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Distributed privacy-preserving network size computation:

A system-identification based method

Federica Garin and Ye Yuan

Abstract— In this study, we propose an algorithm for comput-
ing the network size of communicating agents. The algorithm
is distributed: a) it does not require a leader selection; b) it
only requires local exchange of information, and; c) its design
can be implemented using local information only, without any
global information about the network. It is privacy-preserving,
namely it does not require to propagate identifying labels.
This algorithm is based on system identification, and more
precisely on the identification of the order of a suitably-
constructed discrete-time linear time-invariant system over
some finite field. We provide a probabilistic guarantee for any
randomly picked node to correctly compute the number of
nodes in the network. Moreover, numerical implementation
has been taken into account to make the algorithm applicable
to networks of hundreds of nodes, and therefore make the
algorithm applicable in real-world sensor or robotic networks.
We finally illustrate our results in simulation and conclude the
paper with discussions on how our technique differs from a
previously-known strategy based on statistical inference.

I. INTRODUCTION

Anonymous (or ‘privacy-preserving’) networks have been

studied in the computer science community, within the study

of distributed and parallel computation, since the late 1980s

[8] and they have gained attention in the control community

in recent years due to the increasing importance of self-

organized leaderless networks of sensors and of mobile

robots (see the recent papers [3], [6] for a thorough sum-

mary of the literature on anonymous networks from both

communities). The peculiar aspect of anonymous networks,

is that its agents are not able or not willing to provide an ID

label uniquely describing their identity. This might be due to

technological limitations (when networks are self-configured,

the agents do not run a time-consuming preliminary round

to establish IDs, and it is impossible to ensure a priori that

all devices of a given kind produced in the world have a

unique identifier which they can use when self-configuring

a network), or to privacy concerns (e.g., where agents repre-

sents smart-phones or computers, and the associated human

being does not wish to reveal its participation within some

network peer-to-peer activity).
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Following the rich literature on consensus and on other

distributed (i.e., leaderless, peer-to-peer) algorithms in sen-

sor networks and in mobile robotic networks, we consider

agents which are endowed with (limited) communication and

computation capabilities, and have little or no knowledge

of the network structure. In particular, the agents are able

to send messages to their neighbors according to a given

communication graph (which might depend on the inter-

distances and possibly on obstacles, in the case of wireless

communication).

In this setting, even simple tasks such as computing the

number of nodes become very difficult. Negative results have

been proved (see [3]), showing that in the anonymous setup

it is impossible to have an algorithm able to compute the

size of the network with probability one by using bounded

communication, memory and computation-time resources.

Then, the attention can be focused on finding algorithms

able to compute the number of nodes with some good (albeit

non-zero) probability, and/or to compute it using resources

growing with the size.

In [6], [7], Varagnolo et al. propose a class of algo-

rithms based on statistical inference and on well-known

anonymous distributed algorithms for computing symmetric

functions such as average and maximum (average-consensus

and max-consensus). Their algorithms provide an estimate

of the network size which is asymptotically unbiased, and

whose variance can be made arbitrarily small at the price

of increasing the communication, memory and computation

resources.

In this paper, we propose a different technique to solve the

problem of counting the number of nodes in the network. In

our case, we use techniques from system identification: we

ask the agents to run a linear dynamical system (suitably de-

fined so that it can be constructed and run in the anonymous

leaderless setup we are considering), and then to identify

the order of the system, which will be a lower bound for

the number of agents, and which will give the exact answer

under some assumptions.

For numerical reasons that will be explained later, the

proposed algorithm is more effective when it is implemented

using a finite field, instead of real numbers. Linear dynamical

systems over finite fields have been studied for decades: most

of the classical results have been stated for general fields

in the book [4], and a wide literature has appeared in the

seventies and eighties related to the convolutional codes for

error-correction in communications; in this paper we will

use results from the recent paper [5] , to which we point the

reader also for more references to classical literature.



The anonymous-network setup considered in this paper is

described more in detail in the following subsection, while

the proposed algorithm is introduced in Sect. II and the

version using finite fileds is discussed in Sect. III. In Sect. IV

we discuss some implementation details, and we provide and

comment some simulation results.

A. Problem setup

We consider a network of n agents. The communication

constraint is described by a (directed) graph G: agents are

able to exchange messages with their neighbors in G. We

assume that G is strongly connected, namely that for any

pair of vertices u, v, there exists a directed path from u to

v. Moreover, we assume that every vertex has a self-loop,

which describes the fact that an agent always knows its own

state.

Agents do not have any global knowledge about the

network. However, we assume that they know their neigh-

borhood: they know the number of their in-neighbors, and

moreover they are able to assign labels to the edges in their

neighborhood (here we will assume they can assign labels

to the incoming edges, but it is very simple to adapt the

algorithm to the case where they can assign label to their

outgoing edges, which is the setup considered in [3]). This

assumption requires some minimal local coordination and

identification of the neighbors, which is realistic in many

cases, but excludes some applications where there is a sharp

privacy constraint and nodes are required to process all

incoming messages all outgoing messages irrespective of

the sender (resp. receiver). This edge-labeling assumption

is taken in [3], and is required in part of the work in [7],

[6], since average-consensus algorithms require it (unless

the graph is known to be balanced), while max-consensus

algorithms do not need it. An adaptation of our algorithm

to the completely anonymous setup can be foreseen, but its

study is beyond the scope of this paper.

Our setup differs from [3], since we allow the nodes to

have a memory which grows with the size of the network.

This apparently contradictive assumption (we cannot allocate

a memory of size n when we do not known n) in practice

simply translates in the fact that memory limitations of

the agents will be a key point to take into account when

evaluating the applicability of our algorithm to a given

technology.

We assume that the graph is invariant during the duration

of the algorithm, and that there is some synchronization:

although transmissions might not be simultaneous, each node

knows the number of its neighbors, and is able to wait for

all received messages from iteration k before performing

iteration k + 1. This excludes a gossip implementation.

Notation: Throughout the paper, vectors will be column

vectors and will be denoted with boldface lowercase fonts;

for matrices we will use uppercase fonts. The symbol er

denotes a column vector with a 1 in position r and zero

elsewhere, while 1 denotes a vector with all entries equal

to 1.

II. COUNTING AGENTS AS ORDER-IDENTIFICATION OF A

LTI SYSTEM

A. The main idea

The main fact underlying this algorithm is that agents can

run a discrete-time linear time-invariant system, in the same

way used in the well-known linear consensus algorithm. Each

agent has a scalar state (denote by xu(k) the state of agent

u at time k); agents send their own state to their neighbors,

and then make a state-update which is a linear combination

of the received states:

xu(k + 1) =
∑

v→u

Auvxv(k)

By stacking all xu(k)’s in a vector x(k), this is a LTI system

x(k) = Ax(k), where the state space has dimension n (the

number of agents), and A is a matrix consistent with the

graph G, i.e., Auv = 0 whenever (v, u) is not an edge of G.

The fact that each agent knows its own state, can be

interpreted as saying that agent r can see the following output

of the system:

y(r)(k) = e
T
r x(k) .

From the point of view of node r, it is then possible to

construct the Hankel matrix from the output data, as follows.

At time k = 2j− 2, using the outputs y(r)(0), . . . , y(r)(2j−
2), node r can construct the following j × j matrix:

H
(r)
j =











y(r)(0) y(r)(1) . . . y(r)(j − 1)
y(r)(1) y(r)(2) . . . y(r)(j)

...
...

y(r)(j − 1) y(r)(j) . . . y(r)(2j − 2)











(1)

The following proposition holds true; its simple proof is

deferred to the appendix.

Proposition 1: There exists a positive integer ñr ≤ n such

that Hj is invertible for all j ≤ ñr and Hj is singular for

all j ≥ ñr + 1. �

This means that node r can compute ñr by looking for ñr+1

the smallest j such that H
(r)
j is singular. Then, ñr is always

a lower bound for n. The design of the matrix A should be

made in such a way to ensure that ñr = n, as it is discussed

in the next subsection.

B. Decentralized design of the state-update matrix A

The goal of the design is to choose a matrix A such that Hj

is invertible for all j ≤ n. However, the design of A should

be done in a local way, without any global knowledge of the

graph, since nodes do not know the graph size and even the

less they know the overall structure of connections. Agents

are allowed to use only information about their neighbors.

Useful tools to achieve this goal come from the theory of

structural controllability and observability of linear systems

(see [2] for a survey of this research area), which suggests

to use a simple local random construction of the non-zero

coefficients of A, achieving almost surely ñr = n for all

r. The technique simply requires to sample at random the

coefficients of A, one in correspondence of each directed



edge; the random variables can be chosen from an arbitrary

continuous distribution.

The following result holds.

Theorem 1: Let G be strongly connected and with a self-

loop on each vertex. Let m and n be the number of its

edges and nodes, respectively. Let A be a matrix consistent

with G (i.e., Auv = 0 if (v, u) is not an edge in G), and

let the m elements of A corresponding to the edges of G
be free real-valued parameters λ1, . . . , λm. Let the initial

state be x(0) = (ξ1, . . . , ξn)
T for some free real-valued

parameters ξ1, . . . , ξn. Then, rankH
(r)
n = n except for a set

of parameters having zero Lebesgue measure in R
m+n. �

The proof is analogous to the proofs of structural control-

lability and structural observability results (see [2] and the

references therein). It is reported in the appendix.

C. Proposed algorithm

The considerations presented in the previous subsections

lead us to proposing the following algorithm.

Algorithm 1 Node-counting algorithm

(Constructing A)

Each node u sets a random label Auv on each incoming

edge (v, u)
(Initializing x(0))
Each node u sets a random initial state xu(0)
(Iterations x(k + 1) = Ax(k) and Hankel matrix)

for k = 0, 1, . . . do Each node u:

sends its state xu(k) to its neighbors

receives the state of its neighbors

updates its own state:

xu(k + 1) =
∑

v→u

Auvxv(k)

considers its state as an output y(u)(k) = xu(k)
if k is even and ñr is undefined then

it constructs H
(u)
k
2
+1

defined in (1)

if H
(u)
k
2
+1

is singular then

it returns ñr = k
2

end if

end if

end for

Some remarks about this algorithm:

• The random variables can have any continuous distri-

bution, and they aren’t required to be independent, as

far as the joint distribution remains continuous

• There is no need to explicitly construct the Hankel

matrix, which would require a memory space of order

n2, see Sect. IV for more detail on how to find the first

singular Hankel matrix with a memory of size linear in

n

• The iterations for k = 0, 1, . . . are not an infinite

number of iterations leading asymptotically to the result:

node u can stop as soon as it finds a singular Hankel

matrix, so that it stops after ñr + 1 ≤ n+ 1 iterations.

However, this detail has not been explicitly written

in the algorithm, in order to leave the designer free

to choose possible variations. For example, a node u,

after having found a singular H
(r)
k
2
+1

, might stop testing

the Hankel matrix singularity, but keep updating and

broadcasting the state xu(k), in case some other node

hasn’t yet found a singular Hankel matrix. In this case,

some other stopping criterion should be devised.

Theorem 1 guarantees that, with probability one, ñr = n

for all n, i.e., all agents can correctly compute the size of

the network. Unfortunately, this theoretical result translates

in a practically applicable algorithm only for small size n,

due to numerical issues. In fact, when n is larger than a few

tens, despite the theoretical guarantees from Proposition 1

and Theorem 1, it often happens that numerically the Hankel

matrix Hj appears singular for j much smaller than the

correct value n+1. This seems to be related to the fact that

we are trying to identify a system of large size from a scalar

measurement, and therefore we need to let the system run for

a long time, so that the effect of the stability or instability of

A creates numerical problems. In fact, if A is unstable, then

the entries of x(k) become very large, while if A is stable

they become very small. Even the choice of a marginally

stable A (such as the stochastic matrices used in consensus

algorithms, which ensure that all entries of x(k) remain in

the convex hull of the initial entries) does not help, since

the effect of the smaller stable eigenvalues of A vanishes

rapidly and is invisible at large k; it is also intuitive that

a system converging to consensus will produce for large k

states xi(k) almost all equal, and with very little variation at

next step k + 1, thus making the Hankel matrix having the

last columns almost equal. All such numerical issues do not

appear in the case where Algorithm 1 is done performing all

operations in some finite field, instead of in the field of real

numbers, as it is discussed in the next section.

III. COUNTING AGENTS AS ORDER-IDENTIFICATION OF A

LTI SYSTEM OVER A FINITE FIELD

The need to avoid the numerical problems arising when

running the proposed algorithm over the reals, suggests to

choose some finite field instead, where there are no issues

about the effect of stability or instability of the system. An

additional benefit is that the messages to be transmitted to

neighbors can be exactly transmitted with a finite number of

bits, and do not need approximations.

As a reminder, most results of linear algebra and of the

theory of linear dynamical systems are still true also over

finite fields. However, special care should be taken for those

results whose proofs involve orthogonality or eigenvalues,

which may fail, since the usual scalar product does not lead

any more to a Hilbert space, and since it is no longer true

that the characteristic polynomial of a n × n matrix has n

solutions, which was true for complex numbers. See [5] for

all the results, in particular about controllability, which are

needed in our case.

Algorithm 1 is well-defined also in the case where all

variables and all parameters belong to a given finite field Fq,



as far as all operations are done as defined in Fq. For the

random parameters (entries of A and of x(0)), they should

be independent random variables, uniform on the field, since

under this assumption it is possible to guarantee that n is

correctly computed with non-zero probability (Theorem 2

below).

Theorem 2: Let G be strongly connected and with a self-

loop on each vertex. Let m and n be the number of its

edges and nodes, respectively. Let A be a matrix consistent

with G (i.e., Auv = 0 if (v, u) is not an edge in G), and

let the m elements of A corresponding to the edges of

G be free parameters λ1, . . . , λm. Let the initial state be

x(0) = (ξ1, . . . , ξn)
T for some free parameters ξ1, . . . , ξn.

Let λ1, . . . , λm, ξ1, . . . , ξm be independent random variables,

uniformly distributed over the finite field Fq If q ≥ n2, then,

for any given agent r

prob
(

rankH(r)
n = n

)

≥ 1−
n2

q
.

Moreover, defining d = n3+n
2 , if q ≥ d, then

prob
(

rankH(r)
n = n ∀r = 1, . . . , n

)

≥ 1−
d

q
.

�

The proof is inspired by the proofs of structural controlla-

bility over finite fields in [5]. It is reported in the appendix.

Notice that, differently from the real-valued case, it is not

possible here to guarantee a correct result with probability

one. Moreover, the bound requires a field size which is

very large for medium-size of n, e.g. when n is of a few

hundreds. However, simulation results show that the bound

is very conservative, and it is possible to obtain probability

of success larger than a half with field size around 2n, as it

is illustrated in Section V.

IV. ALGORITHM IMPLEMENTATION

It is possible to test if an Hankel matrix Hj constructed

from a string of values y0, y1, . . . , y2j−2 is singular without

constructing and storing the whole matrix, and using only

a memory linear in n, instead of quadratic. Algorithm 2

is a slight modification of the Hankel-Lanczos factorization

algorithm ‘AsymHankel’ from [1], where we have underlined

the possibility to re-use the computations done for Hj when

testing Hj+1. The algorithm works under the assumption that

there exists a positive integer ñ such that Hj is invertible

for all j ≤ ñ and Hñ = 0 (which is true for the Hankel

matrices we are considering, see Prop. 1). It finds such a ñ,

because it constructs c1,1, c2,2, . . . , cñ, cñ+1 = 0 such that

detHj =
∏

i≤j ci,i. It can be successfully integrated with

Algorithm 1, since is processes the values y0, y1, . . . as soon

as they become available, and tests if Hj is invertible as soon

as y2j−2 has been received.

To prove that indeed detHs =
∏

i≤s ci,i for any

s ≤ ñ + 1, we can construct a lower-triangular matrix Ls

by letting Lij = ci,j for all 1 ≤ j ≤ i ≤ s. A careful look

at the algorithm (or a look at the algorithm AsymHankel in

Algorithm 2 Finding the first singular Hankel matrix, based

on (AsymHankel, [1])

Initialization

c1,1 = y0
j = 1
Iterations on j until cj,j = 0 (i.e., until detHj = 0)

while cj,j 6= 0 do

(get y2j−1)

c2j,1 = y2j−1

if j > 1 then

c2j−1,2 = c2j,1 − γ1,1c2j−1,1

end if

if j > 2 then

for k = 2, . . . , j − 1 do

c2j−k,k+1 =
c2j−k+1,k − γk−1,kc2j−k,k−1 − γk,kc2j−k,k

end for

end if

(get y2j)

c2j+1,1 = y2j
if j = 1 then

γ1,1 =
c2,1
c1,1

else

γj−1,j =
cj,j

cj−1,j−1

γj,j =
cj+1,j

cj,j
−

cj,j−1

cj−1,j−1

end if

c2j,2 = c2j+1,1 − γ1,1c2j,1
if j > 1 then

for k = 2, . . . , j do

c2j−k+1,k+1 =
c2j−k+2,k−γk−1,kc2j−k+1,k−1−γk,kc2j−k+1,k

end for

end if

j = j + 1
end while

return ñ = j − 1 ⊲ Hj is the first singular matrix

[1], where the same computations are presented in matrix

form, making this fact more visible) shows that, for all j,

the jth column of Ls is equal to the jth column of Hs plus

a linear combination of the columns 1st to (j − 1)th of

Hs. This implies that Ls and Hs have the same determinant.

Notice that the memory needed is linear in n, since at

iteration j one needs all previously-computed γ’s, and the

c’s computed at iteration j − 1 (while all other c’s can be

discarded). The total complexity is of order n2, because each

iteration j requires a number of computations linear in j.

Finally notice that this algorithm can be applied also in

the case of finite fields.

V. SIMULATIONS AND DISCUSSIONS

In this section we present some examples of results

obtained with our algorithm. In all these examples, we use a

graph which is a circle where each node has a link towards



TABLE I: For some values n of the network size, and p of

the field size, success rate S = fraction of realizations where

ñ1 = n and S2 = fraction of pairs of realizations where at

least one of the two has ñ1 = n.

n 20 40 80 100 150 200 300 400

p 41 83 163 199 307 401 601 797

S 0.582 0.587 0.618 0.608 0.649 0.611 0.580 0.593

S2 0.834 0.859 0.848 0.837 0.856 0.844 0.834 0.841

the two nearest neighbors on its right and the two nearest

nodes on its left, plus a self-loop. Other simulations with

different graphs have lead us to similar remarks, and a deeper

analysis of the effects of the graph topology (e.g., small-

world, scale-free, Erdos-Renyi networks) on the performance

is left for future work.

Moreover, for simplicity, we focus on finite fields whose

size is a prime number p, so that addition and multiplication

are simply defined by operations modulo p.

Our simulations show that the bounds in Thm. 2 are very

conservative. The theoretical result ensures that a given node

r will correctly compute ñ = n with probability at least 0.5
if the size q of the field is larger than n2. In our simulations,

a success rate larger than 0.5 is achieved when the field size

is around 2n. Table I shows, for various values of n and

corresponding field size p near to 2n (not exactly 2n since

we require p to be prime), the success rate S, defined as the

fraction of successful computations of ñr = n from a given

node r, in 1000 realizations of the probabilistic algorithm.

Moreover, the success probability can be increased if the

algorithm is modified as follows: the algorithm is run twice

(or, more in general, M times) in parallel, with different

realizations of x(0) and A, and then each node takes the

maximum of the so-obtained bounds ñr. The success rate of

such a strategy is shown in Table I: S2 is the fraction of pairs

of realizations where at least one of the two gives ñr = n,

over 1000 pairs of realizations.

Another set of simulations showing that our algorithm

performs well, and better than predicted by the conservative

bounds in Thm. 2 is the following. For a fixed field size

p, we consider increasing values of n, for each of which

we run 1000 times our algorithm. The solid lines with

circles in Figures 1, 2 and 3 depict the success rate (i.e.,

the fraction of realizations in which a given node r has

correctly computed ñr = n), the average computed value

ñr, and then the average quadratic error (defined as the sum

over all realizations of the square error (ñr − n)2, divided

by the number of realizations), respectively, for p = 251,

p = 1009, and p = 10007. It is interesting to notice that

even with p = 256 < n = 300 the success rate is non-zero.

The same figures also show a comparison with one of the

algorithms in [6], which is based on statistical inference and

on max-consensus (we have chosen this one, rather than the

one based on average-consensus described in the same paper,

because the authors prove that it has smaller variance). Such

algorithm can be summarized as follows:

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

network size n

su
cc

es
s 

ra
te

 

 

our algorithm p=251
our algorithm p=1009
our algorithm p=10007
max−based algorithm M=5
max−based algorithm M=n

Fig. 1: Success rate, i.e. fraction of realizations in which a

given node r has correctly computed the network size, in

1000 realizations of each algorithm.
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Fig. 2: Average computed network size, over 1000 realiza-

tions of each algorithm.

• Let M be a positive integer, which indicates how many

messages each node sends to its neighbors at each

iteration.

• Initialization: each node u extracts M random variables

y1,u, . . . , yM,u, i.i.d. uniform in the interval [0, 1].
• Max-consensus: a simple distributed anonymous algo-

rithm allows all agents to compute f1, . . . , fM , where

fi = maxu yi,u.

• Given f1, . . . , fM , the maximum-likelihood estimate of

n is computed as follows:

nML = round

(

M

−
∑M

i=1 log fi

)

,

where round(·) denotes rounding to the nearest integer.

The max-consensus algorithm consists in sending the current

state to all neighbors, and then updating the state to be the
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Fig. 3: Average quadratic error, over 1000 realizations of

each algorithm.

maximum of the received messages; this converges to the

exact maximum in n iterations. Hence, both our algorithm

and the above one need a number of iterations linear in n,

but the latter does not provide the possibility to stop when n

iterations are done, since n is unknown, and thus it requires

an upper bound of n as a stopping criterion. For memory

requirements, our algorithm needs a memory linear in n

(roughly 6n numbers belonging to a field of size q), while the

max-based algorithm requires a memory linear in M , where

an increased M results in a lower variance of the estimate.

For transmissions: at each iteration, each node sends only

one value in our algorithm, and M values in the max-based

one. We can also implement a version of our algorithm where

M realizations are run in parallel, and hence M messages

are sent at each round (as it was done in Table I for M = 2);

this results in improved performance since the maximum of

all computed sizes will give the correct size with higher

probability, but it also incurs in increased memory, which

is linear in the product Mn.

These considerations show that there is no natural obvious

way to make a fair comparison between our algorithm and

the max-based one, since depending whether memory or

transmission complexity is more crucial, different choices

can be made. In Figures 1, 2 and 3 we plot the success

rate, the average computed network size, and the average

quadratic error for our algorithm, and for the max-based

algorithm with different values of M : M = 5 and M = n.

The choice of M = 5 has a transmission complexity compa-

rable with our algorithm (5 times larger) and much smaller

memory requirement; it gives very poor performance. The

latter choice M = n has a comparable memory requirement

as our algorithm, and much higher transmission complexity

(n times larger); its performance is much worse in terms of

probability of exact computation of n, slightly better in terms

of average n, and much better in terms of average quadratic

error.

APPENDIX

PROOFS

Here we collect some proofs about properties (and struc-

tural properties) of the Hankel matrix.

First of all, notice that the following decomposition holds

true:

H
(r)
j = O

(r)
j Cj (2)

where O
(r)
j is the following j × n observability matrix

O
(r)
j =





















e
T
r
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and Cj is the following n× j matrix

Cj =
[

x(0) Ax(0) . . . Aj−1
x(0)

]

Notice that Cj would be the controllability matrix if the

system was x(k + 1) = Ax(k) + Bu(k), with B = x(0)
and u(k) a scalar input.

This decomposition means that H
(r)
n is invertible if and

only if the linear system (A,x(0), eTr ) is minimal (ob-

servable and controllable). Moreover, this decomposition is

useful in many proofs.

Proof of Prop. 1: If Hj is singular for some j, then at

least one of the two matrices O
(r)
j and Cj has rank smaller

than j, thus implying that at least one of O
(r)
j+1 and Cj+1

has rank smaller than j+1, and hence also Hj+1 is singular.

The fact that Hn+1 is singular (and hence ñr ≤ n) follows

from Cayley-Hamilton theorem, which ensures that An is a

linear combination of I, A,A2, . . . , An−1, so that the last

line of Hn+1 is a linear combination of the previous ones. �

Proof of Theorems 1 and 2: This proof is inspired by

the proofs of Thm.s 2 and 5 in [5]. Notice that detH
(r)
n

is a polynomial in the variables λ1, . . . , λm, ξ1, . . . , ξn.

The first part of the proof consists in proving that this is

not the trivial all-zero polynomial. To do so, we notice

that detH
(r)
n = detO

(r)
n · detCn, where detO

(r)
n is a

polynomial in the variables λ1, . . . , λm, which we will

denote by fr(λ1, . . . , λr), and detCn is a polynomial in the

variables λ1, . . . , λm, ξ1, . . . , ξn, which we will denote by

g(λ1, . . . , λm, ξ1, . . . , ξn). We will now prove that neither

of the two is the all-zero polynomial, by finding for each

of the two (separately) a particular choice of the variables

giving a non-zero evaluation.

Let’s start with the determinant of Cn. Choose ξs = 1
for one particular s ∈ {1, . . . , n} and ξh = 0 for all other

h, so that Cn becomes equal to the controllability matrix

from node s, namely C
(s)
n =

[

es|Aes| . . . |A
n−1

es

]

. Since

G is strongly connected, it contains a directed spanning



tree rooted at node s1. Choose λj ’s in the following way:

Aij = 1 if (j, i) is an edge of the spanning tree; Ai,j = 0
if i 6= j and (j, i) is not an edge of the spanning tree;

A1,1, . . . , An,n are non-zero distinct elements (this is possi-

ble, since by assumption the field has cardinality larger than

n). Consider a permutation reordering the vertices by non-

decreasing depth (distance from vertex s) in the spanning

tree. Notice that A = P−1ÃP , where P is a permutation

matrix corresponding to the above-mentioned re-ordering (so

that, in particular, Pes = e1 and P−1 = PT ), and Ã is

a lower-triangular matrix (since all its non-zero terms have

i ≥ j), with diagonal elements which are the same as the

diagonal elements of A (up to re-ordering) and hence are

non-zero and all distinct. Now

C(s)
n =

[

P−1Pes|P
−1ÃPes| . . . |P

−1Ãn−1Pes

]

= P−1
[

e1|Ãe1| . . . |Ã
n−1

e1

]

Since Ã is a lower-triangular matrix with distinct eigenvalues

(the distinct diagonal elements), we can write Ã = V −1ΛV ,

where Λ = diag(Ã) = diagA, and where V is a lower-

triangular matrix whose rows are left eigenvectors of Ã.

Notice that we can choose V such that its first column is

all-ones, so that V e1 = 1, and hence

C(s)
n = P−1

[

V −1V e1|V
−1ΛV e1| . . . |V

−1Λn−1V e1

]

= P−1V −1M

where M is the Vandermonde matrix formed with the

eigenvalues of Ã (i.e., the diagonal elements of A):

M = [1|Λ1| . . . |Λn−1
1] =











1 A11 A2
11 . . . An−1

11

1 A22 A2
22 . . . An−1

22
...

...

1 Ann A2
nn . . . An−1

nn











Since the diagonal elements of A are all distinct and

non-zero, this Vandermonde matrix is invertible, and

then also C
(s)
n is invertible, so that with the above-

described choice of λ1, . . . , λm, x1, . . . , xn, we have

g(λ1, . . . , λm, ξ1, . . . , ξn) 6= 0. We have proved that g is

a non-zero polynomial. It is also useful to notice that its

total degree is at most
n(n+1)

2 . Indeed, each monomial in

the calculation of the determinant of Cn is the product

of one entry per each column, and the entry from the jth

column has degree at most j − 1 in the variables λ’s and

degree 1 in the variables ξ’s, so that the total degree is at

most 0+1+· · ·+(n−1) = (n−1)n
2 in the λ’s and n in the ξ’s.

Now very similar considerations apply for the

observability matrix O
(r)
n . We construct the graph GT

defined by taking an edge (i, j) if and only if (j, i) is

an edge of G, and we notice that also GT is strongly

connected and has self-loops at each vertex. In this case,

1A directed spanning tree rooted at u is a subgraph of G containing
exactly n − 1 edges, and containing a directed path from u to any other
vertex.

we consider a spanning tree in GT rooted at node r, which

corresponds to a set of paths entering into node r in G. We

make a similar construction as above, taking Aij to be 1 in

correspondence with such paths, with all-distinct diagonal

elements, and zero elsewhere. Now, up to a permutation, A

is upper-triangular, so that A = P−1ÃTP with Ã lower-

triangular and P a permutation matrix such that Per = e1.

This also implies that AT = P−1ÃP (since PT = P−1).

Now one can prove that det(O
(r)
n )T 6= 0 exactly in the

same way already used for C
(r)
n above (replacing A with

AT ). Hence, we have proved that fr(λ1, . . . , λm) is a

non-zero polynomial. This polynomial has total degree at

most 0 + 1 + · · ·+ (n− 1) = n(n−1)
2 .

Gathering the results on the two factors, we have finally

proved that detH
(r)
n is a non-zero polynomial, with total

degree at most
n(n−1)

2 + n(n+1)
2 = n2. This ends the first

part of the proof.

Now, knowing that this isn’t the trivial all-zero polynomial,

we still need to prove that the probability to find values of

λ1, . . . , λm and ξ1, . . . , ξn that annihilate it is small enough.

In the case where the field is F = R, we can end the proof by

noticing that the zeros of a polynomial have zero Lesbesgue

measure in R
m+n. In the case where F = Fq is a finite field

of size q ≥ n2, the claim follows by the application of the

following classic result.

Lemma 1 (Schwartz-Zippel): Given a non-zero polyno-

mial p(z1, . . . , zℓ) ∈ Fq[z1, . . . , zℓ], if its total degree is at

most d, the field size is q ≥ d and z1, . . . , zn are iid unif in

Fq then

prob
(

p(z1, . . . , zℓ) = 0
)

≤
d

q
.

This ends the proof of the results concerning the proba-

bility that a given node r correctly computes ñr = n. When

considering the probability that all agents simultaneously get

the correct n, just notice that the event ‘detH
(r)
n 6= 0 for all

r = 1, . . . , n’ is equivalent to the following:

detO(1)
n · detO(2)

n · . . . detO(n)
n · detCn 6= 0 ,

since a product is non-zero if and only if all factors are non-

zero, and since the factorization (2) is true for all r with the

same Cn.

Then, the proof is the same as above, and the total degree

of the polynomial detO
(1)
n · detO

(2)
n · . . . detO

(n)
n · detCn

is at most d = n(n−1)
2 n+ n(n+1)

2 = n3+n
2 .

�
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