
HAL Id: hal-00859603
https://hal.inria.fr/hal-00859603

Submitted on 18 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Damaris/Viz: a Nonintrusive, Adaptable and
User-Friendly In Situ Visualization Framework

Matthieu Dorier, Robert Sisneros, Tom Peterka, Gabriel Antoniu, Dave
Semeraro

To cite this version:
Matthieu Dorier, Robert Sisneros, Tom Peterka, Gabriel Antoniu, Dave Semeraro. Damaris/Viz: a
Nonintrusive, Adaptable and User-Friendly In Situ Visualization Framework. LDAV - IEEE Sympo-
sium on Large-Scale Data Analysis and Visualization, Oct 2013, Atlanta, United States. �hal-00859603�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49756445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00859603
https://hal.archives-ouvertes.fr

Damaris/Viz: a Nonintrusive, Adaptable and User-Friendly
In Situ Visualization Framework

Matthieu Dorier∗

ENS Cachan Brittany, IRISA Rennes

Robert Sisneros†

University of Illinois at Urbana-Champaign

Tom Peterka‡

Argonne National Laboratory

Gabriel Antoniu§

INRIA Rennes Bretagne-Atlantique

Dave Semeraro¶

University of Illinois at Urbana-Champaign

ABSTRACT

Reducing the amount of data stored by simulations will be of utmost
importance for the next generation of large-scale computing. Ac-
cordingly, there is active research to shift analysis and visualization
tasks to run in situ, that is, closer to the simulation via thesharing
of some resources. This is beneficial as it can avoid the necessity
of storing large amounts of data for post-processing. In this paper,
we focus on the specific case of in situ visualization where analy-
sis codes are collocated with the simulation’s code and run on the
same resources. It is important for an in situ technique to require
minimum modifications to existing codes, be adaptable, and have
a low impact on both run times and resource usage. We accom-
plish this through the Damaris/Viz framework, which provides in
situ visualization support to the Damaris I/O middleware. The use
of Damaris as a bridge to existing visualization packages allows us
to (1) reduce code moditication to a minimum for existing simula-
tions, (2) gather capabilities of several visualization tools to offer a
unified data management interface, (3) use dedicated cores to hide
the run time impact of in situ visualization and (4) efficiently use
memory through a shared-memory-based communication model.
Experiments are conducted on Blue Waters and Grid’5000 to vi-
sualize the CM1 atmospheric simulation and the Nek5000 CFD
solver.

Keywords: Exascale Computing, Multicore Architectures, I/O, In
Situ Visualization, Dedicated Cores

Index Terms: D.1.3 [Software]: Programming Techniques—
Concurrent Programming D.2.12 [Software]: Software
Engineering—Interoperability I.3.8 [Computing Methodolo-
gies]: Computer Graphics—Applications

1 INTRODUCTION

As we approach exascale, the limits of offline analysis [11] will
be magnified. Simulations already endure scalability issues aris-
ing from unmatched computation and I/O performance as well as
higher I/O variability [28, 18, 4]. Also, with an increase inprob-
lem size it becomes increasingly difficult to transfer data from one
supercomputer to another, and data-parallel visualization tasks start
to suffer from the same I/O bottleneck [2, 33].

Therefore, HPC scientists predict fundamental changes in the
way we will deal with I/O and data management in the near fu-
ture [10]. In particular, the heterogeneous processor environment
and memory hierarchy of new platforms, together with the increas-

∗e-mail: matthieu.dorier@irisa.fr
†e-mail: sisneros@illinois.edu
‡e-mail: tpeterka@mcs.anl.gov
§e-mail: gabriel.antoniu@inria.fr
¶e-mail: semeraro@illinois.edu

ing use of GPUs and accelerators, offer new alternatives fordata
analysis.

In situ visualization (ISV) has been proposed to run analysis and
visualization tasks closer to the simulation, bypassing the storage
system, and producing results as the simulation runs. ISV strategies
include:

• Tightly-coupled: Analysis code runs on the same resources as the
simulation (in a time-partitioning manner by stopping the simula-
tion periodically, or in a space-partitioning manner usingdedicated
cores).

• Loosely-coupled:Separate set of resources are used (for example
on the same machine but on different nodes, or on a remote visual-
ization cluster) connected through a network.

We postulate that four main requirements drive the adoptionof
an ISV framework.

• Low impact on the code: Users are less likely to adopt an ISV
approach if it requires many code changes in their simulation and
the understanding of new tools [29], or if a visualization specialist
should be consulted.

• High adaptability: The adaptability of a system is its capability to
offer a wide range of features without the need for a user to make
changes in the connection between a (potentially running) simula-
tion and a visualization backend.

• Low impact on run time: Using computational resources collo-
cated with the simulation affects the performance of the underlying
application. This is especially true when interactive visualization
systems directly connect users to their running simulation.

• Optimized resource utilization: Collocated simulation and visu-
alization codes share resources such as local memory and network
bandwidth. Efficiently using these resources is critical for an ap-
proach to be suitable at a very large scale.

In this paper, we present Damaris/Viz: an ISV framework
driven by the above considerations. This framework is basedon
Damaris [14], an I/O middleware developed to reduce I/O jitter
using dedicated I/O cores [5]. Damaris/Viz provides the follow-
ing contributions to the field of ISV: (1) reduces code modifica-
tions for in situ visualization in existing simulations to aminimum,
(2) adapts to the specific needs of simulations by gathering the ca-
pabilities of existing visualization packages through a unified data
management interface, (3) hides the performance impact of acol-
located visualization code by using dedicated cores to execute it in
parallel with the simulation, and (4) efficiently leveragesdouble-
buffering techniques with shared memory to optimize the memory
usage.

We compare the instrumentation and usability of our framework
to representative packages: VisIt [17], ParaView [15], andcustom
analysis modules written using the C/Python interface. VisIt and

ParaView are general-purpose parallel visualization software based
on VTK [27]. VisIt provides interactive ISV capabilities through
the libsim library. ParaView embeds an analysis pipeline inside of
a simulation that operates on VTK structures. Finally the C/Python
interface has been used in some simulations to run small analysis
tasks at run time.

We evaluate our framework through experimental results ob-
tained with two simulations: the CM1 atmospheric model [1] and
the Nek5000 [24] CFD solver. These experiments are carried out
on the Blue Waters [23] machine at NCSA and on the French
Grid’5000 [12] testbed, with representative visualization scenarios.

2 RELATED WORK

In this section, we present the relevant works in the field of
simulation-visualization coupling. We separate loosely-coupled
from tightly-coupled ISV. We describe how each approach meets
the requirements introduced in Section 1.

2.1 Loosely-coupled visualization strategies

Ellsworth et al. [6] propose the use of distributed shared memory
(DSM) to avoid writing files when performing concurrent visual-
ization. Such an approach has the advantage of decoupling the
simulation and visualization processes, but reading data from the
memory of the simulation’s processors can increase run timevari-
ability. The scalability of a distributed shared memory design is
also a limiting factor.

Rivi et al. [26] introduce the ICARUS plugin for ParaView to-
gether with a description of VisIt and ParaView’s ISV interfaces.
ICARUS employs an HDF5 DSM file driver to ship data to a dis-
tributed shared memory buffer that is used as input to a ParaView
pipeline. This DSM stores a view of the HDF5 files that can be
concurrently accessed by the simulation and visualizationtools but
produces multiple copies of the data. Also, the visualization library
on the remote resource requires the original data to conformto this
HDF5 representation.

Malakar et al. [21] present an adaptive framework for loosely-
coupled visualization, in which data is sent over a network to
a remote visualization cluster at a frequency that is dynamically
adapted depending on resource availability. Our approach also
adapts output frequency to resource usage. The PreDatA [36]mid-
dleware proposes to dedicate a set of nodes as a staging area to
perform a first step of data processing prior to I/O for the purpose
of subsequent visualization. The coupling between the simulation
and the staging area is done through the ADIOS [19] I/O layer.

GLEAN [25] is used to provide in situ visualization capabili-
ties with dedicated nodes. The authors use the PHASTA simulation
on the Intrepid supercomputer and ParaView for analysis andvi-
sualization on Eureka. Part of the analysis in GLEAN is done in
a time-partitioning manner at the simulation side, which makes it
a “hybrid” approach involving tightly- and loosely-coupled in situ
analyses. Our approach shares some of the same goals, namelyto
couple a simulation with run time visualization, but we run the visu-
alization tool on one core of the same node instead of on dedicated
nodes. GLEAN is also used in conjunction with ADIOS [22].

EPSN [7] is an environment providing steering and visualiza-
tion capabilities to existing parallel simulations. Simulations instru-
mented with EPSN ship their data to a visualization pipelinerun-
ning on a remote cluster, thus EPSN is an hybrid approach including
both code changes and the use of additional remote resources. In
contrast to EPSN, all visualization tasks using Damaris canbe per-
formed on dedicated cores, closer to the simulation, reducing the
network overhead.

Zheng et al. have provided a model to evaluate the tradeoff be-
tween in situ synchronous visualization and loosely-coupled visu-
alization through staging areas. This model can be applied to com-
pare in situ space-partitioning using dedicated cores instead of re-

mote resources, with the difference being that approaches utilizing
dedicated cores do not have network communication overhead.

2.2 Tightly-coupled ISV: challenges and solutions

SciRun [13] is a complete computational-steering environment that
includes visualization. Its in situ capabilities can be used with
any simulation implemented with SciRun solvers and structures.
SciRun is an example of the trend towards integrating visualization,
data analysis and computational steering in the simulationprocess.
Simulations are written specifically for use in SciRun in order to
exchange data with zero data copies, but adapting an existing appli-
cation to this framework can be a daunting task.

Tu et al. [30] propose an end-to-end approach for an earthquake
simulation using the Hercule framework. All the componentsof the
simulation, including visualization, run in parallel on the same ma-
chine, and the only output consists of a set of JPEG files. The data
processing tasks in Hercule are still performed in a synchronous
manner, and any operation initiated by a process to perform these
tasks impacts the performance of the simulation.

Space-partitioning using dedicated cores to handle I/O or visual-
ization tasks has been proposed using a FUSE interface [16] or an
active buffering scheme for collective I/O [20]. The use of aFUSE
interface produces multiple copies of data passing throughthe ker-
nel space, increasing memory usage. Our design presents a more
efficient use of resources through shared memory and techniques
that attempt to minimize the memory usage.

In the context of ADIOS, CoDS (Co-located DataSpaces) [35]
builds a distributed object-based data space abstraction and can use
dedicated nodes (and recently dedicated cores with shared memory)
with PreDatA, DataStager and DataSpace. ADIOS+CoDS has also
been used for code coupling [34] and demonstrated with different
simulation models. While the use of dedicated cores to accomplish
two different tasks is a common theme in our approach, our ob-
jective is to compare the performance impact on the simulation of
a collocated visualization task with a directly embedded visualiza-
tion. Besides, placement of data in shared memory in the aforemen-
tioned works is done through the ADIOS interface, which creates
a copy of data from the simulation to the shared memory using a
file-writing interface. We leverage the double-buffering technique
usually implemented in simulations as an efficient alternative for
sharing data.

The YT package [31] is used to visualize outputs from the
Enzo, Orion, FLASH and RAMSES simulations using Python. YT
may currently be used for in situ visualization in Enzo through a
C/Python wrapper, but comes at a cost of code instrumentation and
performance. According to the developers, future developments of
YT should lead to a loosely-coupled version, in which YT runs
asynchronously on different nodes. Our framework makes useof
Python wrappers in a transparent manner, eliminating the need for
simulation developers to provide them, thus increasing adaptabil-
ity.

3 IN SITU VISUALIZATION THROUGH DAMARIS

In this section, we present our proposed framework for nonintru-
sive, adaptable, and user-friendly tightly-coupled ISV.

3.1 Towards a new in situ visualization framework

Coupling simulations with visualizations requires understanding
the interfaces of both pieces of software. These interfacescan
be difficult to master and the coupling may necessitate significant
changes to the code of the simulation. Additionally, changing from
one visualization software to another may require deep modifica-
tions in the code that are conceptually unnecessary, as the nature of
the information as well as analyses do not change.

A useful feature for ISV is the ability to work on raw in-memory
data without performing any copy, thus reducing the memory con-

sumption of in situ analysis tasks. As we tend to reduce localmem-
ory per core on next-generation supercomputers, this “zero-copy”
property is invaluable. In addition, the ability to overlapsimulation
with visualization has performance benefits. Periodicallystopping
the simulation to perform visualization tasks increases the overall
run time of a simulation as well as the run time variability. Interac-
tivity with an end-user can impose additional variability,and users
take the risk of slowing down their computation with every connec-
tion to the running simulation.

These considerations motivated our choice to build our frame-
work using the Damaris [5, 14] dedicated-core-based approach.
Damaris was initially proposed to dedicate a subset of coresin
multicore SMP nodes to asynchronous tasks, leveraging shared
memory for communication. This approach is sometimes called
“space-partitioning” as opposed to “time-partitioning” approaches
in which a simulation stops to perform extra tasks. In our previous
work [5, 3], we have successfully demonstrated that by overlap-
ping I/O with computation, Damaris can fully hide I/O costs.In
this work we show that Damaris can also serve as a bridge between
a simulation and various visualization software through a unified
interface.

3.2 Review of the Damaris I/O middleware

There are four main characteristics of Damaris that make it an
ideal environment for the implementation of a tightly-coupled ISV.
Damaris uses configuration files, has a plugin system, utilizes ded-
icated cores and leverages shared memory for communications.

• Configuration file: Damaris uses an XML configuration in a
way similar to ADIOS [19] and EPSN [7]. The use of such
a configuration file alleviates code modification by externally
providing the information required by visualization tools. We
detail in Section 3.4.2 how this description can be enhanced
to describe visualization scenarios.

• Plugin system:Damaris can be extended using a plugin sys-
tem that loads new functionalities from dynamic libraries.
This plugin system has already been leveraged to design a
custom HDF5 persistency layer and checkpoint all of a sim-
ulation’s data asynchronously [5]. With some improvements
and with some modifications in the core of Damaris, this sys-
tem serves as a basis to bridge Damaris to existing visualiza-
tion software.

• Dedicated cores:Space-partitioning within SMP nodes can
limit the impact of in situ data analysis tasks on running sim-
ulations. Analysis codes run asynchronously on dedicated
cores and overlap computation. Any interaction with a user
will only impact these dedicated cores without stopping the
simulation.

• Shared memory based communication: Damaris uses
shared memory to handle the communications from cores run-
ning the simulation to those running the visualization tasks.
This offers an opportunity for “zero-copy” of data.

3.3 Damaris/Viz: an in situ visualization framework us-
ing Damaris

The initial implementation of Damaris provides awrite function,
with the idea of imitating classical file-based I/O layers (for ex-
ample HDF5, NetCDF, ADIOS). When entering an I/O phase, the
simulation calls this function to copy its local data into a shared
memory segment, and notifies the dedicated cores that data has been
written.

The use of space-partitioning in Damaris presents two problems:
the first is how to expose the data to visualization components, and

the second is how to ensure the consistency of simultaneous ac-
cesses from different components to the same data. Studyingsev-
eral simulations using time-varying data, we noticed a frequent use
of double-buffering techniques where two versions of the same data
coexist: one to hold data as input for the solver and one to be used
for storing the results. The two buffers are then swapped before en-
tering the next iteration. We can thus decompose the life of adataset
in three phases: (1) equations are solved and the data is written, (2)
the data serves as a basis for the next iteration and is not written
over, (3) the data is no longer needed by the simulation. According
to these observations, we provided new functions to the Damaris
API:

• dc alloc("variable") is similar tomalloc (or allocate
in Fortran,new in C++). It allocates a portion of shared mem-
ory to hold the variable for a given iteration and returns a
pointer. Only the simulation is aware of this allocation, dedi-
cated cores cannot access the data.

• dc commit("variable") is called when the simulation
has finished writing to the current buffer associated with the
variable. It sends the location of the data to the dedicated
cores. Both the simulation and dedicated cores can read the
data.

• dc clear("variable") notifies the dedicated cores that
the committed data for this variable can safely be processed,
stored or removed from shared memory.

A fourth function dc end iteration() is used to tell
Damaris that no more data should be expected for this iteration, and
the analysis backends will have all necessary data to perform the
visualization task. The only simulation code modification needed
involves changing the allocation methods of visualizable variables,
in order to allocate them in a place from which the dedicated cores
can immediately access them. Thedc clear function does not
free memory; simulation processes expect the dedicated cores to
maintain enough free space in shared memory by removing old
data. Dedicated cores must free memory quickly enough to avoid
consuming all of the shared memory. In the event that shared
memory is full, rather than blocking the simulation,dc alloc
uses the local memory of the process instead of the shared mem-
ory; dc commit has no effect;dc clear frees the memory and,
dc end iteration will notify Damaris that the data have not
been placed in shared memory. A blocking version of this API,in
whichdc alloc waits for enough memory to be available, is also
provided but is not studied in this paper. Figure 1 summarizes the
semantics of the three functions.

The only parameter needed for most Damaris functions is the
name of a variable. Other required information such as the size of
the data and number of domains are supplied by the configuration
file.

3.4 Connecting to existing visualization packages
Now that Damaris provides an API to enable efficient communica-
tion through shared memory, we can connect it to existing visualiza-
tion and analysis packages in order to build a full ISV framework.

3.4.1 Python support

We enhanced the plugin system of Damaris to load Python scripts.
From these scripts, all variables are wrapped into NumPy arrays.
Related metadata information (current iteration number, boundaries
of a data chunk, process IDs for writers) are also accessibleto
Python. Wrapping C arrays into NumPy arrays does not produce
a copy of data, thus Python plugins work on the original data sup-
plied by the simulation and provide an easy way to write analy-
sis tasks without any modification to simulation code. Listing 1

(a) After dc alloc (b) After dc commit (c) After dc clear

Figure 1: Semantics of the three functions:(a) at iteration 1, an array is allocated throughdc alloc, the simulation holds it,(b) Eventually, a call todc commit notifies the
dedicated core of the location of the data. At iteration 2 thebuffer can be read by both processes, but they agree not to write in it. Finally,(c) a call todc clear at (e.g. iteration 3)
indicates that the simulation does not need the old buffer anymore, dedicated cores can modify it or move it to a persistent storage.

provides an example of a statistical computation performedon all
chunks of iteration 1 of the data. The SciPy and Matplotlib Python
libraries offer a wide range of functionalities to write diagnostic
tasks or generate images from simulation data. However, upon ini-
tial testing, we noticed that performance degrades when loading
Python modules simultaneously from many processes; we thusrec-
ommend using Python for small analyses, and we decided to make
performance comparisons among only those packages appropriate
for large scales.

var = dam ar i s . open (” t e m p e r a t u r e ”)
f o r chunks in va r . s e l e c t (i t e r a t i o n = 1)

p r i n t numpy . average (chunks . d a t a)

Listing 1: Accessing simulation’s data through the Damaris Python interface: com-
puting the average of a value.

3.4.2 Support for VisIt and ParaView

Both VisIt and ParaView perform in situ visualization from in-
memory data. Given that each has strengths, a major advantage
of our approach is the ability to switch between visualization tools
with minimal code modification.

We leverage the configuration file in Damaris to provide the nec-
essary information to bridge the simulation to existing visualization
software. By investigating the in situ interfaces of different visual-
ization packages including ParaView, VisIt, ezViz and VTK,we
devised with a generic description of visualizable structures such
as meshes, points or curves. Listing 2 presents how a mesh drawn
in Figure 2 is described using an XML configuration file. This file
provides the necessary information for Damaris to execute VisIt or
ParaView codes, but hides from the user the details of those inter-
faces. Therefore, both VisIt and ParaView (or other visualization
software) can be used without code modification in the simulation.
Listing 3 shows the six lines of code changed in the simulation it-
self.

3.5 Automatic output frequency adaptation

The choice of non-blocking allocation functions, described in Sec-
tion 3.3 have an immediate impact on the behavior of Damaris with
respect to visualization. Rather than stalling the simulation, a short-
age of memory causes the Damaris cores to skip rendering frames
and free memory. Thus, Damaris self-adapts to the complexity of
the visualization task and outputs the maximum number of frames
that the dedicated cores are able to render without impacting the
simulation. In other words, it is possible that visualization is only
performed when free, which fits well with certain typical in situ
use cases, such as simply verifying that a simulation is producing
correct output.

mesh_x =
{0.0,1.0,2.0,3.0}

mesh_y =
{0.0,1.0,2.0,3.0}

mesh_z =
{0.0,1.2,1.8,3.0}

Figure 2: Example of a 4x4x4 rectilinear grid described by three arrays of coordinates.
In this example there is one scalar value (such astemperature or wind velocity) at each
node.

<v a r i a b l e name=” mesh x ” . . . />
<v a r i a b l e name=” mesh y ” . . . />
<v a r i a b l e name=” mesh z ” . . . />

<mesh type =” r e c t i l i n e a r ” name=” my mesh”>
<coord name=” mesh x ” u n i t =”cm” l a b e l =” w id th ” />
<coord name=” mesh y ” u n i t =”cm” l a b e l =” h e i g h t ” />
<coord name=” mesh z ” u n i t =”cm” l a b e l =” dep th ” />
</ mesh>

<v a r i a b l e name=” t e m p e r a t u r e ” mesh=”my mesh” . . />

Listing 2: Description of a mesh in the Damaris/Viz configuration.

4 IMPACT ON CODE INSTRUMENTATION AND ADAPTABILITY

We compare our framework to two representative software pack-
ages used for tightly-coupled ISV, VisIt [17] and ParaView [15],
in terms of code modification and adaptability. For the former, we
conduct this study around a particular scenario of a rectilinear mesh
with temperature values. This scenario, already used in Section 3,
will be applied in Section 5 to the CM1 atmospheric simulation,
and is characteristic of a climate simulation handling a 3Dtemper-
ature array of double precision values. This array represents the
temperature at the vertices of a rectilinear mesh. The coordinates
of the vertices are given by three arraysmesh x, mesh y andmesh z
of respective extentsNX , NY andNZ .

4.1 Data access for in situ visualization using VisIt
VisIt offers in situ visualization capabilities through the libsim [32]
library. This library allows the simulation to act as a parallel ren-
dering engine when receiving commands from a VisIt client. Visu-
alization tasks can also be scripted to run without user intervention.

f l o a t ∗ mesh x = d c a l l o c (” mesh x ”) ;
f l o a t ∗ mesh y = d c a l l o c (” mesh y ”) ;
f l o a t ∗ mesh z = d c a l l o c (” mesh z ”) ;
doub le∗ temp = d c a l l o c (” t e m p e r a t u r e ”) ;
. . .
dc commit (” t e m p e r a t u r e ”) ;
. . .
d c e n d i t e r a t i o n () ;

Listing 3: Allocation for data accessed by Damaris. The size is given inthe Damaris
configuration file.

Table 1: Code modifications of different VisIt examples. Damaris requires code mod-
ifications and an external XML file.

VisIt Damaris
Simulation C C XML
curve.c 144 lines 6 lines 31 lines
mesh.c 167 lines 10 lines 39 lines
var.c 271 lines 12 lines 53 lines
life.c 305 lines 8 lines 39 lines

VisIt works directly on the data provided by the simulation with-
out making a copy. In our example, two callback functions will be
provided in addition to the callback functions required formetadata
access and response to commands. Listing 4 presents an overview
of these data access functions.

In addition to our previous example, we rewrote examples pro-
vided in VisIt’s source to work with Damaris. Table 1 summarizes
the number of lines of code required to instrument these examples
with VisIt and with Damaris. We removed all comments and blank
lines in order to count only the relevant lines of code. Note that all
of these examples except the last are serial. The last one,life.c, re-
quires further modifications with VisIt to provide callbackfunctions
for collective communications. All these codes (includingthe un-
modified ones from VisIt) are available in the Damaris release [14].

4.2 Data access for co-processing using ParaView

Like VisIt, ParaView is based on VTK. The ParaView in situ inter-
face, termed as a “co-processing library” [9] integrates a visualiza-
tion pipeline (written in C++ or in Python) into the simulation. The
simulation periodically feeds this predefined pipeline with data in
order to produce visualization outputs, for example images.

While VisIt’s libsim is based on callback functions and works
in C, C++ and Fortran, ParaView’s co-processing library requires
the simulation to wrap its data into VTK C++ objects. Listing5
summarizes the main steps in creating the right VTK objects for
our sample application.

The advantage of ana priori definition of the visualization
pipeline in ParaView is the possibility to start a simulation and be
able to periodically check the generated images. The downside is
the lack of interactivity and flexibility at run time of the visual-
ization tasks. Note also that part of the ParaView pipeline can be
relocated to a visualization cluster. Here, we study only insitu
visualization tasks, i.e. performed on the same nodes and tightly
coupled with the simulation.

Other visualization software such as ezViz [8] have a C or C++
API that can be used to perform in situ visualization in a way similar
to ParaView and VisIt.

5 EXPERIMENTAL PERFORMANCE EVALUATION

In this section, we evaluate our Damaris/Viz framework withre-
spect to performance impact and scalability. We use VisIt ver-
sion 2.5.2 for visualization along with two real-life simulations: the

/ / Th is f u n c t i o n i s c a l l e d to r e t r i e v e t h e mesh
v i s i t h a n d l e g e t m e s h d a t a (i n t domain ,

c o n s t char ∗name , vo id ∗ cbda ta) {
v i s i t h a n d l e h = VISITINVALID HANDLE ;
i f (s t rcmp (name , ” my mesh”) == 0) {

i f (V i s I t R e c t i l i n e a r M e s h a l l o c (&h)
== VISIT OKAY) {

v i s i t h a n d l e hxc , hyc , hzc ;
V i s I t V a r i a b l e D a t a a l l o c (&hxc) ;
/ / . . . idem f o r hyc and hzc
V i s I t V a r i a b l e D a t a s e t D a t a F (hxc ,

VISIT OWNER SIM , 1 , NX, meshx) ;
/ / . . . idem f o r hyc and hzc
V i s I t R e c t i l i n e a r M e s hs e t C o o r d s X Y Z (h ,

hxc , hyc , hzc) ;
}

}
r e t u r n h ;

}
}

/ / Th is f u n c t i o n i s c a l l e d to r e t r i e v e t h e d a t a
v i s i t h a n d l e g e t v a r i a b l e d a t a (i n t domain ,

c o n s t char ∗name , vo id ∗ cbda ta) {
v i s i t h a n d l e h = VISITINVALID HANDLE ;
i f (s t rcmp (name , ” t e m p e r a t u r e ”) == 0) {

i f (V i s I t V a r i a b l e D a t a a l l o c (&h)
== VISIT OKAY) {

i n t s i z e = NX∗NY∗NZ;
V i s I t V a r i a b l e D a t a s e t D a t a D (h ,

VISIT OWNER SIM , 1 , s i ze , temp) ;
}

}
r e t u r n h ;

}

/ / When a V i s I t c l i e n t connec ts , t h e c a l l b a c k
/ / f u n c t i o n s has to be p rov ided us ing
V is I tSe tGe tMesh (ge tm esh da ta ,NULL) ;
V i s I t S e t G e t V a r i a b l e (g e tv a r i a b l e d a t a ,NULL) ;

Listing 4: Data access functions for our sample application using VisIt. The first
function retrieves the mesh coordinates, while the second retrieves the temperature
field. The two last lines register the two functions as callbacks handling data accesses.
This sample code does not show the modifications to the simulation’s main loop.

CM1 atmospheric simulation [1], and the Nek5000 [24] computa-
tional fluid dynamic (CFD) solver.

For performance comparisons, we implemented a “time-
partitioning mode” in Damaris. This mode is enabled in the config-
uration file, without any change in the simulation. Using this mode,
visualization tasks are performed synchronously, similarly to other
visualization backends. Adding this mode into the implementation
of Damaris also contributes to its adaptability, as the usercan now
utilize both approaches from the same interface.

5.1 The CM1 simulation

CM1 is one of the original targeted applications of Blue Waters. It
is used for modeling small-scale atmospheric phenomena such as
thunderstorms and tornadoes. A 3D rectilinear grid is partitioned
along a 2D grid and each process handles a subdomain, thus its
data layout corresponds to the sample code we have considered in
previous sections.

/ / C rea te t h e v a r i a b l e d a t a
v tkDa taAr ray∗ wrapMyData (. . .)
{

v tkDoub leAr ray∗ myArray
= vtkDoubleAr ray : : New () ;

myArray−>SetName (” t e m p e r a t u r e ”) ;
v tk IdType s i z e = NX∗NY∗NZ;
myArray−>SetA r ray (temp , s i ze , 1) ;
r e t u r n myArray ;

}

/ / Th is f u n c t i o n i s c a l l e d to r e t r i e v e t h e mesh
v t k O b j e c t∗ wrapMeshData (. . .)
{

/ / c r e a t e s t h e n e c e s s a r y c o o r d i n a t e a r r a y s
v t k F l o a t A r r a y∗ xCoords , yCoords , zCoords ;
xCoords = v t k F l o a t A r r a y : : New () ;
xCoords−>s e t A r r a y (meshx , PTX , 1) ;
/ / . . . idem f o r yCoords and zCoords
v t k R e c t i l i n e a r G r i d ∗ g r i d

= v t k R e c t i l i n e a r G r i d : : New () ;
g r id−>se tD im ens ions (NX,NY,NZ) ;
g r id−>s e t X C o o r d i n a t e s (xCoords) ;
/ / . . . idem f o r Y and Z c o o r d i n a t e s
v tkDa taAr ray∗ a r r a y

= wrapMyData () ; / / see above
g r id−>GetPo in tDa ta ()−>AddArray (a r r a y) ;
a r ray−>Dele te () ;
r e t u r n (v t k O b j e c t∗) g r i d ;

}

Listing 5: Data access functions for our sample application using ParaView. The first
function wraps the temperature field into the VTK object which is used by the second
function that adds information related to the mesh coordinates.

5.1.1 Using VisIt for 2D and 3D rendering

Two-dimensional visualization in CM1 consists in slicing 3D fields
horizontally, and converting real values into pixels usingcolormaps,
isocontours or quiver maps. Some examples of such fields to be
visualized include potential temperature (th) on the ground (z = 0),
horizontal wind velocity (u andv) and vertical wind velocity (w)
at different altitudes. Examples of 3D rendering in CM1 include
volume rendering of the reflectivitydbz (as exemplified in Figure 3
(a)) or wind velocity (u, v andw). These tasks are available in VisIt
and can be made interactive with our modification of CM1 with
Damaris/Viz.

5.1.2 Methodology

CM1 requires a long run time before an interesting atmospheric
phenomenon appears, and such a phenomenon may not appear at
small scale. We first ran CM1 with the help of atmospheric scien-
tists to produce interesting data. We then extracted the I/Okernel
from the CM1 code and built a program that replays its behavior at a
given scale and with a given resolution by reloading, redistributing
and interpolating the precomputed data.

The I/O kernel, identical to the I/O part of the simulation, calls
Damaris/Viz functions to pass the data. Damaris/Viz then per-
forms in situ visualization, either in a time-partitioningor a space-
partitioning manner. We consider two scenarios of 3D rendering:
the first one performs a ray casting1 on thedbz field (image shown
in Figure 3 (a)). The second scenario performs a 10-level isosurface
rendering of this same field.

1Ray casting compositing (sobel gradients, rasterization sampling, 2500
samples per ray).

(a) CM1 ray casting (b) Nek5000 isosurface

Figure 3: Example results obtained in situ with Damaris:(a) Ray-casting of thedbz
variable on 6400 cores (Blue Waters).(b) Ten-level isosurface of they velocity field
in the TurbChannel configuration of Nek5000.

100 1000

Number of cores

0

10

20

30

40

50

R
e
n
d
e
ri

n
g
 t

im
e
 (

s
e
c
)

Time-Partitioning

Space-Partitioning

(a) In situ ray casting

100 1000

Number of cores

0

50

100

150

200

R
e
n
d
e
ri

n
g
 t

im
e
 (

s
e
c
)

Time-Partitioning

Space-Partitioning

(b) In situ isosurface

Figure 4: Rendering time using ray-casting and isosurfaces, with time-partitioning
and space-partitioning with CM1. Note that the number of cores represents the total
number; using a space-partitioning approach, 1/16 of this total number is effectively
used for in situ visualization.

5.1.3 Experiments

The experiments are done on the Blue Waters supercomputer,
NCSA’s Cray XE6 petascale supercomputer [23]. Our goal is to
show that ISV approaches depend on the scalability of the render-
ing algorithm being used. We complete a strong-scaling evaluation
of the two aforementioned rendering methods using a representative
dataset of3840×3840×400 points. We measure the time to com-
plete a rendering (average of 15 iterations) using time-partitioning
and space-partitioning for each scenario. The results are reported
in Figure 4.

5.1.4 Results

The isosurface algorithm scales well with the number of cores using
both in situ approaches. A time-partitioning approach would thus
be appropriate if the user does not need to hide the run time impact
of in situ visualization. However, on 6400 cores, it takes asmuch
time to complete the rendering as on 400 dedicated cores. In terms
of pure computational power, a space-partitioning approach is 16
times more efficient.

The ray-casting algorithm on the other hand has a poorer scala-
bility. After decreasing, the rendering time goes up again at a 6400
cores scale, and it becomes about twice more efficient to use are-
duced number of dedicated cores to complete this rendering.

The choice of using a space-partitioning versus a time-
partitioning ISV approach depends on (1) the intended visualiza-
tion scenario, (2) the scale and (3) the intended frequency of visual
output.

5.2 The Nek5000 CFD simulation

Nek5000 is a computational fluid dynamics solver based on the
spectral element method. It is written in Fortran 77 and solves its

governing equations on an unstructured mesh. This mesh is com-
prised of multiple elements distributed across processes;each ele-
ment is a small curvilinear mesh. Each point of the mesh carries
the three components of the fluid’s local velocity. We modified
Nek5000 in order to pass the mesh elements and velocity data to
Damaris/Viz and we used VisIt for visualization.

5.2.1 Configurations

We used two configurations: theTurbChannel experiment (config-
uration 1), which runs well on 32 to 64 cores, and theMATiS ex-
periment (configuration 2), which has been designed to evaluate
Nek5000 on 512 to 2048 cores. We used the first to assess the
impact of interactivity on run-time with a time-partitioning and a
space-partitioning approach. Figure 3 (b) shows the resultof a 10-
level isosurface rendering of the fluid velocity along they axis, with
the TurbChannel case. We then used the second configuration to
prove the scalability of our approach based on Damaris against a
standard time-partitioning approach.

5.2.2 Experiments with the TurbChannel configuration

Experiments were carried out on the Reimsstremi cluster of the
French Grid’5000 testbed, which features 40 nodes (HP ProLiant
DL165 G7) with 24 cores per node, connected through a 1GB Eth-
ernet network.

To assess the impact of in situ visualization on the run time,we
ran TurbChannel on 48 cores using the two approaches: first we
use a time-partitioning mode where all 48 cores are used by the
simulation and synchronously perform ISV. Then we use a space-
partitioning mode with Damaris/Viz where 46 cores are used by the
simulation and 2 cores asynchronously run the ISV tasks.

In each case, we consider four scenarios:(A) the simulation runs
without visualization,(B) a user connects VisIt to the simulation
but does not ask for any output,(C) the user asks for isosurfaces
of the velocity fields but does not interact with VisIt any further
(letting the simulation update the output after each iteration) and
finally (D) the user has heavy interactions with the simulations (for
example rendering different variables, using different algorithms,
zooming on particular domains, changing the resolution).

5.2.3 Results with the TurbChannel configuration

Figure 5 presents a trace of the duration of each iteration during the
four aforementioned scenarios using the two approaches. The top
graph in Figure 5 shows that ISV using a time-partitioning approach
has a negative impact on the simulation run time, even when no
interaction is performed. Space-partitioning ISV, on the other hand,
is completely transparent from the point of view of the simulation.

5.2.4 Experiments with the MATiS configuration

The MATiS configuration requires a larger scale; we ran it on 816
cores. Each iteration takes approximately one minute and due to
the huge number of points that the mesh contains, it is difficult to
perform interactive visualization. We therefore connect VisIt and
simply query for a 3D pseudo-color plot of thevx variable that
is then continuously update. For the following results, thetime-
partitioning approach outputs one image every time step, while the
space partitioning method adapted the output frequency to one im-
age every 25 time steps.

5.2.5 Results with the MATiS configuration

Figure 6 reports the behavior of the application with and without vi-
sualization performed, and with and without dedicated cores. Cor-
responding statistics are presented in Table 2.

Time-partitioning visualization not only increases the average
run time but also increases the standard deviation, making run times
unpredictable. On the other hand, the space-partitioning yields

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152

Iteration number

0

1

2

3

4

5

6

T
im

e
 (

s
e
c
)

No visualization VisIt connected Simple scenario Interactive scenario

(a) Time-Partitioning

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144

Iteration number

0

1

2

3

4

5

6

T
im

e
 (

s
e
c
)

No visualization VisIt connected Simple scenario Interactive scenario

(b) Space-Partitioning

Figure 5: Variability in run-time induced by different scenarios of in situ interactive
visualization.

2 6 10 14 18 22

Iteration number

0

50

100

150

200

250

300

T
im

e
 (

s
e
c
)

Simulation

(a) Time-partitioning, no vis.

2 6 10 14 18 22

Iteration number

0

50

100

150

200

250

300

T
im

e
 (

s
e
c
)

Visualization Simulation

(b) Time-partitioning with vis.

2 6 10 14 18 22

Iteration number

0

50

100

150

200

250

300

T
im

e
 (

s
e
c
)

Simulation

(c) Space-partitioning, no vis.

2 6 10 14 18 22

Iteration number

0

50

100

150

200

250

300

T
im

e
 (

s
e
c
)

Simulation+Visualization

(d) Space-partitioning with vis.

Figure 6: Iteration time of the MATiS configuration without visualization (left) and
with visualization enabled (right). Top: With time-partitioning, visualization time adds
to simulation time. Bottom: With space-partitioning, visualization time is entirely
overlapped with simulation time.

more consistent results. One might expect a space-partitioning ap-
proach to interfere with the simulation as it performs intensive com-
munications while the simulation runs. However, in practice we
observe very little run time variation.

We also remark that decreasing the number of cores used by the
simulation actually decreases its run time. This is due to the fact
that Nek5000 reaches its limit of scalability. Yet due to itsmem-
ory requirements, it is still necessary to run it on this number of
nodes. In other words, as reducing the number of cores per node
actually used by the simulation increases its performance,it fur-
ther motivates the use of these spare cores for extra tasks such as
visualization.

Finally, while the time-partitioning approach performs visual-
ization at every time step here, the space-partitioning approach has
adapted the frequency of its output to 1 image every 25 time steps.
If a time-partitioning approach were to only output 1 image every
25 time steps (which corresponds to having only the25

th iteration
being impacted in Figure 6 (b)), the completion time for 25 time
steps would be 2007 seconds on average. With space-partitioning in

Table 2: Average iteration time of the Nek5000 MATiS configuration with time-
partitioning and space-partitioning approaches, with andwithout visualization.

Iteration time Average Std. dev.

Time-partitioning
no vis. 75.07 sec 22,93
with vis. 205.21 sec 57.15

Space-partitioning no vis. 67.76 sec 20.09
with vis. 64.79 sec 20.44

Damaris/Viz this takes 1620 seconds, a 20% speedup. Furthermore,
since space-partitioning in Damaris overlaps the visualization and
simulation; the total run time is unchanged with the addition of ISV.

6 CONCLUSION AND FUTURE WORK

The slower rate at which I/O performance is increasing compared
to that of computational capabilities necessitates new approaches
for gaining insights from running simulations. Tightly-coupled in
situ visualization appears to be a viable approach to reducethe pres-
sure on file systems. Yet the synchronous aspect of existing solu-
tions and the impact on the simulation’s performance has limited its
adoption in the HPC community.

We proposed Damaris/Viz, an in situ visualization framework
based on the Damaris I/O middleware. By leveraging dedicated
cores, external high-level structure description and a simple API,
our framework provides adaptable in situ visualization to existing
simulations at a low instrumentation cost. Results obtained with
the Nek5000 CFD and CM1 atmospheric simulations show that
our framework can completely hide the performance impact ofvi-
sualization tasks. In addition, the proposed API allows efficient
memory usage through a shared memory, zero-copy communica-
tion model.

As future work, we plan to evaluate our framework more exten-
sively on heterogeneous architectures. Additionally, we plan to im-
prove our framework to be able to utilize a set of dedicated nodes (in
a loosely-coupled model), and to choose the level of coupling at run
time depending on resource usage in the simulation, I/O bandwidth
availability, the presence of accelerators, and temporarystorage de-
vices. We will also investigate access to more complex data models
such as unstructured meshes. We are also considering extending
our framework to dedicate more than one core to in situ tasks.

ACKNOWLEDGEMENTS

This work was a collaboration between the KerData INRIA - ENSCachan/Brittany -
INSA Rennes Joint Project-Team (Rennes, France), the NCSA (Urbana-Champaign,
USA) and ANL within the Joint INRIA-UIUC-ANL Laboratory forPetascale Comput-
ing. The experiments were carried out using the Grid’5000/ ALADDIN-G5K experi-
mental testbed (seehttp://www.grid5000.fr/) and Blue Waters at NCSA (see
http://www.ncsa.illinois.edu/BlueWaters/). We thank Leigh Orf for
his insights on the CM1 application and the datasets he provided for our experiments,
Paul Fischer and Aleksandr Obabko for providing insights and datasets for Nek5000,
and Shadi Ibrahim for his feedbacks on this paper. We also acknowledge the VisIt de-
velopers, in particular Hank Childs, Brad Whitlock and JeanFavre for their help with
using VisIt’s in situ interface.

REFERENCES

[1] G. H. Bryan and J. M. Fritsch. A Benchmark Simulation for
Moist Nonhydrostatic Numerical Models.Monthly Weather Review,
130(12):2917–2928, 2002.

[2] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison,Prabhat,
G. Weber, and E. Bethel. Extreme Scaling of Production Visualization
Software on Diverse Architectures.Computer Graphics and Applica-
tions, IEEE, 30(3):22–31, May-June 2010.

[3] M. Dorier. SRC: Damaris - Using Dedicated I/O Cores for Scalable
Post-Petascale HPC Simulations. InProceedings of the international
conference on Supercomputing, ICS’11, pages 370–370, New York,
NY, USA, 2011. ACM.

[4] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Damaris:
Leveraging Multicore Parallelism to Mask I/O Jitter. Research report
RR-7706, INRIA, Dec 2011.

[5] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and L. Orf. Damaris:
How to Efficiently Leverage Multicore Parallelism to Achieve Scal-
able, Jitter-free I/O. InCluster Computing (CLUSTER), 2012 IEEE
International Conference on, pages 155 –163, Sept. 2012.

[6] D. Ellsworth, B. Green, C. Henze, P. Moran, and T. Sandstrom.
Concurrent Visualization in a Production Supercomputing Environ-
ment. Visualization and Computer Graphics, IEEE Transactions on,
12(5):997 –1004, Sept.-Oct. 2006.

[7] A. Esnard, N. Richart, and O. Coulaud. A Steering Environment
for Online Parallel Visualization of Legacy Parallel Simulations. In
Distributed Simulation and Real-Time Applications, 2006. DS-RT’06.
Tenth IEEE International Symposium on, pages 7–14. IEEE, 2006.

[8] EzViz. http://www.ezviz.biz/.
[9] N. Fabian, K. Moreland, D. Thompson, A. Bauer, P. Marion,

B. Geveci, M. Rasquin, and K. Jansen. The ParaView Coprocessing
Library: A Scalable, General Purpose In Situ VisualizationLibrary.
In LDAV, IEEE Symposium on Large-Scale Data Analysis and Visual-
ization, 2011.

[10] A. Geist and R. Lucas. Major Computer Science Challenges At Exas-
cale. International Journal of High Performance Computing Applica-
tions, 23(4):427–436, 2009.

[11] A. Hoisie and V. Getov. Extreme-Scale Computing - Where’Just
More of the Same’ Does Not Work.Computer, 42(11):24–26, Nov.
2009.

[12] INRIA. Aladdin grid’5000:http://www.grid5000.fr.
[13] C. Johnson, S. Parker, C. Hansen, G. Kindlmann, and Y. Livnat. Inter-

active simulation and visualization.Computer, 32(12):59–65, 1999.
[14] KerData, IRISA, INRIA Rennes. Damaris,

http://damaris.gforge.inria.fr/.
[15] KitWare. ParaView,http://www.paraview.org/.
[16] M. Li, S. S. Vazhkudai, A. R. Butt, F. Meng, X. Ma, Y. Kim, C. En-

gelmann, and G. Shipman. Functional Partitioning to Optimize End-
to-End Performance on Many-core Architectures. InProceedings of
the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’10, pages 1–12,
Washington, DC, USA, 2010. IEEE Computer Society.

[17] LLNL. VisIt, https://wci.llnl.gov/codes/visit/.
[18] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,

K. Schwan, and M. Wolf. Managing Variability in the IO Performance
of Petascale Storage Systems. InProceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’10, pages 1–12, Washington, DC,
USA, 2010. IEEE Computer Society.

[19] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, andC. Jin. Flex-
ible IO and integration for scientific codes through the adaptable IO
system (ADIOS). InProceedings of the 6th international workshop on
Challenges of large applications in distributed environments, CLADE
’08, pages 15–24, New York, NY, USA, 2008. ACM.

[20] X. Ma, J. Lee, and M. Winslett. High-level buffering forhiding pe-
riodic output cost in scientific simulations.Parallel and Distributed
Systems, IEEE Transactions on, 17(3):193–204, 2006.

[21] P. Malakar, V. Natarajan, and S. S. Vadhiyar. An Adaptive Frame-
work for Simulation and Online Remote Visualization of Critical Cli-
mate Applications in Resource-constrained Environments.In Pro-
ceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, SC’10,
pages 1–11, Washington, DC, USA, 2010. IEEE Computer Society.

[22] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki,
V. Vishwanath, N. Fabian, C. Docan, M. Parashar, M. Hereld, et al.
Examples of In Transit Visualization. InProceedings of the 2nd inter-
national workshop on Petascal data analytics: challenges and oppor-
tunities, pages 1–6. ACM, 2011.

[23] NCSA. BlueWaters project,
http://www.ncsa.illinois.edu/BlueWaters/.

[24] J. W. L. P. F. Fischer and S. G. Kerkemeier. nek5000 Web page, 2008.
http://nek5000.mcs.anl.gov.

[25] M. Rasquin, P. Marion, V. Vishwanath, B. Matthews, M. Hereld,

http://www.grid5000.fr/
http://www.ncsa.illinois.edu/BlueWaters/
http://www.ezviz.biz/
http://www.grid5000.fr
http://damaris.gforge.inria.fr/
http://www.paraview.org/
https://wci.llnl.gov/codes/visit/
http://www.ncsa.illinois.edu/BlueWaters/

K. Jansen, R. Loy, A. Bauer, M. Zhou, O. Sahni, et al. Electronic
Poster: Co-Visualization of Full Data and In Situ Data Extracts from
Unstructured Grid CFD at 160k Cores. InProceedings of the 2011
companion on High Performance Computing Networking, Storage
and Analysis Companion, pages 103–104. ACM, 2011.

[26] M. Rivi, L. Calori, G. Muscianisi, and V. Slavnic. In-Situ Visualiza-
tion: State-of-the-art and Some Use Cases.

[27] W. Schroeder, L. Avila, and W. Hoffman. Visualizing with VTK: a
tutorial. Computer Graphics and Applications, IEEE, 20(5):20 –27,
Sep.,Oct. 2000.

[28] D. Skinner and W. Kramer. Understanding the Causes of Performance
Variability in HPC Workloads. InWorkload Characterization Sympo-
sium, 2005. Proceedings of the IEEE International, pages 137 – 149,
Oct. 2005.

[29] D. Thompson, N. Fabian, K. Moreland, and L. Ice. Design Issues
for Performing In Situ Analysis of Simulation Data. Technical re-
port, Technical Report SAND2009-2014, Sandia National Laborato-
ries, 2009.

[30] T. Tu, H. Yu, L. Ramirez-Guzman, J. Bielak, O. Ghattas, K.-L. Ma,
and D. R. O’Hallaron. From Mesh Generation to Scientific Visu-
alization: an End-to-End Approach to Parallel Supercomputing. In
Proceedings of the 2006 ACM/IEEE conference on Supercomputing,
SC’06, New York, NY, USA, 2006. ACM.

[31] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel,
and M. L. Norman. yt: A Multi-Code Analysis Toolkit for Astrophys-
ical Simulation Data.The Astrophysical Journal Supplement Series,
192(1):9, 2011.

[32] B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel InSitu
Coupling of Simulation with a Fully Featured VisualizationSystem.
In Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV). Eurographics Association, 2011.

[33] H. Yu and K.-L. Ma. A Study of I/O Methods for Parallel Visualiza-
tion of Large-Scale Data.Parallel Computing, 31(2):167 – 183, 2005.
Parallel Graphics and Visualization.

[34] F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi. Enabling in-situ execution of coupled scientificworkflow
on multi-core platform.Parallel and Distributed Processing Sympo-
sium, International, 0:1352–1363, 2012.

[35] F. Zhang, S. Lasluisa, T. Jin, I. Rodero, H. Bui, and M. Parashar. In-
situ feature-based objects tracking for large-scale scientific simula-
tions. InDISCS, 2012.

[36] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf. PreDatA -
Preparatory Data Analytics on Peta-Scale Machines. InParallel Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium on,
pages 1–12, April 2010.

	Introduction
	Related work
	Loosely-coupled visualization strategies
	Tightly-coupled ISV: challenges and solutions

	In Situ Visualization through Damaris
	Towards a new in situ visualization framework
	Review of the Damaris I/O middleware
	Damaris/Viz: an in situ visualization framework using Damaris
	Connecting to existing visualization packages
	Python support
	Support for VisIt and ParaView

	Automatic output frequency adaptation

	Impact on code instrumentation and adaptability
	Data access for in situ visualization using VisIt
	Data access for co-processing using ParaView

	Experimental performance evaluation
	The CM1 simulation
	Using VisIt for 2D and 3D rendering
	Methodology
	Experiments
	Results

	The Nek5000 CFD simulation
	Configurations
	Experiments with the TurbChannel configuration
	Results with the TurbChannel configuration
	Experiments with the MATiS configuration
	Results with the MATiS configuration

	Conclusion and future work

