
HAL Id: hal-00779199
https://hal.archives-ouvertes.fr/hal-00779199v4

Submitted on 17 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequent Calculi with procedure calls
Mahfuza Farooque, Stéphane Graham-Lengrand

To cite this version:
Mahfuza Farooque, Stéphane Graham-Lengrand. Sequent Calculi with procedure calls. 2013. �hal-
00779199v4�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49753668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00779199v4
https://hal.archives-ouvertes.fr

Sequent calculi with procedure calls

Mahfuza Farooque1, Stéphane Graham-Lengrand1,2

1 CNRS
2 Ecole Polytechnique

Project PSI: “Proof Search control in Interaction with domain-specific methods”

ANR-09-JCJC-0006

17th September 2013

Abstract

In this paper, we introduce two focussed sequent calculi, LKp(T) and LK+(T), that are
based on Miller-Liang’s LKF system [LM09] for polarised classical logic. The novelty is that
those sequent calculi integrate the possibility to call a decision procedure for some background
theory T , and the possibility to polarise literals "on the fly" during proof-search.

These features are used in other works [FLM12, FGLM13] to simulate the DPLL(T) pro-
cedure [NOT06] as proof-search in the extension of LKp(T) with a cut-rule.

In this report we therefore prove cut-elimination in LKp(T).
Contrary to what happens in the empty theory, the polarity of literals affects the prov-

ability of formulae in presence of a theory T . On the other hand, changing the polarities of
connectives does not change the provability of formulae, only the shape of proofs.

In order to prove this, we introduce a second sequent calculus, LK+(T) that extends
LKp(T) with a relaxed focussing discipline, but we then show an encoding of LK+(T) back
into the more restrictive system LK(T).

We then prove completeness of LKp(T) (and therefore of LK+(T)) with respect to first-
order reasoning modulo the ground propositional lemmas of the background theory T .

Contents

1 LK
p(T): Definitions 2

2 Admissibility of basic rules 4

3 Invertibility of the asynchronous phase 5

4 On-the-fly polarisation 10

5 Cut-elimination 15
5.1 Cuts with the theory . 15
5.2 Safety and instantiation . 17
5.3 More general cuts . 21

6 Changing the polarity of connectives 26

7 Completeness 39

8 The system used for simulation of DPLL(T) 44

1 LKp(T): Definitions

The sequent calculus LKp(T) manipulates the formulae of first-order logic, with the specificity
that connectives are of one of two kinds: positive ones and negative ones, and each boolean
connective comes in two versions, one of each kind. This section develops the preliminaries
and the definition of the LKp(T) system.

Definition 1 (Terms and literals) Consider an infinite set of elements called variables.
The set of terms over a first-order (function) signature FΣ is defined by:

t, t1, t2, . . . := x | f(t1, . . . , tn)
with f/n (f of arity n) ranging over FΣ and x ranging over variables.

Let PΣ be a first-order predicate signature equipped with an involutive and arity-preserving
function called negation. The negation of a predicate symbol P is denoted P⊥.

Let L⊤ be the set {P (t1, . . . , tn) | P/n ∈ PΣ, t1, . . . tn terms}, to which we extend the
involutive function of negation with:

(P (t1, . . . , tn))⊥ := P⊥(t1, . . . , tn)

The substitution, in a term t′, of a term t for a variable x, denoted
{

t�x

}

t′, is defined as usual,

and straightforwardly extended to elements of L⊤.
In the rest of this chapter, we consider a subset L ⊆ L⊤, of elements called literals and

denoted l, l1, l2 . . ., that is closed under negation and under substitution.1

For a set A of literals, we write
{

t�x

}

A for the set {
{

t�x

}

l | l ∈ A}. The closure of A under

all possible substitutions is denoted A↓. ※

Notation 2 We often write V,V ′ for the set or multiset union of V and V ′.

Remark 1 Negation obviously commutes with substitution.

Definition 3 (Inconsistency predicates)
An inconsistency predicate is a predicate over sets of literals

1. satisfied by the set {l, l⊥} for every literal l;

2. that is upward closed (if a subset of a set satisfies the predicate, so does the set);

3. such that if the sets A, l and A, l⊥ satisfy it, then so does A.

4. such that if a set A satisfies it, then so does
{

t�x

}

A.

The smallest inconsistency predicate is called the syntactical inconsistency predicate2. If a
set A of literals satisfies the syntactically inconsistency predicate, we say that P is syntactically

inconsistent, denoted P |=. Otherwise A is syntactically consistent.
In the rest of this chapter, we specify a “theory” T by considering another inconsistency

predicate called the semantical inconsistency predicate. If a set A of literals satisfies it, we say
that A is semantically inconsistent, denoted by A |=T . Otherwise A is semantically consistent.

※

Remark 2

• In the conditions above, (1) corresponds to basic inconsistency, (2) corresponds to weak-
ening, (3) corresponds to cut-admissibility and (4) corresponds to stability under instan-
tiation. Contraction is built-in because inconsistency predicates are predicates over sets
of literals (not multisets).

• If A is syntactically consistent,
{

t�x

}

A might not be syntactically consistent.

Definition 4 (Formulae)
The formulae of polarised classical logic are given by the following grammar:

Formulae A,B, . . . ::= l
| A∧+B | A∨+B | ∃xA | ⊤+ | ⊥+

| A∧−B | A∨−B | ∀xA | ⊤− | ⊥−

1Very often we will take L = L⊤, but it is not a necessity.
2It is the predicate that is true of a set A of literals iff A contains both l and l⊥ for some l ∈ L.

2

where l ranges over L.
The set of free variables of a formula A, denoted FV(A), and α-conversion, are defined as

usual so that both ∃xA and ∀xA bind x in A.
The size of a formula A, denoted ♯(A), is its size as a tree (number of nodes).
Negation is extended from literals to all formulae:

(A∧+B)⊥ := A⊥∨−B⊥ (A∧−B)⊥ := A⊥∨+B⊥

(A∨+B)
⊥

:= A⊥∧−B⊥ (A∨−B)⊥ := A⊥∧+B⊥

(∃xA)⊥ := ∀xA⊥ (∀xA)⊥ := ∃xA⊥

(⊤+)
⊥

:= ⊥− (⊤−)⊥ := ⊥+

(⊥+)⊥ := ⊤− (⊥−)⊥ := ⊤+

The substitution in a formula A of a term t for a variable x, denoted
{

t�x

}

A, is defined in the
usual capture-avoiding way. ※

Notation 5 For a set (resp. multiset) V of literals / formulae, V⊥ denotes {A⊥ | A ∈ V}
(resp. {{A⊥ | A ∈ V}}). Similarly, we write

{

t�x

}

V for {
{

t�x

}

A | A ∈ V} (resp. {{
{

t�x

}

A | A ∈

V}}), and FV(V) for the set
⋃

A∈V
FV(A).

Definition 6 (Polarities)
A polarisation set P is a set of literals (P ⊆ L) that is syntactically consistent, and such that

FV(P) is finite.
Given such a set, we define P-positive formulae and P-negative formulae as the formulae

generated by the following grammars:

P-positive formulae P, . . . ::= p | A∧+B | A∨+B | ∃xA | ⊤+ | ⊥+

P-negative formulae N, . . . ::= p⊥ | A∧−B | A∨−B | ∀xA | ⊤− | ⊥−

where p ranges over P .
In the rest of the chapter, p, p′,. . . will denote a literal that is P-positive, when the polarisation

set P is clear from context.
Let UP be the set of all P-unpolarised literals, i.e. literals that are neither P-positive nor

P-negative. ※

Remark 3 Notice that the negation of a P-positive formula is P-negative and vice versa.
On the contrary, nothing can be said of the polarity of the result of substitution on a literal
w.r.t. the polarity of the literal: e.g. l could be in P-positive, while

{

t�x

}

l could be P-negative
or P-unpolarised.

Definition 7 (LK
p(T)) The sequent calculus LKp(T) manipulates two kinds of sequents:

Focused sequents Γ ⊢P [A]
Unfocused sequents Γ ⊢P ∆

where P is a polarisation set, Γ is a (finite) multiset of literals and P-negative formulae, ∆ is
a (finite) multiset of formulae, and A is said to be in the focus of the (focused) sequent.

By litP(Γ) we denote the sub-multiset of Γ consisting of its P-positive literals (i.e. P ∩ Γ as
a set).

The rules of LKp(T), given in Figure 1, are of three kinds: synchronous rules, asynchronous

rules, and structural rules. These correspond to three alternating phases in the proof-search process
that is described by the rules. ※

The gradual proof-tree construction defined by the inference rules of LKp(T) is a goal-
directed mechanism whose intuition can be given as follows:

Asynchronous rules are invertible: (∧−) and (∨−) are applied eagerly when trying to
construct the proof-tree of a given sequent; (Store) is applied when hitting a literal or a
positive formula on the right-hand side of a sequent, storing its negation on the left.

When the right-hand side of a sequent becomes empty, a sanity check can be made with
(Init2) to check the semantical consistency of the stored (positive) literals (w.r.t. the theory),
otherwise a choice must be made to place a formula in focus which is not P-negative, before
applying synchronous rules like (∧+) and (∨+). Each such rule decomposes the formula in
focus, keeping the revealed sub-formulae in the focus of the corresponding premises, until a

3

Synchronous rules

Γ ⊢P [A] Γ ⊢P [B]
(∧+)

Γ ⊢P [A∧+B]

Γ ⊢P [Ai]
(∨+)

Γ ⊢P [A1∨+A2]

Γ ⊢P [
{

t�x

}

A]
(∃)

Γ ⊢P [∃xA]

(⊤+)
Γ ⊢P [⊤+]

litP(Γ), l⊥ |=T

(Init1) l is P-positive
Γ ⊢P [l]

Γ ⊢P N
(Release) N is not P-positive

Γ ⊢P [N]

Asynchronous rules

Γ ⊢P A, ∆ Γ ⊢P B, ∆
(∧−)

Γ ⊢P A∧−B, ∆

Γ ⊢P A1, A2, ∆
(∨−)

Γ ⊢P A1∨−A2, ∆

Γ ⊢P A, ∆
(∀) x /∈ FV(Γ, ∆, P)

Γ ⊢P (∀xA), ∆

Γ ⊢P ∆
(⊥−)

Γ ⊢P ∆, ⊥−
(⊤−)

Γ ⊢P ∆, ⊤−

Γ, A⊥ ⊢P;A⊥

∆
(Store)

A is a literal
or is P-positiveΓ ⊢P A, ∆

Structural rules

Γ, P ⊥ ⊢P [P]
(Select) P is not P-negative

Γ, P ⊥ ⊢P

litP(Γ) |=T

(Init2)
Γ ⊢P

where P ; A := P , A if A ∈ UP

P ; A := P if not

Figure 1: System LKp(T)

positive literal or a non-positive formula is obtained: the former case must be closed imme-
diately with (Init1) calling the decision procedure, and the latter case uses the (Release) rule
to drop the focus and start applying asynchronous rules again. The synchronous and the
structural rules are in general not invertible, and each application of those yields a potential
backtrack point in the proof-search.

Remark 4 The polarisation of literals (if not already polarised) happens in the (Store) rule,
where the construction P ;A plays a crucial role. It will be useful to notice the commutation
P ;A;B = P ;B;A unless A = B⊥ ∈ UP .

2 Admissibility of basic rules

In this section, we show the admissibility and invertibility of some rules, in order to prove the
meta-theory of LKp(T).

Lemma 5 (Weakening and contraction) The following rules are height-preserving admiss-
ible in LKp(T):

Γ ⊢P ∆
(Wl)

Γ, A ⊢P ∆

Γ ⊢P [B]
(Wf)

Γ, A ⊢P [B]

Γ, A,A ⊢P ∆
(Cl)

Γ, A ⊢P ∆

Γ, A,A ⊢P [B]
(Cf)

Γ, A ⊢P [B]

Γ ⊢P ∆, A,A
(Cr)

Γ ⊢P ∆, A

Proof: By induction on the derivation of the premiss. �

4

Lemma 6 (Identities) The identity rules are admissible in LKp(T):

(Id1) l is P-positive
Γ, l ⊢P [l]

(Id2)
Γ, l, l⊥ ⊢P

Proof: It is trivial to prove Id1.
If l or l⊥ is P-positive, the Id2 rule can be obtained by a derivation of the following form:

(Id1)
Γ, l, l⊥ ⊢P [l]

Γ, l, l⊥ ⊢P

where l is assumed to be the P-positive literal.
If l ∈ UP , we polarise it positively with

Γ, l, l⊥, l ⊢P,l

(Store)
Γ, l, l⊥ ⊢P l⊥

(Release)
Γ, l, l⊥ ⊢P [l⊥]

Γ, l, l⊥ ⊢P

�

3 Invertibility of the asynchronous phase

We have mentioned that the asynchronous rules are invertible; now in this section, we prove
it.

Lemma 7 (Invertibility of asynchronous rules) All asynchronous rules are invertible in
LK(T).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule
considered.

• Inversion of A∧−B: by case analysis on the last rule actually used
– (∧−)

Γ ⊢P A∧−B,C,∆′ Γ ⊢P A∧−B,D,∆′

Γ ⊢P A∧−B,C∧−D,∆′

By induction hypothesis we get

Γ ⊢P A,C,∆′ Γ ⊢P A,D,∆′

Γ ⊢P A,C∧−D,∆′

and
Γ ⊢P B,C,∆′ Γ ⊢P B,D,∆′

Γ ⊢P B,C∧−D,∆′

– (∨−)
Γ ⊢P A∧−B,C,D,∆′

Γ ⊢P A∧−B,C∨−D,∆′

By induction hypothesis we get

Γ ⊢P A,C,D,∆′

Γ ⊢P A,C∨−D,∆′

and
Γ ⊢P B,C,D,∆′

Γ ⊢P B,C∨−D,∆′

5

– (∀)
Γ ⊢P A∧−B,C,∆′

x /∈ FV(Γ,∆′, A∧−B)
Γ ⊢P A∧−B, (∀xC),∆′

By induction hypothesis we get

Γ ⊢P A,C,∆′

x /∈ FV(Γ,∆′, A)
Γ ⊢P A, (∀xC),∆′

and
Γ ⊢P B,C,∆′

x /∈ FV(Γ,∆′, B)
Γ ⊢P B, (∀xC),∆′

– (Store)
Γ, C⊥ ⊢P;C⊥

A∧−B,∆′

C literal or P-positive formula
Γ ⊢P A∧−B,C,∆′

By induction hypothesis we get

Γ, C⊥ ⊢P;C⊥

A,∆′

C literal or P-positive formula
Γ ⊢P A,C,∆′

and
Γ, C⊥ ⊢P;C⊥

B,∆′

C literal or P-positive formula
Γ ⊢P B,C,∆′

– (⊥−)
Γ ⊢P A∧−B,∆′

Γ ⊢P A∧−B,⊥−,∆′

By induction hypothesis we get

Γ ⊢P A,∆′

Γ ⊢P A,⊥−,∆′

and
Γ ⊢P B,∆′

Γ ⊢P B,⊥−,∆′

– (⊤−)

Γ ⊢P A∧−B,⊤−,∆′

We get

Γ ⊢P A,⊤−,∆′ and
Γ ⊢P B,⊤−,∆′

• Inversion of A∨−B: by case analysis on the last rule
– (∧−)

Γ ⊢P A∨−B,C,∆′ Γ ⊢P A∨−B,D,∆′

Γ ⊢P A∨−B,C∧−D,∆′

By induction hypothesis we get

Γ ⊢P A,B,C,∆′ Γ ⊢P A,B,D,∆′

Γ ⊢P A,B,C∧−D,∆′

– (∨−)
Γ ⊢P A∨−B,C,D,∆′

Γ ⊢P A∨−B,C∨−D,∆′

6

By induction hypothesis we get

Γ ⊢P A,B,C,D,∆′

Γ ⊢P A,B,C∨−D,∆′

– (∀)
Γ ⊢P A∨−B,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢P A∨−B, (∀xC),∆′

By induction hypothesis we get

Γ ⊢P A,B,C,∆′

x /∈ FV(Γ,∆′)
Γ ⊢P A,B, (∀xC),∆′

– (Store)
Γ, C⊥ ⊢P;C⊥

A∨−B,∆′

C literal or P-postive formula
Γ ⊢P A∨−B,C,∆′

By induction hypothesis we get

Γ, C⊥ ⊢P;C⊥

A,B,∆′

C literal or P-positive formula
Γ ⊢P A,B,C,∆′

– (⊥−)
Γ ⊢P A∨−B,∆′

Γ ⊢P A∨−B,⊥−,∆′

By induction hypothesis we get

Γ ⊢P A,B,∆′

Γ ⊢P A,B,⊥−,∆′

– (⊤−)

Γ ⊢P A∨−B,⊤−,∆′

We get

Γ ⊢P A,B,⊤−,∆′

• Inversion of ∀xA: by case analysis on the last rule
– (∧−)

Γ ⊢P (∀xA),C,∆′ Γ ⊢P (∀xA),D,∆′

Γ ⊢P (∀xA),C∧−D,∆′

By induction hypothesis we get

Γ ⊢P A,C,∆′ Γ ⊢P A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢P A,C∧−D,∆′

– (∨−)
Γ ⊢P (∀xA), C,D,∆′

Γ ⊢P (∀xA),C∨−D,∆′

By induction hypothesis we get

Γ ⊢P A,C,D,∆′

Γ ⊢P A,C∨−D,∆′

7

– (∀)
Γ ⊢P (∀xA),D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢P (∀xA), (∀xD),∆′

By induction hypothesis we get

Γ ⊢P A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢P A, (∀xD),∆′

– (Store)
Γ, C⊥ ⊢P;C⊥

(∀xA),∆′

C literal or P-positive formula
Γ ⊢P (∀xA), C,∆′

By induction hypothesis we get

Γ, C⊥ ⊢P;C⊥

A,∆′

C literal or P-positive formula
Γ ⊢P A,C,∆′

– (⊥−)
Γ ⊢P (∀xA),∆′

Γ ⊢P (∀xA),⊥−,∆′

By induction hypothesis we get

Γ ⊢P A,∆′

Γ ⊢P A,⊥−,∆′

– (⊤−)

Γ ⊢P (∀xA),⊤−,∆′

We get

Γ ⊢P A,⊤−,∆′

• Inversion of (Store): where A is a literal or P-positive formula.
By case analysis on the last rule

– (∧−)
Γ ⊢P A,C,∆′ Γ ⊢P A,D,∆′

Γ ⊢P A,C∧−D,∆′

By induction hypothesis we get

Γ, A⊥ ⊢P;A⊥

C,∆′ Γ, A⊥ ⊢P;A⊥

D,∆′

Γ, A⊥ ⊢P;A⊥

C∧−D,∆′

– (∨−)
Γ ⊢P A,C,D,∆′

Γ ⊢P A,C∨−D,∆′

By induction hypothesis
Γ, A⊥ ⊢P;A⊥

C,D,∆′

Γ, A⊥ ⊢P;A⊥

C∨−D,∆′

– (∀)
Γ ⊢P A,D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢P A, (∀xD),∆′

By induction hypothesis we get

Γ, A⊥ ⊢P;A⊥

D,∆′

x /∈ FV(Γ,∆′)
Γ, A⊥ ⊢P;A⊥

(∀xD),∆′

8

– (Store)

Γ, B⊥ ⊢P;B⊥

A,∆′

B literal or P-positive formula
Γ ⊢P A,B,∆′

By induction hypothesis we can construct:

Γ, A⊥, B⊥ ⊢P;B⊥;A⊥

∆′

Γ, A⊥ ⊢P;A⊥

B,∆′

provided P ;B⊥;A⊥ = P ;A⊥;B⊥, which is always the case unless A = B⊥ and
A ∈ UP , in which case we build:

(Id2)
Γ, A⊥, B⊥ ⊢P;A⊥;B⊥

∆′

Γ, A⊥ ⊢P;A⊥

B,∆
– (⊥−)

Γ ⊢P A,∆′

Γ ⊢P A,⊥−,∆′

By induction hypothesis we get

Γ, A⊥ ⊢P;A⊥

∆′

Γ, A⊥ ⊢P;A⊥

⊥−,∆′

– (⊤−)

Γ ⊢P A,⊤−,∆′

We get

Γ, A⊥ ⊢P;A⊥

⊤−,∆′

• Inversion of (⊥−): by case analysis on the last rule
– (∧−)

Γ ⊢P ⊥−, C,∆′ Γ ⊢P ⊥−,D,∆′

Γ ⊢P ⊥−, C∧−D,∆′

By induction hypothesis we get

Γ ⊢P C,∆′ Γ ⊢P D,∆′

Γ ⊢P C∧−D,∆′

– (∨−)
Γ ⊢P ⊥−, C,D,∆′

Γ ⊢P ⊥−, C∨−D,∆′

By induction hypothesis
Γ ⊢P C,D,∆′

Γ ⊢P C∨−D,∆′

– (∀)
Γ ⊢P ⊥−, D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢P ⊥−, (∀xD),∆′

By induction hypothesis we get

Γ ⊢P D,∆′

x /∈ FV(Γ,∆′)
Γ ⊢P (∀xD),∆′

9

– (Store)

Γ, B⊥ ⊢P;B⊥

⊥−,∆′

B literal or P-positive formula
Γ ⊢P ⊥−, B,∆′

By induction hypothesis we get

Γ, B⊥ ⊢P;B⊥

∆′

B literal or P-positive formula
Γ ⊢P B,∆′

– (⊥−)
Γ ⊢P ⊥−,∆′

Γ ⊢P ⊥−,⊥−,∆′

By induction hypothesis we get

Γ ⊢P ∆′

Γ ⊢P ⊥−,∆′

– (⊤−)

Γ ⊢P ⊤−,⊥−,∆′

We get

Γ ⊢P ⊤−,∆′

• Inversion of (⊤−): Nothing to do.
�

4 On-the-fly polarisation

The side-conditions of the LKp(T) rules make it quite clear that the polarisation of literals
plays a crucial role in the shape of proofs. The less flexible the polarisation of literals is, the
more structure is imposed on proofs. We therefore concentrated the polarisation of literals
in just one rule: (Store). In this section, we describe more flexible ways of changing the
polarity of literals without modifying the provability of sequents. We do this by showing the
admissibility and invertibility of some “on-the-fly” polarisation rules.

Lemma 8 (Invertibility) The following rules are invertible in LKp(T):

Γ ⊢P,l ∆
(Pol) litP,l(Γ,∆⊥), l⊥ |=T

Γ ⊢P ∆

Γ ⊢P,l [A]
(Poli) litP,l(Γ), l⊥ |=T

Γ ⊢P [A]
where l ∈ UP .

Proof: By simultaneous induction on the derivation of the conclusion (by case analysis on
the last rule used in that derivation):

• (∧−),(∨−),(∀),(⊥−),(⊤−)
For these rules, whatever is done with the polarisation set P can be done with the
polarisation set P , l:

Γ ⊢P A,∆ Γ ⊢P B,∆

Γ ⊢P A∧−B,∆

Γ ⊢P,l A,∆ Γ ⊢P,l B,∆

Γ ⊢P,l A∧−B,∆

Γ ⊢P A,B,∆

Γ ⊢P A∧−B,∆

Γ ⊢P,l A,B,∆

Γ ⊢P,l A∨−B,∆

Γ ⊢P A,∆

Γ ⊢P ∀xA,∆

Γ ⊢P,l A,∆

Γ ⊢P,l ∀xA,∆

Γ ⊢P ∆

Γ ⊢P ⊥−,∆

Γ ⊢P,l ∆

Γ ⊢P,l ⊥−,∆

10

Γ ⊢P ⊤−,∆ Γ ⊢P,l ⊤−,∆

• (Store): We assume

Γ, A⊥ ⊢P;A⊥

∆
A is a literal or is P-positive

Γ ⊢P A,∆

Notice that A is either a literal or a P , l-positive formula, so can prove

Γ, A⊥ ⊢P,l;A⊥

∆

Γ ⊢P,l A,∆
provided we can prove the premiss.

– If A 6= l, then P , l;A⊥ = P ;A⊥, l and applying the induction hypothesis finishes
the proof (unless A = l⊥ in which case the derivable sequent Γ, A⊥ ⊢P;A⊥

∆ is the
same as the premiss to be proved);

– If A = l, we build

litP′,l(Γ, l
⊥,Γ′), l⊥ |=T

(Init1)
Γ, l⊥,Γ′ ⊢P′,l [l]

Γ, l⊥,Γ′ ⊢P′,l

(Store)
Γ,Γ′ ⊢P′,l l

(Store)==============
Γ ⊢P,l l,∆

for some P ′ ⊇ P and some Γ′ ⊇ litL(∆⊥). The closing condition litP′,l(Γ, l
⊥,Γ′), l⊥ |=T

holds, since litP,l(Γ, l⊥,∆⊥), l⊥ ⊆ litP′,l(Γ, l⊥, litL(∆⊥)), l⊥ is assumed inconsistent.
• (Select): We assume

Γ ⊢P [A] A is not P-negative
A⊥ ∈ ΓΓ ⊢P

– If A 6= l⊥, then A is not P , l-negative and we can use the induction hypothesis
(invertibility of Poli) to construct:

Γ ⊢P,l [A]

Γ ⊢P,l

– If A = l⊥, then l ∈ Γ and the hypothesis can only be derived by

Γ, l ⊢P,l

Γ ⊢P l⊥

Γ ⊢P [l⊥]

Γ ⊢P

as P ; l = P , l; then we can construct:

Γ, l ⊢P,l

(Cl)
Γ ⊢P,l

• (Init2): We assume
litP(Γ) |=T

Γ ⊢P

We build
litP,l(Γ) |=T

Γ ⊢P,l

• (∧+),(∨+),(∃),(⊤+)
Again, for these rules, whatever is done with the polarisation set P can be done with
the polarisation set P , l:

Γ ⊢P [A] Γ ⊢P [B]

Γ ⊢P [A∧+B]

Γ ⊢P,l [A] Γ ⊢P,l [B]

Γ ⊢P,l [A∧+B]

11

Γ ⊢P [Ai]

Γ ⊢P [A1∨+A2]

Γ ⊢P,l [Ai]

Γ ⊢P,l [A1∨+A2]

Γ ⊢P [
{

t
�x

}

A]

Γ ⊢P [∃xA]

Γ ⊢P,l [
{

t
�x

}

A]

Γ ⊢P,l [∃xA]

Γ ⊢P [⊤+] Γ ⊢P,l [⊤+]

• (Release): We assume
Γ ⊢P A

Γ ⊢P [A]

where A is not P-positive.
– If A 6= l, then we build:

Γ ⊢P,l A

Γ ⊢P,l [A]

since A is not P , l-positive, and we close the branch by applying the induction
hypothesis (invertibility of Pol), whose side-condition litP,l(Γ, A⊥), l⊥ |=T is implied
by litP,l(Γ), l⊥ |=T .

– if A = l then we build
litP,l(Γ), l⊥ |=T

Γ ⊢P,l [l]

where litP,l(Γ), l⊥ |=T is the side-condition of (Poli) that we have assumed.
• (Init1) We assume

Γ ⊢P [l′]

with litP(Γ), l′⊥
|=T and l′ is P-positive.

We build:

Γ ⊢P,l [l′]

since l′ is P , l-positive and litP,l(Γ), l′⊥
|=T .

�

Corollary 9 The following rules are admissible in LKp(T):

Γ, A⊥ ⊢P ∆
(Store=)

Γ ⊢P A,∆

Γ ⊢P ∆
(Wr)

Γ ⊢P ∆,∆′

where A is a literal or a P-positive formula.

Proof: For the first rule: if A is polarised, we use (Store) and it does not change P ; otherwise
A is an unpolarised literal l and we build

Γ, l⊥ ⊢P ∆

Γ, l⊥ ⊢P,l⊥

∆
(Store)

Γ ⊢P l,∆
The topmost inference is the invertibility of (Pol), given that litP,l⊥(Γ, l⊥), l |=T .

For the second case, we simply do a multiset induction on ∆′, using rule (Store=) for the
base case, followed by a left weakening. �

Now we can show that removing polarities is admissible:

Lemma 10 (Admissibility) The following rules are admissible in LKp(T):

Γ ⊢P,l ∆
(Pol)

Γ ⊢P ∆

Γ ⊢P,l [A]
(Pola) l /∈ Γ or litP(Γ), l⊥ |=T

Γ ⊢P [A]
where l ∈ UP .

12

Proof: By a simultaneous induction on the derivation of the premiss, again by case analysis
on the last rule used in the assumed derivation.

• (∧−),(∨−),(∀),(⊥−),(⊤−)
For these rules, whatever is done with the polarisation set P , l can be done with the
polarisation set P :

Γ ⊢P,l A,∆ Γ ⊢P,l B,∆

Γ ⊢P,l A∧−B,∆

Γ ⊢P A,∆ Γ ⊢P B,∆

Γ ⊢P A∧−B,∆

Γ ⊢P,l A,B,∆

Γ ⊢P,l A∨−B,∆

Γ ⊢P A,B,∆

Γ ⊢P A∧−B,∆

Γ ⊢P,l A,∆

Γ ⊢P,l ∀xA,∆

Γ ⊢P A,∆

Γ ⊢P ∀xA,∆

Γ ⊢P,l ∆

Γ ⊢P,l ⊥−,∆

Γ ⊢P ∆

Γ ⊢P ⊥−,∆

Γ ⊢P,l ⊤−,∆ Γ ⊢P ⊤−,∆

• (Store): We assume

Γ, A⊥ ⊢P,l;A⊥

∆
A is a literal or P , l-positive

Γ ⊢P,l A,∆

Notice that A is either a literal or a P-positive formula.
– If A = l⊥, we build

Γ, A⊥ ⊢P,A⊥

∆
(Store)

Γ ⊢P A,∆

whose premiss is the derivable sequent Γ, A⊥ ⊢P,l;A⊥

∆.
– If A = l, we build

Γ, A⊥ ⊢P ∆
(Store=)

Γ ⊢P A,∆
using the admissibility of Store=, and we can prove the premiss from the induction
hypothesis, as we have P , l;A⊥ = P , l.

– In all other cases, we build

Γ, A⊥ ⊢P;A⊥

∆
(Store)

Γ ⊢P A,∆
whose premiss is provable from the induction hypothesis, as we have P , l;A⊥ =
P ;A⊥, l.

• (Select): We assume

Γ ⊢P,l [A] A⊥ ∈ Γ
and A not P , l-negativeΓ ⊢P,l

– If l ∈ Γ then we can build:
Γ ⊢P;l

(Wl)
Γ, l ⊢P;l

Γ ⊢P l⊥

Γ ⊢P [l⊥]

Γ ⊢P

and we close with the assumption since P ; l = P , l.
– If l 6∈ Γ then litP,l(Γ) = litP(Γ)

13

Using the induction hypothesis (admissibility of Pola) we construct :

Γ ⊢P [A]

Γ ⊢P

since A is not P-negative.
• (Init2): We assume

litP,l(Γ) |=T

Γ ⊢P,l

– If l ∈ Γ then again we can build:

Γ ⊢P;l

(Wl)
Γ, l ⊢P;l

Γ ⊢P l⊥

Γ ⊢P [l⊥]

Γ ⊢P

and we close with the assumption since P ; l = P , l.
– If l 6∈ Γ, litP,l(Γ) = litP(Γ), then we can build:

litP(Γ) |=T

Γ ⊢P

• (∧+),(∨+),(∃),(⊤+)
Again, for these rules, whatever is done with the polarisation set P , l can be done with
the polarisation set P :

Γ ⊢P,l [A] Γ ⊢P,l [B]

Γ ⊢P,l [A∧+B]

Γ ⊢P [A] Γ ⊢P [B]

Γ ⊢P [A∧+B]

Γ ⊢P,l [Ai]

Γ ⊢P,l [A1∨+A2]

Γ ⊢P [Ai]

Γ ⊢P [A1∨+A2]

Γ ⊢P,l [
{

t
�x

}

A]

Γ ⊢P,l [∃xA]

Γ ⊢P [
{

t
�x

}

A]

Γ ⊢P [∃xA]

Γ ⊢P,l [⊤+] Γ ⊢P [⊤+]

• (Release): We assume
Γ ⊢P,l A

Γ ⊢P,l [A]

where A is not P , l-positive.
By induction hypothesis (admissibility of Pol) we can build:

Γ ⊢P A

Γ ⊢P [A]

• (Init1): We assume

Γ ⊢P,l [l′]

where l′ is P , l-positive and litP,l(Γ), l′⊥
|=T .

– If l′ 6= l, then l′ is P-positive and we can build

litP(Γ), l′⊥
|=T

Γ ⊢P [l′]

The condition litP(Γ), l′⊥
|=T holds for the following reasons:

If l /∈ Γ, then litP(Γ) = litP,l(Γ) and the condition is that of the hypothesis.

14

If l ∈ Γ, then the side-condition of (Pola) implies litP(Γ), l⊥ |=T ; moreover, the
condition of the hypothesis can be rewritten as litP(Γ), l, l′⊥

|=T ; the fact that
semantical inconsistency admits cuts then proves the desired condition.

– If l′ = l then we build

Γ, l⊥ ⊢P,l⊥

Γ ⊢P l

Γ ⊢P [l]
which we close as follows: If l ∈ Γ then we can apply Id2, otherwise we apply
Init2: the condition litP,l⊥ (Γ, l⊥) |=T holds because litP,l⊥(Γ, l⊥) = litP(Γ), l⊥ =
litP,l(Γ), l⊥ and the condition of the hypothesis is litP,l(Γ), l⊥ |=T .

�

Corollary 11 The (Store=) rule is invertible, and the (Select−) rule is admissible:

Γ, A⊥ ⊢P ∆
(Store=)

A is literal
or is P-positiveΓ ⊢P A,∆

Γ, l⊥ ⊢P,l⊥

[l]
(Select−)

Γ, l⊥ ⊢P,l⊥

Proof:

(Store=) Using the invertibility of (Store), we get a proof of Γ, A⊥ ⊢P;A⊥

∆. If A is polarised,
then P ;A⊥ = P and we are done. Otherwise we have a proof of Γ, A⊥ ⊢P,A⊥

∆ and we
apply the admissibility of (Pol) to conclude.

(Select−) We first apply the admissibility of (Pola) to prove Γ, l⊥ ⊢P [l], then the standard (Select)
rule, then the invertibility of (Poli) to get Γ, l⊥ ⊢P,l⊥

.
�

5 Cut-elimination

Cut-elimination is an important feature of all sequent calculi. In this section we present some
admissible cut-rules in LKp(T) and show how to eliminate them.

5.1 Cuts with the theory

Theorem 12 (cut1 and cut2)
The following rules are admissible in LKp(T), assuming l /∈ UP :

litP(Γ), l⊥ |=T Γ, l ⊢P ∆
cut1

Γ ⊢P ∆

litP(Γ), l⊥ |=T Γ, l ⊢P [B]
cut2

Γ ⊢P [B]

Proof:
By simultaneous induction on the derivation of the right premiss.
We reduce cut1 by case analysis on the last rule used to prove the right premiss.

• (∧−)

litP(Γ), l⊥ |=T

Γ, l ⊢P B,∆ Γ, l ⊢P C,∆

Γ, l ⊢P B∧−C,∆
cut1

Γ ⊢P B∧−C,∆

reduces to

litP(Γ), l⊥ |=T Γ, l ⊢P B,∆
cut1

Γ ⊢P B,∆

litP (Γ), l⊥ |=T Γ, l ⊢P C,∆
cut1

Γ ⊢P C,∆

Γ ⊢P B∧−C,∆

• (∨−)

15

litP(Γ), l⊥ |=T

Γ, l ⊢P B1, B2,∆

Γ, l ⊢P B1∨−B2,∆
cut1

Γ ⊢P B1∨−B2,∆

reduces to

litP(Γ), l⊥ |=T Γ, l ⊢P B1, B2,∆
cut1

Γ ⊢P B1, B2,∆

Γ ⊢P B1∨−B2,∆

• (∀)

litP (Γ), l⊥ |=T

Γ, l ⊢P B,∆

Γ, l ⊢P ∀xB,∆
cut1

Γ ⊢P ∀xB,∆

reduces to

litP(Γ), l⊥ |=T Γ, l ⊢P B,∆
cut1

Γ ⊢P B,∆

Γ ⊢P ∀xB,∆

• (Store) where B is a literal or P-positive formula.

litP(Γ), l⊥ |=T

Γ, l, B⊥ ⊢P;B⊥

∆

Γ, l ⊢P B,∆
cut1

Γ ⊢P B,∆

reduces to

litP;B⊥ (Γ, B⊥), l⊥ |=T Γ, l, B⊥ ⊢P;B⊥

∆
cut1

Γ, B⊥ ⊢P;B⊥

∆

Γ ⊢P B,∆

We have litP;B⊥(Γ, B⊥), l⊥ |=T since litP(Γ), l⊥ ⊆ litP;B⊥(Γ, B⊥), l⊥ and we assume
semantical inconsistency to satisfy weakening.

• (⊥−)

litP (Γ), l⊥ |=T

Γ, l ⊢P ∆

Γ, l ⊢P ⊥−,∆
cut1

Γ ⊢P ⊥−,∆

reduces to

litP(Γ), l⊥ |=T Γ, l ⊢P ∆
cut1

Γ ⊢P ∆

Γ ⊢P ⊥−,∆

• (⊤−)

litP(Γ), l⊥ |=T Γ, l ⊢P ⊤−,∆
cut1

Γ ⊢P ⊤−,∆

reduces to
Γ ⊢P ⊤−,∆

• (Select) where P⊥ ∈ Γ, l and P is not P-negative.
If P⊥ ∈ Γ,

litP (Γ), l⊥ |=T

Γ, l ⊢P [P]

Γ, l ⊢P

cut1

Γ ⊢P

reduces to

litP(Γ), l⊥ |=T Γ, l ⊢P [P]
cut2

Γ ⊢P [P]

Γ ⊢P

If P⊥ = l, then as P is not P-negative and l /∈ UP we get that l⊥ is P-positive, so

litP (Γ), l⊥ |=T

litP(Γ), l |=T

Γ, l ⊢P [l⊥]

Γ, l ⊢P

cut1

Γ ⊢P

reduces to
litP(Γ) |=T

Init2

Γ ⊢P

since semantical inconsistency admits cuts.
• (Init2)

litP(Γ), l⊥ |=T

litP(Γ), l |=T

Γ, l ⊢P

cut1

Γ ⊢P

reduces to
litP(Γ) |=T

Γ ⊢P

since semantical inconsistency admits cuts.
We reduce cut2 again by case analysis on the last rule used to prove the right premiss.

• (∧+)

16

litP (Γ), l⊥ |=T

Γ, l ⊢P [B] Γ, l ⊢P [C]

Γ, l ⊢P [B∧+C]
cut2

Γ ⊢P [B∧+C]

reduces to

litP (Γ), l⊥ |=T Γ, l ⊢P [B]
cut2

Γ ⊢P [B]

litP(Γ), l⊥ |=T Γ, l ⊢P [C]
cut2

Γ ⊢P [C]

Γ ⊢P [B∧+C]

• (∨+)

litP(Γ), l⊥ |=T

Γ, l ⊢P [Bi]

Γ, l ⊢P [B1∨+B2]
cut2

Γ ⊢P [B1∨+B2]

reduces to

litP(Γ), l⊥ |=T Γ, l ⊢P [Bi]
cut2

Γ ⊢P [Bi]

Γ ⊢P [B1∨+B2]

• (∃)

litP(Γ), l⊥ |=T

Γ, l ⊢P [
{

t
�x

}

B]

Γ, l ⊢P [∃xB]
cut2

Γ ⊢P [∃xB]

reduces to

litP(Γ), l⊥ |=T Γ, l ⊢P [
{

t
�x

}

B]
cut2

Γ ⊢P [
{

t
�x

}

B]

Γ ⊢P [∃xB]

• (⊤+)

litP(Γ), l⊥ |=T Γ, l ⊢P [⊤+]
cut2

Γ ⊢P [⊤+]

reduces to
Γ ⊢P [⊤+]

• (Release)

litP(Γ), l⊥ |=T

Γ, l ⊢P N

Γ, l ⊢P [N]
cut2

Γ ⊢P [N]

reduces to

litP(Γ), l⊥ |=T Γ, l ⊢P N
cut1

Γ ⊢P N

Γ ⊢P [N]

• (Init1)

litP(Γ), l⊥ |=T

litP(Γ), l, p⊥ |=T

Γ, l ⊢P [p]
cut2

Γ ⊢P [p]

reduces to
litP(Γ), p⊥ |=T

Γ ⊢P [p]

since weakening gives litP(Γ), l⊥, p⊥ |=T and semantical inconsistency admits cuts.
�

5.2 Safety and instantiation

Now we would like to prove the admissibility of other cuts, where both premisses are derived as
a judgement of LKp(T). Unfortunately, the expected cut-rules are not necessarily admissible
unless we consider the following notion of safety.

Definition 8 (Safety)

• A pair (Γ,P) (of a context and a polarisation set) is said to be safe if:
for all Γ′ ⊇ Γ, for all semantically consistent sets of literals R with litP(Γ′) ⊆ R ⊆
litP(Γ′) ∪ U↓

P , and for all P-positive literal l, if R, l⊥ |=T then litP(Γ′), l⊥ |=T .

• A sequent Γ ⊢P [A] (resp. Γ ⊢P ∆) is said to be safe

if the pair (Γ,P) (resp. ((Γ,∆⊥),P)) is safe.
※

17

Remark 13 Safety is a property that is monotonic in its first argument: if (Γ,P) is safe and
Γ ⊆ Γ′ then (Γ′,P) is safe (this property is built into the definition by the quantification over
Γ′).

When restricted to safe sequents, the expected cuts are indeed admissible. In order to
show that the safety condition is not very restrictive, we show the following lemma:

Lemma 14 (Cases of safety)

1. Empty theory:
When the theory is empty (semantical inconsistency coincides with syntactical inconsistency),
the safety of (Γ,P) means that either litP(Γ) is syntactically inconsistent, or every P-positive
literal that is an instance of a P-unpolarised literal must be in Γ (i.e. P ∩ U↓

P ⊆ Γ).
In the particular case of propositional logic (

{

t�x

}

l = l for every l ∈ L), every sequent is
safe.

2. Full polarisation:
When every literal is polarised (UP = ∅), every sequent (with polarisation set P) is safe.

3. No polarisation:
When every literal is unpolarised (UP = L), every sequent (with polarisation set P) is safe.

4. Safety is an invariant of proof-search:
for every rule of LKp(T), if its conclusion is safe then each of its premisses is safe.

Proof:

1. In the case of the empty theory, if R is consistent then R, l⊥ |=T means that l ∈ R,
so either l ∈ litP (Γ′) or l ∈ U↓

P ; that this should imply litP(Γ′), l⊥ |=T means that
l ∈ litP(Γ′) anyway, unless litP(Γ′) is syntactically inconsistent. In particular for Γ′ = Γ.
In the case of propositional logic, there are no P-positive literals that are in U↓

P = UP ,
so every sequent is safe.

2. When every literal is polarised (UP = ∅), then R = litP(Γ′) and the result is trivial.
3. When every literal is unpolarised (UP = L), the property holds trivially.
4. For every rule of LKp(T), if its conclusion is safe then each of its premisses is safe.

Every rule is trivial (considering monotonicity) except (Store), for which it suffices to
show:
Assume (Γ,P) is safe and A ∈ Γ; then (Γ, (P ;A)) is safe.
Consider Γ′ ⊇ Γ and R such that litP;A(Γ′) ⊆ R ⊆ litP;A(Γ′) ∪ U↓

P;A.
• If A ∈ UP , then P ;A = P , A and the inclusions can be rewritten as

litP(Γ′), A ⊆ R ⊆ litP(Γ′), A ∪ U↓
P,A

Since UP,A ⊆ UP we have U↓
P,A ⊆ U↓

P and therefore

litP(Γ′) ⊆ R ⊆ litP(Γ′) ∪ U↓
P

Hence, R is a set for which safety of (Γ,P) implies litP(Γ′), l⊥ |=T for every l ∈ P
such that R, l⊥ |=T .
For l = A, then trivially litP,A(Γ′), l⊥ |=T as A ∈ Γ′.

• If A 6∈ UP , then P ;A = P and the result is trivial.
�

Now cut-elimination in presence of quantifiers relies heavily on the fact that, if a proof
can be constructed with a free variables x, then it can be replayed when x is instantiated by
a particular term throughout the proof. In a polarised world, this is made difficult by the
fact that a polarisation set P (i.e. a set that is syntactically consistent) might not remain a
polarisation set after instantiation (i.e.

{

t�x

}

P might not be syntactically consistent: imagine
p(x, 3) is P-positive and p(3, x) is P-negative, then after substituting 3 for x, what is the
polarity of p(3, 3)?). Hence, polarities will have to be changed and therefore the exact same
proof may not be replayed, but under the hypothesis that the substituted sequent is safe, we
manage to reconstruct some proof. The first step to prove this is the following lemma:

Lemma 15 (Admissibility of instantiation with the theory) Let P be a polarisation
set such that x 6∈ FV(P), let l1, . . . , ln be n literals, A be a set of literals, x be a variable
and t be a term with x /∈ FV(t).

18

Let Pi := P ; l1; . . . ; li with P0 := P , and similarly let P ′
i := P ;

{

t�x

}

l1; . . . ;
{

t�x

}

li with
P ′

0 := P .
Assume

• for all i such that 1 ≤ i ≤ n, we have li ∈ Γ;

• (
{

t�x

}

Γ,P ′
n) is safe;

• litPn(Γ),A |=T .

Then either litP′
n

(Γ),
{

t�x

}

A |=T or
{

t�x

}

Γ ⊢P′

n is derivable in LKp(T).

Proof: Let {l′1, . . . , l
′
m} be the set of literals {l ∈ litPn (Γ) |

{

t�x

}

l is not P ′
n-positive}. We

have
{

t�x

}

litPn(Γ) ⊆ litP′
n

(
{

t�x

}

Γ),
{

t�x

}

l′1, . . . ,
{

t�x

}

l′m

Since litPn (Γ),A |=T and semantical inconsistency is stable under instantiation and weak-
ening, we have litP′

n
(
{

t�x

}

Γ),
{

t�x

}

l′1, . . . ,
{

t�x

}

l′m,
{

t�x

}

A |=T .

• If all of the sets (litP′
n

(
{

t�x

}

Γ),
{

t�x

}

l′j
⊥)1≤j≤n are semantically inconsistent, then from

litP′
n

(
{

t�x

}

Γ),
{

t�x

}

l′1, . . . ,
{

t�x

}

l′m,
{

t�x

}

A |=T

we get litP′
n

(
{

t�x

}

Γ),
{

t�x

}

A |=T , since semantically inconsistency admits cuts.

• Otherwise, there is some l′j ∈ litPn(Γ) such that
{

t�x

}

l′j is not P ′
n-positive and such that

R := litP′
n

(
{

t�x

}

Γ),
{

t�x

}

l′j
⊥ is semantically consistent.

Notice that l′j is not P-positive, otherwise
{

t�x

}

l′j would also be P-positive (since x /∈
FV(P)), so l′j = li for some i such that 1 ≤ i ≤ n, with li ∈ UPi−1

.

Now, if
{

t�x

}

Γ is syntactically inconsistent, we build

Id2{

t
�x

}

Γ ⊢P′

n

If on the contrary
{

t�x

}

Γ is syntactically consistent, then {
{

t�x

}

l1, . . . ,
{

t�x

}

ln} is also
syntactically consistent (as every element is assumed to be in

{

t�x

}

Γ).

Therefore,
{

t�x

}

li must be P-negative, otherwise it would ultimately be P ′
n-positive.

So
{

t�x

}

l⊥i is P-positive, and ultimately P ′
n-positive.

Now (
{

t�x

}

Γ,P ′
n) is assumed to be safe, so we want to apply this property to Γ′ := Γ,

to the semantically consistent set R, and to the P ′
n-positive literal

{

t�x

}

l⊥i , so as to
conclude

litP′
n

(
{

t�x

}

Γ),
{

t�x

}

li |=T

To apply the safety property, we note that that R,
{

t�x

}

li |=T and that

litP′
n

(
{

t�x

}

Γ) ⊆ R ⊆ litP′
n

(
{

t�x

}

Γ) ∪ U↓

P′
n

provided we have li ∈ UP′
n

.
In order to prove that proviso, first notice that li ∈ UP , since li ∈ UPi

. Now we must
have x ∈ FV(li), otherwise li =

{

t�x

}

li and we know that
{

t�x

}

li is P-negative. Since
none of the literals (

{

t�x

}

lk)1≤k≤n have x as a free variable, we conclude the proviso
li ∈ UP′

n
.

Therefore safety ensures litP′
n

(
{

t�x

}

Γ),
{

t�x

}

li |=T and we can finally build

Init1{

t
�x

}

Γ ⊢P′

n [
{

t
�x

}

l⊥i]
Select

{

t
�x

}

Γ ⊢P′

n

as
{

t�x

}

l⊥i is P ′
n-positive.

�

We can finally state and prove the admissibility of instantiation:

Lemma 16 (Admissibility of instantiation) Let P be a polarisation set such that x 6∈
FV(P), let l1, . . . , ln be n literals, x be a variable and t be a term with x /∈ FV(t).

19

Let Pi := P ; l1; . . . ; li with P0 := P , and similarly let P ′
i := P ;

{

t�x

}

l1; . . . ;
{

t�x

}

li with
P ′

0 := P .
The following rules are admissible in LKp(T):3

Γ ⊢Pn ∆
(Inst)

{

t
�x

}

Γ ⊢P′

n

{

t
�x

}

∆

Γ ⊢Pn [B]
(Instf)

{

t
�x

}

Γ ⊢P′

n [
{

t
�x

}

B] or
{

t
�x

}

Γ ⊢P′

n

where we assume

• for all i such that 1 ≤ i ≤ n, we have li ∈ Γ;

•
{

t�x

}

Γ ⊢P′

n

{

t�x

}

∆ is safe in (Inst);

• (
{

t�x

}

Γ,P ′
n) is safe in (Instf).

Proof: By induction on the derivation of the premiss.
• (∧−),(∨−),(∀),(⊥−),(⊤−),(∧+),(∨+),(∃),(⊤+)

These rules are straightforward as the polarisation set is not involved.
• (Store) We assume

Γ, A⊥ ⊢Pn;A⊥

∆

Γ ⊢Pn A,∆
where A is a literal or is Pn-positive.
Using the induction hypothesis on the premiss we can build

{

t
�x

}

Γ,
{

t
�x

}

A⊥ ⊢P′

n;{t�x}A⊥ {

t
�x

}

∆
{

t
�x

}

Γ ⊢P′

n

{

t
�x

}

A,
{

t
�x

}

∆

since
{

t�x

}

A is a literal or is P ′
n-positive.

• (Select) We assume

Γ, P⊥ ⊢Pn [P]

Γ, P⊥ ⊢Pn

where P is not Pn-negative.
If

{

t�x

}

P is not P ′
n-negative, then we can apply the induction hypothesis and build

{

t
�x

}

Γ,
{

t
�x

}

P⊥ ⊢P′

n [
{

t
�x

}

P]
{

t
�x

}

Γ,
{

t
�x

}

P⊥ ⊢P′

n

Otherwise,
{

t�x

}

P is a P ′
n-negative literal and we can do the same as above with the

(Select−) rule instead of (Select).
• (Init2) We assume

litPn(Γ) |=T

Γ ⊢Pn

We use Lemma 15 with A := ∅, since we know litPn(Γ) |=T .
If we get litP′

n
(
{

t�x

}

Γ) |=T , we build a proof with the same rule (Init2):

litP′
n

(
{

t
�x

}

Γ) |=T

{

t
�x

}

Γ ⊢P′

n

If not, we directly get a proof of
{

t�x

}

Γ ⊢P′

n .
• (Init1) We assume

litPn (Γ), p⊥ |=T

Γ ⊢Pn [p]

where p is Pn-positive.
We use Lemma 15 with A := {p}, since we know litPn(Γ), p⊥ |=T .

3The admissibility of (Instf) means that if Γ ⊢Pn [B] is derivable in LKp(T) then either
{

t�x

}

Γ ⊢P′

n [
{

t�x

}

B]

or
{

t�x

}

Γ ⊢P′

n is derivable in LKp(T).

20

If we get litP′
n

(
{

t�x

}

Γ),
{

t�x

}

p⊥ |=T , we build a proof with the same rule (Init1):

litP′
n

(
{

t
�x

}

Γ),
{

t
�x

}

p⊥ |=T

{

t
�x

}

Γ ⊢P′

n [
{

t
�x

}

p]

If not, we directly get a proof of
{

t�x

}

Γ ⊢P′

n .
• (Release) We assume

Γ ⊢Pn N

Γ ⊢Pn [N]

where N is not Pn-positive.
If

{

t�x

}

N is not P ′
n-positive, then we can apply the induction hypothesis and build

{

t
�x

}

Γ ⊢P′

n

{

t
�x

}

N
{

t
�x

}

Γ ⊢P′

n [
{

t
�x

}

N]

Otherwise, N is a literal l that is not Pn-positive, but such that
{

t�x

}

l is P ′
n-positive.

– If litP′
n

(
{

t�x

}

Γ),
{

t�x

}

l |=T , then we build

litP′
n

(
{

t
�x

}

Γ),
{

t
�x

}

l |=T

{

t
�x

}

Γ,
{

t
�x

}

l⊥ ⊢P′

n

cut1 {

t
�x

}

Γ ⊢P′

n

where the right premiss is proved as follows:
Notice that the assumed derivation of Γ ⊢Pn l necessarily contains a sub-derivation
concluding Γ, l⊥ ⊢Pn;l⊥

, and applying the induction hypothesis on this yields a
derivation of

{

t�x

}

Γ,
{

t�x

}

l⊥ ⊢P′

n .
– Assume now that R := litP′

n
(
{

t�x

}

Γ),
{

t�x

}

l is semantically consistent. We build

Init1{

t
�x

}

Γ ⊢P′

n [
{

t
�x

}

l]

and we have to prove the side-condition litP′
n

(
{

t�x

}

Γ),
{

t�x

}

l⊥ |=T .
This is trivial if

{

t�x

}

l ∈
{

t�x

}

Γ (as
{

t�x

}

l is P ′
n-positive).

If on the contrary
{

t�x

}

l /∈
{

t�x

}

Γ, then we get it from the assumed safety of
(
{

t�x

}

Γ,P ′
n), applied to Γ′ := Γ, to the semantically consistent set R, and to the

P ′
n-positive literal

{

t�x

}

l. To apply the safety property, we note that R,
{

t�x

}

l⊥ |=T

and that
litP′

n
(
{

t�x

}

Γ) ⊆ R ⊆ litP′
n

(
{

t�x

}

Γ) ∪ U↓

P′
n

provided we have
{

t�x

}

l ∈ U↓

P′
n

.
We prove that l ∈ UP′

n
as follows:

First notice that l ∈ UP , otherwise l would be P-negative and so would be
{

t�x

}

l

(since x /∈ FV(P)). Then notice that
{

t�x

}

l must be P-positive, since it is P ′
n-

positive but
{

t�x

}

l /∈
{

t�x

}

Γ. Therefore l 6=
{

t�x

}

l, so x ∈ FV(l), and finally we get
l ∈ UP′

n
, since none of the literals (

{

t�x

}

lk)1≤k≤n have x as a free variable.
�

5.3 More general cuts

Theorem 17 (cut3, cut4 and cut5) The following rules are admissible in LKp(T):4

Γ ⊢P [A] Γ ⊢P A⊥,∆
(cut3)

Γ ⊢P ∆

Γ ⊢P N Γ, N ⊢P;N ∆
(cut4)

Γ ⊢P ∆

Γ ⊢P N Γ, N ⊢P;N [B]
(cut5)

Γ ⊢P [B] or Γ ⊢P

4The admissibility of cut5 means that if Γ ⊢P N and Γ, N ⊢P;N [B] are derivable in LKp(T) then either Γ ⊢P [B]
or Γ ⊢P is derivable in LKp(T).

21

where

• N is assumed to not be P-positive in cut4 and cut5;

• the sequent Γ ⊢P ∆ in cut3 and cut4, and the pair (Γ,P) in cut5, are all assumed to be
safe.

Proof: By simultaneous induction on the following lexicographical measure:
• the size of the cut-formula (A or N)
• the fact that the cut-formula (A or N) is positive or negative

(if of equal size, a positive formula is considered smaller than a negative formula)
• the height of the derivation of the right premiss
Weakenings and contractions (as they are admissible in the system) are implicitly used

throughout this proof.
In order to eliminate cut3, we analyse which rule is used to prove the left premiss. We

then use invertibility of the negative phase so that the last rule used in the right premiss is
its dual one.

• (∧+)
Γ ⊢P [A] Γ ⊢P [B]

Γ ⊢P [A∧+B]

Γ ⊢P A⊥, B⊥,∆

Γ ⊢P A∨−B,∆
cut3

Γ ⊢P ∆
reduces to

Γ ⊢P [B]

Γ ⊢P [A] Γ ⊢P A⊥, B⊥,∆
cut3

Γ ⊢P B⊥,∆
cut3

Γ ⊢P ∆

• (∨+)

Γ ⊢P [Ai]

Γ ⊢P [A1∨+A2]

Γ ⊢P A⊥
1 ,∆ Γ ⊢P A⊥

2 ,∆

Γ ⊢P A1∧−A2,∆
cut3

Γ ⊢P ∆
reduces to

Γ ⊢P [Ai] Γ ⊢P A⊥
i ,∆

cut3

Γ ⊢P ∆

• (∃)

Γ ⊢P [
{

t
�x

}

A]

Γ ⊢P [∃xA]

Γ ⊢P A⊥,∆
x /∈ FV(Γ,∆,P)

Γ ⊢P (∀xA⊥),∆
cut3

Γ ⊢P ∆
reduces to

Γ ⊢P [
{

t
�x

}

A]

Γ ⊢P A⊥,∆

Γ ⊢P (
{

t
�x

}

A⊥),∆
cut3

Γ ⊢P ∆

using Lemma 16 (admissibility of instantiation) with n = 0, noticing that x /∈ FV(P)
and that Γ ⊢P (

{

t�x

}

A⊥),∆ is safe (since Γ ⊢P ∆ is safe).5

• (⊤+)

Γ ⊢P [⊤+]

Γ ⊢P ∆

Γ ⊢P ⊥−,∆
cut3

Γ ⊢P ∆

reduces to Γ ⊢P ∆

5Using α-conversion, we can also pick x such that x /∈ FV(t).

22

• (Init1)

litP(Γ), p⊥ |=T

Γ ⊢P [p]

Γ, p ⊢P ∆

Γ ⊢P (p⊥),∆
cut3

Γ ⊢P ∆

reduces to
litP(Γ), p⊥ |=T Γ, p ⊢P ∆

cut1

Γ ⊢P ∆

with p ∈ P .
• (Release)

Γ ⊢P N

Γ ⊢P [N]

Γ, N ⊢P;N ∆

Γ ⊢P (N⊥),∆
cut3

Γ ⊢P ∆

reduces to
Γ ⊢P N Γ, N ⊢P;N ∆

cut4

Γ ⊢P ∆

where N is not P-positive. We will describe below how cut4 is reduced.
In order to reduce cut4, we analyse which rule is used to prove the right premiss.

• (∧−)

Γ ⊢P N

Γ, N ⊢P;N B,∆ Γ, N ⊢P;N C,∆

Γ, N ⊢P;N B∧−C,∆
cut4

Γ ⊢P B∧−C,∆
reduces to

Γ ⊢P N Γ, N ⊢P;N B,∆
cut4

Γ ⊢P B,∆

Γ ⊢P N Γ, N ⊢P;N C,∆
cut4

Γ ⊢P C,∆

Γ ⊢P B∧−C,∆

• (∨−)

Γ ⊢P N

Γ, N ⊢P;N B,C,∆

Γ, N ⊢P;N B∨−C,∆
cut4

Γ ⊢P B∨−C,∆

reduces to

Γ ⊢P N Γ, N ⊢P;N B,C,∆
cut4

Γ ⊢P B,C,∆

Γ ⊢P B∨−C,∆

• (∀)

Γ ⊢P N

Γ, N ⊢P;N B,∆

Γ, N ⊢P;N ∀xB,∆
cut4

Γ ⊢P ∀xB,∆

reduces to

Γ ⊢P N Γ, N ⊢P;N B,∆
cut4

Γ ⊢P B,∆

Γ ⊢P ∀xB,∆

• (⊥−)

Γ ⊢P N

Γ, N ⊢P;N ∆

Γ, N ⊢P;N ⊥−,∆
cut4

Γ ⊢P ⊥−,∆

reduces to

Γ ⊢P N Γ, N ⊢P;N ∆
cut4

Γ ⊢P ∆

Γ ⊢P ⊥−,∆

• (Store)

Γ ⊢P N

Γ, N, B⊥ ⊢P;N;B⊥

∆

Γ, N ⊢P;N B,∆
cut4

Γ ⊢P B,∆

reduces to

Γ, B⊥ ⊢P;B⊥

N Γ, N,B⊥ ⊢P;B⊥;N ∆
cut4

Γ, B⊥ ⊢P;B⊥

∆

Γ ⊢P B,∆
whose left branch is closed by using

– possibly the admissibility of (Pol) (if B ∈ UP), so as to get Γ, B⊥ ⊢P N ,
– then the admissibility of (Wl) (on B⊥), to get to the provable premiss Γ ⊢P N ;

whose right branch is the same as the provable Γ, N, B⊥ ⊢P;N;B⊥

∆ unless B = N ∈ UP ,
in which case the commutation P ;B⊥;N = P ;N ;B⊥ does not hold. In this last case,
we build

23

Γ ⊢P B
(Wr)

Γ ⊢P B,∆

• (Init2) when N 6∈ UP , in which case P ;N = P and litP(Γ, N) = litP(Γ) (since N 6∈ P
either):

Γ ⊢P N

litP(Γ) |=T

Γ, N ⊢P;N

cut4

Γ ⊢P

reduces to
litP(Γ) |=T

Γ ⊢P

• (Init2) when N ∈ UP , in which case litP;N (Γ, N) = litP(Γ), N :

Γ, N⊥ ⊢P,N⊥

Γ ⊢P N

litP(Γ), N |=T

Γ, N ⊢P;N

cut4

Γ ⊢P

reduces to
litP,N⊥ (Γ), N |=T Γ, N⊥ ⊢P,N⊥

cut1

Γ ⊢P

since litP(Γ), N |=T implies litP,N⊥ (Γ), N |=T .

• (Select) on formula N⊥

Γ ⊢P N

Γ, N ⊢P;N [N⊥]

Γ, N ⊢P;N

cut4

Γ ⊢P

reduces to

Γ ⊢P N Γ, N ⊢P;N [N⊥]
cut5

Γ ⊢P [N⊥] Γ ⊢P N
cut3

Γ ⊢P

or to
Γ ⊢P N Γ, N ⊢P;N [N⊥]

cut5

Γ ⊢P

depending on the outcome of cut5

• (Select) on a formula P that is not P ;N-negative

Γ, P⊥ ⊢P N

Γ, P⊥, N ⊢P;N [P]

Γ, P⊥, N ⊢P;N

cut4

Γ, P⊥ ⊢P

reduces to

Γ, P⊥ ⊢P N Γ, P⊥, N ⊢P;N [P]
cut5

Γ, P⊥ ⊢P [P]

Γ, P⊥ ⊢P

or to
Γ, P⊥ ⊢P N Γ, P⊥, N ⊢P;N [N⊥]

cut5

Γ, P⊥ ⊢P

depending on the outcome of cut5

We have reduced all cases of cut4; we now reduce the cases for cut5 (again, by case analysis
on the last rule used to prove the right premiss).

• (∧+) We are given

Γ ⊢P N and
Γ, N ⊢P;N [B1] Γ, N ⊢P;N [B2]

Γ, N ⊢P;N [B1∧+B2]

and by cut5 we want to derive either Γ ⊢P [B1∧+B2] or Γ ⊢P .
If we can, we build

Γ ⊢P N Γ, N ⊢P;N [B1]
cut5

Γ ⊢P [B1]

Γ ⊢P N Γ, N ⊢P;N [B2]
cut5

Γ ⊢P [B2]

Γ ⊢P [B1∧+B2]

Otherwise we build
Γ ⊢P N Γ, N ⊢P;N [Bi]

cut5

Γ ⊢P

where i is (one of) the premiss(es) for which cut5 produces a proof of Γ ⊢P .
• (∨+) We are given

24

Γ ⊢P N and
Γ, N ⊢P;N [Bi]

Γ, N ⊢P;N [B1∨+B2]

and by cut5 we want to derive either Γ ⊢P [B1∨+B2] or Γ ⊢P .
If we can, we build

Γ ⊢P N Γ, N ⊢P;N [Bi]
cut5

Γ ⊢P [Bi]

Γ ⊢P [B1∨+B2]
Otherwise we build

Γ ⊢P N Γ, N ⊢P;N [Bi]

Γ ⊢P

• (∃) We are given

Γ ⊢P N and
Γ, N ⊢P;N [

{

t
�x

}

B]

Γ, N ⊢P;N [∃xB]

and by cut5 we want to derive either Γ ⊢P [∃xB] or Γ ⊢P .
If we can, we build

Γ ⊢P N Γ, N ⊢P;N [
{

t
�x

}

B]
cut5

Γ ⊢P [
{

t
�x

}

B]

Γ ⊢P [∃xB]
Otherwise we build

Γ ⊢P N Γ, N ⊢P;N [
{

t
�x

}

B]

Γ ⊢P

• (⊤+) We are given

Γ ⊢P N and
Γ, N ⊢P;N [⊤+]

and by cut5 we want to derive either Γ ⊢P [⊤+] or Γ ⊢P .
We build

Γ ⊢P [⊤+]

• (Release) We are given:

Γ ⊢P N and
Γ, N ⊢P;N N ′

Γ, N ⊢P;N [N ′]

where N ′ is not P ;N-positive;
and by cut5 we want to derive either Γ ⊢P [N ′] or Γ ⊢P .
We build

Γ ⊢P N Γ, N ⊢P;N N ′

cut4

Γ ⊢P N ′

Γ ⊢P [N ′]

since N ′ is not P-positive.
• (Init1) We are given:

Γ ⊢P N and
litP;N (Γ, N), p⊥ |=T

Γ, N ⊢P;N [p]
with p ∈ P ;N ,
and by cut5 we want to derive either Γ ⊢P [p] or Γ ⊢P .
If N is P-negative
then P ;N = P and p is P-positive. So litP;N (Γ,N), p⊥ = litP (Γ), p⊥ and we build

(Init1)
Γ ⊢P [p]

25

If N ∈ UP (litP;N (Γ, N), p⊥ = litP(Γ), N, p⊥)
– if p = N then we build

Γ ⊢P N

Γ ⊢P [N]

as N is not P-positive;
– if p 6= N then p is P-positive

1. if litP (Γ), N |=T

then applying invertibility of (Store=) on Γ ⊢P N gives Γ, N⊥ ⊢P and we build:

litP(Γ), N |=T Γ, N⊥ ⊢P

cut1

Γ ⊢P

2. if litP (Γ), N 6|=T

then R := litP(Γ), N is a set of literals satisfying litP(Γ) ⊆ R ⊆ litP(Γ) ∪ UP

(since N ∈ UP) and R, p⊥ |=T .
Hence we get litP (Γ), p⊥ |=T as well, since (Γ,P) is assumed to be safe.
We can finally build

litP(Γ), p⊥ |=T

(Init1)
Γ ⊢P [p]

�

Theorem 18 (cut6, cut7, and cut8) The following rules are admissible in LK(T).

Γ ⊢P N,∆ Γ, N ⊢P;N ∆
cut6

Γ ⊢P ∆

Γ ⊢P A,∆ Γ ⊢P A⊥,∆
cut7

Γ ⊢P ∆

Γ, l ⊢P;l ∆ Γ, l⊥ ⊢P;l⊥

∆
cut8

Γ ⊢P ∆

Proof: cut6 is proved admissible by induction on the multiset ∆: the base case is the
admissibility of cut4, and the other cases just require the inversion of the connectives in ∆
(using (Store=) instead of (Store), to avoid modifying the polarisation set).

For cut7, we can assume without loss of generality (swapping A and A⊥) that A is not
P-positive. Applying inversion on Γ ⊢P A⊥,∆ gives a proof of Γ, A ⊢P;A ∆, and cut7 is then
obtained by cut6:

Γ ⊢P A,∆ Γ, A ⊢P;A ∆
cut6

Γ ⊢P ∆
cut8 is obtained as follows:

Γ, l⊥ ⊢P;l⊥

∆

Γ ⊢P l,∆

Γ, l ⊢P;l ∆

Γ ⊢P l⊥,∆
cut7

Γ ⊢P ∆
�

6 Changing the polarity of connectives

In this section, we show that changing the polarity of connectives does not change provability
in LKp(T). To prove this property of the LKp(T) system, we genealise it into a new system
LK+(T).

Definition 9 (LK
+(T)) The sequent calculus LK+(T) manipulates one kind of sequent:

Γ ⊢P [X]∆ where X ::= • | A

Here, P is a polarisation set, Γ is a multiset of literals and P-negative formulae, ∆ is a multiset
of formulae, and X is said to be in the focus of the sequent.

The rules of LK+(T), given in Figure 2, are again of three kinds: synchronous rules, asyn-
chronous rules, and structural rules. ※

26

Synchronous rules

Γ ⊢P [A]∆ Γ ⊢P [B]∆
(∧+)

Γ ⊢P [A∧+B]∆

Γ ⊢P [Ai]∆
(∨+)

Γ ⊢P [A1∨+A2]∆

Γ ⊢P [
{

t�x

}

A]∆
(∃)

Γ ⊢P [∃xA]∆

(⊤+)
Γ ⊢P [⊤+]∆

litP(Γ), l⊥, litL(∆⊥) |=T

(Init1) l is P-positive
Γ ⊢P [l]∆

Γ ⊢P [•]N
(Release) N not P-positive

Γ ⊢P [N]

Asynchronous rules

Γ ⊢P [X]A, ∆ Γ ⊢P [X]B, ∆
(∧−)

Γ ⊢P [X]A∧−B, ∆

Γ ⊢P [X]A1, A2, ∆
(∨−)

Γ ⊢P [X]A1∨−A2, ∆

Γ ⊢P [X]A, ∆
(∀) x /∈ FV(Γ, X , ∆, P)

Γ ⊢P [X](∀xA), ∆

Γ ⊢P [X]∆
(⊥−)

Γ ⊢P [X]⊥−, ∆
(⊤−)

Γ ⊢P [X]⊤−

Γ, A⊥ ⊢P;A⊥

[X]∆
(Store) A literal or P-positive

Γ ⊢P [X]A, ∆

Structural rules

Γ, P ⊥ ⊢P [P]∆
(Select) P not P-negative

Γ, P ⊥ ⊢P [•]∆

litP(Γ), litL(∆⊥) |=T

(Init2)
Γ ⊢P [•]∆

Figure 2: System LK+(T)

Remark 19 The LK+(T) system is an extension system of LKp(T): the LKp(T) system is
the fragment of LK+(T) where every sequent Γ, P⊥ ⊢P [•]∆ is requested to have either X = •
or ∆ is empty. In terms of bottom-up proof-search, this only restricts the structural rules to
the case where ∆ is empty.

As in LKp(T), (left-)weakening and (left-)contraction are height-preserving admissible in
LK+(T).

We can now prove a new version of identity:

Lemma 20 (Identities) For all P , A, ∆, the sequent ⊢P [A⊥]A,∆ is provable in LK+(T).

Proof: By induction on A using an extended but well-founded order on formulae:
a formula is smaller than another one when

• either it contains fewer connectives
• or the number of connectives is equal, neither formulae are literals, and the former

formula is negative and the latter is positive.
We now treat all possible shapes for the formula A:

• A = A1∧−A2

⊢P [A1
⊥]A1,∆

⊢P [A1
⊥∨+A2

⊥]A1,∆

⊢P [A2
⊥]A2,∆

⊢P [A1
⊥∨+A2

⊥]A2,∆

⊢P [A1
⊥∨+A2

⊥]A1∧−A2,∆

We can complete the proof on the left-hand side by applying the induction hypothesis
on A1 and on the right-hand side by applying the induction hypothesis on A2.

• A = A1∨−A2

⊢P [A1
⊥]A1, A2,∆ ⊢P [A2

⊥]A1, A2,∆

⊢P [A1
⊥∧+A2

⊥]A1, A2,∆

⊢P [A1
⊥∧+A2

⊥]A1∨−A2,∆

27

We can complete the proof on the left-hand side by applying the induction hypothesis
on A1 and on the right-hand side by applying the induction hypothesis on A2.

• A = ∀xA

⊢P [A⊥]A,∆
− − − − − − − − − choosing t=x
⊢P [{t/x}A⊥]A,∆

⊢P [∃xA⊥]A,∆
x /∈ FV(∃xA⊥,∆)

⊢P [∃xA⊥]∀xA,∆

We can complete the proof by applying the induction hypothesis on A.
• A = ⊥−

⊤+

⊢P [⊤+]⊥−,∆

• A = p⊥, with p not being P-negative:

p ⊢P;p [p]∆

⊢P [p]p⊥,∆

as p is then P ; p-positive.
• A = P where P is P-positive:

⊢P [P]P⊥

P⊥ ⊢P′

[P]P⊥

P⊥ ⊢P′

[•]P⊥

P⊥ ⊢P′

[P⊥]

P⊥,∆⊥ ⊢P′

[P⊥]

P⊥ ⊢P [P⊥]∆

⊢P [P⊥]P,∆

If P is a literal, we complete the proof with the case just above. If it is not a literal, then
P is smaller than P⊥ and we complete the proof by applying the induction hypothesis
on P .

�

We now want to show that all asynchronous rules are invertible in LK+(T). We first start
with the following lemma:

Lemma 21 (Generalised (Init) and negative Select)
The following rules are height-preserving admissible in LK+(T):

litP(Γ), litL(∆⊥) |=T

(Init)
Γ ⊢P [X]∆

Γ ⊢P;l⊥

[l]∆
(Select−)

Γ ⊢P;l⊥

[•]∆

where l⊥ ∈ Γ and it is not P-negative in (Select−).

Proof: For each rule, by induction on the proof of the premiss.
For (Init):

• if it is obtained by (∧−), (∨−), (∀), (⊥−), we can straightforwardly use the induction
hypothesis on the premiss(es), and if it is (⊤−) it is trivial;

• if it is obtained by

Γ, A⊥ ⊢P;A⊥

[X]∆′

Γ ⊢P [X]A,∆′

then we can use the induction hypothesis on the premiss as litP;A⊥(Γ, A⊥), litL(∆′⊥) =

litP(Γ), litL(A⊥,∆′⊥);

28

• the last possible way to obtain it is with ∆ = ∅ and

Γ ⊢P [•]N

Γ ⊢P [N]

for some N that is not P-positive, and we conclude with (Init2).
For (Select−), first notice that l is P ; l⊥-negative, and then:

• if again it is obtained by (∧−), (∨−), (∀), (⊥−), we can straightforwardly use the induc-
tion hypothesis on the premiss(es), and if it is (⊤−) it is trivial;

• if it is obtained by

Γ, A⊥ ⊢P;l⊥;A⊥

[l]∆′

Γ ⊢P;l⊥

[l]A,∆′

then we can use the induction hypothesis on the premiss, if A is not l⊥ (so that
P ; l⊥;A⊥ = P ;A⊥; l⊥ and l⊥ is not P ;A⊥-negative); if A = l⊥, then we build

litP;l⊥(Γ), litL(A⊥,∆′⊥) |=T

(Init2)
Γ ⊢P;l⊥

[•]A,∆′

as A ∈ litP;l⊥(Γ).
• the last possible way to obtain it is with ∆ = ∅ and

Γ, l⊥ ⊢P;l⊥

[•]

Γ ⊢P;l⊥

[•]l

Γ ⊢P;l⊥

[l]

and we conclude with the height-preserving admissibility of contraction.
�

We can now state and prove the invertibility of asynchronous rules:

Lemma 22 (Invertibility of asynchronous rules)
All asynchronous rules are height-preserving invertible in LK+(T).

Proof: By induction on the derivation proving the conclusion of the asynchronous rule
considered.

• Inversion of A∧−B: by case analysis on the last rule actually used

–
Γ ⊢P [X]A∧−B,C,∆ Γ ⊢P [X]A∧−B,D,∆

Γ ⊢P [X]A∧−B,C∧−D,∆

By induction hypothesis we get
Γ ⊢P [X]A,C,∆ Γ ⊢P [X]A,D,∆

Γ ⊢P [X]A,C∧−D,∆
and

Γ ⊢P [X]B,C,∆ Γ ⊢P [X]B,D,∆

Γ ⊢P [X]B,C∧−D,∆

–
Γ ⊢P [X]A∧−B,C,D,∆

Γ ⊢P [X]A∧−B,C∨−D,∆

By induction hypothesis we get
Γ ⊢P [X]A,C,D,∆

Γ ⊢P [X]A,C∨−D,∆
and

Γ ⊢P [X]B,C,D,∆

Γ ⊢P [X]B,C∨−D,∆

–
Γ ⊢P [X]A∧−B,C,∆

x /∈ FV(Γ,X ,∆, A∧−B)
Γ ⊢P [X]A∧−B, (∀xC),∆

By induction hypothesis we get
Γ ⊢P [X]A,C,∆

x /∈ FV(Γ,X ,∆, A)
Γ ⊢P [X]A, (∀xC),∆

and
Γ ⊢P [X]B,C,∆

x /∈ FV(Γ,X ,∆, B)
Γ ⊢P [X]B, (∀xC),∆

–
Γ, C⊥ ⊢P;C⊥

[X]A∧−B,∆ C literal or
P-positiveΓ ⊢P [X]A∧−B,C,∆

By induction hypothesis we get

29

Γ, C⊥ ⊢P [X]A,∆ C literal or
P-positiveΓ ⊢P;C⊥

[X]A,C,∆
and

Γ, C⊥ ⊢P;C⊥

[X]B,∆ C literal or
P-positiveΓ ⊢P [X]B,C,∆

–
Γ ⊢P [X]A∧−B,∆

Γ ⊢P [X]A∧−B,⊥−,∆

By induction hypothesis we get
Γ ⊢P [X]A,∆

Γ ⊢P [X]A,⊥−,∆
and

Γ ⊢P [X]B,∆

Γ ⊢P [X]B,⊥−,∆

–
Γ ⊢P [X]A∧−B,⊤−,∆

We get

Γ ⊢P [X]A,⊤−,∆ and Γ ⊢P [X]B,⊤−,∆

–
Γ ⊢P [C]A∧−B,∆ Γ ⊢P [D]A∧−B,∆

Γ ⊢P [C∧+D,]A∧−B,∆

By induction hypothesis we get
Γ ⊢P [C]A,∆ Γ ⊢P [D]A,∆

Γ ⊢P [C∧+D]A,∆
and

Γ ⊢P [C]B,∆ Γ ⊢P [D]B,∆

Γ ⊢P [C∧+D]B,∆

–
Γ ⊢P [Ci]A∧−B,∆

Γ ⊢P [C1∨+C2]A∧−B,∆

By induction hypothesis we get
Γ ⊢P [Ci]A,∆

Γ ⊢P [C1∨+C2]A,∆
and

Γ ⊢P [Ci]B,∆

Γ ⊢P [C1∨+C2]B,∆

–
Γ ⊢P [

{

t
�x

}

C]A∧−B,∆

Γ ⊢P [∃xC]A∧−B,∆

By induction hypothesis we get
Γ ⊢P [

{

t
�x

}

C]A,∆

Γ ⊢P [∃xC]A,∆
and

Γ ⊢P [
{

t
�x

}

C]B,∆

Γ ⊢P [∃xC]B,∆

–
Γ ⊢P [⊤+]A∧−B,∆

We get

Γ ⊢P [⊤+]A,∆ and Γ ⊢P [⊤+]B,∆

– litP(Γ), p⊥, litL(∆⊥) |=T

Γ ⊢P [p]A∧−B,∆
with p being P-positive

We get

litP(Γ), p⊥, litL(∆⊥) |=T

Γ ⊢P [p]A,∆
and litP(Γ), p⊥, litL(∆⊥) |=T

Γ ⊢P [p]B,∆

– litP(Γ), litL(∆⊥) |=T

Γ ⊢P [•]A∧−B,∆

We get

litP(Γ), litL(∆⊥) |=T

Γ ⊢P [•]A,∆
and litP(Γ), litL(∆⊥) |=T

Γ ⊢P [•]B,∆

–
Γ ⊢P [P]A∧−B,∆

Γ ⊢P [•]A∧−B,∆
where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ ⊢P [P]A,∆

Γ ⊢P [•]A,∆
and

Γ ⊢P [P]B,∆

Γ ⊢P [•]B,∆

30

• Inversion of A∨−B

–
Γ ⊢P [X]A∨−B,C,∆ Γ ⊢P [X]A∨−B,D,∆

Γ ⊢P [X]A∨−B,C∧−D,∆

By induction hypothesis we get
Γ ⊢P [X]A,B,C,∆ Γ ⊢P [X]A,B,D,∆

Γ ⊢P [X]A,B,C∧−D,∆

–
Γ ⊢P [X]A∨−B,C,D,∆

Γ ⊢P [X]A∨−B,C∨−D,∆

By induction hypothesis we get
Γ ⊢P [X]A,B,C,D,∆

Γ ⊢P [X]A,B,C∨−D,∆

–
Γ ⊢P [X]A∨−B,C,∆

x /∈ FV(Γ,X , A∨−B,∆)
Γ ⊢P [X]A∨−B, (∀xC),∆

By induction hypothesis we get
Γ ⊢P [X]A,B,C,∆

x /∈ FV(Γ,X , A,B,∆)
Γ ⊢P [X], A,B, (∀xC),∆

–
Γ, C⊥ ⊢P;C⊥

[X]A∨−B,∆ C literal or
P-positiveΓ ⊢P [X]A∨−B,C,∆

By induction hypothesis we get
Γ, C⊥ ⊢P;C⊥

[X]A,B,∆ C literal or
P-positiveΓ ⊢P [X]A,B,C,∆

–
Γ ⊢P [X]A,B,∆

Γ ⊢P [X]A∨−B,⊥−,∆

By induction hypothesis we get
Γ ⊢P [X]A,B,∆

Γ ⊢P [X]A,B,⊥−,∆

– Γ ⊢P [X]A∨−B,⊤−,∆

We get Γ ⊢P [X]A,B,⊤−,∆

–
Γ ⊢P [C]A∨−B,∆ Γ ⊢P [D]A∨−B,∆

Γ ⊢P [C∧+D]A∨−B,∆

By induction hypothesis we get
Γ ⊢P [C]A,B,∆ Γ ⊢P [D]A,B,∆

Γ ⊢P [C∧+D]A,B,C∧−D,∆

–
Γ ⊢P [Ci]A∨−B,∆

Γ ⊢P [C1∨+C2]A∨−B,∆

By induction hypothesis we get
Γ ⊢P [Ci]A,B,∆

Γ ⊢P [C1∨+C2]A,B,∆

–
Γ ⊢P [

{

t
�x

}

C]A∨−B,∆

Γ ⊢P [∃xC]A∨−B,∆

By induction hypothesis we get
Γ ⊢P [

{

t
�x

}

C]A,B,∆

Γ ⊢P [∃xC]A,B,∆

– Γ ⊢P [⊤+]A∨−B,∆

We get Γ ⊢P [⊤+]A,B,∆

– litP(Γ), p⊥, litL(∆⊥) |=T

Γ ⊢P [p]A∨−B,∆
with p being P-positive

We get litP(Γ), p⊥, litL(∆⊥) |=T

Γ ⊢P [p]A,B,∆

– litP(Γ), litL(∆⊥) |=T

Γ ⊢P [•]A∨−B,∆

31

We get litP(Γ), litL(∆⊥) |=T

Γ ⊢P [•]A,B,∆

–
Γ ⊢P [P]A∨−B,∆

Γ ⊢P [•]A∨−B,∆
where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ ⊢P [P]A,B,∆

Γ ⊢P [•]A,B,∆
• Inversion of ∀xA

–
Γ ⊢P [X](∀xA), C,∆ Γ ⊢P [X](∀xA),D,∆

Γ ⊢P [X](∀xA), C∧−D,∆

By induction hypothesis we get
Γ ⊢P [X]A,C,∆ Γ ⊢P [X]A,D,∆

x /∈ FV(Γ,X ,∆)
Γ ⊢P [X]A,C∧−D,∆

–
Γ ⊢P [X](∀xA), C,D,∆

Γ ⊢P [X](∀xA), C∨−D,∆

By induction hypothesis we get
Γ ⊢P [X]A,C,D,∆

Γ ⊢P [X]A,C∨−D,∆

–
Γ ⊢P [X](∀xA),D,∆

y /∈ FV(Γ,X , (∀xA),∆)
Γ ⊢P [X](∀xA), (∀yD),∆

By induction hypothesis we get
Γ ⊢P [X]A,D,∆

y /∈ FV(Γ,X , A,∆)
Γ ⊢P [X]A, (∀yD),∆

–
Γ, C⊥ ⊢P;C⊥

[X](∀xA),∆ C literal or
P-positiveΓ ⊢P [X](∀xA), C,∆

By induction hypothesis we get
Γ, C⊥ ⊢P;C⊥

[X]A,∆ C literal or
P-positiveΓ ⊢P [X]A,C,∆

–
Γ ⊢P [X](∀xA),∆

Γ ⊢P [X](∀xA),⊥−,∆

By induction hypothesis we get
Γ ⊢P [X]A,∆

Γ ⊢P [X]A,⊥−,∆

– Γ ⊢P [X](∀xA),⊤−,∆

We get Γ ⊢P [X]A,⊤−,∆

–
Γ ⊢P [C](∀xA),∆ Γ ⊢P [D](∀xA),∆

Γ ⊢P [C∧+D](∀xA),∆

By induction hypothesis we get
Γ ⊢P [C]A,∆ Γ ⊢P [D]A,∆

Γ ⊢P [C∧+D]A,∆

–
Γ ⊢P [Ci](∀xA),∆

Γ ⊢P [C1∨+C2](∀xA),∆

By induction hypothesis we get
Γ ⊢P [Ci]A,∆

Γ ⊢P [C1∨+C2]A,∆

–
Γ ⊢P [

{

t
�x

}

D](∀xA),∆

Γ ⊢P [∃xD](∀xA),∆

By induction hypothesis we get
Γ ⊢P [

{

t
�x

}

D]A,∆

Γ ⊢P [∃xD]A,∆

–
Γ ⊢P [⊤+](∀xA), C,∆

We get
Γ ⊢P [⊤+]A,∆

32

– litP(Γ), p⊥, litL(∆⊥) |=T

Γ ⊢P [p](∀xA),∆
with p being P-positive

We get litP(Γ), p⊥, litL(∆⊥) |=T

Γ ⊢P [p]A,∆

– litP(Γ), litL(∆⊥) |=T

Γ ⊢P [•](∀xA),∆

We get litP(Γ), litL(∆⊥) |=T

Γ ⊢P [•]A,∆

–
Γ ⊢P [P](∀xA),∆

Γ ⊢P [•](∀xA),∆
where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ ⊢P [P]A,∆

Γ ⊢P [•]A,∆
• Inversion of storing a literal or P-positive formulae A

–
Γ ⊢P [X]A,C,∆ Γ ⊢P [X]A,D,∆

Γ ⊢P [X]A,C∧−D,∆

By induction hypothesis we get
Γ, A⊥ ⊢P;A⊥

[X]C,∆ Γ, A⊥ ⊢P;A⊥

[X]D,∆

Γ, A⊥ ⊢P;A⊥

[X]C∧−D,∆

–
Γ ⊢P [X]A,C,D,∆

Γ ⊢P [X]A,C∨−D,∆

By induction hypothesis we get
Γ, A⊥ ⊢P;A⊥

[X]C,D,∆

Γ, A⊥ ⊢P;A⊥

[X]C∨−D,∆

–
Γ ⊢P [X]A,D,∆

x /∈ FV(Γ,X , A,∆)
Γ ⊢P [X]A, (∀xD),∆

By induction hypothesis we get
Γ, A⊥ ⊢P;A⊥

[X]D,∆
x /∈ FV(Γ, A⊥,X ,∆)

Γ, A⊥ ⊢P;A⊥

[X](∀xD),∆

–
Γ, B⊥ ⊢P;B⊥

[X]A,∆ B literal or
P-positiveΓ ⊢P [X]A,B,∆

We build
Γ, A⊥, B⊥ ⊢P;A⊥;B⊥

[X]∆ B literal or
P-positiveΓ, A⊥ ⊢P;A⊥

[X]B,∆
proving the premiss using the induction hypothesis in case P ;B⊥;A⊥ = P ;A⊥;B⊥,
which holds unless A = B⊥ and A ∈ UP .
In that case we have P ;A⊥ = P , A⊥, and we prove Γ, A⊥ ⊢P;A⊥

[X]B,∆ with (Init)
(Lemma 21), as litP;A⊥(Γ, A⊥), litL(B⊥,∆⊥) |=T .

–
Γ ⊢P [X]A,∆

Γ ⊢P [X]A,⊥−,∆

By induction hypothesis we get
Γ, A⊥ ⊢P;A⊥

[X]∆

Γ, A⊥ ⊢P;A⊥

[X]⊥−,∆

– Γ ⊢P [X]A,⊤−,∆

We get Γ, A⊥ ⊢P;A⊥

[X]⊤−,∆

–
Γ ⊢P [C]A,∆ Γ ⊢P [D]A,∆

Γ ⊢P [C∧+D]A,∆

By induction hypothesis we get
Γ, A⊥ ⊢P [C]∆ Γ, A⊥ ⊢P;A⊥

[D]∆

Γ, A⊥ ⊢P;A⊥

[C∧+D]∆

33

–
Γ ⊢P [Ci]A,∆

Γ ⊢P [C1∨+C2]A,∆

By induction hypothesis we get
Γ, A⊥ ⊢P;A⊥

[Ci]∆

Γ, A⊥ ⊢P;A⊥

[C1∨+C2]∆

–
Γ ⊢P [

{

t
�x

}

D]A,∆

Γ ⊢P [∃xD]A,∆

By induction hypothesis we get
Γ, A⊥ ⊢P;A⊥

[
{

t
�x

}

D]∆

Γ, A⊥ ⊢P;A⊥

[∃xD]∆

– Γ ⊢P [⊤+]A,∆

We get Γ, A⊥ ⊢P;A⊥

[⊤+]∆

– litP(Γ), p⊥, litL(A⊥,∆⊥) |=T

Γ ⊢P [p]A,∆
with p being P-negative

We get litP;A⊥(Γ, A⊥), p⊥, litL(∆⊥) |=T

Γ, A⊥ ⊢P;A⊥

[p]∆
as p is also P ;A⊥-positive.

– litP(Γ), litL(A⊥,∆⊥) |=T

Γ ⊢P [•]A,∆

We get litP;A⊥(Γ, A⊥), litL(∆⊥) |=T

Γ, A⊥ ⊢P;A⊥

[•]∆

–
Γ ⊢P [P]A,∆

Γ ⊢P [•]A,∆
where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ, A⊥ ⊢P;A⊥

[P]∆

Γ, A⊥ ⊢P;A⊥

[•]∆
using either (Select) or (Select−) depending on whether P is P ;A⊥-negative.

• Inversion of (⊥−)

–
Γ ⊢P [X]⊥−, C,∆ Γ ⊢P [X]⊥−,D,∆

Γ ⊢P [X]⊥−, C∧−D,∆

By induction hypothesis we get
Γ ⊢P [X]C,∆ Γ ⊢P [X]D,∆

Γ ⊢P [X]C∧−D,∆

–
Γ ⊢P [X]⊥−, C,D,∆

Γ ⊢P [X]⊥−, C∨−D,∆

By induction hypothesis we get
Γ ⊢P [X]C,D,∆

Γ ⊢P [X]C∨−D,∆

–
Γ ⊢P [X]⊥−,D,∆

x /∈ FV(Γ,X ,∆)
Γ ⊢P [X]⊥−, (∀xD),∆

By induction hypothesis we get
Γ ⊢P [X]D,∆

x /∈ FV(Γ,X ,∆)
Γ ⊢P [X](∀xD),∆

–
Γ, B⊥ ⊢P;B⊥

[X]⊥−,∆ B literal or
P-positiveΓ ⊢P [X]⊥−, B,∆

By induction hypothesis we get
Γ, B⊥ ⊢P;B⊥

[X]∆ B literal or
P-positiveΓ ⊢P [X]B,∆

–
Γ ⊢P [X]⊥−,∆

Γ ⊢P [X]⊥−,⊥−,∆

34

By induction hypothesis we get
Γ ⊢P [X]∆

Γ ⊢P [X]⊥−,∆

–
Γ ⊢P [X]⊥−,⊤−,∆

We get
Γ ⊢P [X]⊤−,∆

–
Γ ⊢P [C]⊥−,∆ Γ ⊢P [D]⊥−,∆

Γ ⊢P [C∧+D]⊥−,∆

By induction hypothesis we get
Γ ⊢P [C]∆ Γ ⊢P [D]∆

Γ ⊢P [C∧+D]∆

–
Γ ⊢P [Ci]∆

Γ ⊢P [C1∨+C2]⊥−,∆

By induction hypothesis we get
Γ ⊢P [Ci]∆

Γ ⊢P [C1∨+C2]∆

–
Γ ⊢P [

{

t
�x

}

D]⊥−,∆

Γ ⊢P [∃xD]⊥−,∆

By induction hypothesis we get
Γ ⊢P [

{

t
�x

}

D]∆

Γ ⊢P [∃xD]∆

– Γ ⊢P [⊤+]⊥−,∆

We get Γ ⊢P [⊤+]∆

– litP(Γ), p⊥, litL(∆⊥) |=T

Γ ⊢P [p]⊥−,∆
with p being P-positive

By induction hypothesis we get litP(Γ), p⊥, litL(∆⊥) |=T

Γ, A⊥ ⊢P [p]∆

– litP (Γ), litL(∆⊥) |=T

Γ ⊢P [•]⊥−,∆

By induction hypothesis we get litP(Γ), litL(∆⊥) |=T

Γ, A⊥ ⊢P [•]∆

–
Γ ⊢P [P]⊥−,∆

Γ ⊢P [•]⊥−,∆
where P⊥ ∈ Γ is not P-positive

By induction hypothesis we get
Γ ⊢P [P]∆

Γ ⊢P [•]∆
• Inversion of ⊤−: nothing to do.

�

Now that we have proved the invertibility of asynchronous rules, we can use it to transform
any proof of LK+(T) into a proof of LKp(T).

Lemma 23 (Encoding LK
+(T) in LK

p(T))

1. If Γ ⊢P [A] is provable in LK+(T), then Γ ⊢P [A] is provable in LKp(T).

2. If Γ ⊢P [•]∆ is provable in LK+(T), then Γ ⊢P ∆ is provable in LKp(T).

Proof: By simultaneous induction on the assumed derivation.
1. For the first item we get, by case analysis on the last rule of the derivation:

•
Γ ⊢P [A1] Γ ⊢P [A2]

Γ ⊢P [A1∧+A2]
with A = A1∧+A2.

The induction hypothesis on Γ ⊢P

LK+(T)
[A1] gives Γ ⊢P

LKp(T) [A1] and the induction

35

hypothesis on Γ ⊢P

LK+(T)
[A2] gives Γ ⊢P

LKp(T) [A2]. We get:

Γ ⊢P [A1] Γ ⊢P [A2]

Γ ⊢P [A1∧+A2]

•
Γ ⊢P [Ai]

Γ ⊢P [A1∨+A2]
with A = A1∨+A2.

The induction hypothesis on Γ ⊢P

LK+(T)
[Ai] gives Γ ⊢P

LKp(T) [Ai]. We get:

Γ ⊢P [Ai]

Γ ⊢P [A1∨+A2]

•
Γ ⊢P [{t/x}A]

Γ ⊢P [∃xA]
with A = ∃xA.

The induction hypothesis on Γ ⊢P

LK+(T)
[{t/x}A] gives Γ ⊢P

LKp(T) [{t/x}A]. We
get:

Γ ⊢P [{t/x}A]

Γ ⊢P [∃xA]

• litP(Γ), p⊥ |=T

Γ ⊢P [p]
with A = p where p is a P-positive literal.

We can perform the same step in LKp(T):

litP (Γ), p⊥ |=T

Γ ⊢P [p]

•
Γ ⊢P [•]N

Γ ⊢P [N]
with A = N and N is not P-positive.

The induction hypothesis on Γ ⊢P

LK+(T)
[•]N gives Γ ⊢P

LKp(T) N . We get:

Γ ⊢P N

Γ ⊢P [N]

2. For the second item, we use the height-preserving invertibility of the asynchronous rules,
so that we can assume without loss of generality that if ∆ is not empty then the last
rule of the derivation decomposes one of its formulae.

•
Γ ⊢P [•]A1,∆1 Γ ⊢P [•]A2,∆1

Γ ⊢P [•]A1∧−A2,∆1

with ∆ = A1∧−A2,∆1.

The induction hypothesis on Γ ⊢P

LK+(T)
[•]A1,∆1 gives Γ ⊢P

LKp(T) A1,∆1 and the

induction hypothesis on Γ ⊢P

LK+(T)
[•]A2,∆2 gives Γ ⊢P

LKp(T) A2,∆2. We get:

Γ ⊢P A1,∆1 Γ ⊢P A2,∆1

Γ ⊢P A1∧−A2,∆1

•
Γ ⊢P [•]A1, A2,∆1

Γ ⊢P [•]A1∨−A2,∆1

with ∆ = A1∨−A2,∆1.

The induction hypothesis on Γ ⊢P

LK+(T)
[•]A1, A2,∆1 gives Γ ⊢P

LKp(T) A1, A2,∆1

and we get:
Γ ⊢P A1, A2,∆1

Γ ⊢P A1∨−A2,∆1

36

•
Γ ⊢P [•]A,∆1

x 6∈ FV(Γ,∆1)
Γ ⊢P [•]∀xA,∆1

with ∆ = ∀xA,∆1.

The induction hypothesis on Γ ⊢P

LK+(T)
[•]A,∆1 gives Γ ⊢P

LKp(T) A,∆1. We get:

Γ ⊢P A,∆1

x 6∈ FV(Γ,∆1)
Γ ⊢P ∀xA,∆1

•
Γ, A⊥ ⊢P;A⊥

[•]∆1

Γ ⊢P [•]A,∆1

with ∆ = A,∆1 and A is a literal or is P-positive.

The induction hypothesis on Γ, A⊥ ⊢P;A⊥

LK+(T)
[•]∆1 gives Γ, A⊥ ⊢P;A⊥

LKp(T)
∆1. We get:

Γ, A⊥ ⊢P;A⊥

∆1

Γ ⊢P A,∆1

•
Γ ⊢P [•]∆1

Γ ⊢P [•]⊥−,∆1

with ∆ = ⊥−,∆1.

The induction hypothesis on Γ ⊢P

LK+(T)
[•]∆1 gives Γ ⊢P

LKp(T) ∆1. We get:

Γ ⊢P ∆1

Γ ⊢P ⊥−,∆1

•
Γ ⊢P [•]⊤−,∆1

with ∆ = ⊤−,∆1.

We get:

Γ ⊢P ⊤−,∆1

•
Γ, P⊥ ⊢P [P]∆

Γ, P⊥ ⊢P [•]∆
where P is not P-negative.

As already mentioned, we can assume without loss of generality that ∆ is empty.
The induction hypothesis on Γ, P⊥ ⊢P

LK+(T)
[P] gives Γ, P⊥ ⊢P

LKp(T) [P]. We get:

Γ, P⊥ ⊢P [P]

Γ, P⊥ ⊢P

• litP(Γ), litL(∆⊥) |=T

Γ ⊢P [•]∆
As already mentioned, we can assume without loss of generality that ∆ is empty.
We get:

litP(Γ) |=T

Γ ⊢P

�

Lemma 24 We have:

1. ⊢P
LKp(T) ⊤+⊥

,⊤−, and

2. ⊢P
LKp(T) ⊤−⊥

,⊤+, and

3. ⊢P
LKp(T) (A∧+B)⊥

, (A∧−B), and

4. ⊢P
LKp(T) (A∧−B)⊥

, (A∧+B), provided that sequent is safe.

Proof:

1. For the first item we get:

⊢P ⊤+⊥
,⊤−

37

2. For the second item we get:

⊤−,⊤+⊥
⊢P [⊤+]

⊤−,⊤+⊥
⊢P

⊤− ⊢P ⊤+

⊢P ⊤−⊥
,⊤+

3. For the third item we get:

⊢P;A [A⊥]B⊥, A
− − − − − − − − −
A ⊢P;A [A⊥]B⊥, A

A ⊢P;A [•]B⊥, A

⊢P [•]A⊥, B⊥, A

⊢P;B [B⊥]A⊥, B
− − − − − − − − −
B ⊢P;B [B⊥]A⊥, B

B ⊢P;B [•]A⊥, B

⊢P [•]A⊥, B⊥, B
=================================

⊢P [•](A⊥∨−B⊥), (A∧−B)

⊢P [•](A∧+B)
⊥
, (A∧−B)

Lemma 23(2)
⊢P (A∧+B)

⊥
, (A∧−B)

Both left hand side and right hand side can be closed by Lemma 20.
4. For the fourth item, we get:

⊢P [A⊥]A

⊢P [A⊥∨+B⊥]A
− − − − − − − − − − −
A∧−B ⊢P [A⊥∨+B⊥]A

A∧−B ⊢P [•]A
Lemma 23(2)

A∧−B ⊢P A
− − − − − − − − − − − − −
(A∧−B), (A⊥∨−B⊥) ⊢P A

⊢P [B⊥]B

⊢P [A⊥∨+B⊥]B
− − − − − − − − − − −
A∧−B ⊢P [A⊥∨+B⊥]B

A∧−B ⊢P [•]B
Lemma 23(2)

A∧−B ⊢P B
− − − − − − − −
A∧−B ⊢P A⊥, B

− − − − − − − − − − − − − − −
(A∧−B), (A⊥∨−B⊥) ⊢P A⊥, B

⊢P [A]A⊥, B⊥ ⊢P [B]A⊥, B⊥

⊢P [A∧+B]A⊥, B⊥

− − − − − − − − − − − − − −
A⊥∨−B⊥ ⊢P [A∧+B]A⊥, B⊥

A⊥∨−B⊥ ⊢P [•]A⊥, B⊥

Lemma 23(2)
A⊥∨−B⊥ ⊢P A⊥, B⊥

− − − − − − − − − − − − − − −
(A∧−B), (A⊥∨−B⊥) ⊢P A⊥, B⊥

cut7

(A∧−B), (A⊥∨−B⊥) ⊢P A⊥

cut7

(A∧−B), (A∧+B)
⊥

⊢P

===================
⊢P (A∧−B)

⊥
, (A∧+B)

All branches are closed by Lemma 20. �

Lemma 25

If Γ ⊢P
LKp(T) ∆, C and Γ ⊢P

LKp(T) D,C
⊥ then Γ ⊢P

LKp(T) ∆,D, provided that sequent is safe.

Proof:

Γ ⊢P ∆, C
− − − − − −
Γ ⊢P D,∆, C

Γ ⊢P D,C⊥

− − − − − − −
Γ ⊢P ∆, D,C⊥

cut7

Γ ⊢P ∆,D
�

Corollary 26 (Changing the polarity of connectives) Provided those sequents are safe,

1. If Γ ⊢P ⊤+,∆ then Γ ⊢P ⊤−,∆;

2. If Γ ⊢P ⊤−,∆ then Γ ⊢P ⊤+,∆;

3. If Γ ⊢P ⊥+,∆ then Γ ⊢P ⊥−,∆;

4. If Γ ⊢P ⊥−,∆ then Γ ⊢P ⊥+,∆;

5. If Γ ⊢P A∧+B,∆ then Γ ⊢P A∧−B,∆;

6. If Γ ⊢P A∧−B,∆ then Γ ⊢P A∧+B,∆;

38

7. If Γ ⊢P A∨+B,∆ then Γ ⊢P A∨−B,∆;

8. If Γ ⊢P A∨−B,∆ then Γ ⊢P A∨+B,∆.
Furthermore, notice that in each implication, the safety of one sequent implies the safety of the
other.

Proof:

1. By Lemma 25 and Lemma 24(1).
2. By Lemma 25 and Lemma 24(2).
3. By Lemma 25 and Lemma 24(1).
4. By Lemma 25 and Lemma 24(2).
5. By Lemma 25 and Lemma 24(3).
6. By Lemma 25 and Lemma 24(4).
7. By Lemma 25 and Lemma 24(3).
8. By Lemma 25 and Lemma 24(4).

�

We have proven that changing the polarities of the connectives that are present in a sequent,
does not change the provability of that sequent in LKp(T).

7 Completeness

LK(T) is a complete system for first-order logic modulo a theory. To show this, we review the
grammar of first-order formulae and map those formulae to polarised formulae.

Definition 10 (Plain formulae) Let P a
Σ be a sub-signature of the first-order predicate sig-

nature PΣ such that for every predicate symbol P/n of PΣ, P/n is in P a
Σ if and only if P⊥/n is

not in P a
Σ.

Let A be the subset of L consisting of those literals whose predicate symbols are in P a
Σ. Literals

in A, denoted a, a′, etc, are called atoms.
The formulae of first-order logic, here called plain formulae, are given by the following grammar:

Plain formulae A,B, . . . ::= a | A ∨B | A ∧ B | ∀xA | ∃xA | ¬A

where a ranges over atoms. ※

Definition 11 (ψ) Let ψ be the function that maps every plain formula to a set of formulae (in
the sense of Definition 4) defined as follows:

ψ(a) := {a}
ψ(A ∧B) := {A′∧−B′, A′∧+B′ | A′ ∈ ψ(A),B′ ∈ ψ(B)}
ψ(A ∨B) := {A′∨−B′, A′∨+B′ | A′ ∈ ψ(A),B′ ∈ ψ(B)}
ψ(∃xA) := {∃xA′ | A′ ∈ ψ(A)}
ψ(∀xA) := {∀xA′ | A′ ∈ ψ(A)}
ψ(¬A) := {A′⊥

| A′ ∈ ψ(A)}
ψ(∆, A) := {∆′, A′ | ∆′ ∈ ψ(∆), A′ ∈ ψ(A)}
ψ(∅) := ∅

※

Remark 27 1. ψ(A) 6= ∅

2. If A′ ∈ ψ(A), then
{

t�x

}

A′ ∈ ψ(
{

t�x

}

A′).

3. If C′ ∈ ψ(
{

t�x

}

A), then C′ =
{

t�x

}

A′ for some A′ ∈ ψ(A).

Notation 12 When F is a plain formula and Ψ is a set of plain formulae, Ψ |= F means that
Ψ entails F in first-order classical logic.

Given a theory T (given by a semantical inconsistency predicate), we define the set of all
theory lemmas as

ΨT := {l1 ∨ · · · ∨ ln | ψ(l1)⊥, · · · , ψ(ln)⊥ |=T }

We generalise the notation |=T to write Ψ |=T F when ΨT ,Ψ |= F , in which case we say
that F is a semantical consequence of Ψ.

39

Notation 13 In the rest of this section we will use the notation A ∧? B (resp. A ∨? B) to
ambiguously represent either A∧+B or A∧−B (resp. A∨+B or A∨−B). This will make the
proofs more compact, noticing that Corollary 26(2) and 26(4) respectively imply the admissibility
in LKp(T) of

Γ ⊢P ∆, A∧−B

Γ ⊢P ∆, A ∧? B

Γ ⊢P ∆, A∨−B

Γ ⊢P ∆, A ∨? B

provided the sequents are safe (and note that safety of the conclusion entails safety of the premiss).

Lemma 28 (Equivalence between different polarisations)

For all A′, A′′ ∈ ψ(A), we have Γ ⊢P
LKp(T) A

′, A′′⊥
,∆, provided the sequent is safe.

Proof: In the proof below, for any formula A, the notations A′ and A′′ will systematically
designate elements of ψ(A).

The proof is by induction on A:
1. A = a

Let A′, A′′ ∈ ψ(a) = {a}. Therefore A′ = A′′ = A = a.

(Id2)
Γ, ψ⊥(a), ψ(a),Γ′ ⊢P′

=====================
Γ ⊢P ψ(a), ψ⊥(a),∆

2. A = A1 ∧ A2

Let A′
1, A

′′
1 ∈ ψ(A1) , A′

2, A
′′
2 ∈ ψ(A2) and A′ = A′

1 ∧? A′
2, A′′ = A′′

1 ∧? A′′
2 .

Γ ⊢P A′
1, A

′′
1

⊥
,∆

Γ ⊢P A′
1, A

′′
1

⊥
, A′′

2

⊥
,∆

Γ ⊢P A′
2, A

′′
2

⊥
,∆

Γ ⊢P A′
2, A

′′
1

⊥
, A′′

2

⊥
,∆

==
Γ ⊢P A′

1∧−A′
2, A

′′
1

⊥
∨−A′′

2

⊥
,∆

Γ ⊢P A′, A′′
1

⊥
∨−A′′

2

⊥
,∆

Γ ⊢P A′, A′′⊥
,∆

We can complete the proof on the left-hand side by applying the induction hypothesis
on A1 and on the right-hand side by applying the induction hypothesis on A2.

3. A = A1 ∨ A2

By symmetry, using the previous case.
4. A = ∀xA1

Let A′ = ∀xA′
1 and A′′ = ∀xA′′

1 .

⊢P′

[A′′
1

⊥]A′′
1

⊢P′

[∃xA′′
1]A′′

1

− − − − − − − − − −
Γ,∀xA′′

1 ⊢P [•]A′′
1 ,∆

Lemma 23(2)
Γ ⊢P A′′

1 ,∃xA
′′
1

⊥
,∆ Γ ⊢P A′

1, A
′′
1

⊥
,∆

Lemma 25
Γ ⊢P A′

1,∃xA
′′
1

⊥
,∆

Γ ⊢P ∀xA′
1,∃xA

′′
1

⊥
,∆

We can complete the proof on the left-hand side by Lemma 20 and the right-hand side
by applying the induction hypothesis on A1.

5. A = ∃xA1

By symmetry, using the previous case.
6. A = ¬A1

Let A′, A′′ ∈ ψ(¬A1).
Let A′ = A′

1
⊥ with A′

1 ∈ ψ(A1) and A′′ = A′′
1

⊥ with A′′
1 ∈ ψ(A1).

The induction hypothesis on A1 we get: Γ ⊢P
LKp(T) A

′, A′′⊥
,∆ and we are done.

�

40

Definition 14 (Theory restricting) A polarisation set does not restrict the theory T if for
all sets B of literals that are semantically inconsistent (i.e. B |=T), there is a subset B′ ⊆ B that
is already semantically inconsistent and such that at most one literal of B′ is P-negative. ※

Remark 29 The empty polarisation set restricts no theories.

Theorem 30 (Completeness of LK
p(T)) Assume P does not restrict T and ∆ |=T A.

Then for all A′ ∈ ψ(A) and ∆′ ∈ ψ(∆), we have ⊢P
LKp(T) A

′,∆′⊥
, provided that sequent is

safe.

Proof: We prove a slightly more general statement:
for all A′ ∈ ψ(A) and all multiset ∆′ of formulae that contain an element of ψ(∆) as a
sub-multiset, we have ⊢P

LKp(T) A
′,∆′⊥, provided that sequent is safe.

We caracterise ∆ |=T A by the derivability of the sequent ΨT ,∆ ⊢ A in a standard natural
deduction system for first-order classical logic. We write ΨT ,∆ ⊢FOL A for this derivability
property.

For any formula A, the notation A′ will systematically designate an element of ψ(A).
The proof is by induction of ΨT ,∆ ⊢FOL A, and case analysis on the last rule:

• Axiom:
A ∈ ΨT ,∆

ΨT ,∆ ⊢ A

By case analysis:
– If A ∈ ∆ then we prove ⊢P A′,∆′⊥ with A′, A′′ ∈ ψ(A) and A′′ ∈ ∆′, using

Lemma 28.
– If A ∈ ΨT then A is of the form l1 ∨ · · · ∨ ln with ψ(l1)⊥, . . . , ψ(ln)⊥ |=T .

Let {ψ(l′1)⊥
, . . . , ψ(l′m)⊥

} be a subset of {ψ(l1)⊥, . . . , ψ(ln)⊥} that is already se-
mantically inconsistent and such that at most one literal is P-negative, say possibly
ψ(l′m)⊥.
Let C′ ∈ ψ(A). C′ is of the form ψ(l1) ∨? · · · ∨? ψ(ln).
We build

ψ(l′1)⊥
, . . . , ψ(l′m)⊥

⊢P′

⊢P ψ(l′1), . . . , ψ(l′m)
====================
⊢P ∆′⊥

, ψ(l1), . . . , ψ(ln)
=======================
⊢P ∆′⊥

, ψ(l1)∨− · · · ∨−ψ(ln)

⊢P ∆′⊥
, C′

where P ′ := P ;ψ(l′1)⊥; . . . ;ψ(l′m)⊥.
If ψ(l′1)⊥

, . . . , ψ(l′m)⊥ is syntactically inconsistent, we close with Id2.
Otherwise

P ;ψ(l′1)⊥; . . . ;ψ(l′m−1)⊥ = P , ψ(l′1)⊥
, . . . , ψ(l′m−1)⊥

as none of the ψ(l′i)
⊥, for 1 ≤ i ≤ m − 1, is P-negative. And for all i such that

1 ≤ i ≤ m− 1, the literal ψ(l′i)
⊥ is P ′-positive.

Now if ψ(l′m)⊥ is P ′-positive as well, we have

litP′ (ψ(l′1)⊥
, . . . , ψ(l′m)⊥) = ψ(l′1)⊥

, . . . , ψ(l′m)⊥

and we can close with (Init2).
If ψ(l′m)⊥ is not P ′-positive, we simply have

litP′ (ψ(l′1)⊥
, . . . , ψ(l′m)⊥) = ψ(l′1)⊥

, . . . , ψ(l′m−1)⊥

but we can still build

ψ(l′1)⊥
, . . . , ψ(l′m)⊥

|=T

(Init1)
ψ(l′1)⊥

, . . . , ψ(l′m)⊥
⊢P′

[ψ(l′m)]

ψ(l′1)⊥
, . . . , ψ(l′m)⊥

⊢P′

41

• And Intro:
ΨT ,∆ ⊢ A1 ΨT ,∆ ⊢ A2

ΨT ,∆ ⊢ A1 ∧A2

A′ ∈ ψ(A1 ∧A2) is of the form A′
1 ∧? A′

2 with A′
1 ∈ ψ(A1) and A′

2 ∈ ψ(A2).

Since ⊢P A′
1 ∧? A′

2,∆
′⊥ is assumed to be safe, ⊢P A′

1,∆
′⊥ and ⊢P A′

2,∆
′⊥ are also

safe, and we can apply the induction hypothesis
– on ΨT ,∆ ⊢FOL A1 to get ⊢P

LKp(T) A
′
1,∆

′⊥

– and on ΨT ,∆ ⊢FOL A2 to get ⊢P
LKp(T) A

′
2,∆

′⊥.
We build:

⊢P A′
1,∆

′⊥
⊢P A′

2,∆
′⊥

⊢P A′
1∧−A′

2,∆
′⊥

⊢P A′
1 ∧? A′

2,∆
′⊥

• And Elim
ΨT ,∆ ⊢ A1 ∧A−1

ΨT ,∆ ⊢ Ai

with i ∈ {1,−1}.
Since ψ(A−i) 6= ∅, let A′

−i ∈ ψ(A−i) and C′ = A′
1∧−A′

−1 (C′ ∈ ψ(A1 ∧A−1)).

Since ⊢P A′
i,∆

′⊥ is assumed to be safe, ⊢P C′, A′
i,∆

′⊥ is also safe, and we can
apply the induction hypothesis on ΨT ,∆ ⊢ A1 ∧ A−1 (with A′

i
⊥
,∆′ and C′) to get

⊢P
LKp(T) C

′, A′
i,∆

′⊥.
We finally get:

⊢P C′, A′
i,∆

′⊥

− − − − − − − Lemma 7
⊢P A′

i, A
′
i,∆

′⊥

Cr

⊢P A′
i,∆

′⊥

• Or Intro
ΨT ,∆ ⊢ Ai

ΨT ,∆ ⊢ A1 ∨A−1

A′ ∈ ψ(A1 ∨A−1) is of the form A′
1 ∨? A′

−1 with A′
1 ∈ ψ(A1) and A′

−1 ∈ ψ(A−1).

Since ⊢P A′
1 ∨? A′

−1,∆
′⊥ is assumed to be safe, ⊢P A′

1, A
′
−1,∆

′⊥ is also safe, and we
can apply the induction hypothesis on ΨT ,∆ ⊢FOL Ai (with A′

−i
⊥
,∆′ and A′

i) to get
⊢P

LKp(T) A
′
1, A

′
−1,∆

′⊥ and we build:

⊢P A′
1, A

′
−1,∆

′⊥

⊢P A′
1∨−A′

−1,∆
′⊥

⊢P A′
1 ∨? A′

−1,∆
′⊥

• Or Elim
ΨT ,∆ ⊢ A1 ∨A2 ΨT ,∆, A1 ⊢ C ΨT ,∆, A2 ⊢ C

ΨT ,∆ ⊢ C

Let D′ = A′
1∨−A′

2 with A′
1 ∈ ψ(A1) and A′

2 ∈ ψ(A2).

Since ⊢P C′,∆′⊥ is assumed to be safe, ⊢P C′, A′
1

⊥
,∆′⊥ and ⊢P C′, A′

2
⊥
,∆′⊥ and

⊢P C′,D′,∆′⊥ are also safe, and we can apply the induction hypothesis
– on ΨT ,∆, A1 ⊢FOL C to get ⊢P

LKp(T) C
′, A′

1
⊥
,∆′⊥

– on ΨT ,∆, A2 ⊢FOL C to get ⊢P
LKp(T) C

′, A′
2

⊥
,∆′⊥.

– and on ΨT ,∆ ⊢FOL A1 ∨A2 to get ⊢P
LKp(T) C

′, D′,∆′⊥.
We build:

42

⊢P D′, C′,∆′⊥

⊢P A′
1

⊥
, C′,∆′⊥

⊢P A′
2

⊥
, C′,∆′⊥

⊢P A′
1

⊥
∧−A′

2

⊥
, C′,∆′⊥

⊢P A′
1

⊥
∧+A′

2

⊥
, C′,∆′⊥

− − − − − − − − − − − −
⊢P (A′

1∨−A′
2)

⊥
, C′,∆′⊥

cut7

⊢P C′,∆′⊥

• Universal quantifier Intro
ΨT ,∆ ⊢ A

x 6∈ Γ
ΨT ,∆ ⊢ ∀xA

C′ ∈ ψ(∀xA) is of the form ∀xA′ with A′ ∈ ψ(A).

Since ⊢P C′,∆′⊥ is assumed to be safe, ⊢P A′,∆′⊥ is also safe, and we can apply the
induction hypothesis on ΨT ,∆ ⊢FOL A to get ⊢P

LKp(T) A
′,∆′⊥ to get:

⊢P A′,∆′⊥

⊢P ∀xA′,∆′⊥

• Universal quantifier Elim
ΨT ,∆ ⊢ ∀xA

ΨT ,∆ ⊢
{

t
�x

}

A

C′ ∈ ψ(
{

t�x

}

A) is of the form
{

t�x

}

A′ with A′ ∈ ψ(A) (by Remark 27).

Since ⊢P C′,∆′⊥ is assumed to be safe, ⊢P (∀xA′), C′,∆′⊥ is also safe, and we can
apply the induction hypothesis on ΨT ,∆ ⊢FOL ∀xA (with C′⊥

,∆′ and (∀xA′)) to get
⊢P

LKp(T) (∀xA′), C′,∆′⊥.
We build

⊢P (∀xA′),
{

t
�x

}

A′,∆′⊥

− − − − − − − − − − −− Lemma 7
⊢P A′,

{

t
�x

}

A′,∆′⊥

Lemma 16
⊢P

{

t
�x

}

A′,
{

t
�x

}

A′,∆′⊥

Cr

⊢P
{

t
�x

}

A′,∆′⊥

• Existential quantifier Intro

ΨT ,∆ ⊢
{

t
�x

}

A

ΨT ,∆ ⊢ ∃xA

C′ ∈ ψ(∃xA) is of the form ∃xA′ with A′ ∈ ψ(A).
Let A′

t =
{

t�x

}

A′ (A′
t ∈ ψ(

{

t�x

}

A) by Remark 27).

Since ⊢P C′,∆′⊥ is assumed to be safe, ⊢P A′
t,∆

′⊥ is also safe, and we can apply the
induction hypothesis on ΨT ,∆ ⊢FOL

{

t�x

}

A to get ⊢P
LKp(T) A

′
t,∆

′⊥.

By Lemma 25 it suffices to prove ⊢P
LKp(T) ∃xA′, A′

t
⊥ in order to get ⊢P

LKp(T) C
′,∆′⊥:

⊢P [A′
t]A

′
t
⊥

⊢P [∃xA′]A′
t

⊥

∀xA′⊥
⊢P [•]A′

t
⊥

Lemma 23(2)
⊢P ∃xA′, A′

t
⊥

We can complete the proof by applying Lemma 20.
• Existential quantifier Elim

ΨT ,∆ ⊢ ∃xA Γ,∆, A ⊢ B
x 6∈ Γ, B

ΨT ,∆ ⊢ B

Let C′ = ∃xA′ with A′ ∈ ψ(A).

Since ⊢P B′,∆′⊥ is assumed to be safe, ⊢P B′, C′,∆′⊥ and ⊢P B′, A′⊥
,∆′⊥ are also

safe, and we can apply the induction hypothesis

43

– on ΨT ,∆ ⊢FOL ∃xA to get ⊢P
LKp(T) B

′, C′,∆′⊥;

– on Γ,∆, A ⊢FOL B to get ⊢P
LKp(T) B

′, A′⊥
,∆′⊥.

We build

⊢P C′, B′,∆′⊥

⊢P A′⊥
, B′,∆′⊥

⊢P ∀x(A′⊥), B′,∆′⊥

− − − − − − − − − −
⊢P C′⊥

, B′,∆′⊥

cut7

⊢P B′,∆′⊥

• Negation Intro
ΨT ,∆, A ⊢ B ∧ ¬B

ΨT ,∆ ⊢ ¬A

If C′ ∈ ψ(¬A) then C′⊥
∈ ψ(A). Let D′ = D′

1∧−D′
2 with D′

1 ∈ ψ(B) and D′
2 ∈ ψ(¬B).

Therefore D′
2

⊥
∈ ψ(B), D′ ∈ ψ(B ∧ ¬B) and ∆′, C′⊥

∈ ψ(∆, A).

Since ⊢P ∆′⊥
, C′ is assumed to be safe, ⊢P ∆′⊥

, C′,D′ is also safe, and we can apply
the induction hypothesis on ΨT ,∆, A ⊢FOL B ∧ ¬B to get ⊢P

LKp(T) ∆′⊥
, C′,D′. We

build

⊢P ∆′⊥
, C′, D′

Lemma 28
⊢P ∆′⊥

, C′,D′
1

⊥
,D′

2

⊥

⊢P ∆′⊥
, C′,D′

1

⊥
∨−D′

2

⊥

Corollary 26(4)
⊢P ∆′⊥

, C′,D′⊥

cut7

⊢P ∆′⊥
, C′

• Negation Elimination
ΨT ,∆ ⊢ ¬¬A

ΨT ,∆ ⊢ A

A′ ∈ ψ(A) is such that A′ ∈ ψ(¬¬A).

The induction hypothesis on ΨT ,∆ ⊢ ¬¬A gives ⊢P ∆′⊥
, A′ and we are done.

�

8 The system used for simulation of DPLL(T)

The motivation for the LKp(T) system was to perform proof-search modulo theories, and in
particular simulate DPLL(T) techniques. Therefore, we conclude this report with the actual
system that we use in other works [FLM12, FGLM13] to perform the simulation:

It is the LKp(T) system, extended with the admissible and invertible rules (Pol) and (cut7)
(or more precisely restricted versions of them), as shown in Fig 3.

44

Synchronous rules

Γ ⊢P [A] Γ ⊢P [B]
(∧+)

Γ ⊢P [A∧+B]

Γ ⊢P [Ai]
(∨+)

Γ ⊢P [A1∨+A2]

Γ ⊢P [
{

t�x

}

A]
(∃)

Γ ⊢P [∃xA]

(⊤+)
Γ ⊢P [⊤+]

litP(Γ), l⊥ |=T

(Init1) l is P-positive
Γ ⊢P [l]

Γ ⊢P N
(Release) N is not P-positive

Γ ⊢P [N]

Asynchronous rules

Γ ⊢P A, ∆ Γ ⊢P B, ∆
(∧−)

Γ ⊢P A∧−B, ∆

Γ ⊢P A1, A2, ∆
(∨−)

Γ ⊢P A1∨−A2, ∆

Γ ⊢P A, ∆
(∀) x /∈ FV(Γ, ∆, P)

Γ ⊢P (∀xA), ∆

Γ ⊢P ∆
(⊥−)

Γ ⊢P ∆, ⊥−
(⊤−)

Γ ⊢P ∆, ⊤−

Γ, A⊥ ⊢P;A⊥

∆
(Store)

A is a literal
or is P-positiveΓ ⊢P A, ∆

Structural rules

Γ, P ⊥ ⊢P [P]
(Select) P is not P-negative

Γ, P ⊥ ⊢P

litP(Γ) |=T

(Init2)
Γ ⊢P

Admissible/Invertible rules

Γ ⊢P,l

(Pol) litP (Γ), l⊥ |=T

Γ ⊢P

Γ ⊢P l Γ ⊢P l⊥

cut7
Γ ⊢P

where P ; A := P , A if A ∈ UP

P ; A := P if not

Figure 3: System for the simulation of DPLL(T)

45

References

[FGLM13] M. Farooque, S. Graham-Lengrand, and A. Mahboubi. A bisimulation between
DPLL(T) and a proof-search strategy for the focused sequent calculus. In A. Mo-
migliano, B. Pientka, and R. Pollack, editors, Proc. of the 2013 Int. Work. on
Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2013).
ACM Press, 2013. 1, 44

[FLM12] M. Farooque, S. Lengrand, and A. Mahboubi. Two simulations about DPLL(T).
Technical report, Laboratoire d’informatique de l’École Polytechnique - CNRS,
Microsoft Research - INRIA Joint Centre, Parsifal & TypiCal - INRIA Saclay,
France, 2012. Available at http://hal.archives-ouvertes.fr/hal-00690044 1, 44

[LM09] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoret. Comput. Sci., 410(46):4747–4768, 2009. 1

[NOT06] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo
Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). J. of the ACM Press, 53(6):937–977, 2006. 1

46

http://hal.archives-ouvertes.fr/hal-00690044

	: Definitions
	Admissibility of basic rules
	Invertibility of the asynchronous phase
	On-the-fly polarisation
	Cut-elimination
	Cuts with the theory
	Safety and instantiation
	More general cuts

	Changing the polarity of connectives
	Completeness
	The system used for simulation of DPLL(T)

