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ABSTRACT

As high-speed links become ubiquitous in current networks,
testing new algorithms at high-speed is essential for resear-
chers. This task often requires traffic to be generated with
some specified features : distribution of packet sizes, pay-
load content, number of TCP or UDP flows... When tar-
geting a data rate of many Gb/s, this cannot be done with
commodity computers. Commercial traffic generators ex-
ist for this task, but they are expensive and do not fit the
precise needs of researchers. In this paper, we describe an
open-source implementation of a traffic generator capable of
filling a 10 Gb/s Ethernet link, with traffic features specified
in software. The implementation works on a board including
an FPGA and a 10 Gb/s network interface, like the Combo
from INVEA-TECH or the NetFPGA 10G. These boards
are affordable for research and can provide a configurable
and easily extensible traffic generator.

1. INTRODUCTION

Traffic generation is the task of sending network traffic on
a link to simulate the use of this link in an actual network
of computers. It is used mainly by researchers to assess the
performance of new algorithms, and by deployment teams
to test new equipments.

Two methods exist to generate traffic:

e Replaying traffic: it requires a probe to be installed
on a commercial network, save a trace of the received
packets, and send the packets to the equipment under
test, exactly as they were received.

e Generating synthetic traffic: it consists in sending in-
vented packets respecting some specified criteria (data
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rate, number of packets, distribution of packet sizes,
headers of the packets).

The first method has the advantage of being very realistic,
but the characteristics of the traffic are unknown. The sec-
ond method is very useful to test algorithms in edge cases.

For example, algorithms that process packet headers one by
one will have much more problems with small packets than
with big packets, as the number of packets received per sec-
ond will be much higher for the same data rate. Performance
of such algorithms should be tested in the worst case, that is
to say with the link filled with the smallest packets the pro-
tocol allows. An other example would be an algorithm that
only considers T'CP traffic on port 80: sending packets using
other protocols or ports would only give the algorithm more
time for its processing, so the performance results using a
replayed trace would be difficult to interpret.

This article presents a generator of synthetic traffic. Its de-
sign started with the need to test a hardware traffic classifier
meant to work at 10 Gb/s [11].

The first idea was to use a computer equipped with a 10 Gb/s
network card to generate traffic. But filling a network link at
10 Gb/s with some specific traffic is very challenging in soft-
ware, and not possible on a commodity computer. And con-
trolling precisely the inter-packet time is impossible without
some very low-level and hardware-dependent implementa-
tion.

An other affordable possibility would be to put 10 computers
with 1 GB/s network cards on a switch, and let them all
send traffic together. But controlling the characteristics of
the resulting traffic would be impossible as packets ordering
cannot be guaranteed by the switch.

Many commercial solutions are also available, but they are
very expensive. And although they allow the properties of
the generated flows to be precisely configured, they are never
fully extensible (for example, generating long flows of pack-
ets of a newly-designed protocol would be impossible).

FPGAs are chips that can be configured at a hardware level.



Their main interest is that they provide massive parallelism,
and a very precise control of what is executed at each clock
cycle. Cards exist that include an FPGA and are designed
for network processing, like the NetFPGA 10G [2], with
4 interfaces at 10 Gb/s, which is very affordable for aca-
demics. The traffic generator presented in this article works
on a Combov2 board from INVEA TECH [12], which has
a smaller FPGA than the NetFPGA 10G and 2 interfaces
at 10 Gb/s. But it would be fairly easy to adapt to the
NetFPGA 10G.

Section 2 will describe existing generators and their limits
for research, and derive requirements for a new open-source
generator. Then Section 3 will propose a software and hard-
ware architecture. The way to use and extend the generator
will be described in Section 4, along with performance re-
sults on a simple example.

2. TOWARDS AN OPEN-SOURCE TRAFFIC
GENERATOR

2.1 Existing solutions

As traffic generators are widely used for Research and De-
velopment, many solutions exist. Different companies sell
their own solutions, like Ixia [1] or Xena [3]. These tools
work out-of-the-box, some software is usually provided with
the machine to configure the parameters of the traffic to be
generated using a simple interface. They are also often ca-
pable of receiving the traffic after it went through the device
under test, and providing statistics like the rate of dropped
packets.

Sadly these solutions are all expensive. And the way they
are implemented is kept secret, making it impossible to ex-
tend their functions when the configuration options are not
enough. As traffic is usually defined by flow, defining your
own time-varying alteration of each packet would be impos-
sible for instance.

An important number of generators with some specific fea-
tures have also been developed in software, to run on com-
modity hardware. For example, an implementation focuses
on generating flows that have the same distribution of packet
length as some well-known application types (HTTP, FTP,
SMTP, etc.) [5]. The traffic composition is configured using
a graphical interface and could be used to test the behav-
ior of a device under some realistic traffic. But it supports a
data rate of only 1 Gb/s, and specific fields (like IP addresses
or payload) cannot be specified.

The Harpoon [16] traffic generator goes even further in the
idea of generating realistic traffic. It can generate TCP and
UDP flows with realistic distributions of packet sizes, flow
sizes and inter-packet delays. The goal is to recreate the
load of a real network on the device under test. Its capacity
in terms of data rate is not specified, but it is developed
in software at a high level, which would not allow to reach
capacities like 10 Gb/s.

An other drawback of this kind of software implementation
is that standard operating systems do not permit to control
timing precisely enough for traffic generation. This results in
imprecise data rates and inter-packet delays in most software

traffic generators [9].

To circumvent the problems due to the operating system,
N. Bonelli et al. [8] implemented a solution that uses a cus-
tom socket called PF_DIRECT. It is a very low-level de-
velopment that permits to communicate more directly from
software to the network card. With a powerful computer
and an adapted network card, they succeed to send packets
at almost 10 Gbit/s. But they reach the limits of what is
currently possible to do, and still have problems with the
smallest packets. This is a drawback to stress-test an equip-
ment, because small packets often constitute the most diffi-
cult traffic to handle.

As it is very challenging to obtain precise timing and high
data rate in software, hardware acceleration is often re-
quired. Network processors represent a compromise between
software flexibility and hardware acceleration. They are spe-
cialized processors, which are tailored for packet process-
ing, and benefit from a direct access to a network interface.
In [7], a network processor is used to build a generator, which
can send traffic up to 1 Gb/s. A limited number of flows
with identical data are configured using a graphical user in-
terface and then sent at full speed. BRUNO [6] is another
approach, which uses the same strategy but supports an un-
limited number of flows, because each software generator
instance can send a packet from any flow.

To get more flexibility than a network processor, Caliper [10]
uses a custom network processor implemented on the NetF-
PGA 1G. This implementation focuses on precise timing and
works at 1 Gb/s. Scaling it to 10 Gb/s would be difficult
because it relies on the computer to generate the traffic, so
the computer would act as a bottleneck.

Using an FPGA with a network interface at 1 Gb/s too, A.
Tockhorn et al. [17] have a more hardware-focused approach:
they stream headers with all data about one packet from the
computer to the FPGA, which transforms this header into
a full packet. As the header is smaller than the packet, the
FPGA is able to reach a higher data rate than the computer.
This approach would show its limits when trying to send
small packets, as the header and packet would be of similar
sizes.

FPGEN [15] is a traffic generator based on an FPGA, which
does not require a computer to stream traffic to it. It stores
configuration in RAM, and can reach up to 5 Gb/s. It is
focused on packets size and arrival time statistical distri-
butions, and does not allow to specify some fields like IP
addresses, ports.

All these existing solutions do not fulfill our needs of an af-
fordable and configurable 10Gb/s traffic generator to test
the classifier we developed. So Section 2.2 describes in more
details the specifications of a new open-source traffic gener-
ator.

2.2 Requirements

The main purpose of this generator is to be able to push the
limits of a device under test. This means that it should not
attempt to generate realistic traffic, but traffic designed to
be difficult to handle. The definition of such traffic depends



on the functions of the device under test.

For example for the traffic classifier [11] we wanted to test,
two factors are important: the number of packets per second
for flow reconstruction, and the number of flows per second
for classification. Packets should be UDP or TCP because
others are ignored. As some caching mechanisms are im-
plemented, it is much less challenging to always send the
same packet, than to send packets with changing flow iden-
tifiers (source/destination IP addresses, UDP or TCP pro-
tocol, source/destination ports). The payload of the UDP
or TCP packets is of no interest to the classifier.

As we want to use the generator to test all kinds of algo-
rithms, the generated traffic has to be highly configurable:
number of packets, size of the packets, content of the headers
and payloads, etc. For ease of use, this configuration should
be done on a graphical user interface on a computer, which
will then send it to the FPGA.

In terms of protocols, the generator will be based on Eth-
ernet, as this is the most common protocol and it is imple-
mented on all platforms. But the protocols on top of Ether-
net should be completely configurable: IPv4, IPv6, ICMP or
others, and higher-level protocols UDP, TCP or even HTTP,
SSH, etc should all be supported.

The generator should fill a 10 Gbit/s Ethernet link, even
with the most challenging traffic (smallest packets). This
goal is just a start, and the implementation should be able
to scale to higher data rates, even if it may require more
powerful FPGA chips.

To make the traffic as configurable as possible, the best way
would be to specify each packet separately. But this would
require to send configuration data to the FPGA for each
packet. As explained is Section 2.1, this would create a
bottleneck between the computer and the FPGA.

To avoid this problem, we only want to be able to configure
flows of packets. This is the same approach as [7, 6], but to
provide a maximum of flexibility, each flow is defined by:

e a skeleton: list of bytes defining the default packet
data;

e a number of packets, which may be infinite;

e a list of modifiers, which modify the packets before
they are sent.

Modifiers should be able to change the size of the packets,
the time between each packet, or any bytes of the pack-
ets. This will allow to make packets vary by introducing,
for example, incrementing fields, random fields and com-
puted checksum fields. For instance, to define a flow of 50
ICMP packets that ping successively the IP addresses from
192.168.0.1 to 192.168.0.50, the configuration should be:

e Skeleton: the bytes of a valid ICMP/IP ping packet
with destination address set to 192.168.0.1, and IP
header checksum bytes set to 0

e Number of packets: 50
e Modifiers:

— Increment: for bytes 16 to 19 (destination ad-
dress), with a step of 1

— Checksum: for bytes 7 to 8 (IP header checksum),
computed on bytes 0 to 19 (IP header)

The increment modifier makes the destination IP address
vary, which forces to compute the checksum of the IP header
for each packet. Otherwise they would risk to be rejected as
invalid.

To make the flows totally configurable would require an in-
finite number of types of modifiers. First, only the most
commonly-used modifiers should be available. But develop-
ing a new modifier should be as easy as possible.

The generated traffic should consist of configured flows mixed
together, the data rate of each flow being modulated by mod-
ifiers. Ordering of packets in a flow should be guaranteed,
but no specific order is required for packets of different flows.

3. PROPOSED ARCHITECTURE
3.1 Global components

Computer Combo card
Configuration config. FPGA  — 2x 10 Gb/s
software PCI Express —» Ethernet

Figure 1: Global components of the generator

Figure 1 shows the global architecture of the generator. It
is made of a computer that hosts configuration software and
the Combo board. Configuration is sent through a PCI Ex-
press bus.

The Combo board is a COMBO-LXT model, with a COMBOI-
10G2 interface board, which means that it has two 10 Gb/s
ports. The included FPGA is a Xilinx Virtex 5 XC5VLX155T,
which is much smaller than the FPGA included on the NetF-
PGA 10G. This ensures that transitioning to a NetFPGA
10G will only improve performance.

Development on the Combo board is done in VHDL, a hard-
ware description language, using the Net COPE platform [14].
This platform makes development more independent of the
board architecture. Requiring only to develop a hardware
block that receives incoming traffic through a specific bus
type called FrameLink, and sends outgoing traffic through
an other bus of the same type.

For the hardware generator block, incoming traffic will be
the configuration data sent by the computer. NetCOPE
provides a specific library to send data from the computer
through PCI Express, that will be seen as incoming traffic
by the block. Outgoing traffic will be the generated traffic.

An other advantage of the NetCOPE platform is that it has
been made compatible with the NetFPGA 10G [13], which



means that the code should be able to run without modifi-
cation on this board. But the platform is not open-source.
So the best option might be to develop an adaptation block
around the open-source generator block, that will adapt it
directly to the NetFPGA 10G.

When the user starts a traffic generation, execution is done
in two steps: first the computer sends configuration data to
the FPGA (configuration phase), then once the FPGA is
fully configured and ready, the generation of packets starts
(generation phase). It stops only once all packets of all flows
have been sent, or when the user requests it.

The hardware generator block and configuration software
are open-source and available online [4].

3.2 Hardware design

>  Flow |
> generator| |
#  Flow
= Control =w—> Merger —»
' . I |
o > Flow
registers —*|generator|

Figure 2: Architecture of the hardware generator
block

Figure 2 details the design of the hardware generator block:

e The control block works mainly during the configu-
ration phase. It receives incoming configuration data
for all flows, and distributes one flow per flow genera-
tor. The maximum number of supported simultaneous
flows is thus limited by the number of flow generators
implemented. Once all flow generators are configured,
the control block sends a specific start configuration
word, which means that flow generators should start
sending flows. During the generation phase, the con-
trol block can set the reconf signal to 1 at any time,
meaning that flow generators should stop sending and
get ready to receive a new configuration.

e Each flow generator manages only one flow during a
whole execution. It receives the configuration of the
flow during the configuration phase, and then waits
for the start configuration word to start sending. If
the reconf signal is set to 1 at any time, it goes back
to the configuration phase.

e The merger receives packets generated by all flows and
stores them in FIFOs. It has one FIFO per flow genera-
tor. Each FIFO is checked successively in round-robin:
if a packet is ready, it is sent, otherwise the next FIFO
is checked.

Many flow generators are implemented in parallel so as to
be able to handle simultaneously flows with different config-
urations. But each flow generator should be able to fill the
10 Gbit/s link even with small packets, so that the link can
be filled without losing control of the ordering of the packets.

Configuration makes sure that the total rate is not over the
link capacity. Ordering of packets from different flows is not
guaranteed. The only guarantee is that each flow starts be-
ing generated at the same time because the start command
is sent to all flow generators during the same clock cycle.

The FrameLink bus is designed so that no clock cycle is lost
when using it. It carries 64 bits of data at each clock cy-
cle. Both the receiver and the sender declare if they are
ready, which allows to use it to synchronize the blocks in
the pipeline. It transports both configuration data and gen-
erated packets. When sending packets, data on the bus rep-
resents the whole Ethernet frame, excluding preamble and
start frame delimiter, and starting with a NetCOPE-specific
header of 16 bytes. Only the reconf signal is used in addition
to the bus as a synchronous reset.

Registers that are read and written by the control are used to
communicate status and commands with the computer. The
computer is capable of reading and writing to these registers
to read the status of the generator, or send commands like
“start sending” or "reset the configuration”. This feature is
provided by NetCOPE.

3.3 Inside the flow generator
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Figure 3: Example of blocks composing a flow gen-
erator

The flow generator is where the packets are actually created.
An example of composition of a flow generator is visible in
Figure 3. It is a long pipeline where blocks are synchronized
through the FrameLink bus. The interest is that all blocks
in the pipeline are constantly working: while the skeleton
sender sends the last bytes of a packet, the rate block may
already be working on the first bytes, wasting no clock cycle.

Blocks with a gray background in Figure 3 are essential. The
skeleton sender receives and stores the skeleton associated
to its flow during the configuration phase. The skeleton is
a piece of data from 64 to 1500 bytes, which contains the
basic packet that will then be modified by the next blocks.
This block also stores the number of packets that should
be sent for this flow. Then when the start configuration



word is received, the block starts sending the same skeleton
continuously, until it has reached the number of packets to
send, or the reconf signal is set to 1. The Ethernet FCS
block computes the Frame Check Sequence (FCS) field of
each generated packet and sets it, to conform to the Ethernet
specification. The FCS field depends on all bytes of the
frame. This block may only be omitted if the goal is to
generate packets with wrong FCSs or if no change is made
to the skeleton generated by the skeleton sender. The role
of the config. remover is to prepare generated data to be
sent to the network interface, which essentially consists in
dropping the configuration frame.

Each block with a white background in Figure 3 is associated
to a modifier:

e The payload generator enables to append a random
payload of a fixed or random size to the skeleton, so
that only headers have to be specified in the skeleton.

e The increment block allows to modify up to 4 fields of
2 bytes of the skeleton, setting them to incrementing
values. The increment value and period are config-
urable. This may be used to make an IP address or
UDP port vary.

e The size block allows to modify up to 4 fields of 2
bytes of the skeleton, setting them to the length in
bytes of the whole Ethernet frame, minus a config-
ured value. This may be used in conjunction with the
payload generator to set the size fields in the packet
header to the proper value when generating payloads
of random sizes.

e The checksum block allows to modify one field of 2
bytes of the skeleton, setting it to the value of the
checksum computed on a configurable range of bytes
of the skeleton. This may be used to set the checksum
in the IP header after some fields of this header have
been modified. This block is detailed in Section 4.1.

e The rate block allows to limit the data rate of this
particular flow. If it is not present, the flow will be
sent at maximum speed. It works by setting a constant
inter-frame gap as an integer number of clock cycles
(5.33 ns on the Combo board) between each packet.

None of these blocks is mandatory, and depending on the
flow configuration, some blocks may remain inactive during
the generation. In this situation, they will not be configured
during the configuration phase, and will just copy their input
to their output during the execution phase.

This architecture allows to add new modifiers very easily:
develop a modifier block, taking one of the existing blocks
as example, and add it wherever it is needed in the pipeline.
Some modifier blocks may also be duplicated. This can be
useful for the checksum block, which handles only one check-
sum field. If more than one checksum have to be computed,
just implement enough checksum blocks in the pipeline.

This flexibility has a cost: each time a modifier block is
added/removed, the bitfile that configures the FPGA has to

be regenerated, which takes about one hour. This is why
it is best to generate a bitfile with a pipeline with all the
blocks that could be needed, and then disable the useless
blocks using the configuration.

3.4 The configuration mechanism

Data (64) Structure (4)

Id. (8) |  Config. (56) SoF | EoF | SoP | EoP
8 Rate Yes Yes | Yes
9 Checksum Yes | Yes
10 Size Yes | Yes
11 Increment Yes | Yes
12 Payload generator Yes | Yes

1 Skeleton (word 1) Yes
Skeleton (word N) Yes Yes

Table 1: Sample configuration structure for a flow
sender

Configuration is generated by the computer, and interpreted
by the FPGA. Like the other components, it is designed to
be easy to extend, especially by adding new modifier types.
Its structure is made to send it easily through the FrameLink
bus.

The FrameLink bus transmits 64 bits of data each clock cy-
cle. But it also transmits some structure information: data
is divided into frames, which are themselves divided into
parts. This is done using 4 additional bits as flags signaling
a start of frame (SoF), end of frame (EoF), start of part
(SoP) or end of part (EoP). This structure is used in the
configuration.

Table 1 shows the configuration of the flow generator de-
scribed in Figure 3. One flow corresponds to one configura-
tion frame. Each modifier is configured by one part of the
frame. Parts start with an identifier, which is an 8-bit field
used by blocks to determine if they are interested by this con-
figuration part or not. Some parts, like the skeleton config-
uration do not concern modifier blocks, but special manda-
tory blocks. They have a reserved identifier comprised be-
tween 0 and 7. This means that at most 2% — 8 = 248
modifier blocks can be configured on the same flow genera-
tor. Obviously this would take a lot of space on the FPGA,
and there is no reason to need that many modifiers.

Each modifier block defines the structure of data inside its
part, only the identifier is required, so that other blocks
ignore this part. Most parts are only 64 bits long because
the SoP and EoP flags are set on the same data word. This
leaves 56 bits for configuration data. But a part can be as
long as necessary, by using multiple 64-bit words. A part of
2 words leaves 56+ 64 = 120 bits for configuration data, and
so on. An example of long part is the skeleton.

During the configuration phase, the controller receives many
configuration frames from the computer. It forwards one
frame to each flow generator. If it does not receive enough
frames, some flow generators will remain inactive during
the generation. Only one configuration frame can be sent to
one generator. Once the whole frame has been received, the



Data (64) Structure (4
Id. (8) | Config. (56) || SoF | EoF | SoP | EoP

0 0 Yes | Yes | Yes | Yes

Table 2: Special configuration frame: start

generator stops listening to incoming data until it is ready to
generate traffic. Once all generators are ready, the controller
sends a small special frame: the start configuration word,
visible on table 2. This part uses the reserved identifier 0, it
is received only by the skeleton sender, which immediately
starts to send packets. It is important to synchronize the
start time of all flows.

3.5 Configuration software

The program used to configure the traffic generator is still in
a very early stage of development. For now, it can only send
configuration data written manually in hexadecimal format
in text files. It is useful to test the traffic generator, but not
really user-friendly for end-users who only want to generate
traffic without having to understand the whole underlying
architecture.

This is why a more flexible program with a graphical user
interface will be developed. Its main features will be:

e Enable or disable all available flow generators.

e Configure the skeleton of each flow from some well-
known protocols: it should be possible for example to

add an IP header by entering only the source/destination

addresses, and the underlying protocol.

e Enable the available modifiers and configure them sim-
ply by entering the required values. For example for
the checksum modifier, the start and end values could
be entered as text or directly by selecting the proper
bytes in the skeleton.

e Monitor and control the state of the generator.

It should also be very easy to add new modifier types to
the program, and to indicate a different hardware layout:
number of flow generators and modifiers available. This
could be done by using text files in a well-known and simple
format like JSON for example:

e one directory will contain one file for each known pro-
tocol to fill the skeleton,

e one directory will contain one file for each modifier
type,

e one file will contain the description of the current hard-
ware layout.

4. USING AND EXTENDING THE GENER-
ATOR

An important aspect of the generator is that it is extensible:
adding a new way to modify traffic before sending it only

requires to develop a new modifier block. These blocks are
described in a Hardware Description Language like VHDL
and they share a common design. Section 4.1 describes the
design process of the checksum modifier as an example of
the way to develop a new modifier.

Information needed to start using the generator is available
online [4]. Section 4.2 describes an example use case and
shows the performance of the generator.

4.1 Developing a modifier block

The first thing to do when defining a new modifier is to spec-
ify its action and how it can be configured. In this example,
the developed block is the checksum modifier. Its role is
to set checksums in IPv4, TCP or UDP headers after data
changes. To do this, the block should read the proper fields,
compute the checksum, and set it at the proper location in
headers. The checksum value is always 16 bits long. The
TCP and UDP protocols add a difficulty because a pseudo-
header derived from the IP header has to be included to
compute the CRC. So necessary configuration variables are:

e start: the byte offset at which computation should
start (0 to 1517),

e end: the byte offset at which computation should end
(0 to 1517),

e value: the byte offset at which the result should be
inserted (0 to 1517),

e ip: if a pseudo-header has to be computed, the byte
offset of the IP header (0 to 1517),

e type: a flag indicating if a pseudo-header should be
computed, and if the IP version is 4 or 6 (none, 4 or
6).

The limit of all offsets at 1517 bytes is due to the Ethernet
protocol, which states that an Ethernet frame can handle
up to 1500 bytes of data (to which 18 bytes of header are
added). Jumbo frames are currently not supported by the
traffic generator.

Config. (56)
start (11) | end (11) | value (11) [ ip (11) | type (2) | 0

Table 3: Checksum modifier configuration

Table 3 specifies the structure of the configuration part for
the checksum modifier. It is only one word long. For the
type field, possible values are 0 for no pseudo-header, 1 for
an IPv4 pseudo-header and 2 for an IPv6 pseudo-header.
The identifier from Table 2 is chosen among free identifiers,
here 9 has been chosen.

Now that the configuration is specified, the checksum block
should be designed. The configuration phase is simple: wait
for a data word with the SoP flag set and an identifier of
9, when this word is found, store all configuration data in
registers. When data is received with the EoF flag set, go
to the generation phase.



The generation phase can be divided into 2 steps:

e compute the checksum by adding interesting bytes ac-
cording to the configuration at each clock cycle,

e set the checksum value at the proper position in the
packet.

But processing speed is critical when generating packets, so
a pipeline will have to be used, so that data is never stopped
during the process.

I .. Compute
—»_ FSM

v : "’"‘\

FIFO checrsum config.

| v »
-« > Insert
-4— FSM
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Figure 4: Architecture of the checksum modifier
block

Figure 4 describes the architecture used for this block. T'wo
Finite State Machines (FSMs) are used. The compute FSM
reads received data without ever modifying it. It manages
configuration storage and checksum computation. The in-
sert FSM lets data flow until it finds the location where the
checksum should be inserted. Then it waits until the check-
sum is ready. During this time, received data is stored in
the FIFO. When the checksum is ready, it sends it along
with the received data, and lets data flow again until a new
checksum has to be written in the next packet. The FIFO
has to be big enough to store a whole packet, to be able to
handle the case when the checksum is at the start of the
packet, and is computed on the whole packet.

This process incurs a delay when the first packet is sent, but
then while the insert FSM sends data stored in the FIFO,
the compute FSM computes the next checksum. So the bit
rate is not decreased by this block.

The source of this block is available [4]. Note that although
it is possible to specify in the configuration that the pseudo-
header has to be created from an IPv6 packet, the function
is not implemented and the checksum modifier block only
supports UDP and TCP over IPv4.

4.2 Generator use case

To illustrate how the generator works, the goal will be to
flood a device under test with ICMP ping packets with vary-
ing source IP addresses. The flow generator used is com-
posed of:

e a skeleton sender (required): sends skeleton ICMP
packets with a source IP address set at 192.168.0.1
and a checksum set at 0,

e an increment modifier: increments the source IP ad-
dress of 1 at each sent packet,

a checksum modifier: computes the new checksum (chan-
ged because of the IP address) and set it,

an Ethernet FCS computer (required): computes the
FCS field of the Ethernet protocol,

e a configuration remover (required): removes the con-
figuration from the data bus.

In addition to the modules of the flow generator, the control
and merger blocks are always present in the generator.

In terms of data speed, the only possible limits are due to
the block designs. All blocks in the flow generator have been
designed and checked so that they never stop traffic on the
FrameLink bus. This means that the bus can work at its
maximum speed. As it is 64 bits wide and works with a
period of 187.5 MHz, its maximum rate is 12 Gb/s. But
16 bytes are used on each frame for the NetCOPE header.
Ethernet specifies that the minimum payload of a frame is
46 bytes (including the FCS). So the minimum payload data
rate is 12 X 46/(46 +16) = 8.9 Gb/s. But Ethernet adds the
equivalent of 34 bytes to each frame, so the maximum data
rate is 5.7 Gb/s. As Ethernet adds much more headers than
NetCOPE, it is guaranteed that data for a 10 Gb/s link can
be transmitted on the bus.

So data speed is not limited by the traffic generator, but
by the board hosting it. The Combo and NetFPGA boards
are both designed to handle the full link speed, even with
small packets. We tested this limit on the Combo board and
reached the maximum speed of the 10 Gb/s link without
problems.

Number of flow generators 1 10
Maximum frequency 201 MHz | 201 MHz
Number of slice registers 600 5950
Number of slice LUTs 953 8611
Number of slices 440 3644
Occupation 1.8 % 15 %

Table 4: Synthesis results of the sample traffic gen-
erator on the FPGA of the COMBO-LXT board

An other interesting metric is the surface taken by the traffic
generator on the FPGA. This indicates the maximum degree
of parallelism that can be reached. Table 4 shows the num-
ber of basic elements (registers and Look-Up Tables, LUTs)
used on the FPGA by the generator described above with 1
and 10 parallel flow generators. The maximum frequency is
superior to the frequency used by the Combo board (187.5
MHz), which ensures that there are no timing problems. The
global occupation is very low: 15 % of the FPGA are used
with 10 parallel flow generators. This represents 10 x 5 = 50
modules in the flow generators.

Although some space is used by the NetCOPE platform it-
self, it means that there is a lot of space available on the
FPGA to add you own modifier modules, to make very con-
figurable flow generators with a lot of modifiers, or to gen-
erate multiple flows in parallel.



5. CONCLUSION

This article presents an open-source traffic generator based
on FPGA. Its use of the Combo board enables it to fill a
10 Gbit/s link easily, even with the smallest packets the
Ethernet protocol allows. As the board has a second inter-
face, and each flow generator is able to produce 10 Gbit/s,
we could imagine an architecture like the one in Figure 2
but with two merger blocks. Each block would be linked
to an interface, and the generator would be able to deliver
20 Gbit/s by configuring at least 2 flows.

Although the configuration program is not ready yet, it will
make configuring the generator through the graphical user
interface extremely easy. The ability to enable and configure
each modifier for each flow makes it possible to send traffic
adapted to the device under test, without having to know
anything of the internal architecture of the generator, and
without having to synthesize new bitfiles for the FPGA.

And if the existing modifiers are not enough to generate the
wanted traffic, the generator has been designed from the
start to make it easy to add new modifiers. It only requires
to develop one VHDL block, following the process described
in Section 4.1.

Although the generator currently works on the Combo board
from Invea-Tech, it is very similar to the NetFPGA 10G,
which is well-known and very affordable for academics. The
NetCOPE platform used by the generator is compatible with
the NetFPGA 10G, and even porting the generator to the
NetFPGA platform should be fairly easy.

Finally, this generator is an open-source project. The source
code is available online [4]. If you want updates about the
development of the configuration program, if you can help
porting the generator to NetFPGA, or if you have ideas on
how to make it better, do not hesitate to get involved.

6. ACKNOWLEDGMENTS

The authors would like to thank INVEA-TECH for its sup-
port during the implementation of the traffic generator on
the Combo board.

7. ADDITIONAL AUTHORS

Additional author: Manuel Aranaz Padrén (Télécom Bre-

tagne, email: manuel . aranazpadron@telecom-bretagne.eu).

8. REFERENCES

[1] 10g ethernet test solution.
http://www.ixiacom.com/products/interfaces/
display?skey=in_10g_universal, 2012. [Online;
accessed 6-February-2013].

2] NetFPGA 10G.
http://netfpga.org/10G_specs.html, 2012. [Online].

[3] Xenacompact. http:

//www .xenanetworks.com/html/xenacompact.html,
2012. [Online; accessed 6-February-2013].

[4] Open-source hardware generator. https://github.
com/tristan-TB/hardware-traffic-generator,
2013. [Online].

[5] C. Albrecht, C. Osterloh, T. Pionteck, R. Koch, and
E. Maehle. An application-oriented synthetic network

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

traffic generator. In 22nd Furopean Conference on
Modelling and Simulation., 2008.

G. Antichi, A. Di Pietro, D. Ficara, S. Giordano,

G. Procissi, and F. Vitucci. Design of a high
performance traffic generator on network processor. In
Digital System Design Architectures, Methods and
Tools, 2008. DSD °08. 11th EUROMICRO Conference
on, pages 438-441, 2008.

R. Bolla, R. Bruschi, M. Canini, and M. Repetto. A
high performance ip traffic generation tool based on
the intel ixp2400 network processor. In Distributed
Cooperative Laboratories: Networking,
Instrumentation, and Measurements, pages 127-142.
Springer, 2006.

N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi.
Flexible high performance traffic generation on
commodity multi—core platforms. Traffic Monitoring
and Analysis, pages 157-170, 2012.

A. Botta, A. Dainotti, and A. Pescapé. Do you trust
your software-based traffic generator?
Communications Magazine, IEEE, 48(9):158-165,
sept. 2010.

M. Ghobadi, G. Salmon, Y. Ganjali, M. Labrecque,
and J. Steffan. Caliper: Precise and responsive traffic
generator. In High-Performance Interconnects
(HOTI), 2012 IEEE 20th Annual Symposium on,
pages 25-32, aug. 2012.

T. Groleat, M. Arzel, and S. Vaton. Hardware
acceleration of SVM-based traffic classification on
FPGA. In IWCMC, pages 443-449. IEEE, 2012.
Invea-Tech. COMBO cards.
http://www.liberouter.org/hardware.php?flag=2,
May 2012. [Online].

P. Korcek, V. Kosar, M. Zadnik, K. Koranda, and

P. Kastovsky. Hacking netcope to run on netfpga-10g.
In Architectures for Networking and Communications
Systems (ANCS), 2011 Seventh ACM/IEEE
Symposium on, pages 217-218, oct. 2011.

T. Martmek and M. Kosek. Netcope: Platform for
rapid development of network applications. In Design
and Diagnostics of Electronic Circuits and Systems,
2008. DDECS 2008. 11th IEEE Workshop on, pages
1-6. IEEE, 2008.

M. Sanli, E. Schmidt, and H. Giiran. Fpgen: A fast,
scalable and programmable traffic generator for the
performance evaluation of high-speed computer
networks. Performance Evaluation, 68(12):1276-1290,
2011.

J. Sommers, H. Kim, and P. Barford. Harpoon: a
flow-level traffic generator for router and network
tests. In ACM SIGMETRICS Performance Evaluation
Review, volume 32, pages 392-392. ACM, 2004.

A. Tockhorn, P. Danielis, and D. Timmermann. A
configurable fpga-based traffic generator for
high-performance tests of packet processing systems.
In ICIMP 2011, The Sizth International Conference
on Internet Monitoring and Protection, pages 14-19,
2011.



