-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by INRIA a CCSD electronic archive server

archives-ouvertes

Damaris/Viz: a Nonintrusive, Adaptable and
User-Friendly In Situ Visualization Framework
Matthieu Dorier, Robert Sisneros, Tom Peterka, Gabriel Antoniu, Dave

Semeraro

» To cite this version:

Matthieu Dorier, Robert Sisneros, Tom Peterka, Gabriel Antoniu, Dave Semeraro. Damaris/Viz: a
Nonintrusive, Adaptable and User-Friendly In Situ Visualization Framework. LDAV - IEEE Sympo-
sium on Large-Scale Data Analysis and Visualization, Oct 2013, Atlanta, United States. hal-00859603

HAL Id: hal-00859603
https://hal.inria.fr /hal-00859603
Submitted on 18 Nov 2013

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://core.ac.uk/display/49756445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00859603
https://hal.archives-ouvertes.fr

Damaris/Viz: a Nonintrusive, Adaptable and User-Friendly
In Situ Visualization Framework

Matthieu Dorier*

ENS Cachan Brittany, IRISA Rennes
Gabriel Antoniu®

INRIA Rennes Bretagne-Atlantique

ABSTRACT

Reducing the amount of data stored by simulations will bewiast
importance for the next generation of large-scale compgutifac-
cordingly, there is active research to shift analysis asdalization
tasks to run in situ, that is, closer to the simulation viagharing
of some resources. This is beneficial as it can avoid the siéges
of storing large amounts of data for post-processing. s phaiper,
we focus on the specific case of in situ visualization whelayan
sis codes are collocated with the simulation’s code and ruthe
same resources. It is important for an in situ technique daire
minimum modifications to existing codes, be adaptable, aw h

a low impact on both run times and resource usage. We accorg-

plish this through the Damaris/Viz framework, which praesdin

situ visualization support to the Damaris 1/0 middlewaréeTse

of Damaris as a bridge to existing visualization packagkesvalus

to (1) reduce code moditication to a minimum for existing lian
tions, (2) gather capabilities of several visualizatiool$do offer a
unified data management interface, (3) use dedicated aoirede

the run time impact of in situ visualization and (4) efficignise o
memory through a shared-memory-based communication model
Experiments are conducted on Blue Waters and Grid’5000-to vi
sualize the CM1 atmospheric simulation and the Nek5000 CFD
solver.

[]
Keywords: Exascale Computing, Multicore Architectures, I/O, In
Situ Visualization, Dedicated Cores

Index Terms: D.1.3 [Software]: Programming Techniques—
Concurrent Programming D.2.12 [Software]: Software
Engineering—Interoperability 1.3.8 [Computing Methodeol ©
gies]: Computer Graphics—Applications

1

As we approach exascale, the limits of offline analysis [1il] w e
be magnified. Simulations already endure scalability issarés-

ing from unmatched computation and I/O performance as veell a
higher 1/0 variability [28/18[4]. Also, with an increase mob-
lem size it becomes increasingly difficult to transfer datenf one
supercomputer to another, and data-parallel visualiza#isks start

to suffer from the same 1/O bottlenedK [2.]33].

Therefore, HPC scientists predict fundamental changesen t
way we will deal with I/0O and data management in the near fu-
ture [10]. In particular, the heterogeneous processorremvient
and memory hierarchy of new platforms, together with theeas-

INTRODUCTION

*e-mail:
te-mail:
te-mail:
$e-mail:
Te-mail:

matthieu.dorier@irisa.fr
sisneros@illinois.edu
tpeterka@mcs.anl.gov
gabriel.antoniu@inria.fr
semeraro@illinois.edu

Robert Sisnerost
University of lllinois at Urbana-Champaign

Tom Peterka®
Argonne National Laboratory
Dave Semeraro¥

University of lllinois at Urbana-Champaign

ing use of GPUs and accelerators, offer new alternativesidita
analysis.

In situ visualization (ISV) has been proposed to run analgsid
visualization tasks closer to the simulation, bypassirgdtorage
system, and producing results as the simulation runs. |&@\egfies
include:

Tightly-coupled: Analysis code runs on the same resources as the
simulation (in a time-partitioning manner by stopping thmwda-

tion periodically, or in a space-partitioning manner usiteglicated
cores).

Loosely-coupled: Separate set of resources are used (for example
on the same machine but on different nodes, or on a remotelvisu
ization cluster) connected through a network.

We postulate that four main requirements drive the adoptfon
an ISV framework.

Low impact on the code: Users are less likely to adopt an ISV
approach if it requires many code changes in their simuiadiod
the understanding of new too[s [29], or if a visualizatioeasiplist
should be consulted.

High adaptability: The adaptability of a system is its capability to
offer a wide range of features without the need for a user tkema
changes in the connection between a (potentially runniimgjla-
tion and a visualization backend.

Low impact on run time: Using computational resources collo-
cated with the simulation affects the performance of theedyihg
application. This is especially true when interactive ai&ation
systems directly connect users to their running simulation

Optimized resource utilization: Collocated simulation and visu-
alization codes share resources such as local memory andriet
bandwidth. Efficiently using these resources is criticalda ap-
proach to be suitable at a very large scale.

In this paper, we present Damaris/Viz: an ISV framework
driven by the above considerations. This framework is based
Damaris [14], an /O middleware developed to reduce I/Qijitt
using dedicated I/O core5][5]. Damaris/Viz provides théofet
ing contributions to the field of ISV: (1) reduces code modiic
tions for in situ visualization in existing simulations taranimum,
(2) adapts to the specific needs of simulations by gathehega-
pabilities of existing visualization packages through #ied data
management interface, (3) hides the performance impactof-a
located visualization code by using dedicated cores toutgatin
parallel with the simulation, and (4) efficiently leveragésuble-
buffering techniques with shared memaory to optimize the wrgm
usage.

We compare the instrumentation and usability of our franrtewo
to representative packages: Vislt[17], ParaView [15], anstom
analysis modules written using the C/Python interface.lt\dad

ParaView are general-purpose parallel visualizationnsof based
on VTK [27]. Vislt provides interactive ISV capabilitiesrtbugh
thelibsim library. ParaView embeds an analysis pipeline inside of
a simulation that operates on VTK structures. Finally they@ion
interface has been used in some simulations to run smalsisal
tasks at run time.

We evaluate our framework through experimental results ob-
tained with two simulations: the CM1 atmospheric modeél [adl a
the Nek5000[[24] CFD solver. These experiments are carnigd o
on the Blue Waters [23] machine at NCSA and on the French
Grid’5000 [12] testbed, with representative visualizatazenarios.

2 RELATED WORK

In this section, we present the relevant works in the field of
simulation-visualization coupling. We separate loossiypled
from tightly-coupled ISV. We describe how each approachtmee
the requirements introduced in Sectidn 1.

2.1 Loosely-coupled visualization strategies

Ellsworth et al. [[6] propose the use of distributed sharednorgy
(DSM) to avoid writing files when performing concurrent \agu
ization. Such an approach has the advantage of decoupleng th
simulation and visualization processes, but reading data the
memory of the simulation’s processors can increase run vamie
ability. The scalability of a distributed shared memoryigess
also a limiting factor.

Rivi et al. [26] introduce the ICARUS plugin for ParaView to-
gether with a description of Vislt and ParaView’s ISV inteés.
ICARUS employs an HDF5 DSM file driver to ship data to a dis-
tributed shared memory buffer that is used as input to a RanaV
pipeline. This DSM stores a view of the HDF5 files that can be
concurrently accessed by the simulation and visualizatiots but
produces multiple copies of the data. Also, the visualaralibrary
on the remote resource requires the original data to conforims
HDFS5 representation.

Malakar et al.[[21l] present an adaptive framework for lopsel
coupled visualization, in which data is sent over a netwark t
a remote visualization cluster at a frequency that is dynattyi
adapted depending on resource availability. Our approdh a
adapts output frequency to resource usage. The PreDatAig6]
dleware proposes to dedicate a set of nodes as a stagingoarea t
perform a first step of data processing prior to 1/0 for theppse
of subsequent visualization. The coupling between the Isition
and the staging area is done through the ADIOS [19] I/O layer.

GLEAN [25] is used to provide in situ visualization capabili
ties with dedicated nodes. The authors use the PHASTA stionla
on the Intrepid supercomputer and ParaView for analysisvand
sualization on Eureka. Part of the analysis in GLEAN is dane i
a time-partitioning manner at the simulation side, whictkezait
a “hybrid” approach involving tightly- and loosely-couglén situ
analyses. Our approach shares some of the same goals, rtamely
couple a simulation with run time visualization, but we rba visu-
alization tool on one core of the same node instead of on destic
nodes. GLEAN is also used in conjunction with ADIQS][22].

EPSN [7] is an environment providing steering and visualiza
tion capabilities to existing parallel simulations. Simtibns instru-
mented with EPSN ship their data to a visualization pipetume
ning on a remote cluster, thus EPSN is an hybrid approactudirgl
both code changes and the use of additional remote resources
contrast to EPSN, all visualization tasks using Damarisheaper-
formed on dedicated cores, closer to the simulation, redutie
network overhead.

Zheng et al. have provided a model to evaluate the tradeeff be
tween in situ synchronous visualization and loosely-cedplisu-
alization through staging areas. This model can be appliedin-
pare in situ space-partitioning using dedicated coregausbf re-

mote resources, with the difference being that approactiésng
dedicated cores do not have network communication overhead

2.2 Tightly-coupled ISV: challenges and solutions

SciRun[13] is a complete computational-steering envirennthat
includes visualization. Its in situ capabilities can be dusdth
any simulation implemented with SciRun solvers and stmastu
SciRun is an example of the trend towards integrating visatibn,
data analysis and computational steering in the simulationess.
Simulations are written specifically for use in SciRun inerdo
exchange data with zero data copies, but adapting an exespipli-
cation to this framework can be a daunting task.

Tu et al. [30] propose an end-to-end approach for an earkequa
simulation using the Hercule framework. All the componeritthe
simulation, including visualization, run in parallel oretkame ma-
chine, and the only output consists of a set of JPEG files. akee d
processing tasks in Hercule are still performed in a synubue
manner, and any operation initiated by a process to perfbeset
tasks impacts the performance of the simulation.

Space-partitioning using dedicated cores to handle |/Osoral-
ization tasks has been proposed using a FUSE interface 6] o
active buffering scheme for collective I/0]20]. The use ¢fASE
interface produces multiple copies of data passing thrahglker-
nel space, increasing memory usage. Our design presentsea mo
efficient use of resources through shared memory and tasésmiq
that attempt to minimize the memory usage.

In the context of ADIOS, CoDS (Co-located DataSpaces) [35]
builds a distributed object-based data space abstraatioan use
dedicated nodes (and recently dedicated cores with shaetbry)
with PreDatA, DataStager and DataSpace. ADIOS+CoDS has als
been used for code coupling [34] and demonstrated withreifite
simulation models. While the use of dedicated cores to aptiem
two different tasks is a common theme in our approach, our ob-
jective is to compare the performance impact on the sinaradf
a collocated visualization task with a directly embeddexlializa-
tion. Besides, placement of data in shared memory in theafen-
tioned works is done through the ADIOS interface, which @ea
a copy of data from the simulation to the shared memory using a
file-writing interface. We leverage the double-bufferimghnique
usually implemented in simulations as an efficient altéveafor
sharing data.

The YT package[[31] is used to visualize outputs from the
Enzo, Orion, FLASH and RAMSES simulations using Python. YT
may currently be used for in situ visualization in Enzo tlgiowa
C/Python wrapper, but comes at a cost of code instrumentatid
performance. According to the developers, future devetopsof
YT should lead to a loosely-coupled version, in which YT runs
asynchronously on different nodes. Our framework makesofise
Python wrappers in a transparent manner, eliminating ted far
simulation developers to provide them, thus increasingtadbel-

ity.
3

In this section, we present our proposed framework for rtamin
sive, adaptable, and user-friendly tightly-coupled ISV.

IN SITU VISUALIZATION THROUGH DAMARIS

3.1 Towards a new in situ visualization framework

Coupling simulations with visualizations requires untimsling
the interfaces of both pieces of software. These interfaees
be difficult to master and the coupling may necessitate fogmit
changes to the code of the simulation. Additionally, chagdrom
one visualization software to another may require deep ficadi
tions in the code that are conceptually unnecessary, asathesrof
the information as well as analyses do not change.

A useful feature for ISV is the ability to work on raw in-meryor
data without performing any copy, thus reducing the memory-c

sumption of in situ analysis tasks. As we tend to reduce lowah-
ory per core on next-generation supercomputers, this “‘zepy”
property is invaluable. In addition, the ability to overlsimulation
with visualization has performance benefits. Periodicstibpping
the simulation to perform visualization tasks increasesaverall
run time of a simulation as well as the run time variabilityterac-
tivity with an end-user can impose additional variabilipd users
take the risk of slowing down their computation with everyicec-
tion to the running simulation.

These considerations motivated our choice to build our éam
work using the Damaris_[5, 14] dedicated-core-based aphroa
Damaris was initially proposed to dedicate a subset of cores
multicore SMP nodes to asynchronous tasks, leveragingegdhar
memory for communication. This approach is sometimes d@alle
“space-partitioning” as opposed to “time-partitioningiproaches
in which a simulation stops to perform extra tasks. In ourimgs
work [5],[3], we have successfully demonstrated that by ayper!
ping I/O with computation, Damaris can fully hide I/O costis
this work we show that Damaris can also serve as a bridge batwe
a simulation and various visualization software throughéied
interface.

3.2 Review of the Damaris I/0O middleware

There are four main characteristics of Damaris that makenit a
ideal environment for the implementation of a tightly-ctmgISV.
Damaris uses configuration files, has a plugin system, esilded-
icated cores and leverages shared memory for communisation

e Configuration file: Damaris uses an XML configuration in a
way similar to ADIOS[19] and EPSN[7]. The use of such
a configuration file alleviates code modification by extdgnal
providing the information required by visualization tooie

the second is how to ensure the consistency of simultanesus a
cesses from different components to the same data. Studging
eral simulations using time-varying data, we noticed aufesq use
of double-buffering techniques where two versions of theesdata
coexist: one to hold data as input for the solver and one tcsbd u
for storing the results. The two buffers are then swappedrbedn-
tering the next iteration. We can thus decompose the lifedataset
in three phases: (1) equations are solved and the data tenyr(2)
the data serves as a basis for the next iteration and is ntemri
over, (3) the data is no longer needed by the simulation. Alicg

to these observations, we provided new functions to the Biama
API:

e dc_al l oc("vari abl e") is similar tomalloc (or allocate
in Fortran,new in C++). It allocates a portion of shared mem-
ory to hold the variable for a given iteration and returns a
pointer. Only the simulation is aware of this allocationdide
cated cores cannot access the data.

e dc_commit ("vari abl e") is called when the simulation
has finished writing to the current buffer associated with th
variable. It sends the location of the data to the dedicated
cores. Both the simulation and dedicated cores can read the
data.

e dc_cl ear ("vari abl e") notifies the dedicated cores that
the committed data for this variable can safely be processed
stored or removed from shared memory.

A fourth function dc_end.iteration() is used to tell
Damaris that no more data should be expected for this iteradind
the analysis backends will have all necessary data to perfbe
visualization task. The only simulation code modificaticeded

detail in Sectio3.4]12 how this description can be enhanced jnyolves changing the allocation methods of visualizatigables,

to describe visualization scenarios.

e Plugin system: Damaris can be extended using a plugin sys-
tem that loads new functionalities from dynamic libraries.

in order to allocate them in a place from which the dedicatzé<
can immediately access them. Tde_cl ear function does not
free memory; simulation processes expect the dedicatess dor
maintain enough free space in shared memory by removing old

This plugin system has already been leveraged to design agata. Dedicated cores must free memory quickly enough timavo

custom HDF5 persistency layer and checkpoint all of a sim-
ulation’s data asynchronouslyl [5]. With some improvements
and with some modifications in the core of Damaris, this sys-

consuming all of the shared memory. In the event that shared
memory is full, rather than blocking the simulatioti¢_al | oc
uses the local memory of the process instead of the shared mem

tion software.

e Dedicated cores:Space-partitioning within SMP nodes can
limit the impact of in situ data analysis tasks on running-sim

dc_end.i t er ati on will notify Damaris that the data have not
been placed in shared memory. A blocking version of this AP,
whichdc_al | oc waits for enough memory to be available, is also
provided but is not studied in this paper. Figlite 1 summarthe

ulations. Analysis codes run asynchronously on dedicated gomantics of the three functions.

cores and overlap computation. Any interaction with a user
will only impact these dedicated cores without stopping the
simulation.

e Shared memory based communication: Damaris uses

shared memory to handle the communications from cores run-

ning the simulation to those running the visualization sask
This offers an opportunity for “zero-copy” of data.
3.3 Damaris/Viz: an in situ visualization framework us-
ing Damaris

The initial implementation of Damaris providesaaite function,
with the idea of imitating classical file-based 1/O layersr (&x-

The only parameter needed for most Damaris functions is the
name of a variable. Other required information such as tre i
the data and number of domains are supplied by the configarati
file.

3.4 Connecting to existing visualization packages

Now that Damaris provides an API to enable efficient commamic
tion through shared memory, we can connect it to existingaliza-
tion and analysis packages in order to build a full ISV fraroguw

3.4.1 Python support

We enhanced the plugin system of Damaris to load Pythontscrip
From these scripts, all variables are wrapped into NumPgyarr

ample HDF5, NetCDF, ADIOS). When entering an 1/O phase, the Related metadata information (current iteration numbaunaries

simulation calls this function to copy its local data into teased
memory segment, and notifies the dedicated cores that dalseba
written.

The use of space-partitioning in Damaris presents two probi
the first is how to expose the data to visualization companemtd

of a data chunk, process IDs for writers) are also accessible
Python. Wrapping C arrays into NumPy arrays does not produce
a copy of data, thus Python plugins work on the original dafa s
plied by the simulation and provide an easy way to write analy
sis tasks without any modification to simulation code. Iigfil

Simulation Damaris Simulation Damaris Simulation Damaris
Process Process Process Process Process Process
) 4
\ . 4 J X
< > \4 Can read
Variable Variable Variable

\ Can read and modify

Shared Memory
(a) After dcalloc

Shared Memory
(b) After dc.commit

Shared Memory

(c) After dcclear

Figure 1: Semantics of the three function&) at iteration 1, an array is allocated throudb_al | oc, the simulation holds it(b) Eventually, a call tadc_conmi t notifies the
dedicated core of the location of the data. At iteration 2tiafer can be read by both processes, but they agree nott®iwiit. Finally, (c) a call todc_cl ear at (e.g. iteration 3)
indicates that the simulation does not need the old buffgmane, dedicated cores can modify it or move it to a persistemage.

provides an example of a statistical computation perfororecl|
chunks of iteration 1 of the data. The SciPy and Matplotlithep
libraries offer a wide range of functionalities to write giestic
tasks or generate images from simulation data. Howeven irpo

tial testing, we noticed that performance degrades whediriga
Python modules simultaneously from many processes; weéas
ommend using Python for small analyses, and we decided te mak
performance comparisons among only those packages afgieopr
for large scales.

var damaris.openitemperature’)
for chunks in var.select(iteration 1)
print numpy.average (chunks.data)

Listing 1: Accessing simulation’s data through the Damaris Pythoerfate: com-
puting the average of a value.

1)
1]

\',
[\

/]
i
SSN,

[TININ
[N5

N
[N
]
<

".’ mesh_x =
' {0.0,1.0,2.0,3.0}

mesh_y =
{0.0,1.0,2.0,3.0}

mesh_z =
{0.0,1.2,1.8,3.0}

Figure 2: Example of a 4x4x4 rectilinear grid described by three ar@fycoordinates.
In this example there is one scalar value (sucteamperature or wind velocity) at each
node.

3.4.2 Support for Vislt and ParaView

Both Vislt and ParaView perform in situ visualization from-i
memory data. Given that each has strengths, a major adeantag
of our approach is the ability to switch between visualmatiools
with minimal code modification.

We leverage the configuration file in Damaris to provide the ne
essary information to bridge the simulation to existingiaiézation
software. By investigating the in situ interfaces of diéet visual-

ization packages including ParaView, Vislt, ezViz and VTie

<variable namemeshx” .../>
<variable nameZmeshy” .../>
<variable nametmeshz” .../>

<mesh typeZrectilinear” nameZmy_mesh*

<coord namezZmeshx” unit="cm” label="width” />
<coord nameZmeshy” unit="cm” label="height”/>
<coord nameZmeshz” unit="cm” label="depth” />

</ mesh>

<variable nameZtemperature” meshZmy_mesh”../>

devised with a generic description of visualizable streegusuch
as meshes, points or curves. Listilg 2 presents how a megimdra
in Figure[2 is described using an XML configuration file. Thie fi
provides the necessary information for Damaris to execigh df
ParaView codes, but hides from the user the details of thuse-i
faces. Therefore, both Vislt and ParaView (or other visazion
software) can be used without code modification in the sitrara
Listing[3 shows the six lines of code changed in the simufeitio
self.

3.5 Automatic output frequency adaptation

The choice of non-blocking allocation functions, desalifie Sec-
tion[3:3 have an immediate impact on the behavior of Damaitts w
respect to visualization. Rather than stalling the siniitata short-
age of memory causes the Damaris cores to skip renderinggfram
and free memory. Thus, Damaris self-adapts to the complexkit
the visualization task and outputs the maximum number ohés
that the dedicated cores are able to render without imgactia
simulation. In other words, it is possible that visualipatis only
performed when free, which fits well with certain typical itus
use cases, such as simply verifying that a simulation isymiog
correct output.

Listing 2: Description of a mesh in the Damaris/Viz configuration.

4 |IMPACT ON CODE INSTRUMENTATION AND ADAPTABILITY

We compare our framework to two representative softward-pac
ages used for tightly-coupled ISV, Vislt [17] and ParaViéi]|,

in terms of code modification and adaptability. For the farme
conduct this study around a particular scenario of a reetili mesh
with temperature values. This scenario, already used itlid3€8,
will be applied in Sectiofi]5 to the CM1 atmospheric simulatio
and is characteristic of a climate simulation handling at&mper-
ature array of double precision values. This array represents the
temperature at the vertices of a rectilinear mesh. The ouates

of the vertices are given by three arramssh_x, mesh_y andmesh_z

of respective extentd’x, Ny andN.

4.1 Data access for in situ visualization using Vislt

Vislt offers in situ visualization capabilities througrethibsim [32]

library. This library allows the simulation to act as a phalaten-
dering engine when receiving commands from a Vislt cliensuy
alization tasks can also be scripted to run without useniatgion.

floatx meshx = dc_alloc ("meshx”);
floatx meshy = dc_alloc ("meshy”);
floatx meshz = dc.alloc("meshz");
doublex temp = dcalloc("temperature’;

dc_.commit("temperature”;

dc_end.iteration ();

Listing 3: Allocation for data accessed by Damaris. The size is giveaherDamaris
configuration file.

Table 1: Code modifications of different Vislt examples. Damarisuiegs code mod-
ifications and an external XML file.

Vislt Damaris
Simulation C C XML
curve.c 144 lines| 6lines | 31lines
mesh.c 167 lines| 10 lines | 39 lines
var.c 271 lines| 12lines | 53 lines
life.c 305 lines| 8lines | 39 lines

Vislt works directly on the data provided by the simulatioithw
out making a copy. In our example, two callback functiond gl
provided in addition to the callback functions requiredrftetadata
access and response to commands. Ligfing 4 presents aregverv
of these data access functions.

In addition to our previous example, we rewrote examples pro
vided in Vislt's source to work with Damaris. Taljle 1 sumraes
the number of lines of code required to instrument these plesnm
with Vislt and with Damaris. We removed all comments and blan
lines in order to count only the relevant lines of code. Not &ll
of these examples except the last are serial. The lastidae, re-
quires further modifications with Vislt to provide callbaftinctions
for collective communications. All these codes (includihg un-
modified ones from Vislt) are available in the Damaris redddd].

4.2 Data access for co-processing using ParaView

Like Vislt, ParaView is based on VTK. The ParaView in situant
face, termed as a “co-processing libraiyl’ [9] integratessaaliza-
tion pipeline (written in C++ or in Python) into the simulati. The
simulation periodically feeds this predefined pipelinehndata in
order to produce visualization outputs, for example images

While Vislt's libsim is based on callback functions and works
in C, C++ and Fortran, ParaView's co-processing libraryuness
the simulation to wrap its data into VTK C++ objects. List{Hg
summarizes the main steps in creating the right VTK objeats f
our sample application.

The advantage of aa priori definition of the visualization
pipeline in ParaView is the possibility to start a simulatand be
able to periodically check the generated images. The dalerisi
the lack of interactivity and flexibility at run time of the sual-
ization tasks. Note also that part of the ParaView pipeliae loe
relocated to a visualization cluster. Here, we study onlgito
visualization tasks, i.e. performed on the same nodes ghtlti
coupled with the simulation.

Other visualization software such as ezViz [8] have a C or C++
APl that can be used to perform in situ visualization in a wayilar
to ParaView and Vislt.

5 EXPERIMENTAL PERFORMANCE EVALUATION

In this section, we evaluate our Damaris/Viz framework with
spect to performance impact and scalability. We use Visit ve
sion 2.5.2 for visualization along with two real-life simatibns: the

/I This function is called to retrieve the mesh
visit_handle getmeshdata(int domain,
const charxname, void xcbhdata) {
visit_handle h = VISITINVALID _HANDLE;
if (strcmp (name,”my_mesh”) == 0)
if (Vislt_RectilinearMeshalloc(&h)
== VISIT_.OKAY) {
visit_handle hxc, hyc, hzc;
Vislt_VariableDataalloc(&hxc);
/I ... idem for hyc and hzc
Vislt_VariableDatasetDataF (hxc,
VISIT_.OWNERSIM, 1, NX, meshx);
/I ... idem for hyc and hzc
Vislt_RectilinearMeshsetCoordsXYZ(h,
hxc ,hyc, hzc);
}

return h;

}
}

/l This function is called to retrieve the data
visit_handle getvariable.data (int domain,
const charxname, void xcbdata) {
visit_handle h = VISITINVALID -HANDLE;
if (strcmp(name,”temperature’) == 0) {

if (Vislt_VariableDataalloc(&h)
== VISIT_.OKAY) {
int size = NXNYxNZ;
Vislt_VariableDatasetDataD (h,
VISIT_.OWNERSIM, 1, size, temp);
}
}

return h;

}

I/l When a Vislt client connects, the callback
I/l functions has to be provided using
VisltSetGetMesh(getmeshdata ,NULL);
VisltSetGetVariable(getvariable.data ,NULL);

Listing 4: Data access functions for our sample application usingt.Vishe first
function retrieves the mesh coordinates, while the secetrieves the temperature
field. The two last lines register the two functions as calksehandling data accesses.
This sample code does not show the modifications to the siioamain loop.

CM1 atmospheric simulatiof [1], and the Nek50001[24] coraput
tional fluid dynamic (CFD) solver.

For performance comparisons, we implemented a “time-
partitioning mode” in Damaris. This mode is enabled in thefigp
uration file, without any change in the simulation. Usingtimode,
visualization tasks are performed synchronously, sityilar other
visualization backends. Adding this mode into the impletaton
of Damaris also contributes to its adaptability, as the saernow
utilize both approaches from the same interface.

5.1 The CM1 simulation

CM1 is one of the original targeted applications of Blue Watét
is used for modeling small-scale atmospheric phenomenia asic
thunderstorms and tornadoes. A 3D rectilinear grid is fangd

along a 2D grid and each process handles a subdomain, thus its

data layout corresponds to the sample code we have corgiitere
previous sections.

/I Create the variable data
vtkDataArrayx wrapMyData (...)

vtkDoubleArrayx myArray

= vtkDoubleArray ::New();
myArray—>SetName (temperature”;
vtkldType size = NXNYxNZ;
myArray—>SetArray (temp, size,
return myArray;

1);

}

/!l This function is called to
vtkObjectx wrapMeshData (...)

retrieve the mesh

{
I/l creates the necessary coordinate arrays
vtkFloatArrayx xCoords, yCoords, zCoords;
xCoords = vtkFloatArray ::New();

xCoords—>setArray (meshx ,PTX,1);
/1 ... idem for yCoords and zCoords
vtkRectilinearGrid xgrid
= vtkRectilinearGrid ::New();

grid—setDimensions (NX,NY,NZ);
grid—setXCoordinates (xCoords);
// ... idem for Y and Z coordinates
vtkDataArrayx array

= wrapMyData (); // see above
grid—GetPointData@®->AddArray(array);
array—Delete ();
return (vtkObjectx)grid;

Listing 5: Data access functions for our sample application using\fkana The first
function wraps the temperature field into the VTK object vhhi used by the second
function that adds information related to the mesh cootdma

5.1.1 Using Vislt for 2D and 3D rendering

Two-dimensional visualization in CM1 consists in slicing Belds
horizontally, and converting real values into pixels usinfprmaps,

-

(a) CM1 ray casting (b) Nek5000 isosurface

Figure 3: Example results obtained in situ with Damar{a) Ray-casting of thelbz
variable on 6400 cores (Blue Watergh) Ten-level isosurface of thg velocity field
in the TurbChannel configuration of Nek5000.

50 200

o o
(7]
<40 * 8 150 A
o [} "\
£ 30 £ \
B 1 =

“+ 100
g N - inle
3 1 —_ 3 50
T 10 — el -
Q Q
o o

\‘*\0—-<~;

100 1000 100 1000
Number of cores Number of cores

—— Time-Partitioning —— Time-Partitioning
—m— Space-Partitioning —m— Space-Partitioning

(a) In situ ray casting (b) In situ isosurface

Figure 4: Rendering time using ray-casting and isosurfaces, witle-artitioning
and space-partitioning with CM1. Note that the number oksaepresents the total
number; using a space-partitioning approach, 1/16 of tt& tumber is effectively
used for in situ visualization.

5.1.3 Experiments

The experiments are done on the Blue Waters supercomputer,
NCSA's Cray XE6 petascale supercompufer| [23]. Our goal is to
show that ISV approaches depend on the scalability of theeren

isocontours or quiver maps. Some examples of such fields to being algorithm being used. We complete a strong-scalinguesiin

visualized include potential temperatutk)(on the ground4£ = 0),
horizontal wind velocity ¢ andv) and vertical wind velocity W)

at different altitudes. Examples of 3D rendering in CM1 g
volume rendering of the reflectivitybz (as exemplified in Figurlel 3
(a)) or wind velocity (1, v andw). These tasks are available in Vislt
and can be made interactive with our modification of CM1 with
Damaris/Viz.

5.1.2 Methodology
CM1 requires a long run time before an interesting atmospher

of the two aforementioned rendering methods using a repratbee
dataset 08840 x 3840 x 400 points. We measure the time to com-
plete a rendering (average of 15 iterations) using timéitjmaring
and space-partitioning for each scenario. The resultsegrerted
in Figure[4.

5.1.4 Results

The isosurface algorithm scales well with the number of soeng
both in situ approaches. A time-partitioning approach wdtls
be appropriate if the user does not need to hide the run tirpadém

phenomenon appears, and such a phenomenon may not appear &f in situ visualization. However, on 6400 cores, it takesragh

small scale. We first ran CM1 with the help of atmosphericrscie
tists to produce interesting data. We then extracted thé&éi@el
from the CM1 code and built a program that replays its behiatia
given scale and with a given resolution by reloading, reitisting
and interpolating the precomputed data.

The 1/O kernel, identical to the 1/O part of the simulatioalls
Damaris/Viz functions to pass the data. Damaris/Viz then pe
forms in situ visualization, either in a time-partitioning a space-
partitioning manner. We consider two scenarios of 3D reinder
the first one performs a ray casffhon thedbz field (image shown
in Figurd3 (a)). The second scenario performs a 10-levsligace
rendering of this same field.

1Ray casting compositing (sobel gradients, rasterizagonging, 2500
samples per ray).

time to complete the rendering as on 400 dedicated coresrrimst
of pure computational power, a space-partitioning apgraacl6
times more efficient.

The ray-casting algorithm on the other hand has a poorea-scal
bility. After decreasing, the rendering time goes up again @400
cores scale, and it becomes about twice more efficient to use a
duced number of dedicated cores to complete this rendering.

The choice of using a space-partitioning versus a time-
partitioning ISV approach depends on (1) the intended lizaa
tion scenario, (2) the scale and (3) the intended frequeheigoal
output.

5.2 The Nek5000 CFD simulation

Nek5000 is a computational fluid dynamics solver based on the
spectral element method. It is written in Fortran 77 and eolts

governing equations on an unstructured mesh. This meshnis co
prised of multiple elements distributed across procesash ele-
ment is a small curvilinear mesh. Each point of the mesh ezrri
the three components of the fluid’'s local velocity. We modifie
Nek5000 in order to pass the mesh elements and velocity data t
Damaris/Viz and we used Vislt for visualization.

5.2.1 Configurations

We used two configurations: tfierbChannel experiment (config-
uration 1), which runs well on 32 to 64 cores, and KATiS ex-
periment (configuration 2), which has been designed to atalu

Nek5000 on 512 to 2048 cores. We used the first to assess the

impact of interactivity on run-time with a time-partitiorg and a
space-partitioning approach. Figlile 3 (b) shows the re$wat10-
level isosurface rendering of the fluid velocity along thexis, with

the TurbChannel case. We then used the second configuration t
prove the scalability of our approach based on Damaris again
standard time-partitioning approach.

5.2.2 Experiments with the TurbChannel configuration

Experiments were carried out on the Reistieemi cluster of the
French Grid’5000 testbed, which features 40 nodes (HP RrdLi
DL165 G7) with 24 cores per node, connected through a 1GB Eth-
ernet network.

To assess the impact of in situ visualization on the run tives,
ran TurbChannel on 48 cores using the two approaches: first we
use a time-partitioning mode where all 48 cores are used &y th
simulation and synchronously perform ISV. Then we use aepac
partitioning mode with Damaris/Viz where 46 cores are usethe
simulation and 2 cores asynchronously run the ISV tasks.

In each case, we consider four scenar{@g:the simulation runs
without visualization,(B) a user connects Vislt to the simulation
but does not ask for any outpyC) the user asks for isosurfaces
of the velocity fields but does not interact with Vislt any thar
(letting the simulation update the output after each itematand
finally (D) the user has heavy interactions with the simulations (for
example rendering different variables, using differeigoathms,
zooming on particular domains, changing the resolution).

5.2.3 Results with the TurbChannel configuration

Figure® presents a trace of the duration of each iteraticinglthe

four aforementioned scenarios using the two approaches.tafh
graph in Figur€b shows that ISV using a time-partitioningrapch

has a negative impact on the simulation run time, even when no
interaction is performed. Space-partitioning ISV, on theeo hand,

is completely transparent from the point of view of the siatialn.

5.2.4 Experiments with the MATIS configuration

The MATIS configuration requires a larger scale; we ran it &6 8
cores. Each iteration takes approximately one minute aedtalu
the huge number of points that the mesh contains, it is difftou
perform interactive visualization. We therefore conneidltvand
simply query for a 3D pseudo-color plot of the: variable that
is then continuously update. For the following results, tilee-
partitioning approach outputs one image every time stefigeine
space partitioning method adapted the output frequencpédro-
age every 25 time steps.

5.2.5 Results with the MATIS configuration

Figurd® reports the behavior of the application with andhwiitt vi-
sualization performed, and with and without dedicated &o€zor-
responding statistics are presented in Thble 2.
Time-partitioning visualization not only increases thermage
run time but also increases the standard deviation, makimgmes
unpredictable. On the other hand, the space-partitionietly

\

3 \ h
‘\n/\/\“‘ W/ MJ\/\/\,/ \ﬁm/

|
|
|
|
. : J

T6 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 1
Iteration number

Interactive scenario

Vislt connected

No visualization Simple scenario

(a) Time-Partitioning

T T T T T T T
96 104 112 120 128 136 144
Iteration number

No visualization Vislt connected Interactive scenario

Simple scenario

(b) Space-Partitioning

Figure 5: Variability in run-time induced by different scenarios afsitu interactive
visualization.

@ Simulation

[Visualization [Simulation

300
250
200
150
100
50
0

Time (sec)

Time (sec)

LA L S S o s o
6 10 14 18

Iteration number

14 22

18
Iteration number

2

(b) Time-partitioning with vis.

[Simulation+Visualization

300
250
200
150
100 it
50 —
04

(a) Time-partitioning, no vis.

@ Simulation

300

200
150
100

50

Time (sec)
Time (sec)

2 6 10 14 18

Iteration number

22 2 6 10 14 18

Iteration number

22

(c) Space-partitioning, novis. (d) Space-partitioning with vis.

Figure 6: Iteration time of the MATIS configuration without visualizan (left) and
with visualization enabled (right). Top: With time-paiditing, visualization time adds
to simulation time. Bottom: With space-partitioning, \aédiaation time is entirely
overlapped with simulation time.

more consistent results. One might expect a space-paitiap-
proach to interfere with the simulation as it performs isfea com-
munications while the simulation runs. However, in prastice
observe very little run time variation.

We also remark that decreasing the number of cores used by the
simulation actually decreases its run time. This is due ¢oféict
that Nek5000 reaches its limit of scalability. Yet due toritem-
ory requirements, it is still necessary to run it on this nemof
nodes. In other words, as reducing the number of cores per nod
actually used by the simulation increases its performaitder-
ther motivates the use of these spare cores for extra tasksasu
visualization.

Finally, while the time-partitioning approach performsuwal-
ization at every time step here, the space-partitioningaamgh has
adapted the frequency of its output to 1 image every 25 timgsst
If a time-partitioning approach were to only output 1 imagerg
25 time steps (which corresponds to having only2&€" iteration
being impacted in Figurgl 6 (b)), the completion time for 2&di
steps would be 2007 seconds on average. With space-partgim

Table 2: Average iteration time of the Nek5000 MATIS configurationtiwiime-
partitioning and space-partitioning approaches, withwitidout visualization.

(4]

Iteration time Average | Std. dev. [5]
Time-oartitionin no Vvis. 75.07 sec 22,93
P 9 | withvis. | 205.21 sec| 57.15
. no vis. 67.76 sec 20.09
Space-partitioning withvis. | 64.79sec| 20.44 [6]

Damaris/Viz this takes 1620 seconds, a 20% speedup. Forther
since space-partitioning in Damaris overlaps the visatitn and
simulation; the total run time is unchanged with the additéISV.

(7]

6 CONCLUSION AND FUTURE WORK [8]

The slower rate at which 1/O performance is increasing coetgpa (9]

to that of computational capabilities necessitates newaogahes
for gaining insights from running simulations. Tightlytqued in
situ visualization appears to be a viable approach to retheceres-

sure on file systems. Yet the synchronous aspect of existing s [10]
tions and the impact on the simulation’s performance haisdahits
adoption in the HPC community.

We proposed Damaris/Viz, an in situ visualization framdwor [11]
based on the Damaris I/O middleware. By leveraging dedicate
cores, external high-level structure description and gkEnAPI,
our framework provides adaptable in situ visualization xisting [12]
simulations at a low instrumentation cost. Results obthiwéh [13]

the Nek5000 CFD and CM1 atmospheric simulations show that
our framework can completely hide the performance impaefi-of (14]
sualization tasks. In addition, the proposed API allowscifit
memory usage through a shared memory, zero-copy communica-ﬁé}
tion model.

As future work, we plan to evaluate our framework more exten-
sively on heterogeneous architectures. Additionally, Vaa po im-
prove our framework to be able to utilize a set of dedicatetbsdin
a loosely-coupled model), and to choose the level of coggirrun
time depending on resource usage in the simulation, 1/Ovoiattlal
availability, the presence of accelerators, and tempatanage de-
vices. We will also investigate access to more complex daidets
such as unstructured meshes. We are also considering egend
our framework to dedicate more than one core to in situ tasks.

[17]
(18]

ACKNOWLEDGEMENTS

This work was a collaboration between the KerData INRIA - EC&:han/Brittany -
INSA Rennes Joint Project-Team (Rennes, France), the NCBBaga-Champaign,
USA) and ANL within the Joint INRIA-UIUC-ANL Laboratory foPetascale Comput-
ing. The experiments were carried out using the Grid’5000ABDIN-G5K experi-
mental testbed (sd® t p: / / www. gri d5000. fr/) and Blue Waters at NCSA (see
http://ww.ncsa.illinois.edu/Bl ueWat ers/). We thank Leigh Orf for
his insights on the CM1 application and the datasets he giedvior our experiments,
Paul Fischer and Aleksandr Obabko for providing insights$ datasets for Nek5000,
and Shadi Ibrahim for his feedbacks on this paper. We alsnaeledge the Vislt de-
velopers, in particular Hank Childs, Brad Whitlock and JE&awre for their help with
using Vislt’s in situ interface.

[19]

[20]

[21]

REFERENCES

[1] G. H. Bryan and J. M. Fritsch. A Benchmark Simulation for
Moist Nonhydrostatic Numerical ModeldMonthly Weather Review,
130(12):2917-2928, 2002.

H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. HowisoRrabhat,
G. Weber, and E. Bethel. Extreme Scaling of Production fizaton
Software on Diverse Architecture€omputer Graphics and Applica-
tions, IEEE, 30(3):22—-31, May-June 2010.

M. Dorier. SRC: Damaris - Using Dedicated 1/0O Cores fonBble
Post-Petascale HPC Simulations.Aroceedings of the international
conference on Supercomputing, ICS’11, pages 370-370, New York,
NY, USA, 2011. ACM.

[22]

(2]

(23]

(3] [24]

[25]

M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Dweris:
Leveraging Multicore Parallelism to Mask I/O Jitter. Resbareport
RR-7706, INRIA, Dec 2011.

M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Deris:
How to Efficiently Leverage Multicore Parallelism to Achescal-
able, Jitter-free 1/0. IrCluster Computing (CLUSTER), 2012 |IEEE
International Conference on, pages 155 —163, Sept. 2012.

D. Ellsworth, B. Green, C. Henze, P. Moran, and T. Samaistr
Concurrent Visualization in a Production Supercomputimyifn-
ment. Visualization and Computer Graphics, IEEE Transactions on,
12(5):997 —1004, Sept.-Oct. 2006.

A. Esnard, N. Richart, and O. Coulaud. A Steering Envin@mt
for Online Parallel Visualization of Legacy Parallel Simtibns. In
Distributed Smulation and Real-Time Applications, 2006. DS-RT’ 06.
Tenth |EEE International Symposium on, pages 7-14. IEEE, 2006.
EzViz. lhttp://ww. ezvi z. bi z/|

N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion,
B. Geveci, M. Rasquin, and K. Jansen. The ParaView Copringess
Library: A Scalable, General Purpose In Situ Visualizatiohrary.
In LDAV, |IEEE Symposium on Large-Scale Data Analysis and Visual-
ization, 2011.

A. Geist and R. Lucas. Major Computer Science ChallenfeExas-
cale. International Journal of High Performance Computing Applica-
tions, 23(4):427-436, 2009.

A. Hoisie and V. Getov. Extreme-Scale Computing - Whehest
More of the Same’ Does Not WorkComputer, 42(11):24—26, Nov.
2009.

INRIA. Aladdin grid’5000:ht t p: // www. gri d5000. fr.

C. Johnson, S. Parker, C. Hansen, G. Kindlmann, andvwadti Inter-
active simulation and visualizatiotComputer, 32(12):59-65, 1999.
KerData, IRISA, INRIA Rennes. Damarris,
http://damaris.gforge.inria.fr/l

KitWare. ParaViewht t p: // www. par avi ew. or g/}

M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim,.E&n-
gelmann, and G. Shipman. Functional Partitioning to Optaind-
to-End Performance on Many-core Architectures.Phoceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Sorage and Analysis, SC'10, pages 1-12,
Washington, DC, USA, 2010. IEEE Computer Society.

LLNL. Vislt, https://weci . T nl. gov/codes/visit/.

J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, Tordenbrock,
K. Schwan, and M. Wolf. Managing Variability in the 10 Penfioance
of Petascale Storage SystemsPhoceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Sorage and Analysis, SC '10, pages 1-12, Washington, DC,
USA, 2010. IEEE Computer Society.

J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, @ndin. Flex-
ible 10 and integration for scientific codes through the aalale 10
system (ADIOS). IrProceedings of the 6th international workshop on
Challenges of large applications in distributed environments, CLADE
‘08, pages 15-24, New York, NY, USA, 2008. ACM.

X. Ma, J. Lee, and M. Winslett. High-level buffering fbiding pe-
riodic output cost in scientific simulationdParallel and Distributed
Systems, |EEE Transactions on, 17(3):193-204, 2006.

P. Malakar, V. Natarajan, and S. S. Vadhiyar. An Adaptirame-
work for Simulation and Online Remote Visualization of @at Cli-
mate Applications in Resource-constrained Environmenits.Pro-
ceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC'10,
pages 1-11, Washington, DC, USA, 2010. IEEE Computer Societ
K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podeki,
V. Vishwanath, N. Fabian, C. Docan, M. Parashar, M. Hereldl.e
Examples of In Transit Visualization. Proceedings of the 2nd inter-
national workshop on Petascal data analytics: challenges and oppor-
tunities, pages 1-6. ACM, 2011.

NCSA. BlueWaters project,

http://ww. ncsa.illinois.edu/BlueWaters/|

J.W. L. P. F. Fischer and S. G. Kerkemeier. nek5000 Weje p2008.
http://nek5000.mcs.anl.gov.

M. Rasquin, P. Marion, V. Vishwanath, B. Matthews, M. reld,

http://www.grid5000.fr/
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ezviz.biz/
http://www.grid5000.fr
http://damaris.gforge.inria.fr/
http://www.paraview.org/
https://wci.llnl.gov/codes/visit/
http://www.ncsa.illinois.edu/BlueWaters/

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

K. Jansen, R. Loy, A. Bauer, M. Zhou, O. Sahni, et al. Eledtron
Poster: Co-Visualization of Full Data and In Situ Data Egtsafrom
Unstructured Grid CFD at 160k Cores. Rmoceedings of the 2011
companion on High Performance Computing Networking, Storage
and Analysis Companion, pages 103-104. ACM, 2011.

M. Rivi, L. Calori, G. Muscianisi, and V. Slavnic. In-&i Visualiza-
tion: State-of-the-art and Some Use Cases.

W. Schroeder, L. Avila, and W. Hoffman. Visualizing WivTK: a
tutorial. Computer Graphics and Applications, |EEE, 20(5):20 —27,
Sep.,Oct. 2000.

D. Skinner and W. Kramer. Understanding the Causes idbRerance
Variability in HPC Workloads. In\orkload Characterization Sympo-
sium, 2005. Proceedings of the |EEE International, pages 137 — 149,
Oct. 2005.

D. Thompson, N. Fabian, K. Moreland, and L. Ice. Desigaukes
for Performing In Situ Analysis of Simulation Data. Techalice-
port, Technical Report SAND2009-2014, Sandia Nationaldrato-
ries, 2009.

T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas;LKMa,
and D. R. O’Hallaron. From Mesh Generation to Scientific Visu
alization: an End-to-End Approach to Parallel Supercoimngut In
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
SC’06, New York, NY, USA, 2006. ACM.

M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skiim T. Abel,
and M. L. Norman. yt: A Multi-Code Analysis Toolkit for Astphys-
ical Simulation Data.The Astrophysical Journal Supplement Series,
192(1):9, 2011.

B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel $itu
Coupling of Simulation with a Fully Featured Visualizati®ystem.
In Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV). Eurographics Association, 2011.

H. Yu and K.-L. Ma. A Study of I/O Methods for Parallel Vializa-
tion of Large-Scale DateParallel Computing, 31(2):167 — 183, 2005.
Parallel Graphics and Visualization.

F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podharsakd
H. Abbasi. Enabling in-situ execution of coupled scientifiarkflow
on multi-core platform.Parallel and Distributed Processing Sympo-
sium, International, 0:1352—-1363, 2012.

F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, and MraBaar. In-
situ feature-based objects tracking for large-scale &fiesimula-
tions. InDISCS, 2012.

F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S.skia
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf. PreDatA -
Preparatory Data Analytics on Peta-Scale Machine$atallel Dis-
tributed Processing (IPDPS), 2010 | EEE International Symposiumon,
pages 1-12, April 2010.

	Introduction
	Related work
	Loosely-coupled visualization strategies
	Tightly-coupled ISV: challenges and solutions

	In Situ Visualization through Damaris
	Towards a new in situ visualization framework
	Review of the Damaris I/O middleware
	Damaris/Viz: an in situ visualization framework using Damaris
	Connecting to existing visualization packages
	Python support
	Support for VisIt and ParaView

	Automatic output frequency adaptation

	Impact on code instrumentation and adaptability
	Data access for in situ visualization using VisIt
	Data access for co-processing using ParaView

	Experimental performance evaluation
	The CM1 simulation
	Using VisIt for 2D and 3D rendering
	Methodology
	Experiments
	Results

	The Nek5000 CFD simulation
	Configurations
	Experiments with the TurbChannel configuration
	Results with the TurbChannel configuration
	Experiments with the MATiS configuration
	Results with the MATiS configuration

	Conclusion and future work

