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Abstract

Learning complex mappings between various modalities (typi-

cally articulatory, somatosensory and auditory) is a central issue

in computationally modeling speech acquisition. These map-

pings are generally nonlinear and redundant, involving high di-

mensional sensorimotor spaces. Classical approaches consider

two separate phases: a relatively pre-determined exploration

phase analogous to infant babbling followed by an exploitation

phase involving higher level communicative motivations. In this

paper, we consider the problem as a developmental robotics

one, in which an agent actively learns sensorimotor mappings

of an articulatory vocal model. More specifically, we show how

intrinsic motivations can allow the emergence of efficient explo-

ration strategies, driving the way a learning agent will interact

with its environment to collect an adequate learning set.

Index Terms: speech acquisition, sensorimotor learning, for-

ward and inverse modeling, developmental robotics, intrinsic

motivations, active learning, Gaussian mixture model.

1. Introduction

In the early stage of speech acquisition, the infant has to learn

complex bidirectional sensorimotor mappings between various

modalities: articulatory, somato-sensory aud auditory spaces.

The learning of such sensorimotor mappings is a central issue

in most of the existing computational models of speech acqui-

sition. For example, the DIVA model [1, 2] proposes an ar-

chitecture partly inspired by neurolinguistics. The sensorimo-

tor mapping learning phase is analogous to infant babbling and

corresponds to semi-random articulator movements producing

auditory and somato-sensory feedbacks. This is used to tune a

neural network between representation maps. The Elija model

[3] also deals with sensorimotor mapping learning, which is

driven by a reward function (including sound salience and di-

versity, as well as articulatory effort). Such computational mod-

els of speech acquisition pre-determine the way the agent will

explore its sensorimotor space to learn the corresponding map-

pings (e.g. DIVA involves a semi-random articulatory explo-

ration and Elija a hand-coded reward function). Alternatively,

we show in this paper how an active exploration of the senso-

rimotor space can significantly improve the learning process.

This is to rely to the concept of intrinsic motivations in devel-

opmental psychology [4, 5], which refer to the ability to doing

something because it is inherently interesting or enjoyable.

Let us formalize the problem of learning complex senso-

rimotor mappings, including those involved in speech acqui-

sition models. A learning agent interacts with a surrounding

environment through motor commands M and sensory percep-

tions S. We call f : M → S the unknown function defining

the physical properties of the environment, such that when the

agent produces a motor command m ∈ M , it then perceives

s ∈ S, although (m, s) is generally only partially observable.

Classical robotic problems are e.g. the prediction of the sensory

effect of an intended motor command through a forward model

f̃ : M → S, or the control of the motor system to reach sen-

sory goals through an inverse model ˜f−1 : S → M . The agent

has to learn such models by collecting (m, s) pairs through its

interaction with the environment. These learning processes are

often difficult for several reasons:

• the agent has to deal with uncertainties both in the envi-

ronment and in its own sensorimotor loop;

• M and S can be highly dimensional, such that random

sampling in M to collect (m, s) pairs would lead to too

sparse data for an efficient learning;

• f can be strongly non-linear, such that the learning of f̃

from experience is not trivial;

• f can be redundant (many M to one S), such that the

learning of ˜f−1 is an ill-posed problem.

When a learning process faces these issues, random motor

exploration (or motor babbling) in M is not a realist exploration

strategy to collect (m, s) pairs. Due to high dimensionality,

data are precious whereas, due to non-linearity and/or redun-

dancy, data are not equally useful to learn an adequate forward

or inverse model.

As we have seen, computational models of speech acquisi-

tion such as DIVA or Elija generally pre-determine the way the

agent will collect (m, s) pairs. Rather than considering a pre-

determined exploration, we are interested in the internal mech-

anisms which can drive adaptive exploration and learning at the

early stage of spontaneous vocal exploration.

In the next section we describe several exploration strate-

gies proposed in the literature to efficiently learn complex sen-

sorimotor mappings. Section 3 is our first contribution, where

we integrate these strategies into a unified probabilistic frame-

work. In Section 4 we implement this general formal framework

using Gaussian mixture models. Section 5 describes our devel-

opmental robotics experiment using an articulatory synthesizer

able to compute auditory features from articulatory commands,

and validates the approach by quantitatively comparing various

exploration strategies to show that intrinsically motivated learn-

ing based on an empirical measure of the competence progress

is an efficient way to rapidly learn to achieve a control task.

2. Exploration strategies

Two main principles can allow a learning agent to explore its

sensorimotor space in order to efficiently collect (m, s) pairs.

The first one concerns the space in which the agent chooses



points to explore, what we will call the choice space. Previ-

ous models [6, 7] have shown that learning redundant inverse

models could be achieved more efficiently if exploration was

driven by goal babbling in S, triggering reaching, rather than

direct motor babbling in M . The reason is that goal babbling

drives the agent to find the efficient motor commands allow-

ing to reach goals uniformly distributed in a choice space cor-

responding to S, rather than exploring all the possible motor

commands uniformly in a choice space corresponding to M .

The second principle comes from the field of active learning,

where exploration strategies are conceived as an optimization

process, e.g. by minimizing the expected variance of a predic-

tor in the case of forward model learning [8].

Combining both principles, recent works grounded in de-

velopmental psychology has been interested by defining em-

piric measures of interest in choice spaces. Computational stud-

ies have shown the importance of developmental mechanisms

guiding exploration and learning in high-dimensional M and

S spaces and with highly redundant and non-linear f [9, 7].

Among these guiding mechanisms, intrinsic motivations, gen-

erating spontaneous exploration in humans [10, 4], have been

transposed in curiosity-driven learning machines [11, 12, 13]

and robots [9, 7] and shown to yield highly efficient learning

of inverse models in high-dimensional redundant sensorimotor

spaces [7]. Efficient versions of such mechanisms are based on

the active choice of learning experiments that maximize learn-

ing progress, for e.g. improvement of predictions or of com-

petences to reach goals [11, 9]. This automatically drives the

system to explore and learn first easy skills, and then explore

skills of progressively increasing complexity. Such intrinsically

motivated exploration was also shown to generate automatically

behavioural and cognitive developmental structures sharing in-

teresting similarities with infant development [9, 14, 15, 16].

This approach is grounded in psychological theories of intrin-

sic motivations [10, 17], explores several fundamental questions

about curiosity-driven open-ended learning in robots [9], and al-

lows to generate some novel hypotheses for the explanation of

infant development, regarding behavioural [15], cognitive [14]

and brain circuitry [18] issues.

Systematic comparisons of various exploration strategies

have been performed [7], which differ on the way the agent it-

eratively collects (m, s) pairs to learn forward and/or inverse

models (comparing random vs. competence progress based ex-

ploration, in either motor M or sensory S choice spaces).These

strategies are summarized below (the original name of the cor-

responding algorithm appears in parenthesis).

• Random motor exploration (ACTUATOR-

RANDOM): at each time step, the agent randomly

chooses an articulatory command m ∈ M , produces it,

observes s = f(m) and updates its sensorimotor model

according to this new experience (m, s).

• Random goal exploration (SAGG-RANDOM): at

each time step, the agent randomly chooses a goal sg ∈
S and tries to reach it by producing m ∈ M using an in-

verse model ˜f−1 learned from previous experience. It

observes the corresponding sensory consequence s =
f(m) and updates its sensorimotor model according to

this new experience (m, s).

• Active motor exploration (ACTUATOR-RIAC): at

each time step, the agent chooses a motor command m

by maximizing an interest value in M based on an em-

pirical measure of the competence progress in prediction

in its recent experience. The agent uses a forward model

f̃ learned from its past experience to make a prediction

sp ∈ S for the motor command m. It produces m and

observe s = f(m). The agent updates both its sensori-

motor models (forward and inverse) according to the new

experience (m, s). A measure of competence is com-

puted from the distance between sp and s, which is used

to update the interest model in the neighborhood of m.

• Active goal exploration (SAGG-RIAC): at each time

step, the agent chooses a goal sg by maximizing an in-

terest value in S based on an empirical measure of the

competence progress to reach goals in its recent experi-

ence. It tries to reach sg by producing m ∈ M using a

learned inverse model ˜f−1. It observes the correspond-

ing sensory consequence s ∈ S and updates its model

according to this new experience (m, s). A measure of

competence is computed from the distance between sg
and s, which is used to update the interest model in the

neighborhood of sg .

In the two active strategies, the measure of interest was

obtained by recursively splitting the choice space (M in

ACTUATOR-RIAC, S in SAGG-RIAC) into sub-regions during

the agent life. Each region maintains its own empirical measure

of competence progress from its competence history in a rela-

tive time window. The competence is defined as the opposite of

the distance between sp and s in the active motor strategy, and

sg and s in the active goal one.

In a seek of unification, we can extract the following general

principles from these strategies.

• Whatever the strategy used, the agent has to sample

points in a given space. This space is M for the first

and the third strategy, S for the second and the fourth.

We call it the choice space X .

• In all but the first strategy, the agent has to make an in-

ference from the choice space X to its “complement” in

M × S (which is S if X = M and M if X = S). We

call this latter the inference space Y .

• In the active exploration strategies, the agent has to main-

tain an empirical measure of interest in the choice space

X . In the other strategies, the agent makes a random

sampling in X .

We thus suggest to classify these exploration strategies

along two dimensions: the choice space X (either M or S)

and the measure of interest in X (either uniform or competence

progress based). The next section describes a generic explo-

ration algorithm encompassing each particular strategy.

3. Probabilistic modeling

We use a probabilistic framework where the notations and prin-

ciples are inspired by [19, 20]. Upper case A denotes a prob-

abilistic variable, defined by its continuous, possibly multidi-

mensional and bounded domain D(A). The conjunction of two

variables A∧B can be defined as a new variable C with domain

D(A) × D(B). Lower case a will denote a particular value of

the domain D(A). p(A | ω) is the probability distribution over

A knowing some preliminary knowledge ω (e.g. the parametric

form of the distribution, a learning set . . . ). Practically, ω will

serve as a model identifier, allowing to define different distri-

butions of the same variable, and we will often omit it in the

text although it is useful in the equations. p(A B | ω) is the

probability distribution over A ∧ B. p(A | [B = b] ω) is the

conditional distribution over A knowing a particular value b of



another variable B (also noted p(A | b ω) when there is no am-

biguity on the variable B).

Considering that we know the joint probability distribution

over the whole sensorimotor space, p(M S | ωSM ), Bayesian

inference provides the way to compute every conditional distri-

bution over M ∧ S. In particular, we can compute the condi-

tional distribution over Y knowing a particular value x of X ,

as long as X and Y correspond to two complementary sub-

domains of M ∧S (i.e. they are disjoint and X ∧Y = M ∧S).

Thus, the prediction of sp ∈ S from m ∈ M in the active

motor exploration strategy, or the control of m ∈ M to reach

sg ∈ S in the active or random goal exploration strategies,

correspond to the probability distributions p(S | M ωSM ) and

P (M | S ωSM ), respectively. More generally, whatever the

choice and inference spaces X and Y , as long as they are dis-

joint and that X ∧ Y = M ∧ S, Bayesian inference allows to

compute p(Y | X ωSM ).
Such a probabilistic modeling is also able to express the in-

terest model, that we will call ωI , such that the agent draws

points in the choice space X according to the distribution

p(X | ωI). In the random motor and goal exploration strate-

gies, this distribution is uniform, whereas it is a monotonically

increasing function of the empirical interest measure in the case

of the active exploration strategies. We will provide more de-

tails about the way to iteratively compute p(M S | ωSM ) and

p(X | ωI) from the experience of the agent in the next section.

Given these probabilistic framework, Algorithm 1 describes

our generic exploration algorithm.

1: while true do

2: x ∼ p(X | ωI)
3: y ∼ p(Y | x ωSM )
4: m = ProjM ((x, y))
5: s = exec(m)
6: update(ωSM , (m, s))
7: update(ωI , (x, y,m, s))
8: end while

Algorithm 1: Generic exploration algorithm

Line 2, the agent draws a point x in the choice space X

according to the current state of its interest model ωI , through

the probability distribution p(X | ωI) encoding the current in-

terest over X . Line 3, the agent draws a point y in the infer-

ence space Y according to the distribution p(Y | x ωSM ), us-

ing Bayesian inference on the joint distribution p(M S | ωMS).
Line 4, the agent extracts the motor part m of (x, y), i.e. x if

X = M , y if X = S. Line 5, the agent produces m and ob-

serve s = exec(m), i.e. s = f(m) with possible sensorimotor

constraints and noises. Line 6 the agent updates its sensorimotor

model according to its new experience (m, s). Line 7 the agent

update its interest model according to the choice and inference

(x, y) it made and its new experience (m, s).
In this framework, we are able to more formally express

each algorithm presented in Section 2. The random motor strat-

egy (ACTUATOR-RANDOM) is the simpler case where the

choice space is X = M and the interest model of line 2 is

set to a uniform distribution over X . Inference in line 3 is here

useless because motor extraction (line 4) will return the actual

choice x and that there is no need to update the interest model in

line 7. The active motor strategy (ACTUATOR-RIAC) differs

from the previous one by the interest model of line 2 which fa-

vors regions of X (= M ) maximizing the competence progress

in prediction. This latter is computed at the update step of line 7

using the history of previous competences defined as the oppo-

site difference between the prediction y ∈ Y and the actual

realization s ∈ S (with Y = S). The random goal strategy

(SAGG-RANDOM) is the case where the interest model is uni-

form and the choice space is S, implying that the inference cor-

responds to a control task to reach x ∈ X by producing y ∈ Y

(with X = S and therefore Y = M ). Finally, the active goal

strategy (SAGG-RIAC) differs from the previous one by the in-

terest model which favors regions of X (= S) maximizing the

competence progress in control. This latter is computed in the

same way that for ACTUATOR-RANDOM, except that the op-

posite difference is here between the chosen goal x ∈ X and

the actual realization s ∈ S (with X = S).

4. Implementation with Gaussian mixture
models

In the present paper, we only provide the principles of our im-

plementation of the sensorimotor p(M S | ωSM ) and interest

p(X | ωI) distributions, and leave its detailed description to

a further paper. Both the sensorimotor and the interest distri-

butions involves learning of Gaussian mixture models (GMM)

using the Expectation-Maximization (EM) algorithm [21]. The

values of the parameters we will use in the experiment of the

next section appear in parenthesis.

p(M S | ωSM ) involves KSM (=28) components (i.e. it

corresponds to a weighted sum of KSM Gaussian distributions).

It is learnt using an online version of EM proposed by [22]

where incoming data are considered in lots in an incremen-

tal manner. Each update corresponds to line 6 but is executed

once each sm step (=400) iterations of Algorithm 1. The ωSM

model is thus refined incrementally during the agent life, up-

dating it each time sm step new (m, s) pairs are collected.

Moreover, we adapted this online version of EM to introduce

a learning rate parameter α (from 0.1 to 0.01 in a logarithmic

decreasing manner), allowing to set a relative weight of the new

learning data with respect to the old ones.

p(X | ωI) is a uniform distribution in the random strate-

gies, whereas it has to reflect an interest measure in the ac-

tive strategies, which is here related to an empirical measure

of the competence progress. For this aim, we compute a mea-

sure of competence for each 4-tuple (x, y,m, s) collected dur-

ing the execution of Algorithm 1. We define the competence

c of each iteration as c = e−‖(x,y)−(m,s)‖2 , i.e. the exponen-

tial of the opposite of the distance between the concatenation

of the choice and infer points (x, y) and the actual realization

(m, s). Thus, each episode is associated with a tuple (t, x, c),
where t is the (normalized) time index of the iteration. We then

consider the competence progress as a correlation between time

and competence (the higher the correlation, the higher the com-

petence progress). We learn the joint distribution of this data

p(T X C | ωTXC) (where T and C are the mono-dimensional

variables defining the time and competence domains, with val-

ues in R
+) using a classical version of EM on a GMM of KI

(=12) components using the last sm step ∗ im step tuples

(t, x, c), on the time window corresponding to the last im step

(=12) updates of the sensorimotor model. After convergence

of the EM algorithm, we bias the result by setting the a priori

distributions of the model ωTXC (i.e. the weight of each Gaus-

sian) to the resulting value of the covariance between t and c

(normalized to sum up to 1 and considering only the positive

correlations). Finally, the interest model p(X | ωI) corresponds

to the Bayesian inference p(X | [T = t+] ωTXC), where t+ is



the time index of the future update of the sensorimotor model

(e.g. if the t values of the learning set are {1, . . . , n}, then

t+ = n + 1). This allows line 2 of Algorithm 1 to sample val-

ues in regions of X which maximize the expected competence

progress at the next update of the sensorimotor model.

5. Results

We ran computer experiments using the articulatory synthesizer

of the DIVA model described in [23], which thus corresponds to

the f unknown function defined in the introduction. This syn-

thesizer is based on the Maeda’s model [24], using 13 articula-

tory parameters: 10 from a principal component analysis (PCA)

performed on sagittal contours of images of the vocal tract of a

human speaker, plus glottal pressure, voicing and pitch. It is

then able to compute the formants of the signal (among other

auditory and somato-sensory features). In the present study, we

only use the 7 first parameters of the PCA and the two first for-

mants, approximately normalized in the range [− 1, 1]. We ran

the implementation of the algorithm described in the previous

sections with different choice spaces and interest distributions

corresponding to the four strategies ACTUATOR-RANDOM,

ACTUATOR-RIAC, SAGG-RANDOM and SAGG-RIAC. We

evaluate the efficiency of the obtained sensorimotor models to

achieve a control task, i.e. to reach a test set of goals uniformly

distributed in the reachable auditory space.

Figure 1A shows the performance results of the four explo-

ration strategies on a control task during the life time of learn-

ing agents. We observe that the strategies with S as the choice

space (random and active goals) are significantly more efficient

that those with M (random and active motor), i.e. both conver-

gence speed (say around 100 updates) and generalization at the

end of the simulation (500 updates) are better. Moreover, gen-

eralization is relatively more efficient for the active than for the

random strategies. These results are similar (though less sig-

nificant) to those obtained in previous experiments [7] in other

sensorimotor spaces (e.g. a arm reaching points on a plan), and

we refer to the corresponding paper for a thorough analysis of

these results.

Figure 1B shows the state of the sensorimotor model ωSM

projected in the sensory space S at the end of one simulation

for each of the four exploration strategies. We observe that the

position of the Gaussians are relatively disorganized when M is

the choice space, whereas some structure appears when it is S.

Self-organization seems to spontaneously appear in the choice

space where points are sampled from the interest model (either

uniformly or actively). When this latter is S, this provides a

sensorimotor model allowing to better control the vocal tract to

reach auditory goals. Another observation is that the auditory

space is covered more uniformly in the active than in the ran-

dom goal exploration strategy. The reason is that the random

strategies more often choose goals outside the reachable space,

thus favoring reaching at the borders of the sensory space S. To

summarize, using S as the choice space is more efficient than

using M because self-organization in S is adequate to achieve

a control task, and the active goal strategy is more efficient than

the random goal one because it allows to focus on the reachable

part of S (and perhaps to set goals of increasing difficulties).

6. Conclusions

We have shown in this paper that two principles of developmen-

tal robotics (exploration in the sensory space and active learning

based on an empirical measure of the competence progress) can

Figure 1: A: Performance comparison of the four exploration

strategies. X axis: number of update of the sensorimotor model.

Y axis: Mean error distance on a control task where an agent

has to reach 30 test points uniformly distributed in the reachable

area of S. For each evaluation point sg ∈ S, the agent infers 10

motor commands in M from the distribution p(M | sg ωSM ),
where ωSM is the state of the sensorimotor model at the corre-

sponding time step (number of update on the X axis). The error

of an agent at a time step is the mean distance between the sen-

sory points actually reached by the 10 motor commands and the

evaluation point sg . Each curve plots the mean and standard

deviation of the error for 10 independent simulations with dif-

ferent random seeds, for each of the four exploration strategies

described in the previous sections. B: State of the sensorimo-

tor model at the end of the simulations for the four exploration

strategies. Auditory parameters are the two first formants com-

puted by the articulatory synthesizer. Yellow (or grey) area is

the auditory area reached by the agent at the end of the sim-

ulation. Ellipses represents the Gaussians of the sensorimotor

GMM p(M S | ωSM ) projected on S.

improve the learning of the complex sensorimotor mappings in-

volved in speech acquisition. We proposed an integrated proba-

bilistic framework able to express these principles in a compact

and unified manner, as well as an original implementation of

the underlying algorithm using GMMs and where the compe-

tence progress is measured as a statistical correlation between

time and competence. Finally, we showed that this modeling

is able to match performance comparison results obtained in

previous works, and have interesting properties in terms of self-

organization.

Further works should focus on an online adaptation of the

choice space, e.g. by considering only the dimensions of the

sensorimotor space in which the competence progress is max-

imal, on the integration of maturational constraints and social

guidance, as well as on the analysis of emerging developmen-

tal sequences confronted with infant experimental data (see [16]

for preliminary results on this latter perspective using the same

principles of developmental robotics).
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