
HAL Id: hal-00863561
https://hal.inria.fr/hal-00863561

Preprint submitted on 19 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting Proofs from Tabled Proof Search
Dale Miller, Alwen Tiu

To cite this version:

Dale Miller, Alwen Tiu. Extracting Proofs from Tabled Proof Search. 2013. �hal-00863561�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49752878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00863561
https://hal.archives-ouvertes.fr

Extracting Proofs from Tabled Proof Search?

Dale Miller1 and Alwen Tiu2

1 INRIA-Saclay & LIX/École Polytechnique
2 Research School of Computer Science, The Australian National University &

School of Computer Engineering, Nanyang Technological University

Abstract. We consider the problem of model checking specifications in-
volving co-inductive definitions such as are available for bisimulation. A
proof search approach to model checking with such specifications often
involves state exploration. We consider four different tabling strategies
that can minimize such exploration significantly. In general, tabling in-
volves storing previously proved subgoals and reusing (instead of reprov-
ing) them in proof search. In the case of co-inductive proof search, tables
allow a limited form of loop checking, which is often necessary for, say,
checking bisimulation of non-terminating processes. We enhance the no-
tion of tabled proof search by allowing a limited deduction from tabled
entries when performing table lookup. The main problem with this en-
hanced tabling method is that it is generally unsound when co-inductive
definitions are involved and when tabled entries contain unproved en-
tries. We design a proof system with tables and show that by managing
tabled entries carefully, one would still be able to obtain a sound proof
system. That is, we show how one can extract a post-fixed point from
a tabled proof for a co-inductive goal. We then apply this idea to the
technique of bisimulation “up-to” commonly used in process algebra.

1 Introduction

Model checking and theorem proving are usually considered two distinct tech-
niques in formal verification: the former is concerned mainly with satisfiability
in a given model while the latter is concerned mainly with provability (e.g.,
validity in all models). Viewed algorithmically, model checking can be loosely
characterized as a model exploration technique (e.g., explorations of states in a
transition systems, worlds in a Kripke structure, etc). We adopt this view here.
When inference and proof are enriched to contain flexible treatments of (least
and greatest) fixed points, model checking can be seen as deduction. As such,
the model checkers can be expected to output proof certificates justifying their
completed state explorations in a manner similar to what one might expect to
have output from automatic or interactive theorem provers.

? We thank the anonymous referees for their helpful comments. The first author has
been supported by the ERC Advanced Grant ProofCert and the second author has
been supported by the ARC Discovery Grant DP110103173.

In this paper, formal proofs will be based on the Linc sequent calculus [15,
17] (see Section 2), which generalizes Gentzen’s sequent calculus LJ for intuition-
istic logic with induction and co-induction. We shall also focus on the Bedwyr
model checking implementation of part of Linc [1], particularly the form of tabled
deduction that is implemented in that system. Bedwyr has been most success-
fully applied to domains where model checking is performed on syntactically
rich domains (involving expressions taken from process calculi and program-
ming languages) instead of more simple state-like domains comprised of tuples
of booleans, small integers, etc.

1.1 Model checking as proof search

In this paper, we address the problem of integrating (co-)inductively proved
theorems with model checking and we will use bisimulation as a specific and
important example. In the setting of Linc, bisimulation is defined as the greatest
fixed point of the following recursive definition.

bisim(P,Q)
ν
= [∀P ′∀A. P A−→ P ′ ⊃ ∃Q′. Q A−→ Q′ ∧ bisim(P ′, Q′)] ∧

[∀Q′∀A. Q A−→ Q′ ⊃ ∃P ′. P A−→ P ′ ∧ bisim(Q′, P ′)]

Bedwyr’s proof search mechanism will turn this definition into a state exploration
procedure. Such a direct and intimate connection between bisimulation defined
as a logical formula and an algorithmic state exploration algorithm provides at
least two important novelties. First, logical encodings may clarify some aspects of
the theories being encoded: for example, the difference between late bisimulation
and open bisimulation for the π-calculus can be explained as the distinction
between intuitionistic and classical logic, i.e., the presence (or absence) of the
excluded middle principle applied to the equality of names [16]. Second, since
model checking can be seen as building Linc proofs, a checker should be able to
output a formal proof certificate: for example, successful proof search in Bedwyr
for a query concerning bisimilarity of two processes or satisfiability of a modal
formulas by a process yields a Linc proof which can be extracted and checked
independently.

Although such logical encoding of state exploration techniques is in principle
straightforward, naive proof search techniques can yield inefficient algorithmic
search and proof certificates that are unacceptably large. One way to address
these problems is to use tabled deduction so that proved subgoals can be shared
and not reproved. For example, Bedwyr stores certain (sub)goals that have been
proved and attempts to reuse them when proving other (sub)goals. The tabling
of proved subgoals is not, however, sufficient to deal with model checking of po-
tentially non-terminating systems. For example, to prove bisimilarity of simple
processes such as !a and !(a+ a), a naive unfolding of the processes will not ter-
minate (of course, checking bisimilarity is undecidable so no fixed strategy will
yield bounded search in all cases). A more clever approach to showing bisim-
ulation is the bisimulation up-to technique [11], which can employ additional

2

information about bisimulation in order to reduce the size of the relation (the
table) needed to demonstrate bisimilarity.

1.2 Four tabling strategies

In this paper, we examine how tabled deduction can be used to build a bisim-
ulation as well as a bisimulation-up-to. In particular, we examine four tabling
strategies in model checking that allow building smaller witnesses (ultimately,
proof certificates) of relationships on possibly non-terminating processes. In each
case, the main technical difficulties involves extracting an independently check-
able proof certificate: obviously, such extraction guarantees soundness of the
tabling method. As a case study, we show how bisimulation up-to techniques for
process calculi can be encoded in proof search in one of the tabling strategies,
and show how proof certificates can be generated.

Since we view model checking as a certain process for building a proof, at
any particular moment, the state of that process can be abstracted to be roughly
two items: the partial proof and the table. The first of these is a tree structure of
nodes that is labeled by atomic formulas. Nodes are either leaf nodes or interior
nodes and both of these classes can be further divided between open and closed.
A closed leaf node is one that has been proved and an open leaf node is one for
which no proof has yet been found. A closed interior node is one all of whose
descendant leaf nodes are closed and an open interior node is one with some
descendant leaf node that is open. The second component of the model checker’s
state, the table, is a set of node occurrences. We shall always allow a table to
contain closed leaf occurrences from the associated partial proof. We shall also
use the term history atom to describe a formula that labels an interior node.

Two independent choices are available in describing a tabling strategy: the
first choice is between allowing or not allowing history atoms into the table
and the second is allowing the table to infer an atom by simply checking its
membership in the table or by allowing a deduction from tabled atoms and
some assumed set of theories. As an example of this latter choice, consider a
table that contains the atomic statements (bisim(p1, p2)) and (bisim(p2, p3)). If
the table is only used to infer its members, we can infer these two atoms. If we
have proved elsewhere (using a proof assistant that understands (co-)induction)
that the (bisim(·, ·)) relationship is transitive, then a table that incorporates
that theorem could also conclude (bisim(p1, p3)). More formally, if R is the set
of atoms in a table and T is a set of theories, then we are allowed to infer
the atomic formula G from this table if formula (R ∧ T) → G is provable. In
this paper, we shall assume that T is a set of hereditary Harrop (hH) formulas
(formulas containing only conjunction, implication, and universal quantifiers:
these formulas subsume Horn clauses and are basis of λProlog [7]). While in
most of our examples, such hH formulas will form a simple, decidable theory, we
shall not assume a priori that theories are, in fact, decidable.

We identify the following four tabling strategies.

I History atoms are not tabled; the table only infers its members.

3

II History atoms are not tabled; the table uses theories to infer additional atoms.
III History atoms can be tabled; the table only infers its members.
IV History atoms can be tabled; the table uses theories to infer additional atoms.

The first two strategies yield proof certificates that simply use the cut rule: these
two strategies are always sound as long as the theory (in Strategy II) is known to
be valid, i.e., proved elsewhere using (co-)inductive techniques. Actually, Strat-
egy I collapses into Strategy II if the empty set is an allowed theory. Soundness
of these two strategies is not difficult to establish and it follows the work pre-
sented in [8]. Strategy III is sound only when the tabled entries are co-inductive
predicates: furthermore, a proof certificate can always be constructed and it will
be essentially a post-fixed point found within the table. When tabled entries are
restricted to co-inductive predicates, the last strategy corresponds to the bisim-
ulation up-to technique, as described in, say [10]. In this case, the theory T that
is used to expand the table no longer corresponds to a lemma in the meta logic.
They instead encode functions on relations, and soundness of a tabled proof in
this case depends on the soundness of these functions, i.e., whether they allow
one to construct a post-fixed point of a co-inductive definition. We shall focus
on strategy III and IV in this paper, but the soundness results for Strategy I
and II can be found in [9, Appendix B].

There is significant precedent in the literature related to the use of history
atoms to capture aspects of co-inductive proofs, notably works on cyclic proofs
for logics with induction and co-induction [14, 4]. In particular, proof search
strategies similar to strategy III above have also been used in cyclic theorem
provers [3] and tabling methods in co-inductive logic programming (see e.g. [5,
13]). Soundness of cyclic proofs (inductive or co-inductive) is not difficult to
establish semantically and there are well known syntactic criteria for cyclic proof
systems to be sound, e.g., the notion of a progressing trace that dates back to
work on modal µ-calculus [18] and its first-order extensions [14]. However, there
are two main distinguishing features of our work compared to these related work:

First, we do not justify the soundness of cyclic proofs via semantics but
instead we translate cyclic proofs into a more standard proof system that uses
explicit (co-)induction rules, e.g., the logic Linc or higher-order logic, for which
the issue of soundness has been well established and for which there is a well
developed proof theory. Such translation is in general difficult: Sprenger and
Dam in [14] provide such a general translation but it requires annotations of
fixed point operators with ordinals. For annotation-free cyclic proof systems
such as that of Brotherston [4], the translation from cyclic proofs to proofs with
explicit (co-)induction rules remains an open problem. While our cyclic proof
system (for strategy III) does not introduce explicit ordinal annotations, the
kind of cyclic structures allowed in that proof system is much simpler than in
[14, 4] and forbids cross-branch cycles and mutually recursive definitions. We
are thus able to give simple constructions of proofs with explicit (co-)induction
rules.

Second, our strategy IV has no counterpart in literature of cyclic proofs. The
interpretation of such a cyclic proof is not a straightforward construction of post

4

fixed points since the circularity induced by applications of the theory component
in this strategy does not obey the notion of progressing traces underlying existing
cyclic proof systems mentioned above. Of course semantic soundness for such
applications is known in the literature of bisimulation up-to [10]; our work can
be seen as a formal logical formulation of the soundness criteria in [10].

We note that strategies I to III have been implemented in the current de-
velopment version of Bedwyr, and a preliminary version of strategy IV is being
developed at the Parsifal team at INRIA. An example in [9, Section A] illustrates
the use of strategy IV to prove bisimilarity of two non-terminating processes,
something which is not possible with other strategies.

In Section 2, we present the proof system for intuitionistic logic that we
use in the rest of this paper. In Section 3, we present a proof system which
uses tables. The four tabling strategies outlined above are differentiated in this
tabled system by a function that filters appropriate elements of the tables and
the theories that are assumed in the proof. Soundness of strategy III is proved in
Section 4, where we show how to construct a post fixed point from tabled entries.
In Section 5 we show how to interpret theories as up-to functions and tabled
entries as a post fixed point “up-to”. In Section 6, we show how compositions of
up-to functions can be encoded as compositions of logical theories. We then show,
via a permutation argument, that up-to functions can be freely and soundly
composed, provided certain conditions related to how these theories permute
over each other hold. In Section 7, we discuss further work. The appendix of the
companion paper [9] contains several proofs that are omitted in the main text.

2 Backgrounds

We give an overview of the logical framework used as the foundation of this
work, i.e., the logic Linc [15], and the bisimulation up-to techniques [11, 10].

The Linc logic is essentially a version of Church’s Simple Theory of Types
with the following differences. (i) Linc is based on intuitionistic provability (de-
scribed here using a two-sided sequent calculus similar to Gentzen’s LJ proof
system). (ii) The type of quantified variables are restricted to those not contain-
ing the type of propositions (i.e., the type o in Church’s notation): thus, Linc
does not allow predicate quantification. (iii) Linc also contains free equality, i.e.,
equality in the term model, and inductive and co-inductive definitions as logical
connectives and these will be given introduction rules in the sequent calculus.
(iv) Finally, Linc also contains the ∇-quantifier (see, for example, [16]) but we
can safely ignore it in this paper.

Each predicate symbol in Linc is given a designation as either undefined,
inductive or co-inductive. An undefined predicate is the usual one in first-order
intuitionistic logic, i.e., its interpretation in a model is allowed to be an arbi-
trary subset of the domain of interpretation. To each (co-)inductive predicate
p, we associate a definition, i.e., a formula possibly containing occurrences of p.

Formally, we write p ~x
µ
= D p ~x to denote an inductive definition of p. Here D is

an abstraction, containing no occurrences of p, that is applied to p and variables

5

{Γ [ρ] −→ C[ρ]}ρ∈U(s,t)
s = t, Γ −→ C

eqL
Γ −→ t = t

eqR

B S ~y −→ S ~y Γ, S ~t −→ C

Γ, p~t −→ C
IL, p ~x µ

= B p~x
Γ −→ B p~t

Γ −→ p~t
IR, p ~x µ

= B p~x

B p~t, Γ −→ C

p~t, Γ −→ C
CIL, p ~x ν

= B p~x
Γ −→ S~t S ~x −→ B S ~x

Γ −→ p~t
CIR, p ~x ν

= B p~x

Fig. 1. The Linc inference rules for equality and the least and greatest fixed points

~x. We shall require that p occurs strictly positively in D p ~x. A co-inductive

definition is similarly defined, with
ν
= replacing

µ
= . We write p ~x

4
= D p ~x to

denote either an inductive or a co-inductive definition.
In Section 1.1, the definition of bisimulation illustrates this scheme by setting

the schema variable D to be the λ-term with abstractions λbisimλPλQ and with
its body being the entire right-hand-side of the definition. Further restrictions
are needed, e.g., restrictions on mutual recursions between inductive and co-
inductive definitions, to guarantee cut-elimination; see [15, 17] for details.

We consider terms as equal modulo α-conversion and assume the usual notion
of capture-avoiding substitutions for λ-calculus. The application of a substitution
θ to a term t is written t[θ]. This notation extends to application of substitutions
to multisets of formulas, i.e., Γ [θ] = {B[θ] | B ∈ Γ}. The inference rules of Linc
are those for LJ plus the rules for equality and fixed points that are given in
Figure 1. In eqL, the expression U(s, t) is used to denote a complete set of unifiers
for s and t. Since equality has introduction rules, it is a logical connective and not
a predicate. The rules for the introduction of inductive predicates on the right or
co-inductive predicates on the left are given by familiar unfolding rules while the
introduction of inductive predicates on the left or co-inductive predicates on the
right are given by the corresponding induction or co-induction principles. In this
latter case, the predicate variable S in those inference rules correspond to the
invariant (pre-fixed point) or co-inductive invariant (post-fixed point). Notice
that unfolding inductive predicates on the left and co-inductive predicates on
the right are admissible (sound) inference rules.

We shall often need to restrict ourselves to the “level 0/1 fragment” [1] of
Linc. To define this fragment, we assume that every predicate symbol is either
inductive or co-inductive and is assigned a level of 0 or 1. A formula is level-0
if it contains no predicates of level 1 and contains no occurrences of implication
or universal quantifier. Level-1 formulas satisfy the following grammar:

F ::= ⊥ | > | t = s | p~t | ∃x.F | ∀x.F | G ⊃ F | F ∧ F | F ∨ F.

where G ranges over level-0 formulas and p ranges over level-0 or level-1 pred-

icates. A definition p ~x
4
= B is a level-0 (level-1) definition if both p and B are

level-0 (resp. level-1) formulas.
Bisimulation up-to [11] refers to a technique for proving bisimilarity of pro-

cesses that aims at reducing the size of the relation one needs to construct to
prove bisimilarity. Bisimulation is a binary relation R that satisfies some closure

6

properties w.r.t. the transition system generated by processes, as shown in the
diagram on the left below. The up-to technique modifies this definition to allow
P ′ and Q′ to be related by a larger relation F(R), defined via an up-to function
F , as shown in the diagram on the right below.

P
α ��

R Q
α��

P ′ R Q′

P
α ��

R Q
α��

P ′ F(R) Q′

Let B be the function on binary relations defined by

B(R) = {〈P,Q〉 | [∀P ′∀A. P A−→ P ′ ⊃ ∃Q′. Q A−→ Q′ ∧R(P ′, Q′)] ∧

[∀Q′∀A. Q A−→ Q′ ⊃ ∃P ′. P A−→ P ′ ∧R(Q′, P ′)]}

Then bisimilarity, denoted by ∼, is defined as the greatest fixed point of B. The
left-diagram above shows that R ⊆ B(R), i.e., that R is a post-fixed point of
B. Since B is monotone, the Knaster-Tarski fixed point theorem implies that
R is included in ∼ . The right-diagram, on the other hand, only proves that
R ⊆ B(F(R)) and in general this does not establish R as a post-fixed point
of B, so one needs to prove that the function F is sound, i.e., for every R, if
R ⊆ B(F(R)) then R ⊆∼. This up-to technique is not limited to bisimulation
and it can be used with other co-inductive definitions [10].

3 Tabled deduction presented as a proof system

When inductive and co-inductive predicates are not used, tabled deduction is
easily justified using the cut inference rules of sequent calculus [8]. For example,
proving A ∧B from assumptions Γ can proceed as follows:

ΞA
Γ −→ A

A,Γ −→ A
init ΞB

A,Γ −→ B

A,Γ −→ A ∧B ∧R

Γ −→ A ∧B cut

Here, A is both proved by the subproof ΞA and is an assumption in the subproof
ΞB of B from Γ .

When co-inductive predicates are present, one way to establish a co-inductive
goal, say bisimulation, is to allow a form of circular proofs. In a circular proof,
a branch in the proof tree is allowed to close when there is a ‘loop’, i.e., the
sequent at the leaf of the branch matches another sequent lower in the tree. This
is a familiar notion in fixed point logics and conditions that guarantee soundness
for such circular proofs are known: e.g., the notion of a progressing trace in [4].
Such conditions include forbidding loops across minor premises of an inference
rule, and every loop must be ‘guarded’, i.e., there must be an unfolding of a co-
inductive atom in the loop. These kind of conditions are too strong, however, to
encode up-to techniques for bisimulation. A commonly used up-to technique for

7

bisimulation, say for CCS, is the up-to context technique, which uses the up-to
function F(R) = {(C[P], C[Q]) | (P,Q) ∈ R}, where C is a process context. So,
for example, to establish P+Q ∼ R+Q, one can simplify this first to the problem
of checking P ∼ R via the up-to function F . This kind of simplification via up-to
context is exploited in [2], for example, to obtain a better bisimulation checking
algorithm. An example of using “up-to context” is given in [9, Section A].

To capture bisimulation up-to, we need to encode up-to functions as logical
theories, and use them to simplify a goal, before doing loop checking. This leads
to inconsistency if done naively, even when the theories are valid. For example,
since the processes a.0 and b.0 are not bisimilar, the formula bisim(a, b) ⊃ ⊥
should be provable. Now consider the following circular proof:

bisim(a, b) ⊃ ⊥ −→ bisim(a, b)
loop

bisim(a, b) ⊃ ⊥,⊥ −→ bisim(a, b)
⊥L

bisim(a, b) ⊃ ⊥ −→ bisim(a, b)
⊃L

where the leftmost leaf is the same as the root sequent. If this were admitted
as a proof, then one can prove ⊥. Indeed, this kind of loop is forbidden in
sound circular proof systems [4, 14] and is an example of a non-progressing loop.
Unfortunately, as we mentioned above, forbidding circular proofs outright leads
to a restricted system where bisimulation up-to algorithms cannot be encoded
directly. An important part of the design of the tabled proof system is to rule out
unsound loops while still being able to encode up-to techniques. This involves a
careful management of tabled entries from which we deduce good loops.

In our tabled proof system, we capture the notion of a loop in a derivation by
extending sequents with history contexts. We consider only tabling of atoms and
universally quantified atoms. We distinguish three types of co-inductive atoms:
proved atoms, history atoms, and open atoms. Only the first two types of atoms
can appear in a table. Open atoms can only appear in the goal formula (i.e., the
formula on the right-hand side of a sequent) or a theory, and are used to indicate
atoms that are yet to be proved or disproved. When atoms occur in sequents, the
history atoms will be annotated with ◦ while open atoms are annotated with ∗.
History atoms and open atoms are syntactic devices used only in the tabled proof
system; they have no meaning inside Linc. As the name suggests, history atoms
are those encountered during proof search, for which a co-inductive rule has been
applied. If a predicate symbol is co-inductively defined, then its history atoms
are used to establish a post-fixed point. We consider only history atoms that are
co-inductive.3 A formula is ∗-free (resp., history free) if it has no occurrences of
open atoms (resp., history atoms). Given a set P of formulas, we denote with
P◦ the set of history atoms in P. Given a predicate p, we denote with P \ p the
set P with all atoms of the form p~t removed.

Sequents have for form P; T ;Γ −→ C;P ′, where Γ is a set of level-0 ∗-
free and history-free formulas; C is a level-1 history-free formula; P and P ′ are
multisets of ∗-free atoms or universally quantified atoms; and T is a theory, i.e.,

3 Inductive history atoms can be added, and their use would be to table disproved
atomic goals. We leave the treatment of inductive history atoms to future work.

8

a set of closed formulas. The set P and P ′ are bookkeeping devices essentially.
Operationally, the sequent can be understood as follows: in the beginning of
proof search for the sequent, P contains the current table entries, and when
proof search concludes successfully, P ′ contains the new table entries generated
by the proof search.

Depending on the tabling strategy, theories can be lemmas (provable in, say,
Linc) or rewriting rules on open atoms (which correspond to up-to functions), or
a mixture of both. When no history atoms are present, the informal reading of
such a sequent is as follows: assuming T and P are provable in Linc, then Γ −→
C is provable in Linc and its proof contains subproofs of atoms in P ′. When
history atoms are present, the interpretation of the sequent is more complicated.
Roughly, assuming we only have one co-inductively defined predicate symbol,
say p, and the only history atoms are those of p, then P◦ ∪ (P ′)◦ forms a post
fixed point of (the operator associated with) p. The precise interpretation will
be given when we formally prove the soundness result for each strategy.

The inference rules involving these richer sequents are given in Figure 2. We
consider only unification problems that have most general unifiers, e.g., first-
order or higher-order pattern unification: in this way, eqL has at most one
premise. In branching rules, the accumulated history or proved atoms on the
right-hand side of a sequent in one branch are passed on to the other branch.
When using this proof system for proof search, this set will be populated de-
terministically in a depth-first search strategy. The most interesting rule is νR.
Here, reading the rule upwards, one replaces the co-inductive predicate p with
p∗, and add p◦~t to the history context on the left to allow it to be used to detect
loops. When proof search is done, the history context on the right will be popu-
lated with history atoms. The intention is that these history atoms will form a
post-fixed point (up-to) of p; hence when the proof search concludes, we replace
each history atom p◦ on the right with p, signifying that every element in the
post-fixed point is contained in the largest fixed point of p.

Notice that our sequent calculus does not have explicit structural rules (con-
traction and weakening) since these rules have been internalized in other rules.
We have also omitted the cut rule. We currently do not know whether cut is
admissible, but it is not important for this work as we only are interested in
soundness. Notice also that if a sequent has a non-empty left-hand (Γ) context,
then it can be the conclusion of only left-introduction rules: furthermore, since
Γ can only contain level-0 formulas, there is no need for left introduction rules
for implications and universal quantifiers.

Let p1, . . . , pn be the set of all co-inductive predicates that are defined in the
logic. We denote by L the set {∀ ~x1(p◦1 ~x1 ⊃ p∗1 ~x1), . . . ,∀ ~xn(p◦n ~xn ⊃ p∗n ~xn)}. That
is, L allows one to backchain from an open atom to a history atom. Adding L
as theories to the tabled proof system allows one to loop on co-inductive atoms.

The function S used in Figure 2 is determined by the tabling strategies:

Strategy I: S(P, T) = P \ P◦ Strategy III: S(P, T) = P ∪ L
Strategy II: S(P, T) = (P \ P◦) ∪ T Strategy IV: S(P, T) = P ∪ T

9

S(P, T) `I A
P; T ; · −→ A; · init P; T ;⊥, Γ −→ B; · ⊥L P; T ; · −→ >; · >R

P; T ;B,C, Γ −→ D;P ′

P; T ;B ∧ C, Γ −→ D;P ′ ∧L
P; T ; · −→ B;P1 P,P1; T ; · −→ C;P ′

P; T ; · −→ B ∧ C;P ′,P1
∧R

P; T ;B,Γ −→ D;P1 P,P1; T ;C, Γ −→ D;P ′

P; T ;B ∨ C, Γ −→ D;P ′,P1
∨L

P; T ; · −→ Bi;P ′

P; T ; · −→ B1 ∨B2;P ′ ∨R

P; T ;B −→ C;P ′

P; T ; · −→ B ⊃ C;P ′
⊃R

P; T ; · −→ B[y/x];P ′

P; T ; · −→ ∀x.B;P ′ ∀R

P; T ;B[y/x], Γ −→ C;P ′

P; T ; ∃x.B, Γ −→ C;P ′ ∃L
P; T ; · −→ B[t/x];P ′

P; T ; · −→ ∃x.B;P ′ ∃R

P; T ;Γ [ρ] −→ C[ρ];P ′

P; T ; s = t, Γ −→ C;P ′
eqL, ρ = mgu(s, t)

P; T ; · −→ t = t; · eqR

P; T ; s = t, Γ −→ C; · eqL, s and t not unifiable.

P; T ;B p~t, Γ −→ C;P ′

P; T ; p~t, Γ −→ C;P ′
defL

S(P, T) 6`I p~t P; T ; · −→ B p~t;P ′

P; T ; · −→ p~t;P ′,∀~x.p~t
defR

S(P, T) 6`I p∗ ~t P, p◦~t; T ; · −→ B p∗ ~t;P ′

P; T ; · −→ p∗ ~t;P ′, p◦ ~t
ν∗R

S(P \ p◦, T) 6`I p~t (P \ p◦), p◦~t; T ; · −→ B p∗ ~t;P ′

P; T ; · −→ p~t;P ′[p/p◦], p~t
νR

Fig. 2. Inference rules for the tabled proof system. In defL and defR, p ~x
4
= B p~x, and

in ν∗R and νR, p ~x
ν
= B p~x and ~t are ground terms.

We shall refer to these functions as, respectively, S1, S2, S3 and S4. The proof
systems for these strategies are defined as follows: the proof systems T D1 and
T D2 are proof systems obtained by using, respectively, S1 and S2, and whose
rules include all the inference rules in Figure 2 except ν∗R and νR. The proof
systems T D3 and T D4 are proofs systems obtained using, respectively, S3 and
S4, and whose rules include all the inference rules in Figure 2 except defR.

The relation `I refers to the deducibility relation of intuitionistic logic (with-
out fixed points). When T is restricted to formulas containing just ⊃, ∧, and ∀
the relation `I is implemented by λProlog [7].

4 Constructing post-fixed point from tables

In the following, given two lists of terms ~s = s1, . . . , sn and ~t = t1, . . . , tn, we
write ~s = ~t to denote the formula (s1 = t1) ∧ (s2 = t2) ∧ · · · ∧ (sn = tn). For
simplicity, we shall assume that all co-inductive predicates have the same arity.
We denote by P• the set P \ P◦.

10

Theorem 1. Suppose P; T ;Γ −→ C;P ′ is derivable in T D3, where Γ is history-
free and C contains no negative occurrences of history atoms. Let {p1, . . . , pn}
be the set of co-inductive predicates occuring in P, C and P ′. Then there exist
invariants S1, . . . , Sn such that

– the sequent (P•, Γ −→ C[S1/p
∗
1, . . . , Sn/p

∗
n]) is derivable in Linc,

– for each B ∈ (P ′)•, the sequent (P• −→ B) is derivable in Linc, and

– for each p◦i~t ∈ (P ′)◦, where pi ~x
ν
= Di pi ~x, the sequent (P• −→ Di Si ~t) is

derivable in Linc.

Proof. (Outline.) Given sequent P; T ;Γ −→ C;P ′, the abstraction Si

Si = λ~x.
∧

(P)• ∧
∨
{(~x = ~t) | p◦i ~t ∈ P ∪ P ′},

forms a post-fixed point of the definition of pi, i.e., D Si ~x −→ Si ~x. ut

5 Co-inductive tabling modulo theories

In a naive algorithm for bisimulation checking, one can construct a bisimulation
set by progressively unfolding transitions from a given pair of processes, until
one arrives at stuck processes or encounters a previously seen pair of processes.
This is very similar to how proof search with strategy III works. The up-to
techniques add to this the possibility of simplifying the continuations of a pair
of processes, before doing the loop checking. For example, a typical simplification
rule is the context closure, e.g., when one encounters a new pair to be checked
((P |R), (Q |R)), instead of unfolding these, we simplify it to (P,Q) and proceed.
This kind of simplification before loop checking is in general unsound; see [11]
for an example. An important line of research in the up-to techniques is in
characterizing sound simplification rules.

To capture up-to techniques in our tabling proof system, we need a mech-
anism to apply simplification to an open co-inductive goal before doing loop
checking. This can be done simply by backchaining on the co-inductive goal.
Since open co-inductive goals are marked with ∗, to be able to backchain on
them, we need to allow ∗-atoms in the theory component of a sequent. However,
when the theory T contains ∗-atoms, it is not possible in general to construct a
post fixed point from tabled entries as they are no longer closed under fixed point
unfolding. This is because the theory T may allow one to deduce ∗-atoms that
have not been encountered during proof search (hence those particular atoms
would not have been unfolded). Soundness in this case is conditional on an ad-
ditional statement, which happens to coincide with the (logical interpretation)
of the soundness condition for up-to techniques [10].

To simplify the presentation, we shall restrict to one co-inductive definition
in the following. We shall refer to this definition simply as p~x

ν
= Dp~x. So we have

only one kind of history atoms and one kind of ∗ atoms, i.e., those of the form p◦~t
and p∗~t. The set L in this case contains exactly one formula, i.e., ∀~x(p◦~x ⊃ p∗~x).

11

To formalize the up-to techniques, we need to quantify over relations and
functions. Thus we introduce HOLinc, the extension of Linc that contains higher-
order quantifiers. In other words, the logic we have now is an intuitionistic higher-
order logic (i.e., the intuitionistic version of Church’s Simple Theory of Types)
with fixed points and (free) equality. The latter two can be encoded in higher-
order logic, so we essentially only work within higher-order logic.

Definition 1. An up-to theory is a set T of higher-order hereditary Harrop
(hH) formulas such that the head of each clause is of the form p∗~t. We assume
that L ⊆ T , and the only place where history atoms occur in T is in this subset.

Definition 2. If T is an up-to theory, it induces the function

FT = λRλ~x.∀q.
∧
T [q/p∗,R/p◦] ⊃ q~x.

In more informal set-theoretic notation, FT can be written as:

FT (R) = {~x | ∀q
(∧
T [q/p∗,R/p◦] ⊃ q~x

)
is provable in HOLinc. }

The adequacy of this encoding of up-to functions is the result of the completeness
of goal-directed proof for hH fragment of higher-order logic; see [7].

Definition 3. An up-to theory T is sound if the following formula, named
Snd(T) holds: ∀R.(∀~x.(R~x ⊃ D (FTR) ~x)) ⊃ (∀~x.R~x ⊃ p ~x).

Theorem 2. Suppose P; T ;Γ −→ C;P ′ is derivable in T D4. Then there exists
an invariant S such that

– the sequent (Snd(T),P•, Γ −→ C[FT S/p∗]) is derivable in HOLinc,
– for each B ∈ (P ′)•, the sequent (P• −→ B) is derivable in HOLinc, and
– for each p~t ∈ (P ′)◦, the sequent (P• −→ D (FT S)~t) is derivable in HOLinc.

Proof. (Outline.) Given P; T ;Γ −→ C;P ′, the abstraction λ~x.
∨
{(~x = ~u) |

p◦~u ∈ P ∪ P ′} can be shown to be a post-fixed point “up-to” FT . ut

Corollary 1. Let T be an up-to theory. If ·; T ; · −→ B;P is derivable in T D4,
for some P, then Snd(T) −→ B is derivable in HOLinc.

Thus strategy IV is sound for, say, bisimulation checking if one can discharge
the assumption Snd(T), a task that can often be tedious to do. We are currently
developing some of these proofs in the (higher-order version of the) theorem
prover Abella, which is an interactive prover based on a logic similar to Linc.

6 Compositions of up-to functions

One important line of research in the up-to techniques in bisimulation is that of
compositions of up-to functions. More precisely, one is interested in characteriz-
ing when the composition of two sound up-to functions gives rise to a sound up-to
function. Such results allow one to combine simple functions to form powerful
sound composite functions. We show next that composition of up-to functions
can be defined via a notion of composition of up-to theories.

12

Definition 4. Let T1 and T2 be up-to theories. Their composition, written T1 ◦
T2, is defined as T1 ◦ T2 = T1[F/p◦] where F = λ~x.(∀q.

∧
T2[q/p∗] ⊃ q ~x).

The following lemma states that this definition of composition of theories is
adequate, i.e., it respects the composition of logical up-to functions.

Lemma 1. FT1 ◦ FT2 and FT1◦T2 define the same function.

In practice, up-to techniques are often used by interleaving applications of
several up-to functions. However, proving that such interleaving is sound is ob-
viously more complicated than proving soundness of restricted compositions. In
the logical encodings, interleaving of two theories T1 and T2 can be captured
simply by joining the theories, i.e., T1 ∪ T2. We show next that soundness of
tabled proof search in the up-to theory T1 ∪ T2 can be reduced to soundness of
proof search under their composition T1 ◦ T2, under certain conditions.

To prove the following results, it is convenient to view a theory as an inference
rule. This is straightforward when the theories are Horn clauses. The Horn clause

∀~x.(A1 ∧ · · · ∧An) ⊃ p∗~t can be written as the rule
A1 · · · An

p∗~t
,

where A1, . . . , An are atoms and where ~x become schematic variables of the
inference rule. Let D(T) denote the set of inference rules for a given Horn theory
T . Then P, T `I p∗ ~t holds iff there is a derivation of p∗~t from P in the inference
system D(T). We say that an inference rule r1 permutes over another inference
rule r2 iff every derivation of p∗~t, for any ~t, where r2 appears immediately above
r1 can be transformed into another derivation of p∗~t where r1 appears above r2.
Given D(T1) and D(T2), we say that D(T1) permutes over D(T2) iff every rule
of D(T1 \ T2) permutes over every rule of D(T2 \ T1).

Lemma 2. Let T1 and T2 be two Horn up-to theories such that D(T2) permutes
over D(T1). Then (P, T1, T2 `I p∗~t) iff (P, T1 ◦ T2 `I p∗~t), for every set of ∗-free
atoms P and every ~t.

Theorem 3. Let T1 and T2 be two Horn up-to theories such that T1◦T2 is sound
and that D(T2) permutes over D(T1). If ·; T1, T2; · −→ B;P is derivable in T D4,
for some P, then Snd(T1 ◦ T2) −→ B is derivable in HOLinc.

Proof. This follows from Theorem 2 and Lemma 2. ut

Note that Theorem 3 does not imply that FT1∪T2 is sound given that FT1◦T2
is sound; it only implies that, for the purpose of proving a co-inductive goal in the
tabled proof system, one can freely combine T1 and T2 without losing soundness.
This is useful in practice where one could combine different up-to techniques
freely but only need to prove soundness for a restricted form of composition.

Below, we shall use ∼ to denote the predicate bisim.

Example 1. Consider the CCS example again. Let T1 be the up-to theory for-
malizing context closure, and let T2 be the up-to theory formalizing reflexive and

13

transitive closure. The inference rules of D(T1) are the rules {b, re, tr} and the
rules of D(T2) are {b, cng}, where b, re, tr, cng are as follows:

s ∼◦ t
s ∼∗ t b t ∼∗ t re

s ∼∗ u u ∼∗ t
s ∼∗ t tr

s ∼∗ t
C[s] ∼∗ C[t]

cng

and where C[] is a process context. It can be easily shown that cng permutes
up over re and tr, for example:

s ∼∗ u u ∼∗ t
s ∼∗ t tr

C[s] ∼∗ C[t]
cng

s ∼∗ u
C[s] ∼∗ C[u]

cng u ∼∗ t
C[u] ∼∗ C[t]

cng

C[s] ∼∗ C[t]
tr

So we can freely mix T1 and T2 in proving particular instances of bisimilarity,
but we only need to prove soundness of the composition T1 ◦ T2.

If the up-to theory T contains occurrences of the co-inductive predicate p,
then we can consider using previously proved facts, say T ′, about p to prove
subgoals of the form p~t. The use of lemmas is orthogonal to the soundness
condition for up-to techniques, as stated in the following theorem.

Theorem 4. Let U be a set of ∗-free and history-free formulas that are valid in
HOLinc. Suppose P;U , T ;Γ −→ C;P ′ is derivable in T D4. Then there exists an
invariant S such that

– the sequent (Snd(T),P•, Γ −→ C[FT S/p∗]) is derivable in HOLinc,

– for each B ∈ (P ′)•, the sequent (P• −→ B) is derivable in HOLinc, and

– for each p~t ∈ (P ′)◦, the sequent P• −→ D (FT S)~t) is derivable in HOLinc.

Proof. This proof follows the proof of Theorem 2, except we use the following
invariant: given sequent P;U , T ;Γ −→ C;P ′, define S = λ~x.

∧
U ∧

∨
{(~x = ~u) |

p◦~u ∈ P ∪ P ′}. ut

The composition result (Theorem 3) can be slightly modified to take into
account uses of lemmas. As we shall see later, this leads to a rather pleasant
result concerning compositions with up-to bisimilarity.

Lemma 3. Let U be a set of Horn clauses which are also lemmas of HOLinc.
Let T1 and T2 be two Horn up-to theories such that D(U ∪ T2) permutes over
D(U ∪ T1). Then (P,U , T1, T2 `I p∗~t) iff (U ,P, T1 ◦ T2 `I p∗~t), for every set of
∗-free atoms P and every ~t.

Theorem 5. Let U be a set of lemmas of HOLinc. Let T1 and T2 be two Horn up-
to theories such that T1◦T2 is sound and that D(U∪T2) permutes over D(U∪T1).
If ·;U , T1, T2; · −→ B;P is derivable in T D4, for some P, then Snd(T1◦T2) −→ B
is derivable in HOLinc.

14

Example 2. Let T1 be the theory encoding up-to bisimilarity and let T2 be the
theory encoding up-to context-closure for CCS. The inference rules of T1 consist
of the rule b (see Example 1) and the following rule:

s ∼ u u ∼∗ v v ∼ t
s ∼∗ t bs

The composition T1 ◦ T2 is shown to be sound in, e.g., [10]. Since bisimilarity in
CCS is closed under arbitrary contexts, we can prove the lemma below (left) in
HOLinc: the inference rule corresponding to that lemma is on the right:

∀C∀x, y (x ∼ y ⊃ C[x] ∼ C[y])
s ∼ t

C[s] ∼ C[t]
bcng

where C denotes a process context. Let U be a set of Horn lemmas that includes
this lemma. We show that D(U ∪ T2) permutes over D(U ∪ T1). It is enough to
show that the rule cng (see Example 1) permutes over bs:

s ∼ u u ∼∗ v v ∼ t
s ∼∗ t bs

C[s] ∼∗ C[t]
cng

s ∼ u
C[s] ∼ C[u]

bcng s ∼∗ u
C[u] ∼∗ C[v]

cng v ∼ t
C[v] ∼ C[t]

bcng

C[s] ∼∗ C[t]
bs

This shows that, rather surprisingly, we can apply the congruence rule first,
before applying up-to bisimilarity, without losing soundness, even though the
meta theory only allows one to apply congruence rules last. This can potentially
lead to a shorter proof as the congruence rule allows simplification of processes.

7 Conclusion and Future work

We have shown a range of strategies for incorporating tables into proof search,
where the most advanced strategy allows us to capture the up-to techniques
for bisimilarity. For all strategies, we show that tabled proofs can be soundly
interpreted as a proper proof in the same logic and formal proof certificates
can be constructed from each successful proof search. Our encoding of up-to
techniques also enables us to derive a new result in the composition of up-to
techniques, allowing one to freely compose up-to techniques while only needing
to prove soundness of a limited form of composition.

Orthogonal to all these strategies is the question of whether one should allow
quantified formulas (existentially or universally) in the table. Such a possibility
can arise if for example one can prove a goal (p a X) for any X, e.g., simply
because X is not used in the definition of p. Then a natural interpretation of this
is to say that we have actually proved ∀x.p a x. While this kind of quantified
tabled entries is harmless in Strategy I and II, it is less clear whether it is sound
for Strategy III and IV. We shall leave this as future work.

15

We have concentrated on strong bisimulation as an application in this paper,
but the framework we established here should apply to weak bisimulation as
well, at least as far as the cyclic structure of proofs is concerned. The theory
of weak-bisimulation up-to is a lot of more complex than the strong bisimula-
tion up-to and less uniform, e.g., some obvious up-to functions (e.g., up-to weak
bisimilarity) is unsound [12]. In terms of formalization in our framework, how-
ever, this complexity is mostly isolated in the theory part, i.e., in establishing
Snd(T). We plan to investigate weak-bisimilarity in immediate future work.

References

1. D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The Bedwyr system for
model checking over syntactic expressions. In F. Pfenning, editor, 21th Conf. on
Automated Deduction (CADE), LNAI 4603, pp. 391–397.

2. F. Bonchi and D. Pous. Checking NFA equivalence with bisimulations up to con-
gruence. In Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, pp. 457–468. ACM, 2013.

3. J. Brotherston, N. Gorogiannis, and R. L. Petersen. A generic cyclic theorem
prover. In APLAS, LNCS 7705, pp. 350–367. Springer, 2012.

4. J. Brotherston and A. Simpson. Complete sequent calculi for induction and infinite
descent. In 22th Symp. on Logic in Computer Science, pp. 51–62, 2007.

5. J. Jaffar, A. E. Santosa, and R. Voicu. A CLP proof method for timed automata.
In RTSS, pp. 175–186. IEEE Computer Society, 2004.

6. R. McDowell, D. Miller, and C. Palamidessi. Encoding transition systems in se-
quent calculus. Theoretical Computer Science, 294(3):411–437, 2003.

7. D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cambridge
University Press, June 2012.

8. D. Miller and V. Nigam. Incorporating tables into proofs. In J. Duparc and T. A.
Henzinger, editors, CSL 2007: Computer Science Logic, LNCS 4646, pp. 466–480.

9. D. Miller and A. Tiu. Extracting proofs from tabled proof search: Extended version.
Technical report, INRIA, 2013.

10. D. Pous and D. Sangiorgi. Enhancements of the bisimulation proof method. In
D. Sangiorgi and J. Rutten, editors, Advanced Topics in Bisimulation and Coin-
duction, pp. 233–289. Cambridge University Press, 2011.

11. D. Sangiorgi. On the bisimulation proof method. Mathematical Structures in
Computer Science, 8(5):447–479, 1998.

12. D. Sangiorgi and R. Milner. The problem of “weak bisimulation up to”. In CON-
CUR, LNCS 630, pp. 32–46. Springer, 1992.

13. L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming.
In ICLP, LNCS 4079, pp. 330–345. Springer, 2006.

14. C. Sprenger and M. Dam. On global induction mechanisms in a µ-calculus with
explicit approximations. ITA, 37(4):365–391, 2003.

15. A. Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University, May 2004.

16. A. Tiu and D. Miller. Proof search specifications of bisimulation and modal logics
for the π-calculus. ACM Trans. on Computational Logic, 11(2), 2010.

17. A. Tiu and A. Momigliano. Cut elimination for a logic with induction and co-
induction. Journal of Applied Logic, 2012.

18. I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional µ-
calculus. Inf. Comput., 157(1-2):142–182, 2000.

16

A An example of tabled proofs

We consider a fragment of CCS with replication but without the restriction and
the choice operators. Process expressions are generated by the grammar:

P ::= 0 | µ.P | (P | P) | !P

where µ is either a name a, a co-name ā or τ . We use α to denote either a name
or a co-name, and we remove the trailing 0 in a.0 to simplify presentation. A
process context is a process with a hole []. We omit the transition rules and
their encodings as definitions; these can be found in, e.g., [6].

We now illustrate how one can prove !(a | b) ∼ !a | !b using the tabled proof
system. We shall assume a set of up-to theories T for up-to bisimilarity and
up-to context, as presented in Example 2. We shall also assume a set of lemmas,
denoted by U , which consists of the following clauses:

∀P,Q.P | Q ∼ Q | P, ∀P,Q,R.P | (Q | R) ∼ (P | Q) | R, ∀P.P | 0 ∼ P,
∀P.P ∼ P, ∀P.!P ∼!P | P, ∀P,Q.P ∼ Q ⊃ C[P] ∼ C[Q]

for a selection of context C[]. All these clauses are valid for CCS.
To prove !(a | b) ∼!a | !b (reading the rules upwards), we start with

·;U , T ; · −→!(a | b) ∼ (!a | !b); ·

The only choice here is to apply νR rule to unfold the definition of ∼, thus one
ends up with a big sequent of the shape:

!(a |b) ∼◦ (!a | !b);U , T ; · −→ [∀A,P.!(a |b) A−→ P ⊃ ∃Q.!a | !b A−→ Q∧P ∼∗Q]∧· · ·

We show informally how the first conjunct of this formula can be proved. It
should be straightforward to construct a formal sequent proof from our informal
discussion. After applying the right rules for introducing ∀ and ⊃ and then
the unfolding rules for the least fixed point on the left, we end up with a case

analysis on !(a | b) A−→ P , which which yields the two cases where A = a and
P = (!(a | b) | (0 | b)) and where A = b and P = (!(a | b) | (a | 0)). We show
here the former. The only choice for Q is (!a | 0) | !b, so it remains to prove

!(a | b) ∼◦ (!a | !b);U , T ; · −→!(a | b) | (a | 0) ∼∗ (!a | 0) | !b. (1)

We claim that !(a | b) | (a | 0) ∼∗ (!a | 0) | !b is deducible from !(a | b) ∼◦ (!a | !b)
and U and T . Viewing U and T as inference rules, one can derive:

(i) !(a | b) | (0 | b) ∼ !(a | b) | (0 | b)
(ii) !(a | b) | (0 | b) ∼∗ (!a | !b) | (0 | b)
(iii) (!a | !b) | (0 | b) ∼ (!a | 0) | !b

!(a | b) | (0 | b) ∼∗ (!a | 0) | !b
bs

17

Formulas (i) and (iii) follow from U . Formula (ii) is reduced as follows:

!(a | b) ∼◦ (!a | !b)

!(a | b) ∼∗ (!a | !b)
b

!(a | b) | (0 | b) ∼∗ (!a | !b) | (0 | b)
cng

Thus, sequent (1) above can be proved using the init rule.

B Soundness of strategy I and II

We now show that strategies I and II are sound by translating tables into proofs
(with cuts) in Linc.

Theorem 6. If P; T ;Γ −→ B;P ′ is derivable in T D1, then there is a derivation
of P•, Γ −→ B in Linc, and for every C ∈ (P ′)•, there is a derivation in Linc
of the sequent P• −→ C.

Proof. The proof is by induction on the height of derivation Π of P; T ;Γ −→
B;P ′. The only non-trivial steps in this proof occurs when Π ends with a branch-
ing rule, e.g.,

P; T ; · −→ B;P1 P,P1; T ; · −→ B2;P ′

P; T ; · −→ B1 ∧B2;P ′,P1
∧R

By the induction hypothesis, the sequents P•−→ B1, P•−→ C and P•, (P ′)•−→
B2 are all provable in Linc, for every C ∈ (P ′)•. We need only to show that
P• −→ B1 ∧B2 are provable:

P• −→ B1

{P• −→ C | C ∈ (P ′)•} P•, (P ′)• −→ B2

P• −→ B2
cut∗

P• −→ B1 ∧B2

ut

We say that a formula B is derivable in T Di if the sequent ·; · −→ B;P is
derivable in T Di for some P.

Corollary 2. If B is derivable in T D1 then B is also derivable in Linc.

Adding history-free theories theories T does not change much the structure
of the soundness proof in Theorem 6.

Theorem 7. Let T be a history-free theory. If P; T ;Γ −→ B;P ′ is derivable
in T D2, then there is a derivation of P•, T , Γ −→ B in Linc, and for every
C ∈ (P ′)•, there is a derivation in Linc of the sequent P•, T −→ C.

Corollary 3. If formula B is derivable in T D2 then B is also derivable in Linc.

18

C Soundness of Strategy III

Theorem 8 (Soundness of T D3). Suppose P; T ;Γ −→ C;P ′ is derivable in
T D3, where Γ is history-free and C contains no negative occurrences of history
atoms. Let {p1, . . . , pn} be the set of co-inductive predicates occurring in P, C
and P ′. Then there exist invariants S1, . . . , Sn such that

– the sequent (P•, Γ −→ C[S1/p
∗
1, . . . , Sn/p

∗
n]) is derivable in Linc,

– for each B ∈ (P ′)•, the sequent (P• −→ B) is derivable in Linc, and

– for each p◦i~t ∈ (P ′)◦, where pi ~x
ν
= Di pi ~x, the sequent (P• −→ Di Si ~t) is

derivable in Linc.

Proof. Suppose Π is a derivation of P; T ;Γ −→ C;P ′. We prove this theorem
by induction on the height of Π.

For a given sequent P; T ;Γ −→ C;P ′, construct Si as follows:

Si = λ~x.
∧

(P)• ∧
∨
{(~x = ~t) | p◦i ~t ∈ P ∪ P ′},

where pi~x
ν
= Di pi ~x.

We look at some interesting cases:

– Π ends with init: the only interesting case is when the atom on the right is
p∗i ~t for some ~t.

P,L `I p∗i~t
P; T ; · −→ p∗i ~t; ·

init

The only way P `I p◦i~t could have been proved is via a backchaining using the
clause ∀~x.p◦i ⊃ p◦i ~x in L, followed by the identity rule, i.e., when p◦i~t ∈ P.
Obviously in this case we have that P −→ Si~t is also provable, since the
equations ~t = ~t are among the disjunctions in Si~t.

– Π ends with ∧R:

P; T ; · −→ B;P1 P,P1; T ; · −→ C;P2

P; T ; · −→ B ∧ C;P1,P2
∧R

where P ′ = P1∪P2. By induction, we have invariants S′1, . . . , S
′
n and S′′1 , . . . ,

S′′n s.t.
1. S′i = λ~x.

∧
(P)• ∧

∨
{(~x = ~t) | p◦i ~t ∈ P ∪ P1},

2. S′′i = λ~x.
∧

(P,P1)• ∧
∨
{(~x = ~t) | p◦i ~t ∈ P ∪ P1 ∪ P2},

3. a Linc derivation Π1 of P• −→ B[S′1/p
∗
1, . . . , S

′
n/p
∗
n],

4. a Linc derivation ΠE
1 of P• −→ E, for each E in P•1 ,

5. a Linc derivation Πi
1(~t) of P• −→ DiS

′
i
~t, for each poi~t ∈ P◦1 , where

pi~x
ν
= Dipi~x,

6. a Linc derivation Π2 of P•,P•1 −→ C[S′′1 /p
∗
1, . . . , S

′′
n/p
∗
n],

7. a Linc derivation ΠE
2 of P•,P•1 −→ E, for each E in P•2 , and

8. a Linc derivation Πi
2(~t) of P•,P•1 −→ Di S

′′
i
~t, for each poi~t ∈ P◦2 , where

pi~x
ν
= Dipi~x.

19

From the definition of Si, we have

Si = λ~x.
∧

(P)• ∧
∨
{(~x = ~t) | p◦i ~t ∈ P ∪ P1 ∪ P2}.

Then it is easy to show that, from Π1 and Π2, we have a derivation Ψ1 of

P• −→ B[S1/p
∗
1, . . . , Sn/p

∗
n]

and a derivation Ψ2 of

P•,P•1 −→ C[S1/p
∗
1, . . . , Sn/p

∗
n].

We then need to prove the following:

• There is a Linc derivation of

P• −→ B ∧ C[S1/p
∗
1, . . . , Sn/p

∗
n].

This derived as follows:

Ψ1

P −→ B[· · ·]

{
ΠE

1

P• −→ E

}
E∈P•1

Ψ2

P•,P•1 −→ C[· · ·]

P −→ C[· · ·] cut∗

P• −→ B ∧ C[S1/p
∗
1, . . . , Sn/p

∗
n]

∧R

• For each E ∈ P•1 ∪ P•2 , there is a Linc derivation of P• −→ E.
This follows from (4) and (7) above.

• For each p◦i~t ∈ P◦1 ∪ P◦2 , there is a Linc derivation of P• −→ Di Si ~t.
This follows from (5) and (8).

– Π ends with ν∗R:

P 6 `Ip∗k~t P, p◦k~t; T ; · −→ Dk p
∗
k
~t;P1

P; T ; · −→ p∗k~t;P1, p
◦
k
~t

ν∗R

By the induction hypothesis, we have a Linc-derivation Ψ of

P• −→ DkSk~t,

a Linc-derivation ΠE for each E ∈ P•1 and a Linc-derivation Πi(~s) of P• −→
DiSi~s for each pi~s ∈ P◦1 . It remains to show that both P• −→ Sk~t and
P• −→ DkSk~t are derivable in Linc. The latter follows from the induction
hypothesis, whereas the former is trivial. This is because Sk takes the form:

λ~x.
∧

(P)• ∧
∨

(· · · ∨ ~x = ~t ∨ · · ·)

so P −→ Sk~t is proved (reading the derivation upwards) via a series of ∧R
followed by ∨R, selecting an appropriate equation, ~t = ~t.

20

– Π ends with νR:

S(P \ p◦k, T) 6`I pk ~t (P \ p◦k), p◦k~t; T ; · −→ Dk p
∗
k
~t;P ′

P; T ; · −→ pk ~t;P ′[pk/p◦k], pk ~t
νR

Note that (P \p◦k)• = P•. Notice that the history-predicate p◦k is removed in
the conclusion, substituted by pk. The difficult part in this case is to show
that the sequent P• −→ pk~s, for every p◦k~s ∈ P ′∪{p◦k~t}, is actually derivable
in Linc. To do this we will need to use the CIR rule, and this requires us to
construct a post fixed point of pk. By the induction hypothesis, we have

Sk = λ~x.
∧
P• ∧

∨
{~x = ~s | p◦k~s ∈ P ′ ∪ {p◦k~t}}

and for each p◦k~s ∈ P ′ ∪ {p◦k~t}, we have a derivation Π(~s) of P• −→ DkSk~s.
We claim that Sk is indeed a post-fixed of pk. Since for each p◦k~s in P ′∪{p◦k~t},
the equation ~x = ~s is among the equations in Sk, we can trivially construct
a derivation Ψ(~s) of P• −→ Sk~t in Linc. The derivation of P• −→ pk~s is
then constructed as follows:

Ψ(~s)
P• −→ Sk~s

{
Π(~u)

P• −→ DkSk~u

}
p◦k~u∈P′∪{p

◦
k
~t}

P•,
∨
{~x = ~u | p◦k~u ∈ P ′ ∪ {p◦k~t}} −→ DkSk~x

∨L, eqL

Sk~x −→ DkSk~x
∧L

P• −→ pk~s
CIR

ut

Lemma 4. FT1 ◦ FT2 and FT1◦T2 define the same function.

Proof. This follows directly from Definition 2 and Definition 4. Suppose T1 =
{∀~z.p◦~y ⊃ p∗~z} ∪ T ′1 . By simply expanding the definition of FT1◦T2R~x we get:

FT1◦T2R~x
= ∀q′.

∧
T1[q′/p∗] ∧ (∀~z.(∀q.

∧
T2[q/p∗,R/p◦] ⊃ q ~z) ⊃ q′ ~z) ⊃ q′~x

= ∀q′.
∧
T1[q′/p∗] ∧ (∀~z.(FT2R~z ⊃ q′ ~z)) ⊃ q′~x

= FT1(FT2R) ~x
= (FT1 ◦ FT2)R ~x

ut

D Soundness of a simple up-to theory

Let us look at a simple example of a sound up-to function and how its soundness
can be proved within Linc. To be more concrete, we consider the co-inductive
definition of bisimulation for CCS, defined via the predicate bisim mentioned
earlier. Suppose that bisim is defined by bisim x y

ν
= D bisim x y where D is

an abstraction.

21

Consider the following simple up-to function:

F(R) = R ∪ ∼

where ∼ denotes the largest bisimulation. This up-to function can be encoded
as the following theory T :

∀x, y.bisim x y ⊃ bisim∗ x y ∀x, y.bisim x y◦ ⊃ bisim∗ x y.

The formula Snd(T) is thus

∀R.(∀x, y.(R x y ⊃ D (FTR) x y)) ⊃ (∀x, y.R x y ⊃ bisim x y).

This can be proved as follows: Let P be the formula ∀x, y.(R x y ⊃ D (FTR) x y)
and let S be the abstraction:

λxλy.P ∧ (R x y ∨ bisim x y).

Using S as the co-inductive invariant, we construct a partial derivation as follows:

P,R x y −→ S x y S x y −→ D S x y

∀x, y.(R x y ⊃ D (FTR) x y)),R x y −→ bisim x y
CIR

−→ ∀R.(∀x, y.(R x y ⊃ D (FTR) x y)) ⊃ (∀x, y.R x y ⊃ bisim x y)
∀R,⊃R

The left premise is straightforward to prove, so we show here only a derivation
of the second premise, which establishes that S is a post fixed point of bisim.

Rxy −→ Rxy

{P,FTRst −→ Sst}
...

P,D (FTR)xy −→ DSxy

P,Rxy −→ DSxy

{P, bisimuv −→ Suv}
...

P,Dbisimxy −→ DSxy

P, bisimxy −→ DSxy
CIL

P,Rxy ∨ bisimxy −→ DSxy
∨L

Sxy −→ DSxy
∧L

The dotted parts consist of straightforward applications of left and right logical
rules. As bisim occurs only positively in D bisim, these rule applications leave
us with open leaves of the form (P,FT s t −→ S s t) and (P, bisim u v −→
S u v). The latter is easily derivable so we show here the former. Expanding the
definition of FTR, we get:

...

P −→ ∀x, y.Rxy ⊃ Sxy

...

P −→ ∀x, y.bisimxy ⊃ Sxy P, S st −→ Sst

P, ((∀x, y.Rxy ⊃ Sxy) ∧ (∀x, y.bisimxy ⊃ Sxy)) ⊃ Sst −→ Sst

P,∀q.((∀x, y.Rxy ⊃ qxy) ∧ (∀x, y.bisimxy ⊃ qxy)) ⊃ qst −→ Sst
∀L

Here the dotted parts consist of applications of ∀R, ⊃R, ∧R and ∨R.

22

E Soundness of strategy IV

Theorem 9. Suppose P; T ;Γ −→ C;P ′ is derivable in T D4., Then there exists
an invariant S such that

– the sequent (Snd(T),P•, Γ −→ C[FT S/p∗]) is derivable in Linc,
– for each B ∈ (P ′)•, the sequent (P• −→ B) is derivable in Linc, and
– for each p~t ∈ (P ′)◦, the sequent P• −→ D (FT S)~t) is derivable in Linc.

Proof. Given P; T ;Γ −→ C;P ′, define S as

S = λ~x.
∨
{(~x = ~u) | p◦~u ∈ P ∪ P ′}.

Let Π be the proof of P; T ;Γ −→ C;P ′. We prove this theorem by induction on
the height of Π. We look at a couple of interesting cases: Suppose T = {∀~y.p◦~y ⊃
p∗~y} ∪ T ′. Then∧

T [q/p◦, S/p∗] = (∀~y.S ~y ⊃ q ~y) ∧
∧
T ′[q/p∗].

– Π ends with init:

P,∀~y.p◦~y ⊃ p∗~y, T ′ `I p∗~t
P;∀~y.p◦~y ⊃ p∗~y, T ′; · −→ p∗~t; ·

init

In this case, S = P◦ ∪ {p◦~t}. We only need to show that Snd(T),P• −→
FT S~t.

Snd(T),P•,∀~y.S ~y ⊃ q ~y, T ′[q/p∗] −→ q~t

Snd(T),P• −→ ∀q. [(∀~y.S ~y ⊃ q ~y) ∧
∧
T ′[q/p∗] ⊃ q~t]

∀R,⊃R,∧L

The premise of this partial derivation can be can be constructed from the
derivation of P, T `I p◦ ~t, by substituting q for p∗, where the identity in-
stances are replaced as follows:

p◦ ~s ∈ P
P, . . . −→ p◦ ~s

init

· · · −→ ~s = ~s
∧R, eqR

· · · −→ S ~s
∨R · · · , q ~s −→ q ~s

init

P•,∀~y.S ~y ⊃ q ~y, . . . `I q ~s
∀L,⊃L

By the definition of S, the equation ~s = ~s is in S ~s, so it is trivially provable.
– Suppose Π ends with νR:

P \ p◦, T 6`I p~t P \ p◦; T ; · −→ Dp∗ ~t;P ′

P; T ; · −→ p~t;P ′[p◦/p], p~t
νR

Note that (P \ p◦) is in fact the same as P• because all our history atoms
are of the form p◦~s. As in the proof of Theorem 1, the interesting part of the
proof here is to show that Snd(T),P• −→ p ~u for every p◦~u ∈ (P ′ ∪{p◦~t})◦.

23

By the induction hypothesis, for each p◦~u, we have a Linc-derivation Π(~u)
of P• −→ D (FT S) ~u.{

Π(~s)
P• −→ D (FT S) ~s

}
p◦~s∈(P′∪{p◦~t})◦

P•, S ~x −→ D (FT S) ~x
∨L, eqL

P• −→ ∀~x.(S ~x ⊃ D (FT S) ~x)
∀R,⊃R

...
(∀~y.S ~y ⊃ p ~y),P• −→ p ~u

(∀~x.(S ~x ⊃ D (FT S) ~x)) ⊃ (∀~y.S ~y ⊃ p ~y),P• −→ p ~u
⊃L

∀R.(∀~x.(R~x ⊃ D (FTR) ~x)) ⊃ (∀~y.R~y ⊃ p ~y),P• −→ p ~u
∀L

The right-premise of the instance of ⊃L above can be proved by instanti-
ating ~y with ~u and use ⊃L on S ~u ⊃ p ~u. This is because by definition, S
contains an equation of the form ~y = ~u.

ut

Lemma 5. Let T1 and T2 be two Horn up-to theories such that D(T2) permutes
over D(T1). Then (P, T1, T2 `I p∗~t) iff (P, T1 ◦ T2 `I p∗~t), for every set of ∗-free
atoms P and every ~t.

Proof. (Outline) We make use of the fact that goal-directed proofs involving hH
theories are complete; see [7]. One direction, from T1 ◦ T2 to T1 ∪ T2 is easy,
as the structure of T1 ◦ T2 forces one to apply T1 first before applying T2 in a
goal-directed proof. This proof is easily mimicked in T1∪T2. The other direction
follows from the fact that we can permute D(T2) over D(T1), so when there
exists a derivation of p∗~t in D(T1) ∪ D(T2), there also exists another derivation
in which rules of D(T1) are applied first, before rules of D(T2). This can then be
translated to a derivation using T1 ◦ T2. ut

24

