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Abstract— SOMMA (Self Organizing Maps for Multimodal
Association) consists on cortically inspired paradigms for multi-
modal data processing. SOMMA defines generic cortical maps -
one for each modality - composed of 3-layers cortical columns.
Each column learns a discrimination to a stimulus of the input
flow with the BCMu learning rule [26]. These discriminations
are self-organized in each map thanks to the coupling with
neural fields used as a neighborhood function [25]. Learning
and computation in each map is influenced by other modalities
thanks to bidirectional topographic connections between all
maps. This multimodal influence drives a joint self-organization
of maps and multimodal perceptions of stimuli. This work takes
place after the design of a self-organizing map [25] and of a
modulation mechanism for influencing its self-organization [26]
oriented towards a multimodal purpose. In this paper, we
introduce a way to connect these self-organizing maps to obtain
a multimap multimodal processing, completing our previous
work. We also give an overview of the architectural and
functional properties of the resulting paradigm SOMMA.

I. INTRODUCTION

SOMMA introduces emergent functional properties of

cortical computation - such as adaptability to various and

changing data (see for example [15]) or unsupervised and

online learning - in the computer science field. These prop-

erties are closely linked to the cortical architecture that

is transposed to our computational paradigm SOMMA. In

our connectionist architecture, cortical column is a basic

and generic computational unit. Thus, our architecture has

a mesoscopic level of description with keeping a cortical

plausibility of the computation. Moreover, our model in-

cludes some of the architectural properties of the cortex such

as layered cortical columns, cortical areas and topographic

connections for an original computational data processing.

SOMMA applies such a cortically inspired computation

and architecture to multimodal data processing, which is a

key point for an artificial - or biological - agent to interact

with its environment. Indeed, an agent measures the state

of its surrounding environment thanks to numerous sensors

providing data in various senses, each one having its own

properties. It has to merge these multiple data to obtain

a consistent perception of the environment. Psychological

experiments tend to highlight that this multimodal merging

is based on the detection of environmental regularities. For

example, in the ventriloquist aftereffect, we locate a sound

source where a temporally congruent visual flash should

be, even if in the training session visual and sound signals

were not spatially congruent [11, 32]. By the way, such a

data processing is consistent with sensori-motor theories. In

SOMMA, multimodal merging is obtained by learning and

detecting spatial regularities of a multimodal input flow.

In the next section, we describe the main architectural and

computational paradigms of the cortex that are integrated

in our work. In the third section, we give an overview of

architecture and dynamic of SOMMA (detailed equations are

given in annex I) with a focus on the introduced multimap

multimodal processing. In the fourth section, we illustrate

this multimodal learning in SOMMA with some artificial

data.

II. CORTICAL INSPIRATION

As a reminder, SOMMA does not target a cortical model-

ing but aims to extract some architectural and computational

paradigms of the cortex for a multimodal data processing

in computer science. Thus, the following description is

simplified from a biological point of view.

A. Cortical columns and areas

The cortex is subdivided into functional cortical areas

as, for example, sensory areas. Even if sensory areas are

specialized in one modality, they seem to have generic

architecture and data processing [18, 30]. A cortical area is

composed of maxi columns that are delimited by incoming

connections from the thalamus [28]. Each maxi column is

composed of cortical columns, which are vertical structures -

i.e. perpendicular to the cortical surface - of highly in-

terconnected neurons [27, 33]. A cortical column has six

layers [22]. Each layer receives various connexions - usually

topographic - that can be classified in two main flows [20]: a

feedforward flow that comes from the thalamus and a cortical

flow that comes from other cortical columns located either

in the same or in distant cortical areas.

Each cortical column constituting a maxi column provides

a specific data processing on the feedforward flow defining

the maxi column. This processing is modulated by the

lateral flow. For example, in the primary visual cortex, this

processing consists on detecting one privileged orientation

[19, 31]. At the cortical area level, these orientations are

self-organized, meaning that two close columns discriminate

two close orientations [8]. Such a functional self-organization

can also be observed in the auditory cortex for example [35].

These biological evidences are integrated and adapted as

computational paradigms in SOMMA:



• Cortical columns are generic and basic computational

units of our connectionist architecture. Such a choice

was already done in multiple models [1, 9, 17, 29].

• Cortical areas have a generic architecture and their

functional specialization depends on their inputs.

• Each cortical column becomes sensible to a specific

stimulus and these discriminations are self-organized

at the map level as in Kohonen maps [23]. Self-

organization provides interesting functional properties -

such as dimensionality reduction and generalization to

unknown stimuli - by topological projection of a high

dimensional space on a low dimension manifold [4, 7].

B. Multimodal processing

In classical view of multimodal computation in the cortex,

each modality is processed in some dedicated area and

multimodal merging is obtained in associative high level

areas. Such a hierarchical processing were used in some

computational model of multimodal computation with self-

organizing maps [21, 37].

However, more and more biological evidences tend to

highlight a multimodal processing in all the cortex even in

sensory areas [10]:

• There are direct connections between sensory cortices

[12, 36].

• Neural activities in one sensory area may be influenced

by stimuli from other modalities [2, 14].

• Sensory areas contain multimodal neurons, i.e. neurons

activated by multiple modal stimuli [5, 6].

We introduce all theses evidences for an original multimodal

data processing in SOMMA. We propose to directly connect

all maps so that computation in each map is influenced by

the one in other maps. Thus, even though each cortical map

processes a specific modality received by its input flow,

multimodal processing is distributed in all cortical maps

without dedicated associative maps. Such a distributed mul-

timodal processing may provide some interesting functional

properties:

• limited number of computational units and connections,

• increased robustness to lesion thanks to completely

distributed processing,

• dimensionality reduction by separated processing,

• undifferentiated monomodal and multimodal process-

ing.

III. SOMMA PARADIGMS

A. Overview

In SOMMA, each modal flow, part of the multimodal

flow, is processed by one dedicated modal map. All modal

maps have a bidimensional generic architecture composed

of columns. Each column has three layers named sensory,

cortical and perceptive. Each layer receives a specific data

flow coming through weighted connections (see figure 1).

At the map level, activities in each layer represent a spatial

coding of the incoming data.

...

Fig. 2: Multimodal connections between maps are topo-

graphic and bidirectional.

The sensory layer uses the BCMu learning rule [26] to

provide a tabular coding to a stimulus. This means that

the sensory activity is function of a distance between the

current stimulus and a discriminated one1. This learned

discrimination depends on the weights of the feedforward

connections. After learning, these discriminations are self-

organized at the map level leading to a spatial coding of the

current stimulus.

All maps are reciprocally connected with topographic

multimodal connections (see figure 2). More precisely, the

cortical layer of a column located at (i, j) in one map

receives incoming connections from the perceptive layer of

columns located in a square centered around (i, j) in all

others maps. Such spatially organized connections preserve

the spatial coding of perceptive activities. Thus, at the map

level, cortical activities represent the perception that should

be obtained in the map to be consistent with perceptions

made in other modalities.

The perceptive activity is computed according to the CNFT

(Continuum Neural Field Theory) paradigm proposed in [3]

which was already adapted to computational models (see for

example [34]). This paradigm leads to the emergence of a

stereotyped activity bump driven by the activation of sensory

and cortical layers. Thus, localization of the activity bump

is the result of a consensus between the local sensation and

the other modal perceptions, providing a multimodal spatial

coding of the current stimulus.

Sensory and perceptive layers as well as their coupling

1More precisely sensory layer discriminates a spatial pattern that appears
at several time steps in the input data flow. Thus, sensory activity depends on
the detection of this spatial pattern in the current stimulus independently of
other activations in the stimulus outside of this pattern. For more details on
this coding and its advantages comparing to the one provided by prototype
neurons of Kohonen maps see [24].
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Fig. 1: SOMMA architecture. A multimodal flow is made up of multiple (here three) modal flows. Each one is processed by

a modal map with a generic architecture. Each map is an assembly of generic 3-layers columns organized in a bidimensional

grid. Each layer receives a specific data flow through weighted connections which are illustrated for the zoomed column. The

sensory layer receives the modal stimulus. The cortical layer is connected to perceptive layer of columns in all other modal

maps (in gray) through topographic connections. The perceptive layer receives perceptive activities of all other columns of

the same map (in black) by means of the lateral flow.

were already presented in [25, 26]. In this article, we

introduce the cortical layer and its incoming multimodal

topographic connections. It provides an influence on the

perception in each map by the one made in the other maps

that leads to two linked properties:

• A joint self-organization i.e. a self-organization in each

map so that the sensory layer of columns located

at the same position in different maps discriminate

monomodal stimuli that belong to the same multimodal

stimulus.

• Multimodal perception of a stimulus is based on the

joint self-organization i.e. that the perceptions of corre-

sponding monomodal stimuli are localized at the same

place in all maps.

These properties emerge in SOMMA by continuous com-

putation and learning. This means that at each time step

layers activities and plastic connections are updated (see

annex I for detailed equations). In the next section, we give

an overview of the emergent dynamic in SOMMA that leads

to multimodal perception and joint self-organization.

IV. SOMMA PROCESSING

A. Computation

Each reception of a stimulus triggers activities changes in

all maps that converge to a multimodal perception. Evolution

of the dynamical system defined by SOMMA is explained

in successive steps to be clear. However, it has to be kept in

mind that in practice this dynamic is much more complex as
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Fig. 3: Reception of a stimulus leads to activities changes in

SOMMA. Dynamic of evolution - generated by continuous

computation equations - results from interactions between

incoming data flows of the column that stabilize on a

multimodal perception. For more details please refer to the

text.



it emerges progressively by local interactions between units

whose activities continuously evolve.

Each sensory layer provides a tabular coding of the current

stimulus. As initial feedforward weights are random, initial

discriminations of sensory layers are neither sharp nor self-

organized. Thus, sensory activities are spread all over the

map (see figure 3 a). When a joint self-organization has

emerged, sensory activities will be spatially localized in the

map as close columns discriminate close stimuli.

In each column, the sensory layer excites the perceptive

one. Lateral connections between perceptive layers of the

same map have a Mexican hat shape that provide competition

between columns with local excitation and global inhibition

as defined in the CNFT [3]. Interactions between these sen-

sory excitation and lateral competition lead to the emergence

of a perceptive activity bump in each map where sensory

activities are locally the highest (see figure 3 b).

A perceptive activity bump leads to a cortical activity

bump located at the same position in all other maps because

of the multimodal topographic connections (see figure 3 c). In

each column, the cortical layer modulates the perceptive layer

excitation provided by the sensory layer. Thus, a perceptive

activity bump tends to appear where sensory and cortical ac-

tivities are both high. This cortico-perceptive excitatory loop

between all maps creates a resonance mechanism similar to

the one used in [13, 16, 29]. Thus, all perceptions tend to

appear at the same position defining a multimodal perception

of the current stimulus (see figure 3 d).

B. Learning

In SOMMA, learning consists on modifying weights of

the feedforward connections. This is achieved by using the

BCMu learning rule, a modified version of the BCM learning

rule that we proposed in [26]. This learning rule has two

coupled dynamics that provide its functional properties:

• a temporal competition between stimuli - included in

the BCM learning rule - that raises a discrimination to

a stimulus of the input flow,

• a modulation and a regulation mechanisms - introduced

in BCMu - that influence this discrimination so that a

stimulus that is simultaneously present with a modu-

lation signal will be discriminated. The higher is the

modulation signal, the higher is the probability, for the

corresponding stimulus, to be discriminated.

In SOMMA, perceptive activity is used as a modulation

signal for the BCMu learning rule. Because of a lower

time constant for learning than for computation, weights are

mainly modified when multimodal perception has emerged.

Resulting learning of multimodal correlations may be de-

scribed in three stages:

• Each sensory layer learns autonomously a discrimi-

nation which is a fixed point of the BCMu learning

rule [26]. By the way, this autonomous emergence

improves the coupling with the perceptive layer using

CNFT (please refer to [25] for technical arguments).

• Because of the bump shape of perceptive activities,

close columns receive close modulation signals. As a

result, sensory layer of close columns will have close

discriminations. Thus, perceptive activities act as a

decentralized neighborhood function, ensuring map self-

organization [25].

• Because of the resonance mechanism, perceptive ac-

tivity bumps are forced to be located at the same

position in all maps. The modulation and regulation

mechanisms of BCMu constraint the current stimulus

to be discriminated at this specific position (see [26]

for more details). Consequently, monomodal stimuli of

a multimodal stimulus are learned at the same position

in all maps leading to a joint self-organization.

V. RESULTS

A. Three modalities, linear learning

In order to illustrate multimodal processing in SOMMA,

we use a simple artificial flow with three modalities. Each

stimulus of a modal flow has a 10 × 10 dimension and is

processed in a 20× 20 map.

To create a multimodal stimulus, we place a Gaussian

with fixed variance and amplitude at a random position -

picked with an uniform distribution - in a bidimensional

space (see figure 4). For this protocol, the space is toric so

that to avoid side effects. This space is discretized to obtain

a 10× 10 matrix of activities. Each of the three monomodal

stimuli is equal to this matrix of activities plus an uniform

random noise. Such stimuli are presented successively to the

model for some time steps, so that activities can converge

and stabilize enough time for learning2.

Sensory layer of each column learns a discrimination to

an input stimulus i.e. a Gaussian at a specific position in the

input space. Each discrimination is represented by a colored

oriented bar, the orientation (respectively the color) repre-

sents the Gaussian position in the first (respectively second)

input space dimension. Discriminations are normalized so

that to obtain a toric representation with orientations between

0 and π and colors from red to green and back to red (see

scales at the middle and the bottom of figures 5 a, b and c).

Self-organization of each map can be observed as there is

a spatial continuity of orientation and color all over the map

(see figures 5 a, b and c). Multimodal influence provided by

topographic connections leads to a joint self-organization of

the model as self-organizations in all maps are similar. To

quantify this joint self-organization, we compute the average

difference between discriminations of columns located at

the same position in each map. This difference should be

zero for a perfect joint self-organization. In this example,

we can clearly see that this difference decreases because of

reciprocal influence of the maps and stabilizes close to zero

meaning that multimodal learning converged (figure 5 d).

2Parameters used for this experiment are gathered in a configuration file
available at www.loria.fr/˜lefortma/ijcnn/trimodal.cfg. It
can be used with the dedicated SOMMA simulation framework available at
www.loria.fr/˜lefortma/softwares/SOMMA.tar.gz
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Fig. 5: Joint self-organization of three maps receiving similar noisy inputs. a-b-c) Top: each colored oriented bar represents

the discrimination of the sensory layer. Middle and bottom: respectively scale of orientation and color. d) Average distance

between discrimination of columns situated at the same position in each map.
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Fig. 4: Artificial multimodal stimuli are composed of noisy

discretized Gaussian, one in each modality, located at the

same randomly chosen position picked with an uniform

distribution.

B. Simple robotic arm, non linear learning

In order to illustrate the ability of SOMMA to learn a non

linear relationship between modal stimuli, we use two 20×20
maps receiving simple proprioceptive and visual stimuli

from an artificial arm (see figure 6). As in the previous

experiment, modal stimuli are a noisy Gaussian in a 10× 10
matrix of activities. Gaussian position in a proprioceptive

stimulus is picked randomly with an uniform distribution in

[0, π]×[0, π] and represents arm joints position resulting from

a motor babbling. Gaussian position in the corresponding

visual stimulus is the hand spatial position resulting from this

arm joints configuration. Gaussian positions are normalized

so that to be spread in the 10× 10 input space3.

Results are presented in figure 7 with the same kind of

representation as in section V-A except for two points. Firstly,

3Parameters used for this experiment are gathered in a usable configura-
tion file available at www.loria.fr/˜lefortma/ijcnn/arm.cfg

(x,y)
hand

agent

Fig. 6: The arm moves in a bidimensional space. The

visual position of the hand (x, y) is determined by the joint

positions (θ1, θ2) and by fixed arm and forearm lengths

respectively denoted d1 and d2. In our experiment, d1 = 1
and d2 = 0.5.

as input spaces are not toric, discriminations are normalized

to have orientation in [0, π/2] and color from red to green.

Secondly, to be able to visualize the joint self-organization,

discriminations of both maps are represented in the visual

space. This means that for a column in the proprioceptive

map, we do not plot the discriminated joints position but

the corresponding visual hand position corresponding to this

joints configuration. This space transformation is also used

to quantify the joint self-organization.

As in the trimodal protocol we can observe the self-

organization of each map and the joint self-organization

of the model. However, there is more discontinuities in

map self-organizations (close columns discriminate distant

stimuli) and more differences between self-organizations than

in the previous protocol. This is mainly due to the increased

complexity of the task that involve non linear relationship

between modalities and a non uniform distribution of the

visual inputs. Moreover, our aim was not to optimize the

joint self-organization quantification (parameters used for

both experiments are the same). We want to illustrate the

ability of SOMMA to deal with various kind of inputs and
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Fig. 7: Joint self-organization of two maps receiving proprioceptive and visual stimuli from an artificial arm. a-b) Top:

each colored oriented bar represents the corresponding discrimination of the sensory layer in the visual field. Middle and

bottom: respectively scale of orientation and color. c) Average distance between discrimination of columns situated at the

same position in each map.

the multimodal influence of each self-organization that can be

clearly see with the decrease of the average distance between

self-organizations.

VI. CONCLUSION

SOMMA defines cortically inspired cortical maps for

multimodal computation. In previous articles [25, 26], we

proposed cortical maps for monomodal processing using

the coupling of BCMu learning rule with neural fields.

In this article, we introduce multimodal processing which

is based on the addition of a cortical layer that receives

topographic connections between maps to modulate compu-

tation in each map. This multimodal interconnection creates

a resonance mechanism between maps that leads to two

functional properties. Firstly, learned self-organization in

each map is influenced by the other maps so that monomodal

stimuli composing a multimodal stimulus are learned at the

same position in each map, defining a joint self-organization.

Secondly, multimodal perception is based on this joint self-

organization: each monomodal stimulus is spatially coded by

an activity bump in each map and a multimodal stimulus is

represented by activity bumps located at the same position

in each map.

Multimodal learning of SOMMA was validated with a

simple example containing three modalities with a linear

relationship. It is also efficient with non linear relationship

as we illustrate it with a simple robotic arm. Moreover,

SOMMA processing is generic as these two experiments used

the same parametrization.

Future work will focus on validating our paradigms with

more complex relationships between modalities (redundant,

partial, ...) and with real input flows. Preliminary results seem

promising. Moreover, as computation in SOMMA is generic,

it should be interesting to integrate our cortical maps in a

hierarchical architecture to obtain a multilevel multimodal

computation.

APPENDIX I

EQUATIONS

Computation in SOMMA is generic, meaning that equa-

tions of activities evolution and weights learning are the same

for each column of each map. In this section, we detail these

equations for a column located at position (i, j) in a modal

map m. Please refer to figure 1 for detailed denomination of

column activities and connections weights.

A. Sensory activity

Sensory layer, whose activity is denoted uS,m
i,j (t), receives

the current modal stimulus x
m(t) = (xm

1 (t), ...,xm
n (t))

through feedforward connections with weights w
FF ,m
i,j (t) =

(wFF ,m
i,j,1 (t), ..., wFF ,m

i,j,n (t)). Sensory activity is computed as

the weighted sum of the current modal stimulus:

uS,m
i,j (t) =

n∑

k=1

wFF ,m
i,j,k (t)xm

k (t)

B. Cortical activity

Cortical activity uC,m
i,j (t) is computed as the weighted

sum of the perceptive activities that are received through

topographic multimodal connections (see figure 2):

uC,m
i,j (t) =

∑

m′ 6=m,(i′,j′)

wM,m,m′

i,j,i′,j′ (t)uP,m′

i′,j′ (t)

wM,m,m′

i,j,i′,j′ (t) stands for the weight at time t of the multimodal

connection coming from the cortical column situated at

(i′, j′) in map m′ to the cortical column situated at (i, j)

in map m and uP,m′

i′,j′ (t) is the perceptive activity of column

situated at (i′, j′) in map m′.



C. Perceptive activity

Perceptive activity uP,m
i,j (t) is computed by using neural

field paradigm:

uP,m
i,j (t) = f(uP,m

i,j (t− dt) + γ[

decay term
︷ ︸︸ ︷

−uP,m
i,j (t− dt)+

∑

(i′,j′)

wL,m
i,j,i′,j′u

P,m
i′,j′ (t)

︸ ︷︷ ︸

lateral term

+αuS,m
i,j (t)(uC,m

i,j (t) + δ)
︸ ︷︷ ︸

afferent term

])

with f a sigmoid function to limit the perceptive ac-

tivity, γ the time constant, α the afferent force, δ the

cortical preactivation and wL,m
i,j,i′,j′ the lateral connection

from column (i′, j′) to (i, j) in map m. Lateral connections

have a fixed Mexican hat shape for all columns and all

maps: wL,m
i,j,i′,j′ = Ae−

‖(i,j),(i′,j′)‖2

a2 −Be−
‖(i,j),(i′,j′)‖2

b2 with

‖·, ·‖ the euclidean distance and A,B, a, b constants so that

A > B > 0 and b > a > 0.

The afferent term excites the neural field, whose activity

is shaped to a bump thanks to the lateral term. The decay

term ensures disappearing of the activity bump when no more

afferent excitation is received.

D. Learning

Feedforward weights w
FF ,m
i,j (t) = (wFF ,m

i,j,1 (t), ...,

wFF ,m
i,j,n (t)) are modified by the BCMu learning rule using

the perceptive activity as a modulation signal. Equations are

the following:

uS′,m
i,j (t) = uS,m

i,j (t) +λuP,m
i,j (t)

︸ ︷︷ ︸

modulation term

θmi,j(t) =
1

τ
uS′,m
i,j (t)2 + (1−

1

τ
)θmi,j(t− dt)

βm
i,j(t) = β0(1 + θmi,j(t− dt)2)

∀k,∆wFF ,m
i,j,k (t) = ηFFxm

k (t)[

competitive term
︷ ︸︸ ︷

uS′,m
i,j (t)(uS′,m

i,j (t)− θmi,j(t))

−βm
i,j(t)N(uP,m

i,j (t))uS′,m
i,j (t)2wFF ,m

i,j,k (t− dt)
︸ ︷︷ ︸

regulation term

]

with uS′,m
i,j (t) the sensory modulated activity, λ the strength

of the modulation, τ the temporal window of the exponential

filter used to compute the sliding threshold θmi,j(t), βm
i,j(t)

the adaptive strength of the regulation term, ηFF the con-

stant learning rate, xm(t) = (xm
1 (t), ..., xm

n (t)) the current

modal stimulus and N a function that detects the lack of

modulation, i.e. N(uP,m
i,j (t)) = 0 (resp. N(uP,m

i,j (t)) = 1) if

uP,m
i,j (t) > 0 (resp. uP,m

i,j (t) = 0).

The competitive term, by means of the sliding threshold,

generates a temporal competition between stimuli that raises

a discrimination to a stimulus. The modulation terms favors

modulated stimuli in the temporal competition between stim-

uli. The regulation mechanism ensures the modulation to be

efficient, i.e. that the discriminated stimulus is a modulated

one. For more details, please refer to [26].
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