminal states in

classical automata need not be explicitely represented. Nevertheless, each class is uniquely associated to

one deep edge.

Text sets

The computation of P -values will be done by induction on the text length n (n = 1, . . . , N), and, for each

given n, by induction on the number of occurrences s (s = 1, ..., S). It relies on specific sets of words

introduced in a bit different form in [34], that by-turn was based on the ideas from [13], [12].

Definition 11 Let H be a pattern.

B(n, s) = {T ∈ Vn|T contains at least s occurrences of the pattern H} . (3)

By convention, B(n, 0) = V n.

Definition 12 Given a deep right node r ∈ DROV (H), one defines, for s = 1, . . . , S, S + 1

E(n, s, r) = {T ∈ Vn|T contains at least s occurences of H &

T ends with H ∈ H(r), such that rpred(H) = r} ; (4)

These sets are called E-sets.
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Definition 13 Let w ∈ OV (H), one defines, for s = 1, . . . , S

R(n, s, w) = {T ∈ Vn|T contains exactly s occurences of H &

T ends with H ∈ H(w)} ; (5)

These sets are called R-sets.

Remark: Remark that

R(n, s, ε) = {T ∈ V∗|T contains exactly s occurrences of H &

T ends with H ∈ H} .

Notation: Let r be a right deep node. We denote,

RE(n, s, r) = {T ∈ R(n, s, r)|T ends with H ∈ H(r) such that r = rpred(H)} . (6)

Remark that

RE(n, s, r) = E(n, s, r) \ E(n, s+ 1, r) . (7)

The following proposition gives the inductive relations allowing effective computation of probabilities of

R-sets.

Proposition 1 Let w ∈ OV (H). If w is a deep right node, i.e. w = rpred(H) for a word H ∈ H, then

R(n, s, w) = RE(n, s, w)
⋃

(
⋃

x∈OV (H):w=rpred(x)

R(n, s, x)) , (8)

otherwise,

R(n, s, w) =
⋃

x∈OV (H):w=rpred(x)

R(n, s, x) . (9)

Proof follows from the definition of R-sets.

Remark: Set equations allow for a computation restricted to OV (H) nodes. Additionnally, Equations (8)

and (9) lead to the formulas expressing R-sets probabilities as a function of RE-sets probabilities in deep

nodes.Therefore, the formulas allow for a computation on OV (H) nodes and a memorization of R-sets

probabilities in deep nodes. Further, (7) reduces computation of RE-sets probabilities to computation of

probabilities of sets E(n, s, r) where r is a right deep node.
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Below we introduce D-sets and give the equations for D-sets, R-sets and E-sets leading to recursive

equations for E-sets probabilities. The D-sets defined below consist of texts of length n containing at least

s occurrences of the pattern H, ending with a given non-empty overlap word w that has a common part

with the last occurrence of the pattern H.

Definition 14 Let w ∈ OV (H), w 6= ε.

D(n, s, w) = {T ∈ B(n, s)|w is a suffix of T &

s-th occurrence of the pattern H intersects the suffix w} . (10)

By definition, D(n, s, ε) = ∅.

Example: Consider the pattern H = {ACACA,ATTAC}. Here OV (H) = {ε, A,AC,ACA}. The texts

t1 = CTTATTACA, t2 = TTACACACA and t3 = CTATACACA are in D(9, 1, ACA).

It means that all these words (1) are of length 9; (2) end with ACA; (3) have at least 1 occurrence of

words from H (the occurrences are underlined or overlined) and (4) the 1st occurrence intersects the suffix

ACA. Remark that t2 contains 2 occurrences of H and all of them overlap with ACA. Therefore, t2

belongs to D(9, 2, ACA). In contrast, t4 = TATTACACA does not belong to D(9, 1, ACA) because it’s

1st occurrence of H does not intersects the suffix ACA. However, t4 belongs to D(9, 2, ACA).

The next propositions describe the relation between D-sets and R-sets.

Proposition 2 Let w ∈ OV (H), w 6= ε. Then

D(n, s, w) = ∪x∈OverlapPrefix(w)R(n− |Back(x,w)|, s, x) ·Back(x,w) . (11)

Informally speaking, here x is the common part of the suffix w of the text t of length n and the prefix of t

ending with the s-th occurrence of H in t. Remark that it follows from Definition 5 that : (1) ε is not in

OverlapPrefix(w), (2) w in OverlapPrefix(w). The formal proof is given in Supplementary materials.

Notation: For a prefix w ∈ OV (H) and any integer n, one denotes

k(n,w) = n−m+ |w| . (12)

Proposition 3 Let w ∈ OV (H) \ ε, n ≥ m, s ≥ 1. Then

D(k(n,w), s, w) = D(k(n, lpred(w)), s, lpred(w)) ·Back(w) +R(k(n,w), s, w) . (13)
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Proof follows from the proposition 2, see Supplementary materials.

Example: Consider the pattern H and texts t1, t2, t3 from the previous example. Obviously, t1, t2 are in

D(8, 1, AC).A and t3 is in R(9, 1, ACA), where AC is lpred(ACA) and A is Back(ACA).

Corollary: If lpred(w) = ε then D(n, s, w) = R(n, s, w).

One observes that, whenever n < m , B(n, s) = ∅, and for all w ∈ OV (H) and r ∈ DROV (H),

R(n, s, w) = E(n, s, r) = ∅

Theorem 1 Let n ≥ m and r ∈ DROV (H).

1. Sets B(n, s) and E(n, s, r) meet following equations:

B(n, s) = B(n− 1, s) ·V ∪R(n, s, ε) (14)

E(n, 1, r) = V n−m · H̃(r) (15)

E(n, s+ 1, r) = (B(n−m, s) · H̃(r))
⋃

(
⋃

H∗(w,r)∈P(H)

D(k(n,w), s, w) ·Back(H∗(w, r))) (16)

2. Unions (14) -(16) are disjoint, i.e. their terms have empty intersection.

Notation: Given two integers n and s, and a class H∗(x, r), one introduces F -sets and C-sets as follows.

F (n, s+ 1, r) = B(n−m, s) · H̃(r) ; (17)

C(n, s+ 1, x, r) = D(k(n, x), s, x) ·Back(H∗(x, r)) . (18)

Remark: Being observed that a class is uniquely associated to a deep edge, formula (16) rewrites

E(n, s+ 1, r) = F (n, s+ 1, r)
⋃

(
⋃

x: (x,r) is deep edge

C(n, s+ 1, x, r)) . (19)

Proof:

1. Consider statement (14). A text t is in B(n, s) iff either its prefix of length n− 1 contains at least s

occurences of H or a s-th occurrence H from H ends at position n. In the first case, t is in

B(n−m, s) ·V. In the second case, text t belongs to R(n, s, ε). The two cases are mutually exclusive;

therefore B(n, s) is a disjoint union and (14) is proved.
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2. Statement (15) directly follows from the definition of E(n, 1, r).

3. Consider statement (16). Let Y denote the right side of equation (16).

(a) Firstly, we proof that E(n, s+ 1, r) ⊆ Y . When a text t is in E(n, s+ 1, r), it ends with a word

H ∈ H such that r = rpred(H). Let w = lpred(H). This suffix H of t may either overlap with

s-th occurrence of the pattern or not. In the latter case, t is in B(n−m, s) ·H. The two cases

are mutually exclusive. Consider the former case. Let x be an overlap between the suffix H of

the text t and the s-th occurence of H in t. Obviously, x ∈ OverlapPrefix(w). By definition of

R-sets, t ∈ R(k(n, x), s, x) ·Back(x,H). Observing that

Back(x,H) = Back(x,w) ·Back(H)

we obtain

t ∈ R(k(n, x), s, x) ·Back(x,w) ·Back(H) .

Note, k(n, x) = k(n,w)− |Back(x,w)|.

According to the proposition 2,

R(k(n, x), s, x) ·Back(x,w) ⊆ D(k(n,w), s, w) .

Thus

t ∈ D(k(n,w), s, w) ·Back(H) .

Note, if H ∈ H∗(w, r) then Back(H) ⊆ Back(H∗(w, r)). Therefore,

D(k(n,w), s, w) ·Back(H) ⊆ D(k(n,w), s, w) ·Back(H∗(w, r)).

This yields that t ∈ Y .

(b) Proof that Y ⊆ E(n, s+ 1, r). Let t ∈ Y , i.e t ∈ B(n−m, s) · H̃(r) or

t ∈ D(k(n,w), s, w) ·Back(H∗(w, r)). By definitions of B and D-sets:

• t has the length n;

• t contains at least s+ 1 occurences of the pattern;

• t ends with H ∈ H∗(w, r).

Thus t ∈ E(n, s+ 1, r).

Remark: All unions in equations (14) - (16) are disjoint. Therefore the probability of the set in the left

part of an equation is the sum of probabilities of sets in the right side.
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Algorithms

Our goal is to compute Prob(B(N,S)), that is the probability to find at least S occurrences of a pattern H

in a random text of length N , given a HMM G =< Q, q0, π >. The algorithm SufPref, see Figure 1,

computes the probability by induction on text length n, where m ≤ n ≤ N , and, for a given n, by

induction on s, 1 ≤ s ≤ S.

The computation within the main loop is based on equations (7)- (9), (13)-(20), related to B-sets, R-sets,

RE-sets, D-sets, C-sets, F -sets and E-sets. The equations for the probabilities of the sets are based on the

following observations. First, all unions in the text equations are disjoint. Second, an item of a set union is

a set with already known probability or concatenation of such sets. In the latter case the probability

Prob(q′, L1 · L2, q”) can be computed by the formula

Prob(q′, L1 · L2, q”) =
∑
q∈Q

Prob(q′, L1, q) · Prob(q, L2, q”) , (20)

where Prob(q′, L, q) is a probability being in the state q′ go to the state q emitting a word v from the set L.

The computation related to texts of length n will be referred to as n-th stage of the algorithm’s work. The

main computation within n-th stage is done by traversal of OvGraph following left and deep edges.

Updating of auxiliary information stored in nodes of OvGraph is performed by a bottom-up traversal of

OvGraph using right edges.

Computation on inductive equations, and some preprocessing, relies on a generic procedure, analogous to

the forward algorithm for HMM [37], see also [6].

Preprocessing and data structures

On the preprocessing stage we initialize the global data structures of the algorithm, i. e. the OvGraph,

including auxiliary structures assigned to its nodes and some other structures that are described at the end

of this subsection.

Overlap Graph The graph OvGraph is built from the Aho-Corasick trie TH for the set H [41]. The nodes

belonging to the OvGraph correspond to the overlaps and therefore can be easily revealed using suffix links

of the Aho-Corasick trie, see [34] and supplementary materials for details of the procedure. The nodes of

OvGraph are assigned with additional data (constant data and data to be updated at each stage

n = m+ 1, . . . , N). All these data are initialized at the preprocessing stage, see below.
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Constant transition probabilities related to nodes of overlap graph During the computation, algorithm

SufPref uses some probabilities that are constant and can be precomputed and stored.

Let w be an overlap word. We denote by PriorState(w, q) the set of states q̃ ∈ AllState(lpred(w)) such

that q is Back(w)-reachable from q̃, i.e.

PriorState(w, q) = AllState(lpred(w)) ∩ StartState(q,Back(w)) .

For each deep edge (x, r) and its associated class H∗(x, r), one notes

PriorState(H∗(x, r)), q) = AllState(x) ∩ [∪H∈H∗(x,r)StartState(q,Back(H))] .

• For each node w and all states q in AllState(w) and q̃ in PriorState(w, q), we store the ”left

transition probability” Prob(q̃, Back(w), q). The left transition probabilities are used for the

computation of D-sets probabilities, see (14);

• Given a right deep node r, we store, for each class H∗(x, r), the ”deep transition probabilities”

Prob(q̃, Back(H∗(x, r)), q) where q ranges over AllState(H∗(x, r)) and q̃ ranges over

PriorState(H∗(x, r), q)). The probabilities are needed for the computation of E-sets probabilities,

see (16);

• Given a right deep node r, the ”word probabilities” Prob(q̃, H̃(r), q) are memorized for states q in

AllState(r) and q̃ in Q. They are used to compute probability of the set B(n−m, s) · H̃(r), see (16).

The sets of states AllState(w) and PriorState(w), left and deep transition probabilities and word

probabilities are computed in a depth-first traversal along left edges of OvGraph, see details in

Supplementary materials.

Updatable Probabilities related to nodes of overlap graph At the beginning of n-th stage, for each pair

< w, q >, where w ∈ OV (H) and q ∈ AllState(w) we store a (m− |w|)× S matrix with R-sets probabilities

Prob(R(l, s, w), q), where l ∈ [k(n,w), n− 1], s = 1, . . . , S. The probabilities are updated at the end of the

n-th stage.

At the preprocessing stage, we compute the probabilities for n = 1, . . . ,m, s = 1, . . . , S and

q ∈ AllState(w) according to the formulas:

Prob(R(m, 1, w), q) = Prob(H(w), q);
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if n < m or (n = m and s > 1),

Prob(R(n, s, w), q) = 0.

The global data unrelated to overlap graph Besides the data related to nodes of OvGraph we store the

following data.

• Transition probabilities. For each q̃, q ∈ Q we store constant probability

TransProb(q̃, q) =
∑
a∈V

π(q̃, a, q) ;

At the beginning of n-th stage, we store the following values

• For each q ∈ Q, updatable probabilities Prob(V n−m−1, q). It is used for computation of E(n, 1, r) by

the formula (15);

• For each s = 1, . . . , S and q ∈ Q, updatable B-sets probabilities Prob(B(n−m− 1, s), q). At the

preprocessing stage, we compute the probabilities for n = 1, . . . ,m, s = 1, . . . , S and q ∈ Q according

to the formulas:

Prob(B(m, 1), q) = Prob(H, q) ;

if n < m or (n = m and s > 1),

Prob(B(n, s), q) = 0.

Main loop

The aim of the n-th stage (see procedure ComputeMainLoop(n), Figure 2) is to compute for all

s = 1, . . . , S (internal loop, see lines 7-43) the values

• Prob(B(n−m, s), q), n > 2m;

• Prob(R(n, s, w), q) for all w ∈ OV (H), q ∈ AllState(w).

At the preliminary step we initialize local arrays EProb(r) and EProbPrev(r) assigned to each deep right

node r; all arrays are of length |Q|, see below. The internal loop, lines 7-43, consists of three parts, below

the value s is fixed.

At part A, the values Prob(B(n−m, s), q) are computed according to the formula (14); the values

Prob(B(n−m− 1, s), q) and Prob(R(n−m, s, ε), q) were computed and stored at the previous stages.
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The aim of part B of ComputeMainLoop(n) is to compute the values Prob(E(n, s+ 1, r), q) for all

r ∈ DROV (H), q ∈ AllState(r) following (15) - (20).

The computation is done by recursive depth-first traversal of OvGraph using left edges. Firstly, for all

visited nodes w ∈ OV (H) \ ε and states q ∈ AllState(w) the procedure computes Prob(D(k(n,w), s, w), q)

by the formula (13). To make the computations by the formula (13) one needs the values

Prob(D(k(n, lpred(w)), s, lpred(w)), q̃). For this reason, when a node w is visited, the procedure stores

local arrays of size |Q| with Prob(D(k(n, x), s, x), q̃), where x ∈ OverlapPrefix(w), q̃ ∈ AllState(x).

When a node w is visited this information is available for any x in OverlapPrefix(w).

If w is a left deep node, then for all deep edges (w, r) the procedure computes Prob(C(n, s+ 1, w, r), q) for

all q ∈ AllState(r) by the formula (18). If w is a right deep node then the procedure computes

Prob(F (n, s+ 1, w), q) using formula (17). Thus, the values Prob(E(n, s+ 1, r), q) are computed

cumulatively in corresponding cells of EProb(r)[q] according (19), see lines 21, 28. Thus, at the end of part

B, EProbPrev(w)[q] = Prob(E(n, s, w), q) and EProb(w)[q] = Prob(E(n, s+ 1, w), q).

At part C, the values Prob(R(n, s, w), q) are computed according to the formulas (8), (9). For a right deep

node r, the procedure computes first (see line 36)

Prob(RE(n, s, r), q) = EProbPrev(w)[q]− EProb(w)[q],

then it prepares arrays EProb(r) and EProbPrev(r) for the computation with the next value of s, lines

37, 38. The values Prob(R(n, s, w), q) for various nodes w are computed according (8), (9), see line 40.

Remark: The above traversal is implemented with a recursive procedure with starting call at the root of

OvGraph. Therefore right edges go from root to leaves.

Post-processing

At the post-processing step of the algorithm (see Figure 1, line 10), P -value Prob(B(N,S)) follows by

summation over Q states:

Prob(B(N,S)) =
∑
q∈Q

Prob(B(N,S), q) .

To improve implementation of the algorithm SufPref we slightly modified the algorithm, see

Supplementary materials. In the version of SufPref described in the paper, the OvGraph traversals are

performed inside the internal loop on number of occurrences, see Fig. 2 of the paper. In opposite, in the

modified version of the algorithm the internal loop is performed during processing of a node of OvGraph
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within traversals of the graph. This modification reduces the number of recursive calls of graph traversal

procedures that, in turn, allows to save running time.

To simplify the presentation, we omitted some details of the implemented algorithm. The detailed

description of the algorithm is given in the Supplementary materials.

Discussion

Space complexity depends on input data, temporary data used at the preprocessing step, the main data

structure OvGraph and the working data unrelated to the OvGraph. The space complexity is mainly

determined by the memory needed for the data related to the OvGraph and temporary data used at the

preprocessing step. Thus we first briefly consider data unrelated to overlap graph, then consider OvGraph

data. Input data consist of text length N , number of occurrences S, representations of an HMM and a

pattern H. The data related to the pattern representation are included into the data related to OvGraph

nodes and will be considered below. Storage size for an HMM is O(|Q|2 × |V|). Thus the input data size is

O(|Q|2 × |V|).

At the preprocessing stage the algorithm uses a temporary structure (Aho-Corasick trie) to build the

OvGraph. The memory needed for Aho-Corasick trie is O(m× |H|), m is the pattern length. The memory

is released step by step within the construction of OvGraph, thus total memory used during the

construction of OvGraph is O(m× |H|).

The data unrelated to OvGraph consist of B-sets probabilities Prob(B(n−m− 1, s), q) and probabilities

Prob(V n−m−1, q), q ∈ Q. Needed memory is O(|Q| × S) and O(|Q|) correspondingly. Within the main loop

we use local array with D-sets probabilities (at most m arrays) and arrays EProbPrev(r)[], EProb(r)[] (for

all r ∈ DROV (H)). All these arrays are of size O(|Q|); and therefore needed memory to store all of the

arrays is O(|Q| ×m+ |Q| × |DROV (H)|). As we will see, all the memory, except memory needed to store

Aho-Corasick trie, in total does not affect the space complexity of the algorithm.

Now consider the data related to the OvGraph. The OvGraph structure is determined by the pattern H.

The number of nodes and the number of left and right edges is O(|OV (H)|) that is upper bounded by

m× |H|. However, usually |OV (H)| << m× |H| , see Table 1. The number of deep edges is equal to the

number of classes, |P(H)|, that is upper bounded by |H|. Then the storage size for OvGraph is

O(|H|+ |OV (H)|). The data assigned to the nodes of OvGraph can be divided into two groups, constant

data and updatable data. The constant data consist of left transition probabilities assigned to nodes of the
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OvGraph, deep transition probabilities assigned to the deep edges and word probabilities assigned to right

deep nodes. The updatable data are probabilities of R-sets assigned to all nodes. The definitions are given

in the section ”text sets”. More precisely, left transition probabilities Prob(q̃, Back(w), q) are stored in the

memory associated with the node w; deep transition probabilities Prob(q̃, Back(H∗(x, r), q) are stored in

the memory associated with deep edge (x, r); word probabilities Prob(q̃,H(r), q) are stored in the memory

associated with the right deep node r. As a whole, it gives

O(|Q|2 × |OV (H)|) +O(|Q|2 × |P(H)|) +O(|Q|2 × |DROV (H)|) ≤ O(|Q|2 × (|OV (H)|+ |H|)).

To store R-sets probabilities one needs O(S × |Q| ×m× |OV (H)|) memory. Thus the size of memory

needed to store global data related to OvGraph is

O(|Q|2 × (|OV (H)|+ |H|) + |Q| × S ×m× |OV (H)|) .

Finally, the overall space complexity of the algorithm is

O(|Q|2 × (|OV (H)|+ |H|) + |Q| × S ×m× |OV (H)|+m× |H|) .

Observe that grouping pattern words in deep nodes saves a O(S × |Q| ×m× |P(H)|) memory for R-sets.

Remark: Computer experiments show that |P(H)| ∼ c · |OV (H)|, where 0 ≤ c ≤ 1, see Table 1,

Supplementary materials and [34] for details. For randomly generated patterns according to uniform

Bernoulli model, c ∼ 1. But for a majority of pattern described by Position-Specific Scoring Matrixes and

cut-offs c ≤ 0.1. Therefore, this implicit representation of patterns saves practically half of the total space.

Time complexity The algorithm SufPref( see figure 1) consists of three parts: preprocessing, main loop

and post-processing. The time complexity of the pre-processing part is mainly determined by construction

of Aho-Corasick trie, construction of OvGraph and their traversals. The complexity is O(|Q|2 ×m× |H|),

see Supplementary materials for details. The time complexity of the post-processing part (see lines 5-10) is

O(m× |Q|2).

The time complexity of the algorithm SufPref is mainly determined by the main loop (see lines 2-4), i.e.

by total run-time of the computation ComputeMainLoop(n) for n = m+ 1, . . . , N . The computation of

ComputeMainLoop(n) for a given n consists of four parts: preliminary step, A, B and C, it is presented in

Figure 2. The parts A, B and C run for S values of s. At the preliminary step (lines 1-5) one computes

Prob(E(n, 1, r), q) for all r ∈ DROV (H) and q ∈ AllState(r), it requires O(|Q|2× |DROV (H)|) operations.

Within the part A (lines 8-12), computing probabilities Prob(B(n−m, s), q) for all s = 1, . . . , S and q ∈ Q
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requires O(S × |Q|2) operations. Analogously, to execute parts B and C (lines 13-31 and 32-42

respectively) one needs O(S × |Q|2 × (|H|+ |OV (H)|)) and O(S × |Q| × |OV (H)|) operations respectively.

As a whole, O(S × |Q|2 × (|H|+ |OV (H)|)) operations are needed to execute ComputeMainLoop(n).

Therefore, the time complexity of the algorithm SufPref is

O(N × S × |Q|2 × (|H|+ |OV (H)|)) .

Further refinements Complexity results are presented with (possibly rough) upper bounds. In particular,

|Q|2 factor arises from transition probabilities representation. It actually stands for the sum of the

cardinalities of PriorState sets in a given node. In practical cases, this number may be significantly

smaller than |Q|2. In particular, this is the case for Markov models that can be treated as a special case of

Hidden Markov Models. In the case of Markov models of order K for an overlap node w, such that

|w| ≥ K, only one state is associated with w. We use the technique of “reachable states”, see section

”Probability models” to take into account this issue. The technique does not allow decreasing the upper

bounds in general case but leads to the significant improvement of the software. In the same time it the

technique combined with careful processing of the pattern word set allows one to obtain better complexity

bounds for the Markov case. Namely, O(S ×m× (K × |V|K+1 + |OV (H)|) +m× |H|) space complexity

and O(N × S × (K × |V|K+1 + |H|+ |OV (H)|)) time complexities are achievable. The details of the special

algorithm for the Markov case and proof of the above bounds will be presented in the separate paper.

Comparison with the existing algorithms Theoretical complexities analysis shows that SufPref is one of the

best algorithms for P -value computation. The complexities of SufPref are compatible with complexities

of algoritms based on finite automata. Superiority of algorithms depends on used data structures.

Comparison of number nodes of OvGraph and number of states of minimal automaton for a given pattern

is given in the paper [34]. Also in the paper was shown that an average number of overlaps in random

patterns generated according to Bernoulli models is proportional to the number of words in the patterns

and is independent of the length of the words.

For Bernoulli and first order Markov model cases we have compared the program SufPref with the

implementation of the program AhoPro [31]. The program AhoPro is one of the most efficient available

programs computing exact P -value. We have calculated P -value with the following input parameters: (1)

alphabet - {A,C,G, T}; (2) Bernoulli probabilities of letters - {0.25, 0.25, 0.25, 0.25}; Markov model is

described by 4× 4 matrix where all elements are 0.25; (3) text length -1000; (4) minimal number of

occurrences -10 and (5) two types of patterns: random patterns of lengthes 8 and 12 and patterns of
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lengthes 8 and 12 presented by Position-Specific Scoring Matrix (PSSM) and different cut-offs. Note, a

pattern presented by PSSM and cut-off consists of all words which score according to PSSM is grater then

cut-off. The matrices PSSM were created by Dan Pollard for Drosophila genes

(http://www.danielpollard.com/matrices.html) and is given in Table 3. The results of the experiments for

patterns of length 12 presented by PSSM are given in the Tables 1, 2. The results of other experiments are

given in the Supplementary materials. In the tables, the number of nodes of Aho-Corasick trie (the size of

automaton used by AhoPro) is denoted by NAC. The running time is given in seconds and size of used

memory is given in megabytes.

It was shown that, for all considered case, our algorithm is faster than AhoPro by more than four and two

times for Bernoulli and Markov models respectively. It outperforms AhoPro in space except for several

pattern of small sizes.

Pattern H |H| |OV (H)| |P(H)| NAC P -value
PSSM(12,9) 280 16 144 704 2.13435871E-25
PSSM(12,8) 816 50 563 1725 9.78557008E-21
PSSM(12,7) 2056 89 1402 4917 9.29720887E-17
PSSM(12,6) 5272 183 3454 11325 1.01393226E-12
PSSM(12,5) 11600 261 6761 21469 2.14446331E-09
PSSM(12,4) 24216 553 16569 45677 1.88185558E-06
PSSM(12,3) 47448 987 35632 87341 0.00053964007
PSSM(12,2) 91432 1663 76447 157613 0.04556358352
PSSM(12,1) 170032 3563 153626 283237 0.54810104018
PSSM(12,0) 284488 7499 275084 474701 0.97468948572
PSSM(12,-1) 467056 14428 461442 766549 0.99997857117

Table 1: Common information about experiments. The patterns are of length 12, they are presented by
matrix PSSM (see Table 3) and a series of cut-offs.

Conclusions

The work presents the approach to compute the P -value of multiple pattern occurrence within a randomly

generated text of a given length. The approach provides significant space and time improvements

compared to the existing software that is crucially important for applications. The improvements are

achieved due to usage of an overlap graph; the nodes of the graph correspond to overlaps between pattern

words. Taking into account overlaps between the pattern words allows one to decrease necessary space and

time. Remqrk that the nodes of the extensively used structure Aho-Corasic trie, used in particular by the

algorithm AhoPro, are associated with prefixes of pattern words. The number pf prefixes is much larger

than the number of overlaps.

20



Experiments parameters Time Space
Pattern H |H| |OV (H)| Prob Distrib SufPref AhoPro Aho/SP SufPref AhoPro Aho/SP

PSSM(12,9) 280 16 Bernoulli 0.02 0.56 24.48 1.44 1.34 0.93
PSSM(12,8) 816 50 Bernoulli 0.08 1.39 17.59 1.54 1.85 1.20
PSSM(12,7) 2056 89 Bernoulli 0.19 4.00 21.39 1.83 3.63 1.98
PSSM(12,6) 5272 183 Bernoulli 0.46 9.47 20.58 ov 2.38 6.75 2.83
PSSM(12,5) 11600 261 Bernoulli 0.89 18.75 20.98 3.20 11.95 3.74
PSSM(12,4) 24216 553 Bernoulli 2.26 42.21 18.70 5.45 24.29 4.45
PSSM(12,3) 47448 987 Bernoulli 5.00 83.52 16.71 9.15 45.68 4.99
PSSM(12,2) 91432 1663 Bernoulli 10.90 15.99 1.47 15.26 81.52 5.34
PSSM(12,1) 170032 3563 Bernoulli 22.85 294.66 12.89 26.20 145.71 5.56
PSSM(12,0) 284488 7499 Bernoulli 44.19 529.89 11.99 42.91 243.68 5.68
PSSM(12,-1) 467056 14428 Bernoulli 73.90 896.74 12.13 68.34 392.95 5.75
PSSM(12,9) 280 16 Markov 0.04 0.58 14.74 1.48 1.38 0.94
PSSM(12,8) 816 50 Markov 0.12 1.41 11.46 1.58 1.90 1.20
PSSM(12,7) 2056 89 Markov 0.27 4.05 15.11 1.87 3.64 1.94
PSSM(12,6) 5272 183 Markov 0.63 9.57 15.22 2.44 6.80 2.79
PSSM(12,5) 11600 261 Markov 1.15 19.08 16.63 3.32 11.95 3.60
PSSM(12,4) 24216 553 Markov 2.79 42.62 15.25 5.48 24.33 4.44
PSSM(12,3) 47448 987 Markov 6.05 84.52 13.96 9.18 45.73 4.98
PSSM(12,2) 91432 1663 Markov 12.89 157.18 12.20 15.34 81.56 5.32
PSSM(12,1) 170032 3563 Markov 28.32 297.45 10.50 26.32 145.76 5.54
PSSM(12,0) 284488 7499 Markov 55.98 534.70 9.55 54.68 243.73 4.46
PSSM(12,-1) 467056 14428 Markov 101.54 904.54 8.91 68.76 392.74 5.71

Table 2: Comparison of running time and used memory sizes. The patterns are of length 12, they are
presented by matrix PSSM (see Table 3) and a series of cut-offs. The running time is given in seconds and
size of used memory is given in megabytes.

Another advantage of the described approach is that, unlike most existing algorithms and programs, it

allows to deal with Hidden Markov Models, the most general class of popular probabilistic models. The

algorithm relies on the Cartesian product of the overlap graph and the graph of HMM states; the approach

is analogous to the automaton approach from [1]. We carefully analyze the structure of the Cartesian

product, e.g. reachability of vertices that leads to extra improvement of time and space complexity.

Despite that Bernoulli and Markov models can be treated as special HMMs we implemented specialized

versions of software for these classes of models. The version of SufPref designed for Bernoulli models was

presented in our previous paper [34]; the peculiarities related to Markov models of high orders will be

presented in a separate paper.

The algorithm is implemented as an open software; it is available as programs for Windows and Linux

families of operating systems and as Web-service. The implementation of the algorithm SufPref was

compared with program AhoPro for Bernoulli model and first order Markov model. The comparison

shows that our algorithm for all considered cases is faster than AhoPro in more than four times for
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- A C G T
1 0.368 -2.197 -0.588 0.636
2 0.000 0.000 0.000 0.000
3 0.636 -2.197 -2.197 0.636
4 -2.197 -2.197 -2.197 1.299
5 1.299 -2.197 -2.197 -2.197
6 -2.197 -2.197 -2.197 1.299
7 -2.197 1.299 -2.197 -2.197
8 -2.197 -2.197 1.299 -2.197
9 1.022 0.000 -2.197 -2.197
10 0.000 -0.588 -2.197 0.847
11 0.847 -0.588 -0.588 -0.588
12 0.636 -0.588 0.368 -2.197

Table 3: Position-specific scoring matrices (PSSM) built to study Drosophila genes
(http://www.danielpollard.com/matrices.html) of length 12.

Bernoulli models and in more than two times Markov models respectively. In vast majority of cases it

outperforms AhoPro in space. The advantage of SufPref the greater the larger space is needed,

therefore it can work out the patterns with greater number of words and with greater length.

Availability and requirements

The algorithm SufPref was implemented in a C++ program and was compiled for Unix, Windows and

Mac OS. The program was implemented both as web-server and as a stand alone program with the

command line interface. It is available at http://server2.lpm.org.ru/bio. Implementation details are

provided in http://server2.lpm.org.ru/static/downloads/SufPrefHMM/Web-site.pdf.
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Figures

Input: an alphabet V, HMM G =< Q, q0, π >, the length N of a random text, desired number S of
occurrences of pattern words, pattern H

Output: Prob(B(N,S))

// 1. Pre-processing

1 Preprocessing;

// 2. Main Loop

2 foreach n = m+ 1, . . . , N do
3 ComputeMainLoop(n);
4 end

// 3. Post-processing

5 foreach n = N −m+ 1, . . . , N do
6 foreach q ∈ Q do
7 Compute Prob(B(n, S), q) by the formula (14);
8 end

9 end
10 Compute Prob(B(N,S)) by summation of the values Prob(B(N,S), q);

Figure 1. Algorithm SufPref.
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Input: integer n, n > m

// Preliminary step. Initialization EProb()[] and EProbPrev()[]
1 foreach r ∈ DROV (H) do
2 foreach q ∈ AllState(r) do
3 Compute Prob(E(n, 1, r), q) according (15) and set the value to EProbPrev(r)[q] ;
4 EProb(r)[q] = 0

5 end

6 end
7 foreach s = 1, . . . , S do

// A. Computation of Prob(B(n−m, s), q)
8 if n > 2m then
9 foreach q ∈ Q do

10 Compute Prob(B(n−m, s), q) using (14);
11 end

12 end

// B. Computation of Prob(E(n, s, r), q) for all right deep nodes r
13 foreach node w visited within the depth-first traversal of OvGraph by the left edges do
14 foreach q ∈ AllState(w) do
15 Compute Prob(D(k(n,w), s, w), q) using (13);
16 end
17 if w is left deep node then
18 foreach deep edge (w, r) do
19 foreach q ∈ AllState(r) do
20 Compute Prob(C(n, s+ 1, w, r), q) using (18);
21 EProb(r)[q]+ = Prob(C(n, s+ 1, w, r), q);

22 end

23 end

24 end
25 if w is right deep node then
26 foreach q ∈ AllState(w) do
27 Compute Prob(F (n, s+ 1, w), q) using (17);
28 EProb(w)[q]+ = Prob(F (n, s+ 1, w), q) ;

29 end

30 end

31 end

// C. Computation of Prob(R(n, s, w), q) for all nodes w
32 foreach node w of OvGraph traversed from deep right nodes to the root do
33 foreach q ∈ AllState(w) do
34 REProb = 0;
35 if w is right deep node then

// Compute Prob(RE(n, s, w), q) based on arrays EProb(), EProbPrev() and

update the arrays

36 REProb = EProbPrev(w)[q]− EProb(w)[q] ;
37 EProbPrev(w)[q] = EProb(w)[q] ;
38 EProb(w)[q] = 0;

39 end
40 Compute Prob(R(n, s, w), q) following (8) and (9);

41 end

42 end

43 end

Figure 2. Sub-algorithm ComputeMainLoop.
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