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Abstract—This paper presents a novel framework for prov-
ing specifications of security protocols in the computational
model and generating runnable implementations from such
proved specifications. We rely on the computationally-sound
protocol verifier CryptoVerif for proving the specification, and
we have implemented a compiler that translates a CryptoVerif
specification into an implementation in OCaml. We have
applied this compiler to the SSH Transport Layer protocol:
we proved the authentication of the server and the secrecy of
the session keys in this protocol and verified that the generated
implementation successfully interacts with OpenSSH. The se-
crecy of messages sent over the SSH tunnel cannot be proved
due to known weaknesses in SSH with CBC-mode encryption.

I. INTRODUCTION

The verification of security protocols is an important re-

search area since the 1990s: the design of security protocols

is notoriously error-prone, and errors can have serious conse-

quences. In order to verify protocols, two main models have

been considered: the symbolic model and the computational

model. The symbolic model represents messages as terms

in a term algebra. The attacker can only create terms in this

algebra, and so it can only use the cryptographic primitives

defined in it. The computational model is the model used

by cryptographers, in which messages are bitstrings and

attackers are polynomial-time probabilistic Turing machines.

Proofs in the latter model are more difficult than in the

former, but yield a much more precise analysis of the

protocol. However, proving specifications of protocols in

such models is not sufficient. Even if the specification is

correct, an implementation of the protocol may be insecure,

because of errors in implementation details left unspecified

at the specification level, or because the specification has

not been correctly implemented. It is therefore important

to make sure that the implementation is secure, and not

only the specification. Hence our goal is to obtain protocol

implementations secure in the computational model.

There are two ways of obtaining a secure implementation:

write an implementation of a protocol, analyze it to extract a

protocol specification and then prove this specification, or in

the other way around, write a specification, prove it correct,

and then generate an implementation from it. We chose the

latter way for two reasons. First, we believe that starting

by designing a protocol, formalizing it, proving it secure

formally, and only after that implementing it, is a better

methodology than starting from the implementation. Second,

generating protocol implementations is also relatively easier

than analyzing them; analyzing existing protocol implemen-

tations not written for verification is especially difficult, and

very few methods can do that (see related work below).

Therefore, we start from a formal specification of the

protocol. In order to prove the specified protocol secure

in the computational model, we rely on the automatic

protocol verifier CryptoVerif [1–3]. This verifier can prove

secrecy and authentication properties. The generated proofs

are proofs by sequences of games, like the manual proofs

written by cryptographers. The games are formalized in a

probabilistic polynomial-time process calculus.

In order to generate protocol implementations, we wrote

a compiler that takes a CryptoVerif specification and returns

an implementation in OCaml (http://caml.inria.fr). We chose

this language for several reasons, starting with the fact that it

is memory safe and has a clean semantics, which is useful to

prove the correctness of the compiler. OCaml is a functional

language, which also facilitates the compilation because the

CryptoVerif specification uses oracles that can be immedi-

ately translated into functions. A cryptographic library is

also available for OCaml, Cryptokit (http://forge.ocamlcore.

org/projects/cryptokit/). It would obviously be possible to

adapt our approach to other target languages, such as Java

or C, if desired. We believe that adding a new target language

to our compiler would be much easier than writing an

analyzer for a new language, which is also an interest of

the approach that generates implementations. To implement

the compiler, we had to enrich the CryptoVerif specification

with annotations that specify details of the implementation

of the protocol. There are two kinds of annotations. First,

the annotations that specify how to divide the protocol in

different parts corresponding to different roles, for example,

key generation, server, and client. Second, the annotations

that specify how to implement the various cryptographic

primitives and types. In order to obtain strong guarantees

that the code generated by this compiler is correct, we should

prove the correctness of the compiler. This proof is still in

progress.

To show the applicability of our approach, we crafted

a CryptoVerif specification of the SSH Transport Layer

protocol, and used our compiler to generate the correspond-

ing implementation. We proved the authentication of the

server and the secrecy of the session keys using CryptoVerif,

and verified that the obtained implementation successfully



interoperates with OpenSSH.

Related Work: Several tools already use the approach

of generating an implementation from a specification:

AGVI [4] first generates a protocol from security require-

ments, proves its correctness using the protocol verifier

Athena, then compiles the protocol into Java. χ-spaces [5]

provide a domain-specific language for specifying protocols,

which can be interpreted or compiled to Java. Spi2Java [6, 7]

translates spi-calculus protocols into Java implementations;

the soundness of this translation is proved in [7]. The

protocols can also be verified using the automatic protocol

verifier ProVerif. Spi2Java has been applied to the key

exchange part of the SSH Transport Layer Protocol [8]. The

JavaSPI framework [9] is a variant of Spi2Java in which

the modeling language is also Java itself, instead of the spi

calculus. All these approaches differ from our work in that

they verify protocols in the symbolic model, while we verify

them in the more realistic computational model.

Other approaches analyze implementations instead of

generating them. Many of these approaches do not pro-

vide computational security guarantees. The tool CSur [10]

analyzes protocols written in C by translating them into

Horn clauses, given as input to the H1 prover. Similarly,

JavaSec [11] translates Java programs into first-order logic

formulas, given as input to the first-order theorem prover e-

SETHEO. Poll and Schubert [12] verified an implementation

of SSH in Java using ESC/Java2: ESC/Java2 verifies that

the implementation does not raise exceptions, and follows

a specification of SSH by a finite automaton, but does

not prove security properties. ASPIER [13] uses software

model-checking to verify C implementations of protocols,

assuming the size of messages and the number of sessions

are bounded. This tool has been used to verify the main

loop of OpenSSL 3. Dupressoir et al. [14] use the general-

purpose C verifier VCC to prove both memory safety and

security properties of protocols.

The tool FS2PV [15] translates protocols written in a

subset of the functional language F# into the input language

of ProVerif, to prove them in the symbolic model. This

technique was applied to the protocol TLS [16]. Similarly,

Elijah [17] translates Java programs into LySa protocol

specifications, which can be verified by the LySatool. Aizat-

ulin et al. [18] use symbolic execution in order to extract

ProVerif models from pre-existing protocol implementations

in C. This technique currently analyzes a single execution

path of the protocol, so it is limited to protocols without

branching. Together with ASPIER [13], it is one of the

rare methods that can analyze implementations not written

specifically for verification. The tools F7 and F⋆ [19–21] use

a dependent type system in order to prove security properties

of protocols implemented in F#, in the symbolic model. This

approach scales well to large implementations but requires

type annotations, which facilitate automatic verification.

In contrast, the following approaches provide compu-
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Figure 1. Overview of the approach

tational security guarantees. Similarly to FS2PV, the tool

FS2CV (http://msr-inria.inria.fr/projects/sec/fs2cv/) trans-

lates a subset of F# to the input language of CryptoVerif,

which can then provide a proof of the protocol in the

computational model. This tool has been applied to a very

small subset of the TLS protocol [16]. The F7 approach

has also been extended to the computational model [22],

but still requires type annotations to help the proof. [18]

provides computational security guarantees by applying the

computational soundness result of [23]: this result shows

that, if a trace property (such as authentication) holds in

the symbolic model, then it also holds in the computational

model, provided the protocol uses only cryptographic prim-

itives in a certain set (e.g. IND-CCA public-key encryption)

and satisfies certain soundness conditions. The idea of using

a computational soundness result could also be applied

to other techniques that prove protocols in the symbolic

model. However, as mentioned above, this restricts the

class of protocols that can be considered. To overcome

this limitation, the authors of [18] have recently extended

their approach to generate a CryptoVerif model [24], thus

getting proofs directly in the computational model, still with

the limitation to a single execution path. Our work nicely

complements these approaches by allowing one to generate

implementations instead of analyzing them.

Outline: Section II is a general presentation of our

approach. Section III describes the specification language

used by our compiler and Section IV details how this lan-

guage is compiled into OCaml. Finally, Section V presents

the application of this compiler to the SSH protocol. Our

compiler and our model and implementation of the SSH

Transport Layer protocol are available as part of the Cryp-

toVerif distribution at http://www.cryptoverif.ens.fr.

II. OVERVIEW OF THE APPROACH

Figure 1 presents an overview of our approach to obtain

a proved implementation of a cryptographic protocol. We

proceed in two steps.



First, we write a CryptoVerif specification of this protocol.

This specification contains a representation of the protocol

in a process calculus described in the next section, and a

list of security assumptions on the cryptographic primitives,

for example, encryption is IND-CPA. We prove that this

specification guarantees the desired security properties (e.g.

secrecy, authentication, . . . ) in the computational model by

using the CryptoVerif tool.

Second, the compiler we developed transforms the speci-

fication into protocol code. To build the implementation, we

furthermore need to write:

• the code corresponding to the exchange of messages

across the network, which uses the results given by

the functions in the protocol code. This code can be

considered as a part of the adversary, and so it is not

required to prove this part of the code.

• the code corresponding to the cryptographic primitives.

This part is used by the protocol code, and thus we must

prove manually that the primitives satisfy the security

assumptions we made in the specification file.

We then use the OCaml compiler on these parts to obtain

an implementation of the protocol. Therefore, from a single

protocol specification, we obtain both a proof that the proto-

col is secure in the computational model and an executable

implementation of the protocol.

III. THE SPECIFICATION LANGUAGE

CryptoVerif uses a process calculus in order to represent

the protocol to prove and the intermediate games of the

proof. We survey this calculus, explaining the extensions

we have implemented and the annotations we have added to

allow automatic compilation into an implementation.

A. Protocol Representation Language

The protocol is represented in the language of Figure 2.

This language uses types denoted by T , which are subsets

of bitstring
⊥
= bitstring ∪ {⊥} where bitstring is the set

of all bitstrings and ⊥ is a special symbol (used for example

to represent the failure of a decryption). Particular types are

predefined: bool = {true, false}, where false is 0 and true
is 1; bitstring ; and bitstring

⊥
.

The language also uses function symbols f . Each function

symbol comes with a type declaration f : T1× . . .× Tm →
T , and represents an efficiently computable, deterministic

function that maps each tuple in T1× . . .×Tm to an element

of T . Particular functions are predefined, and some of them

use the infix notation: M = N for the equality test, M 6= N

for the inequality test (both taking two values of the same

type T and returning a value of type bool ), M ∨N for the

boolean or, M ∧N for the boolean and, ¬M for the boolean

negation (taking and returning values of type bool ).

In this language, terms represent computations on bit-

strings. The term x evaluates to the content of the variable x.

We use x, y, z, u as variable names. The function application

M,N ::= terms

x variable

f(M1, . . . ,Mm) function application

Q ::= oracle declarations

0 nil

Q | Q′ parallel composition

foreach i ≤ n do Q replication n times

O(x1 : T1, . . . , xk : Tk) := P oracle declaration

P ::= oracle body

return(M1, . . . ,Mk);Q return

end end

x
R
← T ;P random number

x : T ←M ;P assignment

if M then P else P ′ conditional

event e(M1, . . . ,Ml);P event

insert Tbl(M1, . . . ,Mk);P insert in table

get Tbl(x1 : T1, . . . , xk : Tk) suchthat M in P

else P ′ get from table

Figure 2. Protocol representation language

f(M1, . . . ,Mm) returns the result of applying the function

f to M1, . . . ,Mm.

This language distinguishes oracle declarations and oracle

bodies. The oracle declarations provide some oracles, which

can be called by the adversary, while the oracle body

specifies the computations to perform upon oracle call, and

returns the result of the oracle. The oracle declaration 0 is

empty: it declares no oracle at all. The oracle declaration

Q | Q′ is a parallel composition: it simultaneously provides

the oracles declared in Q and those in Q′. These oracles

can be called in any order by the adversary. The oracle

declaration foreach i ≤ n do Q provides n copies of the

oracles declared in Q, indexed by i ∈ [1, n], where n is a

parameter (an unspecified integer). This parameter is used by

CryptoVerif to express the maximum probability of breaking

the protocol, which typically depends on the number of

calls to the various oracles. Finally, the oracle declaration

O(x1 : T1, . . . , xk : Tk) := P declares the oracle O, taking

arguments x1, . . . , xk of types T1, . . . , Tk respectively. The

result of this oracle is computed by the oracle body P .

The oracle body x
R
← T ;P chooses a new random number

uniformly in T , stores it in x, and executes P . Function

symbols represent deterministic functions, so all random

numbers must be chosen by x
R
← T . Using deterministic

functions facilitates the proofs of protocols in CryptoVerif

by making automatic syntactic manipulations easier: we can

duplicate a term without changing its value. The assignment

x : T ← M ;P stores the value of M (which must be in

T ) in x and executes P . The test if M then P else P ′

executes P when M evaluates to true and P ′ otherwise.

The construct event e(M1, . . . ,Ml);P executes the event



e(M1, . . . ,Ml), then runs P . This event records that a

certain program point has been reached with certain values

of M1, . . . ,Ml, but otherwise does not affect the execution

of the system. (Events only serve in specifying authentica-

tion properties [2].) The construct return(M1, . . . ,Mk);Q
returns the result M1, . . . ,Mk of the oracle. Additionally,

it makes available the oracles defined in Q; these oracles

can then be called by the adversary. The construct end

terminates the oracle with an error, yielding control to the

adversary.

The constructs insert and get handle tables, used for

instance to store the keys of the protocol participants. A table

can be represented as a list of tuples; insert Tbl(M1, . . . ,

Mk);P inserts the element M1, . . . ,Mk in the table Tbl;

get Tbl(x1 : T1, . . . , xk : Tk) suchthat M in P else P ′

tries to retrieve an element (x1, . . . , xn) in the table Tbl such

that M is true. When such an element is found, it executes P

with x1, . . . , xn bound to that element. (When several such

elements are found, one of them is chosen randomly with

uniform probability. We cannot for instance take the first

element found because the game transformations made by

CryptoVerif may reorder the elements. For these transforma-

tions to preserve the behavior of the game, the distribution of

the chosen element must be invariant by reordering.) When

no such element is found, P ′ is executed.

The original CryptoVerif language does not include

insert and get. Instead, it considers all variables as arrays,

and offers a construct for looking up values in arrays, find.

The constructs insert and get are intuitively easier to

understand, closer to the constructs used by cryptographers,

and much easier to implement. However, arrays and find

are very helpful for the automatic proofs performed by

CryptoVerif, as explained in [1]. Therefore, in order to

implement insert and get, we first transform them into

arrays and find, so that CryptoVerif can run as before

after this transformation. The transformation proceeds by

storing the inserted list elements in fresh array variables,

and looking up in these arrays instead of performing get.

CryptoVerif also offers a pattern-matching construct. A

function f : T1 × . . . × Tm → T that can be used for

pattern-matching is declared with the attribute compos. This

attribute means that f is injective and that its inverses

are efficiently computable, that is, there exist efficiently

computable functions f−1

j : T → Tj (1 ≤ j ≤ m) such that

f−1

j (f(x1, . . . , xm)) = xj . We can then define the pattern-

matching construct let f(x1, . . . , xm) = M in P else Q

as an abbreviation for y : T ← M ;x1 : T1 ← f−1

1
(y); . . . ;

xm : Tm ← f−1

m (y); if f(x1, . . . , xm) = y then P else Q.

This construct tries to extract the values of x1, . . . , xn such

that f(x1, . . . , xn) = M , and runs P when this extraction

succeeds, and Q when it fails. We generalize this construct

to let N = M in P else Q where N is built from compos

functions and variables.

An else branch of if , get, or let may be omitted when it

is else end. Similarly, end may be omitted after a random

choice, an assignment, an event, or a table insertion. A

trailing 0 after a return may also be omitted. Types can be

omitted in assignments.

The original CryptoVerif language appears in two ver-

sions, using channels [1, 2] or oracles [3]. We use the version

with oracles in this paper, because it is closer to OCaml code.

(Oracles resemble functions.) Our compiler also works on

the version with channels. This language uses a simple type

system to check that bitstrings are of the appropriate type;

this type system and the formal semantics of this language

are detailed in [1], for the version with channels. Additional

constructs exist in this language for calling oracles and for

hiding oracles so that they cannot be called by the adversary.

These constructs are not necessary for encoding the protocol

itself, so we omit them here.

Example 1 Let us consider a simple protocol in which the

first participant A generates a nonce x, and sends it to the

second participant B encrypted under the shared secret key

Kab: A → B : {x}Kab
. This protocol can be modeled in

CryptoVerif as follows:

Ostart() := rKab
R
← keyseed ;Kab ← kgen(rKab);

return(); (foreach i1 ≤ N do PA

| foreach i2 ≤ N do PB)

PA = OA() := x
R
← nonce; s

R
← seed ;

return(enc(x,Kab, s))
PB = OB(m : bitstring) :=

let injbot(r′ : nonce) = dec(m,Kab) in
return()

The only oracle callable at the beginning is Ostart, which

generates a symmetric encryption key Kab by generating a

random seed rKab and using the key generation algorithm

kgen on it. It returns nothing. The key Kab is available

to the following oracles in the process, but is not given

to the adversary. After having called Ostart, one can call

N times the oracles OA and OB. In the oracle OA, we

generate a nonce x, a seed for the encryption s, and return

the encryption of x under the key Kab with the random seed

s. The oracle OB takes as argument m, which should be the

message returned by the oracle OA. It decrypts the message

under the symmetric key Kab. A decrypted message is of type

bitstring
⊥

: it can be a bitstring or the ⊥ value, which means

that decryption failed. The function injbot is the injection

that takes a nonce value and returns its value in bitstring
⊥

,

which is different from ⊥. When decryption succeeds, the

oracle OB stores in r′ the result of the decryption, and

returns normally. Otherwise, it terminates with end (implicit

in the omitted else branch of let).

B. Annotations for Implementation

The protocol specification language also includes an-

notations to specify which parts of the protocol will be



compiled into which OCaml modules, and which OCaml

types, functions, and files correspond to the CryptoVerif

types, functions, and key tables. These annotations are

simply ignored when CryptoVerif proves the protocol.

A protocol typically includes several parts of code run

by different participants, for instance a client and a server.

These parts of code will be included in different pro-

grams, so we split them into several OCaml modules. The

boundaries of OCaml modules are marked as follows. The

annotation µ [x1 > "filex
1
", . . . , xn > "filexn", y1 <

"filey
1
", . . . , ym < "fileym"] { indicates the beginning of

the OCaml module µ. It should be placed just above an

oracle declaration Q. The indication xi > "filex i" means

that the variable xi will be stored in file filex i when it is

defined. The variable xi can then be used in other modules

defined after the end of µ; these modules will read it auto-

matically from the file filex i. The indication yi < "filey i"

means that the module µ will read at initialization the value

of the variable yi from the files filey i. The variable yi must

be free in µ (i.e. it is defined before the beginning of µ). A

declaration x > "filex" in a module µ′ above µ implicitly

implies x < "filex" in µ when µ uses x: x is written to

filex in µ′ and read in µ. All variables free in module µ must

be declared as being read from a file in µ, either explicitly

or implicitly as mentioned above. All variables read from

or written to a file must be defined under no replication.

(Otherwise, several copies of the variable would have to

be stored in the file.) Storing variables in files is useful

for variables that are communicated across OCaml modules,

for example long-term keys that are set in a key generation

program and later used by the client and/or server programs.

The closing brace } indicates the end of the current OCaml

module. It must be placed just after a return statement.

Example 2 Let us annotate the process we have seen in

Example 1.

µKeygen[Kab > "keyfile"]{Ostart() := . . . return()};
(foreach i1 ≤ N do PA | foreach i2 ≤ N do PB)

PA = µA{OA() := . . .

PB = µB{OB(m : bitstring) := . . .

We divide the process into three parts. First, the key gener-

ation part is represented by the module µKeygen, containing

just the oracle Ostart. We store the value of Kab in the file

keyfile, in order to be able to read the value of the key in the

other parts of the process. The module µA, which contains

the oracle OA, corresponds to the role of A, and the module

µB , which contains the oracle OB, corresponds to the role

of B. For these two modules, there is no need to write the

closing brace } because there is nothing after them.

The correspondence between CryptoVerif and OCaml

types, functions, and tables is specified by declarations in the

input file. These declarations associate to each CryptoVerif

type T :

• its corresponding OCaml type GT(T ).
• the serialization function Gser(T ) of type GT(T ) →

string, which converts an element of type GT(T ) to

a bitstring, and the deserialization function Gdeser(T )
of type string→ GT(T ), which performs the inverse

operation. These functions serve for writing values to

files and for reading them. When deserialization fails,

it must raise the exception Bad file; this exception is

raised only when a file has been corrupted.

• the predicate function Gpred(T ) of type GT(T ) →
bool, which returns whether an OCaml element of

type GT(T ) belongs to type T or not. Indeed, the

CryptoVerif values of type T may correspond only to

a subset of the OCaml values of type GT(T ).
• the random number generation function Grandom(T ),

of type unit → GT(T ), which returns a random

element uniformly chosen in type T .

They also associate to each table Tbl the name Gtable(Tbl)
of the file that contains that table, and to each CryptoVerif

function f of type T1 × . . . × Tn → T the correspond-

ing OCaml function Gf (f) of type GT(T1) → . . . →
GT(Tn)→ GT(T ).

A trick can be used to provide, for the same function f ,

both an OCaml implementation and a CryptoVerif definition

of f from other functions. Indeed, CryptoVerif allows one to

define f as a macro: letfun f(x1 : T1, . . . , xn : Tn) = M .

Specifying an OCaml implementation for these macros is

optional. When the OCaml implementation is not specified,

our compiler generates code according to the letfun macro.

When the OCaml implementation is specified, it is used

when generating the OCaml code, while the CryptoVerif

macro defined by letfun is used for proving the protocol.

This feature can be used, for instance, to define probabilistic

functions: the OCaml implementation generates the random

choices inside the function, while the CryptoVerif definition

by letfun first makes the random choices, then calls a

deterministic function.

IV. THE TRANSLATION INTO OCAML

Our compiler automatically translates the CryptoVerif

language into OCaml. Let us describe this translation.

The annotations of Section III-B split the CryptoVerif

code into multiple parts corresponding to different OCaml

modules. For each module µ, let Q be the oracle declaration

that follows µ [. . .] {. Let Q0 be obtained by removing code

that follows closing braces } in Q. Q0 is the CryptoVerif

code for module µ. Our compiler translates the oracles of Q0

into OCaml functions. More precisely, the implementation

of the module µ consists of the init function, which reads

the values of the variables required by the oracles in Q0

from the files, and returns the functions corresponding to

the oracles declared by Q0. Functions corresponding to the

oracles declared after a return in Q0 are not returned by

init, but will be returned by that return, like continuations.



Hence, the available functions correspond exactly to the

oracles that can be called. This translation requires us to

restrict the process when an oracle has several return

statements: all these return statements must return data

of the same type and oracles of the same name and type.

We can work around this restriction as follows: when an

oracle is missing at some return statements, we add a

dummy oracle that ends immediately. As usual in functional

languages, functions are represented by closures that contain

a pointer to the code of the function and an environment

that contains the free variables of the function. We rely on

the OCaml type system to guarantee that the environment

of closures is not accessed by the rest of the code, and in

particular not sent directly to the adversary. The rest of this

section details how the function init is generated.

For simplicity, we rename the variables in the CryptoVerif

code in order to have a unique name for each variable.

CryptoVerif already does this internally. Let Gvar be an

injective function taking a CryptoVerif variable name, and

returning an OCaml variable name. Let us also denote by

TM the type of a CryptoVerif term M .

The function GM transforms a term M into an OCaml

term, in the obvious way:

GM(x) = Gvar(x)

GM(f(M1, . . . ,Mm)) =
Gf (f) (GM(M1)) . . . (GM(Mm))

The function oracles takes an oracle declaration Q and

returns a set containing the oracles declared in Q. For each

oracle, it also returns a boolean that is true when the oracle

is defined under foreach (so can be called several times),

and false otherwise. This function is defined as follows:

oracles(0) = ∅

oracles(Q1 | Q2) = oracles(Q1) ∪ oracles(Q2)

oracles(foreach i ≤ n do Q) =
{(Q′, true) | (Q′, b) ∈ oracles(Q) for some b}

oracles(O(x1, . . . , xk) := P ) =
{(O(x1, . . . , xk) := P, false)}

This function is used in the generation of the init function in

order to determine the oracles we can call at the beginning of

the module, and in the translation of the return statement

to determine which closures to give back to the caller.

In Figure 3, we define the function G that translates an

oracle body into an OCaml term, as explained below.

As mentioned in Section III-B, a module is declared with

variables read from and written to files. Let write file be

an OCaml function of type string → string → unit

that takes a file name and the contents to write and writes

the contents to the file, and read file a function of type

string → string that takes a file name and returns its

contents. We define a function Gfile that writes a vari-

able to a file when needed: Gfile(x) = write file f

G(x
R
← T ;P ) = let Gvar(x) = Grandom(T ) () in
Gfile(x);G(P )

G(x←M ;P ) = let Gvar(x) = GM(M) in
Gfile(x);G(P )

G(if M then P else P ′) =
if GM(M) then G(P ) else G(P ′)

G(event e(M1, . . . ,Mk);P ) = G(P )

G(return(N1, . . . , Nk);Q) =
(GO(Q1, b1), . . . ,GO(Ql, bl),GM(N1), . . . ,GM(Nk))

when oracles(Q) = {(Q1, b1), . . . , (Ql, bl)}

G(end) = raise Match fail

G(insert Tbl(M1, . . . ,Mk);P ) =
add to table Gtable(Tbl)
(Gser(TM1

) GM(M1), . . . ,Gser(TMk
) GM(Mk));

G(P )

Gfilter((x1, . . . , xk),M) =
(function [Gvar(x1); . . . ;Gvar(xk)]→
let Gvar(x1) = Gdeser(Tx1

) Gvar(x1) in . . .

let Gvar(xk) = Gdeser(Txk
) Gvar(xk) in

if GM(M) then (Gvar(x1), . . . ,Gvar(xk))
else raise Match fail

| → raise Bad file)

G(get Tbl(x1, . . . , xk) suchthat M in P else P ′) =
let list = read table Gtable(Tbl)

Gfilter((x1, . . . , xk),M) in
if list = [ ] then G(P ′) else
let (Gvar(x1), . . . ,Gvar(xk)) = randoml list in

(Gfile(x1); . . . ;Gfile(xk);G(P ))

Figure 3. Translation function G of an oracle body in OCaml

(Gser(Tx) Gvar(x)) when variable x is written to file f

in module µ, that is, µ is annotated with x > f , and

Gfile(x) = () when x is not written to a file.

We translate x
R
← T ;P by binding the variable Gvar(x)

to a random value in the type T , then writing its contents

to the appropriate file if required, and finally continuing on

the translation of the rest of the process P . We translate

x ← M ;P in the same way, but we bind Gvar(x) to the

result of GM(M), which is the translation of the CryptoVerif

term M into OCaml. The translation of the if construct is

straightforward. We simply ignore events in the translation,

since they do not affect the execution of the system.

We translate the return statement into an OCaml tuple

containing the closures of the oracles that become callable

after that return (computed by the oracles function), and

the translation of the terms N1, . . . , Nk. (The function GO is

defined in Figure 4 and explained below.) end is translated



GO(O(x1 : T1, . . . , xk : Tk) := P, false) =
(let token = ref true in

function (Gvar(x1), . . . ,Gvar(xk))→
if (!token) && (Gpred(T1) Gvar(x1)) &&

. . . && (Gpred(Tk) Gvar(xk)) then
(token := false; G(P ))

else raise Bad call)

GO(O(x1 : T1, . . . , xk : Tk) := P, true) =
(function (Gvar(x1), . . . ,Gvar(xk))→
if (Gpred(T1) Gvar(x1)) && . . . &&

(Gpred(Tk) Gvar(xk)) then G(P )
else raise Bad call)

Figure 4. Translation of an oracle

into an exception because we need to stop the execution of

the oracle here, and one must be able to distinguish whether

we terminated on a return or on an end statement.

We translate the insert construct by simply adding to

the appropriate file the serialization of the translation of

arguments of insert. This translation uses the function

add to table of type string → string list → unit,

which takes a table file and a list of strings that represents

an element of the table Tbl, and adds this element to

the file. To translate a get construct, we use a function

Gfilter((x1, . . . , xk),M) that takes an element of the ta-

ble, returns its deserialization if it satisfies M , and raises

Match fail otherwise. We also use a function read table

of type string → (string list → ′a) → ′a list such

that read table fTbl filter reads the table file fTbl and

returns the list of values filter e for all elements e of the

table such that filter e does not raise Match fail. There-

fore, by read tableGtable(Tbl) Gfilter((x1, . . . , xk),M),
we collect all elements of the table that satisfy the term

M . If there is no such element, we continue with the

translation of the process P ′. If there are such elements,

we choose one of them randomly, we bind the variables

(Gvar(x1), . . . ,Gvar(xk)) accordingly and add them to their

respective files if necessary, and finally we continue with the

translation of the process P .

An oracle O(x1, . . . , xn) := P is transformed into a

closure by the function GO shown in Figure 4. The imple-

mentation differs depending on whether the oracle is under

replication or not. If the oracle is not under replication, it

must be callable at most once, so we create a new boolean

reference that we store in token: token is true if and only

if the oracle can still be executed. We initialize token to

true. When we execute the oracle, we set token to false,

to prevent other executions. The function also checks that

its arguments are correct elements of their type by using the

function Gpred, and then proceeds to execute the translation

of the oracle body P . If the arguments are not correct

Let x1 < f1, . . . , xm < fm be the annotations of module

µ that indicate variables read from files (explicit or implicit

because of an annotation xi > fi in a module above µ when

xi is defined above µ and used in µ).

Let oracles(Q) = {(Q1, b1), . . . , (Qk, bk)}.

let token = ref true
let init = function ()→
if (!token) then
(token := false;
let Gvar(x1) = Gdeser(Tx1

) (read file f1) in . . .

let Gvar(xm) = Gdeser(Txm
) (read file fm) in

(GO(Q1, b1), . . . ,GO(Qk, bk)))
else raise Bad call

Figure 5. The init function for the module µ

elements of their type, or if the oracle is not under replication

and has already been called, then it raises the exception

Bad call without executing the translation of P .

The implementation of the module µ consists in the init

function presented in Figure 5. It begins by reading all the

required files, and then returns closures for all oracles that

are callable at the beginning of the module. So, by calling

this init function, the user gets access to the oracles present

in the module. The init function can be called only once,

as guaranteed by the boolean token.

To make sure that this implementation behaves as ex-

pected, the network code, which is manually written and

calls this implementation, must satisfy certain constraints.

This code must not use unsafe OCaml functions (such

as Obj.magic or marshalling/unmarshalling with different

types) to bypass the typesystem (in particular to access the

environment of closures). We also require that this code

does not mutate the values received from or passed to

functions generated by CryptoVerif. This can be guaranteed

by using unmutable types, with the above requirement that

the typesystem is not bypassed. However, OCaml typically

uses string for cryptographic functions and for network

input/output, and the type string is mutable in OCaml. For

simplicity and efficiency, the generated code uses the type

string, with the no-mutation requirement above. We also

require that all data structures manipulated by the generated

code are non-circular. This is necessary because we use

the OCaml structural equality to compare values, and this

equality may not terminate in the presence of circular data

structures. This can be guaranteed by requiring that all

OCaml types corresponding to CryptoVerif types are non-

recursive. We also require that the network code does not

fork after obtaining but before calling an oracle that can

be called only once (because it is not under a replication

in the CryptoVerif specification). Indeed, forking at this

point would allow the oracle to be called several times.

In general, forking occurs only at the very beginning of



the protocol, when the server starts a new session, so this

requirement should be easily fulfilled. These requirements

could be verified by program analysis.

Finally, we require that the programs are executed in

the order specified by the CryptoVerif specification. For

instance, in general, the key generation programs must be

executed before the client and the server. We also require

that several programs that insert elements in the same table

are not run concurrently, to avoid conflicting writes. This

requirement could be enforced using locks, but in practice,

it is generally obtained for free if the programs are run in

the intended order. We also require that the files used by the

generated code are not read or written by other software, as

this could obviously break security.

V. AN APPLICATION: SSH

This section applies our work to an implementation of the

Secure Shell (SSH) protocol. We first recall the protocol,

then present our results.

A. Description of the protocol

The SSH protocol is a protocol that permits a client

to contact a server and run an application on it securely.

When a session is established, the client and the server

are authenticated and data runs through a secure channel

to ensure its privacy and integrity.

SSH (version 2.0) is divided in three parts [25]. The

SSH Transport Layer Protocol authenticates the server to the

client and establishes a secure tunnel for the other parts. This

secure tunnel is implemented using encryption and MAC

(message authentication code), with keys chosen by a Diffie-

Hellman key exchange. The tunnel aims to guarantee the

privacy and integrity of the data going through. The SSH

Authentication Protocol authenticates the client. The SSH

Connection Protocol multiplexes multiple channels through

the tunnel.

We concentrated our efforts on the Transport Layer part.

The key exchange part consists of four groups of messages:

1) The client and the server send their identification

string, which specifies the version of SSH they use.

2) Then the server sends to the client the lists of the

cryptographic algorithms for key exchange, signature,

encryption, MAC, and compression it can use in

order of preference, and the client sends the list of

cryptographic algorithms it supports. Based on this

information, the protocol chooses which algorithms to

use. Our implementation uses diffie-hellman-group14-

sha1, RSA signature, AES128-CBC, HMAC-SHA1,

and no compression as algorithms, respectively. SSH

specifies other algorithms as well. Most of them would

be very easy to include in our implementation; still, the

additional counter modes encryptions specified in [26]

raise an additional difficulty as discussed below.

3) Then the actual key exchange takes place. The key ex-

change messages depend on the chosen key exchange

algorithm. The algorithm we use relies on a group

defined in [27]. Let p be a large prime and g be a

generator of a subgroup of Z⋆
p.

First, the client chooses a random exponent x and

sends to the server e = gx mod p.

Then the server chooses a random exponent y and

computes f = gy mod p, the shared key K = ey mod
p, and the SHA1 hash H of the messages previously

sent by the client and the server, the server public

host key pks, f , and K. It then signs this hash with

its private host key skS . Let s = sign(H, skS) be this

signature. It finally sends back pks, f , and s.

The client must then verify that pks is indeed the key

for the server it intended to reach, then compute the

shared key K = fx mod p, the hash H in the same

manner as the server, and then verify the signature.

4) When the client has verified the server’s message, it

sends a “new key” message declaring that the key they

agreed upon is to be used afterwards, and the server

acknowledges this by also sending the same message.

From the values of H and K, SSH then generates two

encryption keys (one for client to server messages, and

one for server to client messages), two initialization

vectors (IVs) for the encryption, and two keys for

MAC, by computing hashes of H , K, and different

constants. The forthcoming messages in the SSH pro-

tocol will be encrypted and a MAC will be computed

based on the clear message and on a sequence counter

that is incremented at each message.

Each message of the protocol, save the identification string

messages, begins with five bytes indicating the size of the

message (four first bytes) and the size of the random padding

(one byte) present after the message, and is padded to a

multiple of the block size of the encryption scheme (or 8,

at the beginning when the encryption is not chosen yet).

B. Our application

We have modeled the SSH Transport Layer Protocol in

the CryptoVerif specification language. We have then proved

the authentication of the server in the computational model

automatically by using CryptoVerif, assuming the RSA

signature is UF-CMA (unforgeable under chosen message

attacks) and the SHA1 hash function is collision-resistant.

The authentication property shows that each session of the

client C with the server S corresponds to a distinct session of

the server S with the client C, and that the client C and the

server S share all protocol parameters: identification strings,

algorithm lists, pkS , e, f , K, and H .

We have also proved the secrecy of the session keys

obtained by key exchange (the encryption keys, MAC keys,

and initialization vectors for encryption), that is, an ad-

versary has a negligible probability of distinguishing these



keys from random numbers, assuming the group used by

the key exchange satisfies the computational Diffie-Hellman

assumption, the SHA1 hash function is a random oracle, and

the RSA signature is UF-CMA. This proof is performed

on a protocol that stops just after key exchange, because

the cryptographic secrecy of the keys is broken as soon

as they are used by the protocol. This proof is performed

by CryptoVerif with manual guidance of the user. It also

required an extension of CryptoVerif, so that it can perform

case distinctions depending on the order of definitions of

variables. This extension will also be useful to prove other

cryptographic protocols with CryptoVerif.

In order to implement the SSH Transport Layer Protocol,

we wrote the network code and the cryptographic primitives.

The cryptographic primitives are for the most part an inter-

face to Cryptokit. Some specific algorithm encapsulations

used by SSH had to be implemented. Message building and

parsing are also implemented as if they were cryptographic

primitives, with a basic specification of their properties: in

particular, parsing is the inverse of message building. The

network code sends and receives messages from the network,

and also does some basic non-cryptographic manipulations

(for instance, it sends the identification string directly).

We have verified that our client and server correctly

interoperate with OpenSSH. This shows that our implemen-

tation respects the message format and contents of SSH,

and that it is a working implementation. However, we have

omitted a few details of the SSH specification for simplicity:

key re-exchange, IGNORE and DISCONNECT messages

are not implemented yet. In order to give an idea on

the amount of code this work represents, the CryptoVerif

specification amounts to 331 lines of code, and we gen-

erate from it 531 lines of OCaml, split among multiple

files. The manually written code representing the primitives

and the authentication and connection protocols amount to

1124 lines. Its throughput when tunnelling random data is

about 30 MB/s, whereas OpenSSH ramps up to 90 MB/s on

a Dual Core 3.2 GHz. It is slower because our generated

code and the cryptographic primitives in Cryptokit are both

slower than their OpenSSH equivalents, but it is still usable.

A few tricks were needed in order to get this imple-

mentation to work. We model the SSH tunnel by oracles

that get an encrypted packet from the network and return

the clear packet to the application, and get a clear packet

from the application and return the encrypted packet to

the network code. SSH with AES128-CBC (or other CBC

mode encryptions) uses CBC mode [28, Section 7.2.2 (ii)]

with chained IVs, that is, the IV for the next message is

the last block of ciphertext. Since CryptoVerif does not

allow maintaining a mutable state across several oracle

invocations, we simply get the IV from the network code

which keeps in memory the last block of ciphertext it saw.

Moreover, the messages after the key exchange are com-

pletely encrypted under the key derived from the key ex-

change, the five first bytes containing the size of the message

included. Therefore, an implementation must decrypt the

first block of the message to get its size, then input the rest

of the message, decrypt it, and then check that the MAC that

follows in the stream is correct. So we implemented reading

a message by two successive oracles: first, an oracle that

takes the first packet of the message, and returns the size of

the message (so that the network code can input a message

of the required length), then an oracle that takes the rest of

the message and its MAC, checks the MAC and returns the

decrypted message if the MAC is correct.

In our model, we cannot prove the secrecy of messages

sent in the tunnel. This point is actually related to known

weaknesses in SSH with CBC mode encryption (which

is still the only required encryption mode) [29, 30]. CBC

mode encryption with chained IVs is not IND-CPA (indis-

tinguishable under chosen plaintext attacks [31]), and this

insecurity also applies to SSH [29]. This problem appears

clearly when we try to do the proof. Because CryptoVerif

does not allow encryption and decryption to generate random

values internally or to maintain an internal state, even the

interface of encryption in SSH differs from the one of IND-

CPA encryption: in SSH, encryption receives a non-random

IV while IND-CPA encryption receives random coins, and

decryption receives an IV while IND-CPA decryption does

not. Moreover, the oracle that decrypts the first block of

a packet to get its length leaks the first four bytes of

every packet. In fact, because of properties of CBC mode,

using this oracle, one can compute the first four bytes

of the cleartext of any ciphertext block [30, Section 3.2].

This problem is actually related to a real attack against

some SSH implementations [30]: in practice, the length

field is not immediately obtained by the adversary, but can

be determined by sending messages block by block until

one gets a reply, leading to the leakage of the cleartext.

Such problems would be likely to remain unnoticed with an

analysis of SSH in the symbolic model; that is why it is

important to prove the protocol in the computational model.

In order to get a security proof, we could use counter

mode encryption as specified in [26] instead of CBC mode

encryption, by relying on its recent formalization in [32].

That would probably require extensions of CryptoVerif to

keep a mutable counter internally. More generally, the main

limitations of our approach come from limitations of Cryp-

toVerif: it currently cannot handle mutable state, and may

also be unable to prove some protocols secure even if they

can be encoded. Additionally, it would also be interesting to

formalize the SSH authentication and connection protocols.

VI. CONCLUSION

We presented a compiler that translates an annotated

CryptoVerif specification into an OCaml implementation.

Thanks to this compiler and to CryptoVerif, we can, from

a single specification of the protocol, both prove security



properties of the protocol by CryptoVerif and get a runnable

implementation of the protocol using our compiler. We have

applied our work to the SSH Transport Layer Protocol: we

proved the authentication of the server and the secrecy of

the session keys, and we generated an implementation of the

protocol that could interact with an existing implementation

of SSH, namely OpenSSH.

To make sure that the implementations generated by

our compiler are secure, we need to prove that if the

specification satisfies a certain security property, then the

generated implementation also satisfies it. The proof relates

the traces of the CryptoVerif specification and those of the

generated OCaml implementation. It is still in progress.

Our generated implementations do not include counter-

measures against side-channel attacks. It would be interest-

ing to add such countermeasures, or even to have tools to

detect certain side-channel attacks or prove their absence.

This is however long-term future work.
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