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Abstract

We present a new method to visualize uncertain scalar data fields
by combining color scale visualization techniques with animated,
perceptually adapted Perlin noise. The parameters of the Perlin
noise are controlled by the uncertainty information to produce an-
imated patterns showing local data value and quality. In order to
precisely control the perception of the noise patterns, we perform
a psychophysical evaluation of contrast sensitivity thresholds for a
set of Perlin noise stimuli. We validate and extend this evaluation
using an existing computational model. This allows us to predict
the perception of the uncertainty noise patterns for arbitrary choices
of parameters. We demonstrate and discuss the efficiency and the
benefits of our method with various settings, color maps and data
sets.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration —Display algorithms; I.3.8 [Computer Graphics]: Applica-
tions

Keywords: scientific visualization, uncertainty visualization,
computer graphics, Perlin noise, psychophysics, contrast sensitivity

1 Introduction

As measurement tools, numerical models and computational capa-
bilities progress and evolve, scientific datasets become increasingly
large and complex, often related to multiple interdependent phe-
nomenons with multiple spatial and temporal scales, and described
by different physical quantities. Visual exploration of this data is
now a required step in order to understand the underlying physical
processes. It is also one of the premium means to communicate this
knowledge by using static or animated images.

Uncertainty is always present in scientific data, and visualizing it
efficiently has been acknowledged as one of the main challenges of
visualization research. Uncertainty differs from other types of data
first because it is a very general term which can cover many differ-
ent concepts [Skeels et al. 2009], and second because uncertain data
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analysis is an implicitly multidimensional problem : from uncertain
data we compute statistical parameters (like min and max, or mean
and standard deviation) which form an at least bidimensional space
that should be analyzed and displayed as a whole.

In this work, we propose a set of new results and techniques to visu-
alize uncertain scalar fields in an accurate manner. More precisely
we make the three following contributions:

• we propose a new method based on Perlin noise in conjunc-
tion with colormaps in order to visualize in a combined man-
ner the data and its uncertainty,

• we perform a psychophysical evaluation of contrast sensitivity
thresholds of Perlin noise,

• we validate and extend the results of the perceptive evaluation
for arbitrary choices of the noise parameters using an existing
computational model, in order to accurately control when and
where the uncertainty is made visible.

The paper is structured as follows. In section 2, we describe the
algorithmic machinery of our method, leaving apart perceptual is-
sues. We point out at the end of this section the need to precisely
assess the visibility of the noise patterns. In section 3 we describe
the psychophysical experiment that has been conducted to measure
contrast sensitivity thresholds for a set of given Perlin noise stimuli.
Furthermore we show that the results of this experiment are in com-
plete accordance with an existing computational model. This sec-
tion has an interest per se, it could be used in other research works
where a perception analysis of Perlin noise patterns is needed. In
section 4 we combine the results of the two previous sections in
order to come up with a visualization method for uncertain scalar
data field. We show how the perceptual results of section 3 enable to
control the parameters of the Perlin noise used for the colormap per-
turbation, in order to either ensure the visibility of the uncertainty
for some values, or on the contrary hide the uncertainty for other
values. We demonstrate and discuss the benefits of our method
with various settings, colormaps and data sets. We conclude and
give some possible future work in section 5.

2 Visualization of uncertain data using Perlin
noise

2.1 Previous work

2.1.1 Visualization of uncertainty data

Research on uncertainty visualization began with works from Wit-
tenbrink and Pang, which were mostly targeted on uncertain vec-
tor data in a 2D field [Wittenbrink et al. 1996] and on positional
uncertainty of 3D surfaces [Pang et al. 1997]. Further work pro-
posed uncertainty visualization techniques for a variety of other
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Figure 1: Comparison between classical visualization using color
maps and our technique.

data types such as distribution data [Kao et al. 2005], isosurfaces
and streamlines [Luo et al. 2003]. Despite some effort to clas-
sify uncertainty visualization techniques and give them a theoret-
ical framework [Riveiro 2007; Griethe and Schumann 2006], much
of this research adresses either specific datasets such as astrophysi-
cal data [Li et al. 2007] or medical data [Lundström et al. 2007] or
specific visualization techniques like volume rendering [Djurcilov
et al. 2002].

In this study, we focus on scalar fields, which are both extremely
common and simple to visualize (without considering uncertainty)
using color scales. A color scale provides an unidimensional map-
ping between the values of a scalar field and colors to be displayed
on the screen. It is an important goal for uncertainty visualization
to preserve color scales’ ease of use and efficiency. Several propos-
als have been made to handle this problem by using bidimensional
[Djurcilov et al. 2002] or even tridimensional [Luo et al. 2003] color
maps, mapping both the mean value and one or more higher or-
der statistical parameters about uncertainty (like standard deviation
and kurtosis) to color. These methods succeed in jointly displaying
data and uncertainty information, but at the cost of the readability
and simplicity of use : 2D color maps lack the intuitive data order
present in 1D color maps, which allows to quickly compare values
and understand structures and spatial features in the data.

Other proposals focus on the idea of overlaying the classic color
map visualization with additional visual items depicting uncer-
tainty, such as gratings ([Cedilnik and Rheingans 2000]) and other
repetitive patterns, or glyphs [Viard 2010]. Parameters such as
glyph size, glyph density or line contrast can then be modulated
by the uncertainty information. These methods give interesting re-
sults for visualization of 2D data, but are difficult to adapt to 3D
spaces, where they tend to quickly overload the visualization and
produce visual clutter. Methods using noise or textures to show
uncertainty [Djurcilov et al. 2002] seem slightly more efficient for
3D datasets, but were only tested with direct volume rendering and
could quickly mask the underlying visualization by color mapped
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Figure 2: Bidimensional Perlin noise for a few f0 and p parame-
ters.

data.

2.1.2 Perlin noise

We chose to use Perlin noise [Perlin 1985] in this work because
of its computational speed, existing parallel implementation, and
ease of control of the visual and spectral features by two scalar
parameters (f0 and p, explained below). We refer the reader to the
excellent STAR on Procedural Noise Function [Lagae et al. 2010]
for other possible choices. This section assumes the reader to be
familiar with Perlin noise, and focuses on the notations.

In this work, we will use 4D Perlin noise, with three spatial dimen-
sions that can be written as a position vector x⃗ and a time dimension
t. The algorithm produces a four-dimensional approximately band-
pass, isotropic noise, an animated solid texture N(x⃗, t) with a spa-
tial and temporal frequency content limited to a band around a cen-
tral value determined by the lattice step size. The spatial frequency
can be arbitrarily chosen simply by scaling the texture using an f
parameter : N(fx⃗, t). The same can be done for the time dimen-
sion if desired. Spectral control of the noise can then be achieved
by adding together several successive bands (or octaves) of noise
with a weighted sum :

∑
i

wiN(f02
ix⃗, t) (1)

where N is our basic noise function, x⃗ the spatial coordinates, f0
the fundamental frequency (the scaling parameter of the lowest fre-
quency octave) and wi are the octave weights.

We define the weights as :

wi = pi (2)

with p ∈ [0; 1] being a persistence parameter controlling the spread
of the noise. p = 0 gives mono-octave noise, p = 1 gives a result
close to white noise, and intermediate values generate multi-octave
noises where spectral power decreases with increasing frequency.

These parameters allow us to define a family of procedural textures
as the following functions :



nf0,p(x⃗, t) =
∑
i

piN(f02
ix⃗, t) (3)

These functions will be used in conjunction with color maps to
build our uncertain data visualization technique.

2.2 Visualization technique description

2.2.1 Algorithmic principle

Our goal is to propose a generic method which provides a way to
visualize both a scalar data and a scalar uncertainty information
(like error or standard deviation) on a complex 3D geometry, while
abiding by the following constraints :

• The method should build onto classical 1D color maps, and
the resulting visualization should be immediately understand-
able by anyone familiar with color maps ;

• The uncertainty data should not mask the basic data, or make
its visualization misleading, more complex, less accurate or
more difficult to interpret.

In a classical 3D color scale visualization, the value V (x⃗) of the
data is linearly mapped to a color map coordinate, and then to the
corresponding RGB color value, which is then displayed in the
3D visualization (Figure 1a). In our method, we want to modu-
late this visualization using an uncertainty value U(x⃗). For this,
we use the 4D Perlin noise nf0,p(x⃗, t) described in 2.1.2 and lin-
early scale its values so it has a null mean and takes values in
[−1; 1]. We then multiply the scaled noise by the uncertainty
value, and add the result to the V base value. The result is a
time-varying value V (x⃗) + nf0,p(x⃗, t) · U(x⃗). It takes values in
[V (x⃗)− U(x⃗);V (x⃗) + U(x⃗)], has a mean of V (x⃗), and is used as
a color map coordinate (Figure 1c, 1d).

2.2.2 Implementation

The Perlin noise algorithm has already been implemented on GPU
in previous works [Gustavson 2005]. The whole technique was im-
plemented on GPU using GLSL and tested in a custom demonstra-
tion program written in C++.

2.3 Discussion

Our technique effectively allows to take into account uncertainty
information in the visualization without overloading it with new
visual items. The use of classic 1D colormaps allows the user to
quickly visualize the shape of the scalar field and read numerical
values, and the animated features introduced by Perlin noise effi-
ciently conveys the concept of uncertain and unreliable informa-
tion.

A consequence of our method is that the uncertainty information is
only perceived in the areas where the patterns introduced by Perlin
noise are salient enough to be detected by the human visual system.
A way to take advantage of this behavior is to modify our technique
to use a custom transfer function g on the uncertainty value before
multiplying it with the noise value : V (x⃗) + nf0,p(x⃗, t) · g(U(x⃗)).
The g function can be linear (g(x) = G ·x ; Fig. 3e), in which case
it introduces a simple gain factor G, allowing us to globally make
the uncertainty less or more visible.

However, a high G value tends to make the Perlin noise too salient
for high uncertainty values and disrupts the visualization in the af-
fected areas. We can therefore use non-linear transfert function, like
the piecewise linear function shown in Fig. 3f, which allows us to
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Figure 3: Examples of visualization of an uncertain scalar field
using various techniques. We analyze the results of a 3D thermics
Monte Carlo simulation with 3000 runs. We visualize the mean tem-
perature field (Fig. 3a) as data and the temperature standard devi-
ation field (Fig. 3b) as uncertainty information. We can use either a
linear transfer function (Fig. 3e) to visualize both the temperature
field and the general shape of the uncertainty field,(Fig. 3c) or a
threshold function (Fig. 3f) to show some specific features such as
highly uncertain areas (Fig. 3d).

highlight some specific features of the uncertainty field while con-
trolling the Perlin noise patterns visibility in the whole data field.

In order to put to best use these proposals and to be able to de-
termine when the uncertainty information will and will not be per-
ceived when using our method, it turns out to be necessary to study
how the visual patterns generated by Perlin noise are processed by
the human visual system and under which conditions (especially
the f0 and p parameters values) they can be detected. We therefore
conducted a perceptive evaluation of Perlin noise contrast sensitiv-
ity, which will be presented in the next section.

3 Evaluation of luminance contrast sensitiv-
ity of Perlin Noise

3.1 Previous work

3.1.1 Contrast sensitivity

Luminance contrast sensitivity refers to the ability of the visual sys-
tem to distinguish an object defined by a luminance pattern from a
background. Human contrast sensitivity varies widely with stim-
uli, some visual patterns requiring a much higher luminance dif-
ference than others to be reliably perceived by the visual system.
This variability has been studied for factors like spatial frequency



[Kelly 1979b], temporal frequency [Kelly 1979a], features orienta-
tion [Campbell et al. 1966], retinal eccentricity [Robson and Gra-
ham 1981], overall luminance level (scotopic versus photopic vi-
sion) and stimulus hue [Mullen 1985]. Human contrast sensitivity
also differs significantly between individuals, and evolves with ag-
ing.

The study of the variations of contrast sensitivity with the spatial
frequency power spectrum has led to the concept of contrast sen-
sitivity function, which describes the relationship between the spa-
tial frequency of a carefully chosen stimulus (usually a sine wave
grating or Gabor patch) and the contrast sensitivity of the observers
[Campbell and Robson 1968]. Further work led to the idea of multi-
ple frequency channels in the human visual system [Blakemore and
Campbell 1969]. These findings were used both in the clinical field,
where they were used to develop new diagnosis tools for ophthal-
mology [Owsley 2003], and for modelisation purposes, where they
allowed the development of contrast sensitivity models of human
vision [Watson 2000].

Human contrast sensitivity function measurements show a maxi-
mum around 4 to 5 cycles per degree, with sensitivity decreasing
for lower and higher spatial frequencies. The sensitivity values vary
between subjects and with the other previously discussed factors,
but the shape of the curve and the maximum location remains con-
sistent. Since Perlin noise’s parameters directly control its spatial
power spectrum, we should expect the same overall behavior for
Perlin noise stimuli.

However, we can’t simply rely on previous studies to assess the con-
trast sensitivity for Perlin noise. These studies mostly make use of
sine wave gratings and Gabor patches, which are sine wave gratings
limited by a gaussian envelope. These patterns are completely non-
random and are extremely anisotropic, which results in a very sim-
ple phase spectrum and concentration of all of the contrast energy
along the axis of the sine wave variation. In the opposite, Perlin
noise is a random procedural texture and is mostly isotropic, with
a random phase spectrum and contrast energy spread between all
directions. Current research suggests that while contrast sensitivity
functions accurately describe response to Gabor patterns, they’re
not so useful to explain sensitivity to other stimuli. Notably, mod-
els based on contrast sensitivity filters, often give higher errors for
more complex stimuli like binary noise or natural images [Watson
and Ahumada 2005].

3.1.2 Analysis of Perlin noise

To the best of our knowledge, no psychophysical work on the per-
ceptual characteristics of Perlin noise has been conducted previ-
ously. Some research has been conducted on the spectral and math-
ematical characteristics of noise textures. Lagae et al. reviewed
6 different procedural noises, including Perlin noise [Lagae et al.
2010]. They find that all of them have quite close power spectrums
: approximately band-pass, and (except for wavelet noise) isotropic.

3.2 Experiment: contrast sensitivity thresholds for
Perlin noise

We performed a psychophysical experiment to assess contrast sen-
sitivity thresholds for Perlin noise stimuli with different f0 and p
parameters. Such contrast sensitivity measurement have already
been done in previous works for various other stimuli.

One of these work is the ModelFest database [Carney et al. 1999],
an effort from numerous vision scientists to build a contrast sensi-
tivity threshold database for 43 different stimuli, both simple (gabor
or gaussian patches) and complex (multiple gabor patches, natural
image, ...) The related articles [Carney et al. 1999; Watson 2000]

and the project web site [Watson 1999] define a standard method-
ology to measure sensitivity values for any luminance stimuli.

We decided to follow this method for our experiment. It allows us
to use an already tested and validated methodology, and to directly
compare our results to those obtained for other types of stimuli.
Besides, the ModelFest data has been used to propose computa-
tional models of spatial contrast detection [Watson 2000; Watson
and Ahumada 2005]. We can take advantage of these models to
validate the collected data and extend our work.

3.2.1 Experiment description

Perlin noise luminance stimuli We chose 4 values of each pa-
rameter to perform our experiment : f0 ∈ {2, 4, 8, 16} cpd and
p ∈ {0, 0.25, 0.5, 0.75}. We therefore measured contrast sensitiv-
ity for 16 points (f0, p) of the Perlin noise parameter space.

Following the ModelFest methods, stimuli consisted of 256x256
pixels luminance images, which had to be viewed by the subjects
with a 120 pixels per degree resolution. In order to generate these
stimuli, we wrote a Python program implementing Perlin’s algo-
rithm as described on his web site [Perlin 1999], except it uses the
fifth-order interpolant used in his further work [Perlin 2002]. We
used this program to generate 256x256 arrays containing bidimen-
sional Perlin noise with the required f0 and p values. For p > 0
we used a multiple octave weighted summation as described in sec-
tion 2.1.2. The data for each noise array was centered and rescaled
so the values are in [−1; 1] and have a null mean. Each array was
then multiplied by a gaussian mask with σ = 0.05◦, like most of
the stimuli from the ModelFest database.

In order to generate luminance images with a variable contrast from
these arrays, to each pixel n in the noise array we apply the follow-
ing formula (adapted from [Watson and Ahumada 2005]) :

L(n) = L0(1 + c ∗ n) (4)

where L0 is the mean luminance (30.0cd/m2 from ModelFest
methods) and c the desired Michelson contrast [Michelson 1962].

The resulting luminance stimuli are then used within the experi-
mental setup described in the next section. Note that since Perlin
noise is not a deterministic function, each stimulus is different and
has a random aspect, although they have controlled f0, p, c and L0

values. Preliminary tests and the fact that our psychometric method
converge despite this randomness shows that it doesn’t prevent ef-
ficient threshold determination.

Material and methods We again abided by the requirements of
the ModelFest methods [Watson 1999]. We presented the stimuli
during a 2IFC psychophysical task. For each (f0, p) values we used
the Psi method [Kontsevich and Tyler 1999] to determine the suc-
cessive contrast of the shown stimuli. 30 trials were used to measure
the threshold at each point. Feedback was provided after each trial.

We displayed the previously described 256x256 pixels stimuli on
an LCD computer screen running at 70Hz, with a pixel size of
0.295mm, positioned 2m away from the subjects, thus ensuring
a 120 pixels per degree raster resolution. The subjects looked at the
stimuli with binocular vision and natural pupils. At each trial, the
stimulus was presented during 5 seconds. During this interval, the
contrast followed a Gaussian function of time with σ = 0.125s and
µ = 2.5s. The stimulus therefore faded in, reached its maximum
contrast after 2.5s, and then faded out. The inter-stimulus interval
was set to 0.7s.



The stimuli were presented at the center of the screen, in controlled
lighting conditions. The screen luminance response was charac-
terized before the experiment using a Konica Minolta LS-100 lu-
minance meter, and the measured values were used to compute
lookup tables mapping luminance values to RGB tristimulus val-
ues. The displayed images were grayscale, although we used the
bit-stealing technique [Tyler 1992] to achieve a sufficient number
of luminance levels. Four white L-shaped fixation marks were con-
tinuously presented at the corners of the stimulus display area dur-
ing trials. Outside of this area, the screen remained uniformally
gray with a luminance equal to the mean luminance of the stimuli
L0 = 30.0cd/m2.

7 subjects (6 men and 1 woman) took part to the experiment. All
were aged between 20 and 30 years, had a normal or corrected to
normal vision, and did not report any difficulty about the experi-
ment. One extra subject aborted the experiment before completion
due to a technical problem ; the incomplete data was ignored.

3.2.2 Results

Average threshold values for the 16 (f0, p) points of the Perlin noise
parameter space are presented in Fig. 4a. The reported values are,
as in ModelFest data [Watson 1999], estimates of the contrast value
yielding 84% of correct answers. They are expressed in decibels
(1dB = 20log10(c), where c is the Michelson contrast).

As could be expected, Perlin noise’s base frequency parameter
(f0) produces an effect analog to Gabor patches’ spatial frequency.
Qualitatively, the contrast sensitivity has the same behavior : low
values for low frequency, a maximum for intermediate frequencies
(f0 = 4cpd in our parameter space) and a decrease for higher fre-
quencies. This behavior is present for all persistence values, al-
though variations are less important at higher persistences. At any
given frequency, sensitivity also decreases with persistence.

The descriptive statistics about our results confirm the good qual-
ity of our data. The variability among the observers (RMS0 =
2.73dB), the error associated to the mean sensitivity of the ob-
servers (RMS1 = 1.59dB), and the standard deviation of the ob-
server sensitivities (RMS2 = 2.22dB) are all inferior to the values
reported by [Watson and Ahumada 2005] in their own dataset.

3.3 Results discussion

Comparison with ModelFest data describing contrast thresholds for
Gabor patches (Fig. 4c) shows that sensitivity is globally lower for
Perlin noise, except for high frequencies. This behavior can first
be explained by the power spectrum of the stimuli : Gabor patches
have much more compact power spectra, with all of the contrast
energy tightly concentrated around the sine wave grating’s spatial
frequency. When this frequency corresponds to the peak sensitiv-
ity of the human visual system, very low thresholds are measured.
Perlin noise textures have controlled power spectra too [Lagae et al.
2010] but the contrast energy is not as concentrated as for Gabor
patches. Therefore, even when the power spectrum is centered on
high sensitivity frequencies, much of the contrast energy is directed
to less sensitive frequency channels, which gives higher contrast
thresholds. This is even more the case for high persistence noise,
where the multiple frequency bands that are added together to gen-
erate the final stimulus increase contrast energy in high frequencies,
at the expense of high sensitivity medium frequencies.

We can also explain this behavior by the other specific features of
Perlin noise textures : they are approximately isotropic, they are
highly random (both statistically and visually), and they mimic nat-
ural textures. Current research shows that contrast sensitivity are
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(b) Comparison between experimental values (in red) and model
output (in green)
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Figure 4: Experimental results of Perlin noise contrast sensitivity
assessment (Fig. 4a) compared to values predicted by a computa-
tional model (Fig. 4b) and to measured values for Gabor patches
(Fig. 4c).
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Figure 5: Schematic description of Watson & Ahumada’s “Stan-
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lower for isotropic and highly random stimuli like white noise [Wat-
son and Ahumada 2005, stimulus 35] than for the non-random,
highly anisotropic patterns usually used in contrast sensitivity re-
search. The same can be said for natural images [Watson and Ahu-
mada 2005, stimulus 43].

3.3.1 Comparison and extension using Watson & Ahumada’s
“Standard A” model

Our bidimensional parameter space forced us to make some com-
promises when designing our experiment. In order to keep an ac-
ceptable experiment duration while maintaining a good data quality,
we had to limit our exploration of the parameter space to 16 points,
corresponding to only 4 values of each parameter.

In an attempt to extend this data and achieve a more complete ex-
ploration of the parameter space, we used a computational contrast
sensitivity model. Contrast sensitivity models attempt to simulate
the detection behavior of the human visual system and to predict
contrast sensitivity thresholds for any stimulus.

[Watson and Ahumada 2005] describe several such models, fit their
parameters using the ModelFest data base, discuss the results and
propose two standard models combining relative simplicity and
good threshold prediction. We chose to use one of these model,
the “Standard A” model. It has a modular structure described in
Fig. 5, and is composed of 5 components which implement differ-
ent aspects of the behavior of the human visual system performing
a detection task.

This model uses 7 parameters, which were estimated by the authors
using numerical optimization routines to fit to the ModelFest data.
We used the optimal model as described in the paper, without any
modification, adaptation or parameter change. We implemented it
as a Python program and ran it on our experimental stimuli and
other Perlin noise textures.

We chose 128 points of the (f0, p) parameter space, with f0 taking
8 values from 2 to 22.627 cpd on a logarithmic scale, and p taking
16 values from 0 to 0.9375 on a linear scale. 16 of these points
correspond to our experimental stimuli, so we can directly compare
the model output to the psychophysical data. For each point, 1000
Perlin noise stimuli were generated and observed by the model and
the mean value was used.

Comparison between experimentally measured mean sensitivities
values and values predicted by the model for these 16 points
show an excellent fit between model and data : the RMS error is
RMSm = 0.892dB, which is inferior to the error [Watson and
Ahumada 2005] found with the very dataset used to fit the model
parameters (1.329dB). This result validates our experimental re-
sult by showing they are consistent with current knowledge of hu-
man contrast sensitivity. It also shows that the “Standard A” model
is an efficient general model of human contrast detection, able to
generalize to arbitrary stimuli with a good prediction power.

This good model fit for our stimuli allows us to use the model to es-
timate the human contrast sensitivities to Perlin noise textures with
other parameters values, using the full 128 points dataset. The result
is shown in Fig. 4b in green, together with the original experimental
values in red. The extended values obtained using the model con-

(a) Linear luminance black-body radiation color scale,
piecewise-linear transfer function.

(b) Rainbow color scale, piecewise-linear transfer function.

Figure 6: Visualization of uncertain data from the same 3D ther-
mics simulation as presented in Fig. 3, using the non-linear trans-
fer function shown on Fig. 3f and two different color maps. The
round, bubble-shaped high-uncertainty areas present in the data
(see Fig. 3b) are highlighted by the chosen settings.

firm the precedent trends about the parameter effects : sensitivity
always decreases with p, and reaches a maximum for intermediate
f0 values around 4-5 cpd.

4 Perceptually adapted uncertainty visualiza-
tion

In this section we use the results of the constrast sensitivity exper-
iment described in the previous section in order to drive the uncer-
tainty visualization algorithm explained in section 2.

As visualization scenes are very different and much more complex
than Perlin noise experimental stimuli, we cannot expect our per-
ceptual study to completely explain the perceptual behavior of the
user. Especially, we measured thresholds for static noise while our
visualization technique uses animated noise, we limited our study



to foveal vision although visual exploration of large images uses
both foveal and peripheral vision, and we used black and white lu-
minance stimuli while our method is based on color maps, which
implies both luminance and hue variations.

However, our study gives useful insights about the influence of base
frequency and persistence on the visibility of the noise patterns.
This allows us to build a perceptively adapted uncertainty visual-
ization technique, using the Perlin noise parameters to control the
uncertainty values that will be shown.

This process is illustrated in Fig. 7. While using a linear transfer
function as explained in section 2.3, the contrast of the luminance
variations introduced by the Perlin noise only depends on the un-
certainty value and the color map. Thanks to our perceptual study,
we can therefore alter the visibility of the Perlin noise patterns for
a given uncertainty by adjusting f0 and p parameters, changing the
visibility threshold value to make the contrast variations greater or
lower than the threshold at a given point.

Since our experiment was conducted using luminance grayscale
stimuli, special care must be taken when choosing the color map for
our visualization. Among other benefits pointed by [Ware 1988],
using a color map which presents a monotonic linear luminance
progression make sure that the principles discussed above remain
applicable at any point of the image. Fig. 6a shows an example
using a linear black body radiation color map.

Other common color maps, like the ubiquitous “rainbow” color
map, are less appropriate, but they usually have an approximately
piecewise-linear luminance profile. Hence, even if we can’t control
the visibility of the uncertainty information for the entire image,
the same technique can still be used locally to achieve perceptu-
ally adapted uncertainty visualization for one specific subset of the
dataset. Figure 6b shows such an example.

By combining this technique with the non-linear transfer function
described in section 2.3, we can both restrict the visualization to
some interest values and control how and when these values are
displayed. This allows us to easily and intuitively show some spe-
cific shapes or features of the uncertainty field, like the bubble-like
high-uncertainty areas in Fig. 6.

5 Conclusion and future work

In this work, we have described a combination of algorithmic tech-
niques and psychophysical study in order to visualize uncertain
scalar information in complex 3D scenes. We built on existing
colormap-based visualization tools and added noise patterns guided
by the uncertainty information in an intuitive and non-disruptive
way. We studied the noise visual primitives by a perceptual evalua-
tion backed by a computational model, and integrated these works
into a perceptually adapted uncertainty visualization method. In
further work, we plan to extend our perceptual study to take into
account the influence of color contrast and temporal variations, and
to conduct user studies to confirm the usability of our technique
for scientific and industrial data exploration. Furthermore we want
to explore the use of more evolved noise patterns, in order to take
into account uncertainty in a more complex way, closer to a com-
plete probability density function (see [Luo et al. 2003]) instead of
simple statistical values.
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Figure 7: Effect of the f0 parameter on the visibility of uncertainty
information. A visualization of uncertain temperature data is shown
for 5 different f0 values (Fig. 7b-7f), with p = 0 and the same lin-
ear transfer function. Depending on the frequency value, the noise
patterns showing uncertainty are above or below threshold sensi-
tivity (Fig. 7a), and can be perceived or not in the red box. (Note:
For best effect and correct spatial frequencies to be achieved on this
figure, this page should be printed in A4 format on a high-definition
color printer and viewed from a distance of 35 centimeters.)


