
HAL Id: hal-00863279
https://hal.inria.fr/hal-00863279

Submitted on 18 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Flow-Level Modeling of Parallel Download in
Distributed Systems

Abdulhalim Dandoush, Alain Jean-Marie

To cite this version:
Abdulhalim Dandoush, Alain Jean-Marie. Flow-Level Modeling of Parallel Download in Distributed
Systems. CTRQ: Communication Theory, Reliability, and Quality of Service, IARIA, Jun 2010,
Athens, Greece. pp.92-97, �10.1109/CTRQ.2010.23�. �hal-00863279�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49753122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00863279
https://hal.archives-ouvertes.fr


Flow-Level Modeling of Parallel Download in Distributed Systems

Abdulhalim Dandoush

INRIA, 2004 Route des Lucioles, BP 92,

F-06902 Sophia-Antipolis,

Abdulhalim.Dandoush@sophia.inria.fr

Alain Jean-Marie

INRIA and LIRMM, CNRS/Université Montpellier 2,

161 Rue Ada, F-34095 Montpellier

ajm@lirmm.fr

Abstract—Response time is the primary Quality of Service
metric for parallel download systems, where pieces of large
files can be simultaneously downloaded from several servers.
Determining response times in such systems is still a difficult
issue, because the way the network bandwidth is shared
between flows is as yet not well understood. We address the
issue by exploring the practical relevance of the hypothesis
that flows share the network bandwidth according to the max-
min fairness paradigm. We have implemented into a flow-level
simulator a version of the algorithm, which calculates such a
bandwidth allocation, which we have called the “progressive-
filling flow-level algorithm” (PFFLA). We have programmed
a similar model over NS2 and compared the empirical distri-
butions resulting from both simulations. Our results indicate
that flow-level predictions are very accurate in symmetric
networks and good in asymmetric networks. Therefore, PFFLA
would be extremely useful to build flow-level simulators and,
possibly, to perform probabilistic QoS calculations in general
P2P networks.

Keywords-distributed systems, performance evaluation, re-
sponse time, simulation model, max-min fairness

I. INTRODUCTION AND RELATED WORK

The growth of storage volume, bandwidth, and compu-

tational resources for PCs has opened the way to paral-

lel download systems, which rely on data fragmentation

and distributed storage. Files are partitioned into fixed-

size blocks that are themselves partitioned into fragments.

Fragments are usually stored on different locations. Given

this configuration, a user wishing to retrieve a given block of

data would need to perform multiple downloads, generally in

parallel for an enhanced service. The transfer of sequences

of packets on one long-term TCP connection (e.g., download

a fragment of data between two peers in a P2P system or

between a client and a server through the FTP protocol)

defines a “flow”. A flow can as well refer to the sequences

of packets that constitute a block of data and that follow

several TCP connections simultaneously. In this work, we

will consider the former definition.

One measure of the quality of the service given by the

distributed storage/parallel download infrastructure is the

time it takes to retrieve the complete document. This in turns

depends on the throughput of the different flows created to

obtain the fragments of this document. Their values are,

a priori, a function of the demand and capacities of the

complete network entities: clients, servers and links.

The basic problem of predicting the instantaneous shares

of the bandwidth received by each flow of a TCP-based

network has received quite some attention in the last 15

years, in connection with the notion of fairness; yet, there

is no clear consensus in the literature on a simple formula

or algorithm to give a reasonable solution of this problem.

Such an algorithm would be extremely useful to build

flow-level simulators and, possibly, to perform probabilistic

performance calculations.

On the one hand, some authors have shown that the

dynamics of TCP can be quite chaotic is some situations.

Other authors on the other hand, have argued that TCP

tends to share the bandwidth between flows quite fairly: for

instance, Heyman et al. [1], followed by Fredj et al. [2].

Other studies have put forward the concepts of max-

min fairness, proportional fairness, balanced fairness and

utility-based resource-sharing models (see e.g., [3] and the

reference therein). One conclusion of these studies is that

throughput allocations resulting from the use of the TCP pro-

tocol for infinitely long flows are usually not max-min fair.

However, the results of Bonald and Proutière [4] suggested

that when the flows are dynamic (flows are continuously

created and have a finite duration), the average throughput

obtained by flows under various sharing mechanism tend

to be similar. It is quite possible that, from a practical

perspective, the predictions obtained with a max-min fair

sharing mechanism may be “good enough”.

The purpose of this paper is to assess whether max-min

fairness for the allocation throughput is a proper model when

evaluating response times of parallel downloads.

Given the variety of situations to be studied, we begin

with the simplest scenario: a symmetric network in which

we assume that capacity constraints are located at the

client/server nodes, and not inside the network. We also

assume that all RTTs are equal: the question of how to

handle different round trip times is left for future work.

We use an algorithm, which calculates an instantaneous

throughput for each individual flows in a certain set of flows,

given the upload and download capacities of the client and

server nodes. This algorithm can be seen as a variant of

the “progressive filling” [3] algorithm of [5]: we name it

as the Progressive Filling Flow Level Algorithm (PFFLA).

The validation of this algorithm consists in characterizing



the response time of parallel downloads in a distributed

storage system, through simulations. We have implemented

the PFFLA in a flow-level simulator of parallel downloads,

and we have programmed a similar model over NS2. The

response times in the flow level simulator have been com-

pared to that of the packet-level simulations in NS (both

distributions and averages). This experimental setting is, to

the best of our knowledge, original in at least three features.

First, we consider flows related to downloads in parallel,

which are synchronized when they are created. In addition,

the performance metric is the global response time, not that

of individual flows. Second, we consider that the possible

bottlenecks for flows occur only at the edge of the network,

never inside. Finally, we consider large numbers of nodes

(up to 500) and flows (up to 4·105).

Our results show that the relative error between PFFLA

and NS-2 for the expected value is less than 2% for relatively

large loads in the system (e.g., 70%) and less than 1% for

low loads in the symmetric up/down case and less than 5%
respectively for relatively large loads in the system (e.g.,

50%) and less than 1% for low loads in the asymmetric

case. We conclude that PFFLA is a reliable mechanism to

analyze the service response time in many systems based on

P2P and Grid computing concepts such as Storage Systems

and Grid Delivery Networks.

The rest of this paper is organized as follows. Section II

overviews the system assumptions and notation. Section III

describes the flow-level simulation algorithm “PFFLA”. In

Section IV, comparisons between packet-level and PFFLA

are introduced and discussed. Last, Section V concludes the

paper and highlights some future directions.

II. SYSTEM DESCRIPTION AND NOTATION

In the following, we will distinguish the servers, which

are computers that provide a storage service, from the clients

whose objective is to retrieve data from the servers to

account for the fact that flows (transfer of sequences of

data units from a server to a client) have a direction. In

the terminology of P2P-based systems, each “peer” has the

role of both a client and a server. It is usual that peers are

connected to the core network through a single link, and that

the communication link from the network to the peer (upload

link) and the one from the peer to the network (download

link) are not shared. Their capacity may actually not even be

the same, as with ADSL network accesses. In that case, the

entities client and server can be considered as two distinct

nodes. On the other hand, if the network access is indeed

shared between input and output, the peer is represented by

one node. In the following, we shall only consider the first

situation.

In this study, we are interested in systems where blocks

of data are partitioned into several equally sized fragments

stored randomly over different servers. We will consider

both symmetric (upload/download capacities are identical)

and asymmetric situations. The following assumptions and

notations will be enforced throughout the paper.

Network assumptions. The considered network consists in a

set of N nodes: N /2 are servers and N /2 are clients.

Its logical structure is that of a star, with an infinite-

capacity central node. In other word, the interconnection

network underlying the parallel download application is

assumed not to introduce capacity constraints. Only the

upload or download links (the branches of the star) have

a limited capacity.

The capacity of upload links (from servers to the network)

is Cu, the capacity of download links (from network to

clients) is Cd.

The temporal distance (measured as the round-trip time,

RTT) is assumed to be the same between all pairs of nodes

(clients or servers).

Data and traffic assumptions.

Each block of data D of size SB is partitioned into s
fragments of size SF . The s servers that hold fragments

of a given block of data D are uniformly selected over all

servers in the system, and are all distinct.

Each download request of a block of data issued by

a client will generate s flows (parallel requests toward s
distinct servers).

The assumption on the uniform distribution of the blocks

of some document corresponds to the situation where a very

large number of documents exist, and/or each fragment of

each document has been replicated a large number of times.

In that situation, it is unlikely that the set of blocks needed by

two distinct requests will be correlated. The network being

symmetric, it is reasonable to assume that fragments have

been uniformly distributed. The assumption that different

fragments of some document are stored on different peers

is common in P2P-based systems: it results mainly from

privacy and data ownership issues.

III. DESCRIPTION OF THE ALGORITHM

The notion of max-min (or maximin) fairness was first

introduced in the context of networking by Bertsekas and

Gallager [5] as a design objective for flow control schemes.

The main idea of max-min fairness is to maximize the

allocation of each flow f subject to the constraint that an

incremental increase in f ’s allocation does not cause a de-

crease in some other flow’s allocation that is already as small

as f ’s or smaller [5, p. 526]. The algorithm provided in this

reference for computing the unique max-min fair allocation,

has been later described as a “Progressive Filling”. We have

used in our analysis the following variant using the same

concept. Accordingly, we named it the Progressive Filling

Flow Level Algorithm (PFFLA). For more details on the

max-min fairness, refer to [5, ch. 6], [3] or to our Technical

Report [6].

For the purpose of formalizing the description of the

PFFLA, introduce the following notation. A node (server



or client) will be represented by the link that connects it to

the network core. The network is assumed to be made of a

set A of links. Each link a has a capacity Ca. The traffic is

formed by a set F of flows. We assume that flows cannot be

split between several routes of the network. This implies that

we can assume that each flow f has a throughput θf ≥ 0,

and crosses certain links of A. We write f∇a to denote the

fact that f crosses a. Using this notation, the total flow on

link a of the network is then given by:

Fa =
∑

f∇a

θf .

The capacity constraint for the network is then:

Fa ≤ Ca, ∀a ∈ A . (1)

Data: A set of links A with their capacities Ca, and a

set of flows F
Result: A throughput value for each flow

begin
Remove from A nodes without flows ;

while A not empty do

foreach a ∈ A do
// Na: the number of flows crossing link a
Na ← #{f ∈ F|f∇a} ;

end

// find the bottleneck link a∗ and its throughput

calculate θ∗ = mina∈A Ca/Na ;

calculate a∗ = arg mina∈A Ca/Na ;

foreach f , f∇a∗ do
set θf = θ∗ ;

foreach a ∈ A, f∇a do
Ca ← Ca − θ∗

end

remove f from F ;
end

remove from A links without flows ;
end

return {θf}
end

Algorithm 1: Algorithm PFFLA

The fact that this algorithm produces a max-min allocation

satisfying the throughput constraint (1), can be checked the

same way as for the Progressive Filling Algorithm: see again

[6] for details.

Notice that it is possible to add constraints on the through-

put of flows. For instance, the throughput of a TCP flow on a

lossless connexion with RTT τ and maximum window size

w is always less than w/τ . Note also that we have made

the assumption that the network can be represented by a

star, and the flows cross exactly two links: one upload link

and one download link. The algorithm is capable to handle

general situations however.

IV. EXPERIMENTAL RESULTS

A. Parameter values

We ran a total of eleven experiments; six in symmet-

ric peers download/upload capacities scenarios and five in

asymmetric scenarios (more experiments are described in the

Technical Report [6]).

The set-up of the simulation parameters is summarized

in Table I. The capacities that we have selected in the

simulations vary between the values of the ISDN and ADSL

technologies (384, 576 and 1500 kbps). In experiments 1–

6, nodes are homogeneous: they have all the same network

access capacity. In Experiments 7–11, capacities of clients

and servers are asymmetric.

Download requests at each client node arrive according to

some Poisson process of given rate λ. The different request

processes are independent. This assumption is reasonable in

practice: Guha et al. have shown in [7] that in real networks,

and when the number of clients is large, the request arrival

process can be reasonably modeled by a Poisson process.

We vary the value of the request generation rate across the

experiments such that the total load in the system ρ (see

below) varies from 6% up to 70%.

The last setting concerns the blocks and fragments sizes

that are stored in the system. Fragment sizes SF (resp. block

sizes SB) in P2P systems, for instance, are typically between

256KB and 4MB each (resp. between 4MB and 9MB each).

We will consider in most of our experiments SF = 2MB

and SB = 8MB, except in Experiment 1 where SF = 1MB

and SB = 4MB. Therefore s = 4 in all experiments. In

the asymmetric scenarios, we have chosen the two link

capacities values 1500/384 kbps, except in Experiment 11

where the capacities values are 2000/384 kbps. So, in all the

asymmetric experiments, except in the last one, the capacity

of a server is slightly larger than 1/s times the capacity of

a client.

For the packet-level simulation, we consider a fixed con-

stant value of 2ms for the link propagation delays. The main

TCP configurations are as follows: we use TCP segment size

(Spkt) of 1460 Bytes, the upper bound on the advertised

window for the TCP connection is set to 40, the initial size

of the congestion window on slow-start is 2, and the TCP/IP

header size (hip) is 40 Bytes. The P2P application layer

header (ha), which is implemented over the NS transport

layer, is 13 Bytes for each fragment. The queue management

type used in the links is “DropTail” with size of 500 packets.

The maximum window size is left to NS2’s default of 64kB.

Given our assumptions on propagation delay, this gives

a maximum TCP throughput of 64kB/8ms = 8MB/s,

largely superior to the capacity of the links. Therefore,

maximum window effects are not expected to restrict the

throughput of file transfers.

In the flow-level simulation, and when calculating the total

amount of data sent in the TCP flows, we neglect the fact



that one data packet may be incomplete after segmentation.

We also neglect the packets sent during the opening and

the closing of the TCP connection, and we assume that no

retransmission occurs. The total amount of data transported

during the download of one document is then calculated by

multiplying the application data size by the overhead factor

due to packet headers, that is:

L(bits) = s × (SF (bits)+ha(bits)) × (1+hip/Spkt) .

Consider a client node with link capacity C. The time

to download a complete document would be, when no

interferences from other downloads occur: σ = L/C. On the

other hand, if the global arrival rate of document requests

is λ, the rate of requests arriving at a particular client is

λ/(N/2). Accordingly, the load factor of a client link of

capacity C in the network is:

ρ = λs ×
(SF (bits) + ha(bits)) × (1 + hip/Spkt)

C(bps)N/2
.

(2)

Consider now a server node with link capacity C. Given

our assumption on the uniform repartition of blocks on

servers, the rate of arrivals of fragment requests at the servers

is λs/(N/2). The duration of one request should be σ/s
since only one fragment is concerned. Finally, the load factor

of the server’s link is given by Equation (2) also.

In the symmetric cases, ρ can also be interpreted as the

load of the whole network (ratio of global data requests to

global transfer capacity). In the asymmetric cases, we take

ρ as the load of the links with the smallest capacity.

B. Simulators and Metrics

We have developed a packet-level simulator and a flow-

level simulator for our model. The packet-level simulator is

build using NS2; implementation details are reported in [8].

The flow-level simulator consists in the embedding the

PFFLA (Algorithm 1) into a discrete-event simulator han-

dling the arrival and the departure of flows. The principle

is that every time the set of flows present in the network

changes, the bandwidth shares are re-computed with the

algorithm, and it is assumed that these throughputs are

obtained instantaneously. The program keeps track of the

remaining quantities to be downloaded in each flow, and

can compute the date of the next event: arrival or end of

download. Both simulators are instrumented so as to produce

response times for fragments and complete documents.

The metric we are interested in is the download time of a

document. For a given request, this is the maximum between

the download time of the s fragments of the document.

Of course, this is a random variable, and we measure its

empirical distribution and empirical average. The empirical

average obtained with the packet-level and flow level simu-

lators are denoted with E[TNS ] and E[TFLA], respectively.

In the view of the fact that the flow-level simulator ignores

the delay for establishing and closing the TCP connections

and propagation delays, there will be, for any experiment, a

very small difference between the minimum values obtained

from both simulators. Therefore, we denote by Ê[TNS ] the

measured download time for NS, corrected by a constant

value so that the minimal values for both simulators are

the same. This last metric will be used later to compare the

average response times in both simulators. However, we have

not corrected this systematic error in the figures, presented

later in this paper, for illustrative purpose.

In addition, we have compared the average document

download times with the average response time in a sim-

ple queueing system. The rationale for this is that, if the

throughput of the connections were limited only by the

client’s capacity, then the link would behave as a Processor

Sharing queue. This is because the size of the fragments is

the same, so that the response time of all s fragments is

the same, and all s fragments can be actually considered as

a single “customer”. The client’s bandwidth is then shared

between different requests. Since requests arrive according

to a Poisson process, the model is that of a M/D/1
processor sharing (PS) queue. This model is expected to

work well when the load is small: indeed, in that case it is

unlikely that flows will be limited on the server side. We can

test easily this conjecture since the average response time

in this queue is well-known to be as follows (measured in

seconds, with the value of σ computed previously):

E[TPS ] =
σ

1− ρ
. (3)

Known results on the PS queueing model also include the

distribution of the response time. The relevant formulas and

more comparisons are provided in [6].

We will compute the relative error (RR) between Ê[TNS ]
and E[TPS ], on one hand, and between Ê[TNS] and

E[TFLA] on the other hand. The relative error, for instance

in the first case, is calculated as follows:

RR(NS, FLA) =
Ê[TNS ]− E[TFLA]

Ê[TNS]
.

C. Results

For flow-level simulations, we have collected 100000

samples of the document download time in every case,

whereas this number was at least of 30000 for packet-level

simulations. The execution times (not fully reported here for

lack of space) are: from milliseconds to minutes for PFFLA,

and from 20 hours and up for NS simulation. We conclude

that the flow-level algorithm is very efficient in terms of

time. How good is it in term of accuracy?

To answer this question, we first depict in Figures 1

and 2 the empirical complementary cumulative distribution

function (CCDF) of the block download time obtained

form both simulators, and for some selected experiments.



Table I
EXPERIMENTS SETUP

Experiment N /2 Cd/Cu SB /SF 1/λ ρ
number peers kbps MB sec. %

1 25 384/384 4/1 60 6

2 250 576/576 8/2 1.913 25

3 250 1500/1500 8/2 0.510 36

4 250 1500/1500 8/2 0.367 50

5 250 1500/1500 8/2 0.306 60

6 250 1500/1500 8/2 0.262 70

7 25 1500/384 8/2 59.81 12

8 250 1500/384 8/2 5.98 12

9 500 1500/384 8/2 2.99 12

10 500 1500/384 8/2 0.718 50

11 500 2000/384 8/2 0.718 50

Table II
MEASUREMENTS FOR THE PFFLA AND THE PACKET-LEVEL

SIMULATION; COMPARISON WITH THE PS MODEL

Ex. Ê[TNS ] E[TF LA] RR% E[TPS ] RR%
nb sec. sec. NS/FLA sec. NS/PS

1 96.062 95.45 0.6% 95.44 0.6%
2 161.252 160.196 0.6% 166.132 -3%
3 73.547 73.346 0.2% 71.7692 2.4%
4 99.501 97.75 1.7% 91.864 7.6%
5 129.066 127.691 1% 114.83 11%
6 176.45 180.05 -2% 153.107 13.2%

7 61.137 62.901 -2.8% 52.19 17%
8 64.738 64.935 -0.3% 52.19 19.3%
9 65.298 65.182 -0.18% 52.19 20%
10 144.615 149.213 -3.1% 91.865 36%
11 142.1 149.213 -5% 68.45 51.8%

We report then in Table II the expected block download

time obtained from both simulation levels and from the PS

formula (3) for all experiments, together with relative errors.

The results show that for small system load, the download

time predicted by the PFFLA fits exactly that of NS-2,

for average values as well as for distributions. The relative

error between the average values is very small as shown in

Table II. The average value calculated from the PS formula is

also very close but the relative error between average values

of PS and NS-2 is slightly larger than that between PFFLA

and NS-2. This confirms that the prediction of the duration

of TCP flow is accurate. The various phenomena, which

typically perturb the throughput of TCP (slow-start phase,

packet losses, buffer fluctuations) happen very rarely of have

little influence in this case.

When ρ is relatively large, some buffers can fill up

more frequently, and then some flows tend to be relatively

long in the NS-2 simulation. However, the relative errors

between average values of PFFLA and NS-2 are slightly

more important in this case but still very small. In particular,

the RR is less than 2% in the symmetric case and less than

5% in the asymmetric case. It is clear from Figure 1(b) that

the distributions measured by both simulators are different

in the symmetric case for very high load, but average values

turn out to be almost identical. The same observation holds

for asymmetric cases, see Figure 2(b).

The accuracy of the PS approximation for the average

download time is acceptable for symmetric cases up to

ρ = 36%, and degrades above ρ = 50%. The accuracy for

the complete distribution can be assessed on Figure 1(a) for

a load of 36%. In the asymmetric cases, the approximation

is bad at low loads, and very bad at large loads. The

explanation for this is the following. The download of a

block at a client can be slowed down by two phenomena. The

first one is that a second request arrives at the client node.

This is taken into account by the PS model. The second

one is that one TCP flow is slowed down at the server side.

This requires that at least sCu/Cd blocks are downloaded

simultaneously from the server. In the symmetric cases, this

value is s = 4 and the event rarely happens, even for

moderate loads. In the asymmetric case, this value is close to

1 and the slowdown is much more frequent. The PS queueing

model breaks down when such events occur, which explains

the bad accuracy of E[TPS ].
Another observation is that larger the network size, better

the performance of PFFLA and worse the performance of

PS model as illustrated by Experiments 7, 8 and 9. The

number of peers in these experiments are 25, 250 and 500

respectively for same load and capacities. However, the

relative error occurred in Experiment 9 is less than that of

8, which is, in turn, less than that of Experiment 7. Indeed,

the accuracy does not depend only on the system load but

also on the number of peers and their capacities.

Clearly, the larger the buffer sizes, the better the perfor-

mance in real networks. To address this point, we depict

in Figure 3 the CCDF of download times for two values

of the queue limit (100 and 500 packets) in the NS-2

simulation. Other parameters are: 50 nodes, C = 1500kbps
and ρ = 70%. The relative difference between the two

average download times is 6.56%. So, indeed, the buffer

size can affect the performance of the system at high loads.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and analyzed the PF-

FLA. The algorithm is quite simple and uses the concept

of “Progressive-Filling” (or max-min fairness). We have

implemented it in a flow-level simulator of parallel down-

loads, and we have programmed a similar model over NS2.

The response times in the flow level simulator have been

compared to that of the packet-level simulations in NS

(both distributions and averages). Our results conclude that

PFFLA is a fast and reliable mechanism to analyze the

service response time in many systems based on P2P and

Grid computing concepts such as Storage Systems and Grid

Delivery Networks. In particular, when the size of networks

is relatively large, PFFLA predictions are very accurate

as long as the system is not overloaded or close to be

overloaded.



0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
m

p
le

m
en

ta
ry

 c
o
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n
 f

u
n
ct

io
n

Block download time (seconds)

 

 

NS−2

FLA

PS

(a) ρ = 36%, N=500.

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
m

p
le

m
en

ta
ry

 c
o
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n
 f

u
n
ct

io
n

Block download time (seconds)

 

 

NS−2

WFFLA

(b) ρ = 60%, N=500.

Figure 1. Experiments 3 and 5: PFFLA vs NS-2.

A conclusion from the literature is that different RTTs

do introduce some “unfairness” in bandwidth allocations.

Our next step will therefore be to find a simple yet efficient

modification of the PFFLA to handle this situation.

REFERENCES

[1] D. P. Heyman, T. V. Lakshman, and A. L. Neidhardt, “A new
method for analysing feedback-based protocols with applica-
tions to engineering web traffic over the Internet,” in Proc.
of 1997 ACM SIGMETRICS Intl. Conf. on Measurement and
modeling of comp. systs., New York, USA, 1997, pp. 24–38.

[2] S. Ben Fredj, T. Bonald, A. Proutière, G. Régnié, and J. W.
Roberts, “Statistical bandwidth sharing: a study of congestion
at flow level,” SIGCOMM Comput. Commun. Rev., vol. 31,
no. 4, pp. 111–122, 2001.

[3] J.-Y. Le Boudec, Rate adaptation, Congestion Control and
Fairness: A Tutorial, Ecole Polytechnique Fédérale de Lau-
sanne (EPFL), Dec 2008.

[4] T. Bonald and A. Proutière, “Insensitive bandwidth sharing in
data networks,” Queueing Systems, vol. 44, pp. 69–100, 2003.

[5] D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Prentice
Hall, New Jersey, 1992.

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
m

p
le

m
en

ta
ry

 c
o
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n
 f

u
n
ct

io
n

Block download time (seconds)

 

 

NS−2

FLA

(a) ρ = 12%, Cd=1500kbps, N=1000.

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
m

p
le

m
en

ta
ry

 c
o
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n
 f

u
n
ct

io
n

Block download time (seconds)

 

 

NS−2

FLA

(b) ρ = 50%, Cd=2000kbps, N=1000.

Figure 2. Experiments 9 and 11: PFFLA vs NS-2.

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
m

p
le

m
en

ta
ry

 c
o
m

u
la

ti
v
e 

d
is

tr
ib

u
ti

o
n
 f

u
n
ct

io
n

Block download time (seconds)

 

 

NS−2, Queue size = 100 pkt, E[T] = 170.038 sec.

NS−2, Queue size = 500 pkt, E[T] = 150.575 sec.

Figure 3. Queue size effect for ρ = 70%, N = 50

[6] A. Dandoush and A. Jean-Marie, “Download Process in
Distributed Systems, Flow-level Algorithm vs. Packet-level
Simulation Model,” INRIA, Research Report RR-7159,
2009, last accessed: 24 Mar 2010. [Online]. Available:
http://hal.inria.fr/inria-00442030/en/.

[7] A. Guha, N. Daswani, and R. Jain, “An experimental study of
the skype peer-to-peer VoIP system,” in Proc. of 5th IPTPS,
Santa Barbara, California, February 2006.

[8] A. Dandoush, S. Alouf, and P. Nain, “A realistic simulation
model for peer-to-peer storage systems,” in Proc. of 2nd
International ICST Workshop on Network Simulation Tools
(NSTOOLS09), Pisa, Italy, October 19 2009.


