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Abstract The linear code equivalence problem is to decide whether two linear
codes over Fq are identical up to a linear isometry of the Hamming space. The
support splitting algorithm [23] runs in polynomial time for all but a negligible
proportion of all linear codes, and solves the latter problem by recovering the
isometry when it is just a permutation of the code support. While for a binary
alphabet isometries are exactly the permutations, this is not true for q ≥ 3. We
give in this paper, a generalization of the support splitting algorithm where
we aim to retrieve any isometry between equivalent codes. Our approach is
twofold; first we reduce the problem of deciding the equivalence of linear codes
to an instance of permutation equivalence. To this end, we introduce the notion
of the closure of a code and give some of its properties. In the aftermath, we
exhibit how this algorithm can be adapted for q ∈ {3, 4}, where its complexity
is polynomial for almost all of its instances. Although the aforementioned
reduction seems attractive, when q ≥ 5 the closure reduces the instances of the
linear code equivalence problem to exactly those few instances of permutation
equivalence that were hard for the support splitting algorithm. Finally, we
argue that for q ≥ 5 the linear code equivalence problem might be hard for
almost all instances and we elaborate on the various complexity problems.
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1 Introduction

The purpose of this work is to examine the worst-case and average-case hard-
ness of the Linear Code Equivalence problem. That is, given the genera-
tor matrices of two q-ary linear codes, how hard is it to decide whether or not
these codes are identical up to a linear isometry of the Hamming space? The
computational version of this problem, is to retrieve the linear isometry.

The Permutation Code Equivalence problem is the restriction of the
above problem when the isometries are limited to permutations of the code
support1. Petrank and Roth proved [20] that the worst-case was not easier
than for the Graph Isomorphism problem. On the other hand, the support
splitting algorithm [23] solves the computational version of the problem in time
polynomial for all but an exponentially small proportion of the instances.

For a more general notion of code equivalence which includes all linear
isometries, the situation seems to change drastically. In practice, the support
splitting algorithm can be extended for q ∈ {3, 4}, and similarly solves all
but an exponentially small proportion of the instances in polynomial time.
However, for any fixed q ≥ 5, the computational and the decisional problem
seems to be intractable for almost all instances.TODO: emphasize more on the results

The paper is structured as follows. In section 2, we present the differ-
ent notions of code equivalence induced by isometries of the Hamming space,
while in section 3, we define in formal terms all decisional and computational
problems related to code equivalence and mention the most significant con-
tributions in terms of complexity and algorithms. In section 5, we illustrate
a reduction of the Linear Code Equivalence problem as an instance of
the Permutation Code Equivalence, and its efficiency is analyzed in the
following section. Finally, we elaborate on the hardness of these computational
and decisional problems and mention possible implications, in the concluding
discussion.TODO: Structure needs update

2 Equivalence of linear codes

Code equivalence is a basic concept in coding theory. However, the equiva-
lence of linear codes has met a few different definitions in the literature, often
without motivation. We review the concept of what it means for codes to be
“essentially different” by considering the metric Hamming space together with
its isometries, which are the maps preserving the metric structure. This in turn
will lead to a rigorous definition of equivalence of linear codes. In fact, we will
call codes isometric if they are equivalent as subspaces of the Hamming space.

Let Fq be a finite field of cardinality q = pr, where the prime number p
is its characteristic, and r is a positive integer. As usual, a linear [n, k] code
C is a k-dimensional subspace of the finite vector space Fnq and its elements
are called codewords. We consider all vectors, as row vectors. Therefore, an
element υ of Fnq is of the form υ := (υ1, . . . , υn). It can also be regarded as

1 except for q = 2 the isometries are not limited to permutations.
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the mapping υ from the set In = {1, . . . , n} to Fq defined by υ(i) := υi. The
Hamming distance (metric) on Fnq is the following mapping,

d : Fnq × Fnq → N : (x, y) 7→ d(x, y) :=| {i ∈ {1, 2, . . . , n} | xi 6= yi} | .

The pair (Fnq , d) is a metric space, called the Hamming space of dimension
n over Fq, denoted by H(n, q). The Hamming weight w(x) of a codeword x ∈ C
is simply the number of its non-zero coordinates, i.e. w(x) := d(x, 0).

Two codes C,C ′ are of the same quality if there exists a mapping ι : Fnq 7→
Fnq with ι(C) = C ′ which preserves the Hamming distance, i.e. d(υ, υ′) =
d(ι(υ), ι(υ′)), for all υ, υ′ ∈ Fnq . Mappings with the latter property are called
the isometries of H(n, q), and the two codes C and C ′ will be called iso-
metric. It is well-known due to a theorem of MacWilliams that any linear2

isometry between linear codes preserving the weight of the codewords induces
an equivalence for codes [17]. Clearly, isometric codes have the same error-
correction capabilities. We write Sn for the symmetric group acting on the set
In, equipped with the composition of permutations.

If q = pr is not a prime, then the Frobenius automorphism τ : Fq →
Fq, x 7→ xp applied on each coordinate of Fnq preserves the Hamming distance,
too. Moreover, for n ≥ 3, the isometries of Fnq which map subspaces onto
subspaces are exactly the semilinear mappings34 of the form (υ; (α, π)), where
(υ;π) is a linear isometry and α is a field automorphism, i.e. α ∈ Aut(Fq) (c.f.
[2,14]). All these mappings form the group of semilinear isometries of H(n, q)
which is isomorphic to the semidirect product F∗q

n o (Aut(Fq) × Sn), where
the multiplication of elements is given by

(υ; (α, π))(ϕ; (β, σ)) := (υ · α(ϕπ); (αβ, πσ)) (1)

where, in detail we have (υ · α(ϕπ))i := υiα(ϕπ−1(i)) for i = 1, . . . , n. Further-
more, there is a description of F∗q

n o (Aut(Fq) × Sn) as a generalized wreath
product F∗q o on(Aut(Fq) × Sn), see [2,9,14]. Clearly, the notion of semilinear
isometry which can be expressed as a group action on the set of linear sub-
spaces gives rise to the most general notion of equivalence for linear codes. The
action of the latter group in an element of Fnq is translated into an equivalence
for linear codes. Equivalence can also be induced by arbitrary isometries of
H(n, q), but such mappings may destroy linearity and we are only interested
in isometries that map linear subspaces to linear subspaces.

Definition 1 Two linear codes C,C ′ ⊆ Fnq will be called semilinearly equiv-

alent, and will be denoted as C
SLE∼ C ′, if there exists a semilinear isom-

etry (υ; (α, σ)) ∈ F∗q
n o (Aut(Fq) × Sn) that maps C onto C ′, i.e. C ′ =

(υ; (α, σ))(C) = {(υ; (α, σ))(x) | (xi)i∈In ∈ C} where (υ; (α, σ))(x1, . . . , xn) =
(υ1α(xσ−1(1)), . . . , υnα(xσ−1(n))).

2 For all u, v ∈ Fn
q we have ι(u+ v) = ι(u) + ι(v), ι(uv) = uι(v) and ι(0) = 0.

3 σ : Fn
q → Fn

q is semilinear if there exists α ∈ Aut(Fq) such that for all u, v ∈ Fn
q and

k ∈ Fq we have σ(u+ v) = σ(u) + σ(v) and σ(ku) = α(k)σ(u).
4 The action of the semilinear and linear group in an element of Fn

q can be seen at
definitions 1 and 2, respectively.
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The group of semilinear isometries of H(n, q) reduces to the group of linear
isometries if and only if q is a prime (since Aut(Fq) is trivial if and only if q
is a prime). The latter group corresponds to the semidirect product of F∗q

n

and Sn, F∗q
n o Sn = {(υ;π) | υ : In 7→ F∗q , π ∈ Sn}, called the monomial

group of degree n over F∗q . Note that, some authors [2,8,10], describe this
group as the wreath product F∗q on Sn. Therefore, by restricting the group of
semilinear isometries to the group of linear isometries we have another notion
of equivalence for linear codes.

Definition 2 Two linear codes C,C ′ ⊆ Fnq will be called linearly or monomi-

ally equivalent, and will be denoted as C
LE∼ C ′, if there exists a linear isometry

ι = (υ;σ) ∈ F∗q
n o Sn that maps C onto C ′, i.e. C ′ = (υ;σ)(C) = {(υ;σ)(x) |

(x1, . . . , xn) ∈ C} where (υ;σ)(x1, . . . , xn) := (υ1xσ−1(1), . . . , υnxσ−1(n)).

In addition, when Fq = F2 the group of linear isometries of H(n, 2) is isomo-
rphic to Sn, and these isometries correspond to permutation of coordinates.

Definition 3 Two linear codes C,C ′ ⊆ Fnq will be called permutationally

equivalent and will be denoted as C
PE∼ C ′, if there exists a permutation

σ ∈ Sn that maps C onto C ′, i.e. C ′ = σ(C) = {σ(x) | x = (x1, . . . , xn) ∈ C}
where σ(x) = σ(x1, . . . , xn) := (xσ−1(1), . . . , xσ−1(n)).

Moreover, there is a particular subgroup of Sn that maps C onto itself,
the permutation group of C defined as PAut(C) := {C = σ(C) | σ ∈ Sn}.
PAut(C) always contains the identity permutation. If it does not contain any
other element, we will say that it is trivial. Finally, we can define the monomial
group of C as MAut(C) := {C = (υ;σ)(C) | (υ;σ) ∈ F∗q

n o Sn} and the
automorphism group of C as Aut(C) := {C = (υ; (α, σ))(C) | (υ; (α, σ)) ∈
F∗q

no(Aut(Fq)×Sn)} where their elements map each codeword of C to another
codeword of C, under the respective actions of the involved groups. For more
details, on automorphism groups of linear codes we refer to [13].

3 Previous work

For efficient computation of codes we represent them with generator matrices.
A k×n matrix G over Fq, is called a generator matrix for the [n, k] linear code
C if the rows of G form a basis for C, so that C = {xG | x ∈ Fkq}. In that case,
we denote the code C that is spanned by the generator matrix G, as C = 〈G〉.
In general, a linear code possess many different bases, and it is clear from
linear algebra that the set of all generator matrices for C can be reached by
{SG | S ∈ GLk(q)}, where GLk(q) is the group of all k× k invertible matrices
over Fq.

For any σ ∈ Sn associate by Pσ = [pi,j ] the n×n matrix such that pi,j = 1
if σ(i) = j and pi,j = 0 otherwise, therefore Pσ is a permutation matrix.
Note that, the action of σ ∈ Sn on x ∈ Fnq agrees with the ordinary matrix
multiplication. The permutation matrices form a subgroup of Mn(q), the set
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of all n × n monomial matrices over Fq, that is, matrices with exactly one
nonzero entry per row and column from Fq. If M = [mi,j ] ∈ Mn(q), then
M = DP , where P is a permutation matrix and D = [di,j ] = diag(d1, . . . , dn)
is a diagonal matrix with di = di,i = mi,j ifmi,j 6= 0 and di,j = 0 if i 6= j. There
is an isomorphism between diagonal matrices and F∗q

n, therefore we associate
Dυ = diag(υ1, . . . , υn) for υ = (υi)i∈In ∈ F∗q

n. Hence, we can map any linear
isometry (υ;σ) ∈ F∗q

noSn to a monomial matrix M(υ;σ) = DυPσ ∈Mn(q), and
this mapping is an isomorphism between F∗q

n o Sn and Mn(q). Therefore, we
can express the equivalence between linear codes in terms of their generator
matrices. As we have three different notions of equivalence, we define the
respective decisional problems, below. The first one is w.r.t. the semilinear
equivalence.

Problem 1 (Semilinear Code Equivalence (SLCE))

Parameters: n, k, q.
Instance: two matrices G,G′ ∈ Fk×nq .

Question: are 〈G〉 SLE∼ 〈G′〉?

In a similar manner, we can define decisional problems related to linear
and permutation equivalence.

Problem 2 (Linear Code Equivalence (LCE))

Parameters: n, k, q.
Instance: two matrices G,G′ ∈ Fk×nq .

Question: are 〈G〉 LE∼ 〈G′〉?

Problem 3 (Permutation Code Equivalence (PCE))

Parameters: n, k, q.
Instance: two matrices G,G′ ∈ Fk×nq .

Question: are 〈G〉 PE∼ 〈G′〉?

The computational versions of all three previous decisional problems, is to
retrieve the equivalence mapping between the codes. Again, we begin with the
semilinear equivalence.

Problem 4 (Computational Semilinear Code Equivalence (CSLCE))

Parameters: n, k, q.
Instance: two matrices G,G′ ∈ Fk×nq .
Problem: Find a semilinear isometry (υ; (α, σ)) ∈ F∗q

no (Aut(Fq)×Sn) such
that 〈G′〉 = (υ; (α, σ))(〈G〉).

Finally, we define the computational versions of the LCE and PCE problems.

Problem 5 (Computational Linear Code Equivalence (CLCE))
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Parameters: n, k, q.
Instance: two matrices G,G′ ∈ Fk×nq .
Problem: Find a linear isometry (υ;σ) ∈ F∗q

noSn such that 〈G′〉 = (υ;σ)(〈G〉).

Problem 6 (Computational Permutation Code Equivalence (CPCE))

Parameters: n, k, q.
Instance: two matrices G,G′ ∈ Fk×nq .
Problem: Find a permutation σ ∈ Sn such that 〈G′〉 = σ(〈G〉).

One of our goals is to explore the hardness of the LCE and CLCE problems,
therefore we deem necessary to briefly mention the most significant results in
terms of complexity, for deciding them, and algorithms, for computing them.

3.1 Past complexity results

The PCE problem, was introduced in [20], who showed that if Fq = F2 then it is
harder than the Graph Isomorphism (GI) problem, there exists a polynomial
time reduction, but not NP-complete unless P = NP. A different proof of this
reduction is also given in [14]. Recently, the reduction of [20] was generalized in
[12] over any field Fq, hence the PCE problem is harder than the GI problem,
for any field Fq. An important complexity result concerning the LCE problem
has been presented in [7]. In particular, a polynomial time reduction from the
LCE problem to the GI problem is given, over any field Fq. This implies that
the LCE problem is again harder than the GI problem, for any field Fq and
hard instances must be expected. Later on we also show in §7, that the LCE
problem cannot be easier than the GI problem over Fq. The latter problem, has
been extensively studied for decades, but until now there is no polynomial-time
algorithm for solving all of its instances.

Last but not least, we would like to mention that the McEliece public-key
cryptosystem [18] is related to the hardness of permutationally equivalent bi-
nary linear codes. Towards this direction, another important complexity result
was shown in [5], that the Hidden Subgroup problem also reduces to the
PCE problem for any field Fq. In detail, in [5] it was defined that a linear code
C will be called HSP-hard if strong quantum Fourier sampling, reveals negli-
gible information about the permutation σ ∈ Sn of permutationally equivalent
codes, i.e. C ′ = σ(C). This result was further extended in [24] where the in-
stances of codes that are HSP-hard for the PCE problem, remain hard for the
LCE problem.

3.2 Related algorithms for code equivalence

Due to its relation to the GI problem, some researchers have tried to solve the
CPCE problem by interpreting graph isomorphism algorithms to codes. This
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approach, was followed in [4] using the fact that orbits under edge local com-
plementation of a bipartite graph correspond to equivalence classes of binary
linear codes. Mapping codes to graphs and using the software Nauty by B. D.
McKay has been used in [19], for binary, ternary and quaternary codes where
the permutation, linear and semi-linear equivalence was considered, respec-
tively. Moreover, an adaptation of Luks’s algorithm for hypergraph isomor-
phism for solving the CPCE problem over any Fq was presented in [1], whose
complexity is simply-exponential in the length n of a code C ⊆ Fnq . Another
approach using bipartite graphs for the CLCE problem over small fields was
given in [3], where code equivalence is reduced to a decision problem regarding
isomorphism of binary matrices. Note also, that in this work also the semi-
linear equivalence was considered for F4. Computation of canonical forms for
generator matrices of linear codes for the CSLCE problem over Fq by formu-
lating the equivalence classes of codes as orbits of a group action from the
left on the set of generator matrices was given in [6]. It is worthwhile also to
mention the algorithm of J. Leon for computing the automorphism group of a
code [15], which is available for many computer algebra systems like GAP and
MAGMA, and is used for also for testing code equivalence. More specifically,
in GAP, it is implemented for solving the CPCE problem over the binary field,
while in MAGMA the implementation works for the CLCE problem, for small
prime fields and for F4. However, Leon’s algorithm requires a time exponential
in the code dimension since it computes the set of all codewords of minimum
weight.

Finally, we would like to remark that, to the best of our knowledge there
is no efficient algorithm for solving the CLCE problem for any field Fq.

3.3 The Support splitting algorithm

The support splitting algorithm (SSA) is intended to solve the computational
permutation code equivalence problem. It does so in polynomial time for all
but a small fraction of linear codes. The algorithm uses the notions of invariant
and signature.

Definition 4 – An invariant R over a set E maps a linear code C of length
n on an element of E and is such that for any permutation σ of n elements
we have R(σ(C)) = R(C).

– A signature S over E is defined for any length n and maps a linear code C
of length n and one of its positions i ∈ In on an element of E and is such
that for any permutation σ of n elements we have S(σ(C), σ(i)) = S(C, i).

– A signature S is discriminant for the code C if there exists i and j in
In such that S(C, i) 6= S(C, j), it is fully discriminant for C if all the
S(C, i), i ∈ In are distinct.

For instance the Hamming weight enumerator of a code is an invariant. A
signature can be obtained by applying an invariant on a punctured (or short-
ened) code. An abstract version of the support splitting algorithm is given in
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Table 1 An abstract version of the support splitting algorithm [23]

Notations and definitions:

– A partition of In is denoted P = (Ps)s∈E with some index set E. The set E
can be infinite but only a finite number of cells are non empty. We denote |P|
the number of non empty elements and |Ps| the cardinality of the cell Ps.

– Let P ′ = (P ′s)s∈E be another partition of In with the same index set, it is
equivalent to P, we denote P ≡ P ′, if for all s ∈ E we have |Ps| = |P ′s|.

– Let Q = (Qu)u∈F be a partition of In indexed by a set F , the product of
P and Q is defined as P × Q = (Ps ∩ Qu)(s,u)∈E×F . It is a partition of In
indexed by E × F .

function SSA

input: G,G′ ∈ Fk×n
q

output: two partitions of In with an identical index set
P ← SSA step(G) ; P ′ ← SSA step(G′)
while P ≡ P ′ and |P| < n // repeat at most O(logn) times

// both P and P ′ are indexed by the same set F
s← {s ∈ F | Ps 6= ∅} // at random or according to some heuristic
P ← SSA refine(G,P, s) ; P ′ ← SSA refine(G′,P ′, s)

return P,P ′

Parameter: a signature S over E.

function SSA step

input: G ∈ Fk×n
q

output: a partition of In indexed by E
for i ∈ In

s← S(〈G〉, i) ; Ps ← Ps ∪ {i} // all Ps are initially empty
return (Ps)s∈E

function SSA refine

input: G ∈ Fk×n
q , P a partition of In indexed by F , s ∈ F

output: a partition of In indexed by F × E
Q ← SSA step(GPs ) // columns of G indexed by Ps are replaced by zeroes
return P ×Q

Table 1. It takes as parameter a signature S. The behavior of the algorithm
can be predicted regardless of S.

Proposition 1 Let G,G′ ∈ Fk×nq , C = 〈G〉, and C ′ = 〈G′〉. We run the
algorithm of Table 1 with input G,G′ and obtain as output P = (Ps)s∈F and
P ′ = (P ′s)s∈F . If C ′ = σ(C), we have P ≡ P ′ and P ′s = σ(Ps) for all s ∈ F .

Proof Because of the definition of a signature, when two calls to SSA step are
made on equivalent codes C and C ′ = σ(C) the returned partitions P and
P ′ are equivalent. Moreover, if i ∈ Ps we have s = S(C, i) = S(C ′, σ(i)) and
σ(i) ∈ P ′s. And conversly.

At every step of the algorithm P and P ′ are always the result of calls to
SSA step with equivalent inputs. ut

The above proposition implies in particular that when the output partitions
only have singleton cells, only one permutation can match, and its value is im-
mediately available from the partitions. If the signature S is fully discriminant
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for either one of its outputs the algorithm will succeed in a single step. If it
is somewhat discriminant –but not fully– it can usually be transformed into a
fully discriminant signature after a logarithmic number of refinement steps. In
both cases, we can either conclude on the non equivalence, or the two outputs
are partitions which only contain singletons and at most one permutation is
compatible. This permutation can be checked in polynomial time and the de-
cision can be made. Finally, if the partitions are equivalent but the signature
is poorly discriminant or not discriminant at all, no decision can be made.

Discriminant signature from the hull. For all β ∈ Fq, we define Cβ·i as the
code C in which the i-th coordinate is multiplied by β. Thus C1·i is the code
itself and C0·i is the code punctured in i. In addition, we conventionally define
C∞·i = ((C⊥)0·i)

⊥ which is (essentially, but not exactly) the code shortened
in i. It is proven in [23] that the intersections Cβ·i ∩ C⊥ are equal to the hull
H(C) = C∩C⊥ shortened in i, except for exactly one value, say β ∈ Fq∪{∞},
for which the intersection has one dimension more or less. The SSA uses as
signature

S(C, i) =
(
β,W(Cβ·i ∩ C⊥)

)
where W(C) denotes the Hamming weight enumerator of a code C. It is a
signature because the hull commutes with the permutation of the support5

(H(σ(C)) = σ(H(C))). It is discriminant enough to allow the algorithm to
succeed most of the time with a logarithmic number of refinement steps. The
most notable exceptions are codes with a non trivial permutation group, those
have to be handled differently (see below). More details can be found in [23].

Codes with a Non-trivial group. A consequence of Proposition 1 is that the
output partitions of SSA cannot be finer than the orbits of the permutation
groups of the respective input codes. In particular, no signature can be dis-
criminant for a code with a transitive permutation group. When this happens
we obtain two coarse but equivalent partitions. We puncture the codes on
positions with identical signature and repeat this process until the permuta-
tion group vanishes. An extended version of the algorith is given in Table 2.
A sufficient condition for this extension to work properly is that the cells of
the partitions returned by the function SSA of Table 1 are the orbits of the
coordinates under the action of the permutation group. In that case, the re-
cursive calls to SSA group will stop as soon as the set of all indices i chosen to
puncture the code form a base of the permutation group (in the sense of [25]).
Unfortunately, it seems impossible to prove the correct behavior of the algo-
rithm, we cannot exclude the possibility that the partition is coarser though
we never observed a counterexample.

5 The hull does not always commute with isometries and this will have important conse-
quences as we will see later
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Table 2 An extension of SSA to handle permutation groups

function SSA group

input: G,G′ ∈ Fk×n
q

output: two partitions of In with an identical index set
P,P ′ ← SSA(G,G′)
if P ≡ P ′ and |P| < n

s← {s ∈ F | Ps 6= ∅} // P,P ′ both indexed by F
i← Ps ; j ← P ′s
P,P ′ ← SSA group(Gi, G

′
j) // column i or j resp. is set to zero

return P,P ′

After several recursive calls to SSA group the matrices will contain several zero
columns and the algorithm will be unable to discriminate between those. This
would lead to an inacurate result. In reality, we define two partitions Q and Q′
over {0, 1} with Q0 = {i}, Q1 = In \ {i}, Q′0 = {j}, and Q′1 = In \ {j}. Just after
the call to SSA group we set P ← P×Q and P ′ ← P ′×Q′. We feel that this would
needlessly obscure the pseudocode and we prefer to leave it as a comment.

Hard instances and algorithmic complexity. We make the empirical assump-
tion that the support splitting algorithm (Table 1) always returns partitions
whose cells are the orbits under the action of the permutation group. In that
case the number of calls to the elementary function SSA step is logarithmic
in the code length. The algorithm will make the following computations:

– once, it computes the hull of the codes, this is essentially a matrix inversion,
we assumme a cost of O(n3) and we denote h the dimension of the hulls6

– for each of the O(log n) SSA step, the algorithm computes O(n) signatures,
that is
– find the value of β, which has a constant cost as it is a coefficient of a

transition matrix computed with the hull.
– compute the intersection Cβ·i∩C⊥ and adjust the transition matrix for

a cost O(hn)
– compute the weight enumerator of a code of dimension (close to) h for

a cost O(qhn)

The total order of magnitude of the algorithmic cost is O(n3 + qhn2 log n)
operation in Fq.

1. If the hulls of the input codes behave like those of random codes, they
have constant size (see the Proposition at the end of the section) and the
algorithm cost is domanate by the initial matrix inversion, that is at most
O(n3).

2. If the input codes have hulls of large dimension, the computation of the
weight enumerator dominates and the cost which becomes O(qhn2 log n)
elementary operations in Fq where h is the hull dimension.

The hard instances are easy to identify and to exhibit. When the inputs are
weakly self-dual codes the algorithm has a running time exponential in the
code dimension.

6 If the input codes have hulls of different dimension they are not permutation equivalent.
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Average size of the hull.

Proposition 2 The hull of a linear code has cardinality 2 asymptotically on
average.

Proof Asymptotically, regardless of their dimension, q-ary linear codes have a
hull of dimension i and thus cardinality qi with probability Ri where (see [22])

Ri =
Ri−1
qi − 1

, i ≥ 1 and R0 =
∏
i≥1

(
1− 1

qi + 1

)
.

The asymptotic average cardinality is then∑
i≥0

qiRi =
∑
i≥0

(qi − 1)Ri +
∑
i≥0

Ri =
∑
i≥1

Ri−1 +
∑
i≥0

Ri = 2.

4 Generalization of the support splitting algorithm to linear and
Semi-linear code equivalence

4.1 Semi-linear code equivalence vs. linear code equivalence

The finite field Fq with q = pm and p a prime admits exactly m distinct field
automorphisms. Thus if one has access to a program able to either decide or
compute linear equivalence, calling that program m times will be enough to
solve the corresponding semi-linear equivalence problem.

4.2 Linear code equivalence and the SSA

Partial reconstruction. Let C and C ′ be two q-ary linear [n, k] code and assume
we somehow know a permutation σ such that C ′ = (υ;σ)(C). The scalars
υ = (υ1, . . . , υn) are by recovered by solving a linear system.

Proposition 3 Let C and C ′ be two q-ary linear [n, k] code which admits
systematic generator matrices of the form

G =

 1
. . . gi,j

1

 and G′ =

 1
. . . g′i,j

1


where i ranges from 1 to k and j from k + 1 to n. We have C ′ = (υ, 1)(C) if
and only if υ = (υ1, . . . , υn) is a non-zero solution of the system

υig
′
i,j = υjgi,j , 1 ≤ i ≤ k, k < j ≤ n.
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Proof If C ′ = (υ, 1)(C) then

G ·

υ1
. . .

υn

 =

υ1
. . . υjgi,j

υk


is a generator matrix of C ′. Because of the uniqueness of the systematic form,
we must haveυ1

. . . υjgi,j
υk

 =

υ1
. . .

υn

 ·G′ =

υ1
. . . υig

′
i,j

υk


which implies that υ must be a solution of the system given in the statement.
Conversely, if υ is a non-zero solution to the system, the above identities imply
C ′ = (υ, 1)(C). ut

Invariants and signatures. The notions of invariants and signatures general-
ize naturally with other notions of equivalence. For any linear or semilinear
isometry Ψ , we will denote perm(Ψ) its permutation component.

Definition 5 – A mapping is an invariant for the linear (respectively semi-
linear) equivalence if it takes the same value for any linearly (respectively
semilinearly) equivalent linear codes.

– A signature S over E for the linear (respectively semilinear) equivalence
is defined for any length n and maps a linear code C of length n and
one of its positions i ∈ In on an element of E and is such that for any
linear (respectively semilinear) isometry Ψ we have S(Ψ(C),perm(Ψ)(i)) =
S(C, i) for all i ∈ In.

This notion of invariant is consistent with the folklore of algebraic coding the-
ory. It means that codes that are identical up to an isometry share a common
property. For instance, the weight enumerator of a code is an invariant for the
semilinear equivalence. As before, a convenient way to construct signatures
will be to apply an invariant to punctured or shortened codes.

However, the above notion is more general, and there exists mappings which
are invariant for permutation equivalence but not for linear equivalence. An
importance instance is the weight enumerator of the hull. It is an invariant for
permutations (the SSA is built on that) but it is not an invariant in general
because the hull does not commute with isometries in general.

Generalized SSA. Generalizing the support splitting algorithm is very simple.
In Table 1, if the signature S used as parameter of SSA step is for linear
isometries, the Proposition 1 is easily generalized.
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Proposition 4 Let G,G′ ∈ Fk×nq , C = 〈G〉, and C ′ = 〈G′〉. We run the
algorithm of Table 1, using as parameter a signature for linear (resp. semi-
linear) equivalence, with input G,G′ and obtain as output P = (Ps)s∈F and
P ′ = (P ′s)s∈F . If C ′ = Ψ(C) for some linear (resp. semilinear) isometry Ψ ,
we have P ≡ P ′ and P ′s = σ(Ps) for all s ∈ F where σ = perm(Ψ).

The proof is the same as for Proposition 1. It follows that if we somehow
manage to build a fully (or somewhat) discriminant signature for the linear
equivalence, the output of the same algorithm as for permutation equivalence
will provide fine partitions, consisting of singletons, that will reveal the permu-
tation part of the isometry we seek. From the partial reconstruction property
we stated earlier in this section, this will be enough to recover the whole isom-
etry. The case where the code has a non trivial automorphism group is treated
as in Table 2 with a similar effect.

Ternary and quaternary linear codes

Lemma 1 Let C be a ternary linear code, for any linear isometry Ψ we have
Ψ(C⊥) = Ψ(C)⊥. Let C be a linear code over F4, for any linear isometry Ψ
we have Ψ(C⊥) = Ψ(C)⊥ when duality is defined with repect to the Hermitian
scalar product.

Proof – F3: for any isometry Ψ = (υ;σ) with υ = (υ1, . . . , υn), we have
Ψ(C)⊥ = (υ−1;σ)(C⊥) where υ−1 = (υ−11 , . . . , υ−1n ). In F3, any non zero
element is its own inverse and thus we have Ψ(C⊥) = Ψ(C)⊥

– F4: the Hermitian scalar product is defined as 〈x, y〉H =
∑n
i=1 xiy

2
i . Let

Ψ = (υ;σ) with υ = (υ1, . . . , υn). The dual of Ψ(C) with respect to 〈·〉H is
Ψ(C)⊥ = (υ−2;σ)(C⊥) where υ−2 = (υ−21 , . . . , υ−2n ) = (υ1, . . . , υn) in F4.
Again we have Ψ(C⊥) = Ψ(C)⊥. ut

Because of this lemma,H(Ψ(C)) = Ψ(H(C)) for ternary and quaternary codes.
It follows that the signature used in SSA is valid for linear equivalence and
the algorithms of Table 1 and Table 2 perform correctly: as for permutation
equivalence, it will decide equivalence and compute the permutation part of
the isometry when the code are equivalent in polynomial time, unless the hull
of the code is large.

Larger alphabet. When q ≥ 5 the problem of code equivalence seems to become
difficult for almost all instances. In fact, the SSA is still available and can be
instantiated with any invariant for linear equivalence. Unfortunately, all invari-
ants that lead to, even mildly, discriminant signatures require a computation
time exponential in the code dimension making the algorithm unpractical ex-
cept for small codes. For instance, with the weight enumerator, the SSA has
complexity at least O(qkn2) for q-ary (n, k) codes.
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5 Reduction of linear code equivalence to permutation code
equivalence

Hence, we have at our disposal an algorithm, the support splitting algorithm,
that solves the PCE and CPCE problems in (almost) polynomial time. There-
fore, it is natural to investigate a reduction of the LCE problem as an instance
of the PCE problem. To this end, we introduce the closure of a linear code.
We mention, that a similar approach was given in [26].

5.1 The closure of a linear code

Definition 6 The closure of a q-ary code C of length n is a code of length
n(q − 1) defined as

C̃ = {(αxi)(i,α)∈In×F∗q | (xi)i∈In ∈ C}.
Definition 7 A monomial permutation of In × F∗q is a permutation π such
that for all (i, α) ∈ In × F∗q we have π(i, α) = (σ−1(i), αυi) for some σ ∈ Sn
and some υ = (υ1, . . . , υn) ∈ (F∗q)n. We will denote π = σ ? υ.

The closure duplicate each code coordinate (q − 1) times with a different
scaling. The effect on any generator matrix is the same. We omit the proof of
the following lemma.

Lemma 2 Let G̃ = (gi,α)In×F∗q denote the generator matrix of a closure. For
all (i, α) ∈ In × F∗q We have gi,α = αgi,1.

Lemma 3 Let G = (gi)i∈In ∈ Fk×nq denote a q-ary matrix (the gi are column

vectors of size k). We denote G̃ = (αgi)(i,α)∈In×F∗q ∈ Fk×(q−1)nq (αgi is the col-

umn gi multiplied by the scalar α). For σ ∈ Sn and υ = (υ1, . . . , υn) ∈ (F∗q)n,

we denote G′ = (υigσ−1(i))i∈In ∈ Fk×nq and G̃′ = (αυigσ−1(i))(i,α)∈In×F∗q ∈
Fk×(q−1)nq . We have

(〈G′〉 = (υ;σ)(C))⇔ (〈G〉 = C)⇔
(
〈G̃〉 = C̃

)
⇔
(
〈G̃′〉 = (σ ? υ)(C̃)

)
.

Proof The first equivalence derives directly from the definition of the mono-
mial isometries and the second from the definition of the closure. For the last
equivalence, we denote π = σ ? υ and we write G̃ = (g̃i,α)(i,α)∈In×F∗q . Since

G̃ is a generator matrix of C̃, the matrix (g̃π(i,α))(i,α)∈In×F∗q is generator of

the code π(C̃). We have g̃π(i,α) = g̃σ−1(i),αυi = αυigσ−1(i) that is precisely the

(i, α)-th column of G̃′ which is thus a generator matrix of π(C̃) = (σ ? υ)(C̃).
ut

Corollary 1 (of Lemma 3) Let C and C ′ denote two q-ary linear codes

of length n and let C̃ and C̃ ′ denote their closures. For all σ ∈ Sn and all
υ = (υ1, . . . , υn) ∈ (F∗q)n we have

C ′ = (υ;σ)(C)⇔ C̃ ′ = (σ ? υ)(C̃)
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Proof Let G = (gi)i∈In denote a generator matrix of C. We use the notations
of Lemma 3. If we denote g′i = υigσ−1(i), then we have G′ = (g′i)i∈In and

G̃′ = (αg′i)(i,α)∈In×F∗q . Consequently the code spanned by G̃′ is the closure of

the code spanned by G′. From Lemma 3 again

(C ′ = 〈G′〉 = (υ;σ)(C))⇔
(
C̃ ′ = 〈G̃′〉 = (σ ? υ)(C̃)

)
.

ut

Lemma 4 Let C and C ′ denote two q-ary linear codes of length n whose
closures C̃ and C̃ ′ are permutation equivalent, say C̃ ′ = π(C̃). We define σ
and υ by (σ−1(i), υi) = π(i, 1) for all i ∈ In, and we set π′ = σ ? υ. We have

C̃ ′ = π′(C̃) and C ′ = (υ;σ)(C).

Proof Let G = (gi)i∈In denote a generator matrix of C. The matrix G̃ =

(g̃i,α)(i,α)∈In×F∗q = (αgi)(i,α)∈In×F∗q is a generator matrix of C̃. Because C̃ ′ =

π(C̃) the matrix X = (xi,α)(i,α)∈In×F∗q = (g̃π(i,α))(i,α)∈In×F∗q is a generator

matrix of C̃ ′.
By definition π′ = σ ? υ is the only monomial permutation such that

π(i, 1) = π′(i, 1) for all i ∈ In. We have xi,1 = g̃π(i,1) = g̃σ−1(i),vi = g̃π′(i,1).
Because X is the generator matrix of a closure we have xi,α = αxi,1 (Lemma 2)

and, because G̃ is the generator matrix of a closure, we have αg̃σ−1(i),vi =
g̃σ−1(i),αvi = g̃π′(i,α), that is xi,α = g̃π(i,α) = g̃π′(i,α) for all (i, α).

Finally, even if we may have π 6= π′, the actions of π and π′ on the columns
of a generator matrix of C̃ leads to the same result. It follows that C̃ ′ = π(C̃) =

(σ ?υ)(C̃). From Corollary 1, we deduce that C and C ′ are linearly equivalent
and C ′ = (υ;σ)(C). ut

If the permutation between two closures is not monomial, it means that in a
generator matrix G̃ = (g̃i,α)(i,α)∈In×F∗q of any of those closure, we can find
two identical columns g̃i,α = g̃j,β with i 6= j. This can only mean that the i-th
and j-th coordinate of the original code were proportional. We state this as a
remark for future reference.

Remark 1 If neither C nor C ′ have no duplicate coordinate, any permutation
between their closures is monomial.

The main results of this section are gathered in Theorem 1, below. This
theorem is of great importance, because it realizes a reduction from the LCE
problem to the PCE problem through the closure. Thus, we are able to de-
cide if the codes C and C ′ are linearly equivalent by checking their closures
for permutation equivalence. In addition, it is shown that a solution to the
PCE problem for closures implies a solution to the LCE problem for codes.
Furthermore, the monomial automorphism group of a code is contained to the
permutation automorphism group of its closure, and in some cases these two
groups are essentially the same. Most important, if the closures are permu-
tation equivalent we exhibit in §5.3 an algorithmic procedure that will allow



16 Nicolas Sendrier, Dimitris E. Simos

us to recover the initial isometry between C and C ′. However, as we shall see
shortly after in §5.2, the closure reduces an instance of the CLCE problem to
exactly those instances that were hard for the support splitting algorithm for
tackling the CPCE problem over Fq, q ≥ 5.

Theorem 1 Let C,C ′ ⊆ Fnq .

(i) Then C and C ′ are linearly equivalent, i.e. C
LE∼ C ′, if and only if C̃ and

C̃ ′ are permutationally equivalent, i.e. C̃
PE∼ C̃ ′.

(ii) If C̃ ′ = π(C̃) for some permutation π of degree (q − 1)n then there exists
a linear isometry Ψ = (υ;σ) ∈ F∗q

n o Sn such that C ′ = Ψ(C).

(iii) Then MAut(C) ⊆ PAut(C̃) ∩ S(q − 1, n) where by S(q − 1, n) we denote
the generalized symmetric group. In addition, if the code C has no identical
coordinates (up to a scalar) the two groups are the same, i.e. MAut(C) =

PAut(C̃) ∩ S(q − 1, n).

Proof (i) (=⇒) Assume that C and C ′ are linearly equivalent under an ac-

tion of a linear isometry (υ;σ) with corresponding closures C̃ and C̃ ′. By
Corollary 1, the closures of C and C ′ are mapped one into another under
an action of a monomial permutation and we obtain the result.
(⇐=) The converse follows directly from Lemma 4.

(ii) Assume that the two closures C̃ and C̃ ′ of the codes C and C ′ are per-
mutation equivalent under the action of the permutation π. By Lemma 4
there exists a monomial permutation π′ in terms of σ ? υ for some σ ∈ Sn
and υ = (υ1, . . . , υn) ∈ (F∗q)n defined as in the same lemma. We have that

C̃ ′ = π(C̃) = (σ ? υ)(C̃) and from the one-to-one correspondence between
monomial permutations and linear isometries the result follows.

(iii) If we consider the cyclic group Cq−1 of order q−1 there is a natural isomor-
phism between F∗q

noSn and Cq−1onSn, the semidirect product of n copies of
Cq−1 and Sn, called also the generalized symmetric group which we denote
by S(q−1, n). Its order is (q−1)nn! and its elements are permutations that
can also appear as permutations of permutationally equivalent closures.
Now, take an element of MAut(C), i.e. a linear isometry (υ;σ) ∈ F∗q

noSn
such that C = (υ;σ)(C). From Corollary 1, we have that C̃ ′ = (σ ? υ)(C̃)

where the permutation π = (σ ? υ) ∈ PAut(C̃) and the inclusion follows.
When the code C has no identical coordinates (up to a scalar), by Remark

1 every element of PAut(C̃) consists of monomial permutations which are
in one-to-one correspondence with all linear isometries of MAut(C) and in

this case we have that MAut(C) = PAut(C̃) ∩ S(q − 1, n). ut

Weight properties of the closure. In this paragraph, we consider some prope-
rties related to the weight enumerator of the closure and related them to those
of the weight enumerator of the original code.

Proposition 5 Let a code C ⊆ Fnq . The weight enumerator of the closure C̃
of the code C is a multiple of the weight enumerator of C. In particular, it
holds WX(C̃) = Xq−1WX(C).
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Proof Since, the code and its closure have the same dimension, therefore they
contain the same number of codewords, it will be suficient to show that any
codeword x ∈ C of weight w(x) = w is mapped to a codeword x̃ ∈ C̃ of weight
w(x̃) = (q − 1)w.

Recall, that the closure duplicate each code coordinate (q − 1) times with
a different scaling. Therefore, we have w non-zero code coordinates of x repli-
cated (q − 1) times in a codeword x̃ of the closure and the result follows. ut

This result in addition implies that the number of codewords of weight i in
C are equal to the number of codewords of weight (q− 1)i in C̃. In particular,
if the weight spectrum of C ⊆ Fnq is spec(C) = [1, A1, . . . , Ai, . . . , An] then the

spectrum of the closure C̃ is given by the following formula:

spec(C̃) = [1, 0, . . . , 0︸ ︷︷ ︸
q−2

, A1, 0, . . . , 0︸ ︷︷ ︸
q−2

, . . . , 0, . . . , 0︸ ︷︷ ︸
q−2

, Ai, 0, . . . , 0︸ ︷︷ ︸
q−2

, . . . , 0, . . . , 0︸ ︷︷ ︸
q−2

, An]

Corollary 2 If C is an [n, k, d] code over Fq then the closure C̃ of C is an
[(q − 1)n, k, (q − 1)d] code over Fq.

Proof Since the minimum distance of a code is the lowest weight of its non-
zero codewords the result follows from Proposition 5. ut

We conclude this paragraph with the following remark, which states the rela-
tionship between the weight enumerator of the hull of a code and its closure.

Remark 2 Let C ⊆ Fnq with closure C̃ ⊆ F(q−1)n
q . We have that if dim(H(C)) =

h then dim
(
H̃(C)

)
= h and WX(H̃(C)) = Xq−1WX(H(C)).

5.2 Efficiency of the reduction

The SSA used as an invariant the hull H(C) of a code. In order to explore
possible extensions of SSA we have to determine the quality of the hull of the
closure H(C̃) = C̃ ∩ C̃⊥, where the dual of the closure is defined according
to some inner product. We consider two inner products, the Euclidean and
Hermitian inner product, defined below:

– 〈x, y〉E =
∑n
i=1 〈xi, yi〉E =

∑n
i=1 xiyi = x1y1 + . . . + xnyn ∈ Fq. If q is a

square, 〈x, y〉H (below) is generally preferred to 〈x, y〉E.
– 〈x, y〉H =

∑n
i=1 〈xi, yi〉H =

∑n
i=1 xiyi = x1y1 + . . .+ xnyn ∈ Fq, where q is

an even power of a prime with x = x
√
q for x ∈ Fq (cf. [21]). Note that, for

x, y ∈ Fq,
(x+ y)

√
q = x

√
q + y

√
q, xq = x.

When a code C is contained in its dual (defined according to some inner
product), i.e. C ⊂ C⊥, we say that the code C is a weakly self-dual code.
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Proposition 6 Let C ⊆ Fnq be a linear code. The closure C̃ of C is a weakly
self-dual code over Fq, for every q ≥ 5 considering both Euclidean and Hermi-
tian duals.

Proof Now, consider two codewords x̃, ỹ of the closure C̃ of C ⊆ Fnq . Then their

Euclidean and Hermitian inner product is given by 〈x̃, ỹ〉E =

(
q−1∑
i=1

a2i

)
〈x, y〉E

and 〈x̃, ỹ〉H =

(
q−1∑
i=1

aiai

)
〈x, y〉H, respectively, where Fq = {a0 = 0, a1, . . . ,

aq−1}. Using lemma 7.3. of [16] which states that a0, a1, . . . , aq−1 are distinct

if and only if
∑q−1
i=0 a

t
i = 0 for t = 0, 1, . . . , q−2 and

∑q−1
i=0 a

t
i = −1 for t = q−1,

we can show that,

〈x̃, ỹ〉E =

{
0 for q ≥ 4

−〈x, y〉E for q = 3.
and 〈x̃, ỹ〉H =

{
0 for q > 4

−〈x, y〉H for q = 4.

This concludes the proof. ut

This means, that the closure C̃ is a weakly self-dual code for every q ≥ 5,
considering both Euclidean and Hermitian duals, which is exactly the hard
instances of SSA. Moreover, for F3 and F4 equipped with the Euclidean and
Hermitian inner product, respectively, the distribution of the dimension of
H(C̃) follows the distribution of the dimension H(C), since the closure has
the same dimension as C, and will be on average a small constant, [22], except
in the cases where C is also a weakly self-dual code.

5.3 An extension of SSA to F3 and F4

As we have witnessed earlier, the support splitting algorithm can be adapted
for treating the LCE problem over Fq, as long as we provide an invariant for
the linear code equivalence in order to be able to build discriminant signatures.

However, the hull is not an invariant in general for the LCE problem and
this served as an additional motivation for the introduction of the closure
of a code. In particualr, we have to mention that due to Theorem 1 we can
consider permutationally equivalent closures and linearly equivalent closures,
interchangeably. Thus, any invariant derived from the hull of the closures for
the PCE problem will serve as an invariant for the LCE problem for the original
codes. Moreover, the fact that the closure is a weakly self-dual code over Fq,
for q ≥ 5 provides a negative result but also renders visible the cases where
an extension of SSA via the closure is feasible, specifically for F3 and F4.

For these two cases, of ternary and quaternary linear codes there exists an
additional relation between the hull of the closure and the closure of the hull,
which we present below.
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Proposition 7 Let C ⊆ Fnq with closure C̃ ⊆ F(q−1)n
q . Then H̃(C) = H(C̃)

when

(i) Fq = F3 equipped with the Euclidean inner product.
(ii) Fq = F4 equipped with the Hermitian inner product.

Proof We will prove the necessary inclusions. Recall that x̃ denotes the image
of a codeword x ∈ C in the closure C̃.

(⊆) In order to show that H̃(C) ⊆ H(C̃), is sufficient to show that for all

x ∈ H(C) = C ∩ C⊥ we have x̃ ∈ H(C̃) = C̃ ∩ C̃⊥.

By the definition of the closure, it holds x̃ ∈ C̃. Since, x ∈ H(C) therefore

also x ∈ C⊥ ⇔ ∀y ∈ C, we have 〈x, y〉 = 0. We have also that for all ỹ ∈ C̃ it

holds 〈x̃, ỹ〉 = 0⇔ x̃ ∈ C̃⊥. Finally, we obtain that x̃ ∈ C̃ ∩ C̃⊥ = H(C̃).

(⊇) Now, we have to show that H(C̃) ⊆ H̃(C) = C̃ ∩ C⊥. It will be sufficient

to prove that for x̃ ∈ H(C̃) = C̃ ∩ C̃⊥ then also x ∈ H(C).

Since,x̃ ∈ C̃⊥ we have that for all ỹ ∈ C̃ it holds 〈x̃, ỹ〉 = 0. However, from
the proof of Proposition 6 we have that,

〈x̃, ỹ〉E = −〈x, y〉E for q = 3

〈x̃, ỹ〉H = −〈x, y〉H for q = 4

}
=⇒

〈x, y〉E = 0 for q = 3

〈x, y〉H = 0 for q = 4

This implies that ∀ y ∈ C we have 〈x, y〉 = 0 when 〈, 〉 is the Euclidean
or the Hermitian inner product over F3 or F4, respectively, therefore x ∈ C⊥.
Moreover, x̃ is also in C̃ and hence x ∈ C. This means that x ∈ H(C) and the
proof is concluded. ut

The previous result is of importance in terms of computing the various
properties of the hull of the closure, since for F3 and F4 (equipped with 〈, 〉H)
these can be derived directly from the respective properties of the closure of the
hull. In particular, from Remark 2 and Proposition 7 we obtain the following
result which relates the weight enumerator of a code with the one of the hull
of its closure.

Corollary 3 Let C ⊆ Fnq with closure C̃ ⊆ F(q−1)n
q where q ∈ {3, 4}. Then if

dim(H(C)) = h then dim(H(C̃)) = h and WX(H(C̃)) = Xq−1WX(H(C)).

Invariants and signatures from the hull of the closure. It is worth mention-
ing that permutationally equivalent closures have permutationally equivalent
hulls. In particular, the following result is implied.

Corollary 4 For any invariant R and closure C̃ ⊆ F(q−1)n
q , the mapping

C̃ 7→ R(H(C̃)) is an invariant.

Then, a signature for an extension of SSA can be built from the weight
enumerator of theH(C̃). Following the notations of §3.3 we derive the following

signature for an extension of SSA through its closure C̃ as follows,
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S(C̃, i) =
(
β,WX(C̃β·i ∩ C̃⊥)

)
where for all β ∈ Fq, we define Cβ·i as the code C in which the i-th

coordinate is multiplied by β and WX(C̃) denotes the (Hamming) weight
enumerator of the closure. Due to Corollary 3 this signature will have the
same discrimancy as if it was used for the original code and in addition we
can derive the spectrum values for the closure by performing the computation
of the weight distribution of the code.

The extension to F3 and F4. The LCE and CLCE problems can be decided
(and computed) in polynomial time using SSA only in F3 and F4, as long as
the hull of the given code is small (the worst-case being a weakly self-dual
code), using the results of Theorem 1 as these are illustrated in the following
diagram.

C
Ψ=(υ;σ)−−−−−→ C ′y y

C̃
π=(σ?υ)−−−−−−→ C̃ ′y y

H(C̃)
π=(σ?υ)−−−−−−→ H(C̃ ′)

The CLCE problem for the codes C and C ′ can be solved if we can retrieve
the linear isometry (υ;σ) from the monomial permutation of the hull of closures

C̃ and C̃ ′. This is ensured from Theorem 1 and Corollary 4. Moreover, the
SSA algorithm given in Table 1 can easily be extended for F3 and F4 by using
the generator matrices of the closures and operating on a larger index set.
In particular, we replace In with In × F∗q and the SSA extension presented
below in Table 3 is a combined version of the SSA and SSA group algorithms
presented in Tables 1 and 2, respectively.

We note that, the permutation group of the closure is always non-trivial
over Fq since it contains at least (q − 1) monomial permutations. In practice,
the output partitions of SSA closure could not be finer than the orbits of
PAut(C̃ thus it was necessary the process in SSA extension using the me-
chanics of the SSA group until the group vanishes. Finally, if we manage to
build a fully discriminant signature after a logarithmic number of steps the
desired monomial permutation for the closures will be obtained with its cor-
responding values retrieved from the partitions. There is one additional step
needed, to solve the CLCE problem which is converting the retrieved mono-
mial permutation to the original linear isometry. This can be done easily using
Lemma 4.
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Table 3 An abstract extension of SSA using the closure

function SSA extension

input: G̃, G̃′ ∈ Fk×(q−1)n
q

output: two partitions of In × F∗q with an identical index set

P,P ′ ← SSA closure(G̃, G̃′)
if P ≡ P ′ and |P| < n

s← {s ∈ F | Ps 6= ∅} // P,P ′ both indexed by F
i← Ps ; j ← P ′s
P,P ′ ← SSA extension(G̃i, G̃

′
j) // column i or j resp. is set to zero

return P,P ′

function SSA closure

input: G̃, G̃′ ∈ Fk×(q−1)n
q

output: two partitions of In × F∗q with an identical index set

P ← SSA step(G̃) ; P ′ ← SSA step(G̃′)
while P ≡ P ′ and |P| < n // repeat at most O(log(q − 1)n) times

// both P and P ′ are indexed by the same set F
s← {s ∈ F | Ps 6= ∅} // at random or according to some heuristic

P ← SSA refine(G̃,P, s) ; P ′ ← SSA refine(G̃′,P ′, s)
return P,P ′

The functions SSA step and SSA refine are used as in Table 1 for the closure and
In×F∗q and are not detailed here. The algorithm uses as a parameter the signature

S defined for the closure C̃.

Algorithmic complexity for SSA extension. We conclude this section, by giv-
ing the (heuristic) algorithmic complexity of the SSA extension for F3 and
F4. This extension of the SSA is polynomial for F3 and F4 but unfortunately
exponential for Fq, q ≥ 5. A thorough algorithmic analysis has been made
already in §3.3 and we just mention here that the computational cost of the
weight distribution for an [n, k] code over Fq is proportional to nqk operations
in Fq and for random instances the average number of operations is propor-
tional to 2n, see [23]. The closure is a code of length (q− 1)n and of the same
dimension k as the original code, therefore the number of operations earned
are (q− 1)nqk − nqk = (q− 2)nqk and on average 2(q− 1)n− 2n = 2(q− 2)n.
Thus for q ∈ {3, 4} the difference is negligible.

Table 4 Heuristic complexity for SSA and its extension over Fq

Algorithm Field Random codes Weakly self-dual codes
(alphabet) (average-case) (worst-case)

SSA F2 O(n3) O(2kn2 logn)
SSA extension F3 O(n3) O(3kn2 logn)
SSA extension F4 O(n3) O(22kn2 logn)
SSA extension Fq , q ≥ 5 O(qkn2 logn) O(qkn2 logn)
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6 Hardness of linear code equivalence for q ≥ 5

As we mentioned earlier, the LCE and CLCE problems can be decided (and
computed) in polynomial time using SSA only in F3 and F4, as long as the hull
of the given code is small (the worst-case being a weakly self-dual code). It does
not seem possible to extend this result to larger alphabet. Even though, the
closure was introduced as a mean to provide an invariant for the LCE problem
over Fq it turned out that any invariant built on top of the hull of the closure,
is not an easy computable invariant unless q ∈ {3, 4}. In addition, recall that
the hull of the code is not an invariant for the LCE and SLCE problems except
for F3 and F4. We conclude by posing the following conjecture.

Conjecture 1 For a given q ≥ 5, the LCE and CLCE problems over Fq are
hard for almost all instances.

In fact, due to the recent reductions of the LCE problem to the GI problem
(see [7] and §7) hard instances had to be expected. However, our conjectured
statement is apparently quite stronger which is further supported by a similar
negative complexity result due to Dirk Vertigan [27].

Vertigan’s result is given for graphs, but, translated for codes, it states that
evaluating the (homogeneous) weight enumerator polynomial of a linear code
over Fq for q ≥ 5 on any point of the complex unit circle is always difficult
except for a constant number of trivial points. The evaluation of the weight
enumerator in those points essentially provide the code cardinality. There is an
additional point easy to evaluate for q ∈ {2, 3, 4}. The evaluation in this point
essentially provides the cardinality of the hull of the code. For q = 4 the hull
is defined according to the hermitian inner product. There is possibly more
than just a coincidence here, but the connection with code equivalence is not
obvious to establish. Doing so would certainly be enlightening. We conclude
the section by stating some open problems related to the LCE problem and
its hardness.

– Do we already know all easy (computable) invariants for code equivalence?
– (Semi)-linear isometries of H(n, q) that can be expressed as a group action

on the set of linear subspaces preserve the weight of codewords and induce
natural equivalences for codes. Therefore, from an algorithmic point of view
any counting function must be somehow related to the weight of codewords.
It is thus intriguing to ask, whether if all invariants are related to the weight
enumerator of a code?

– Do there exist similar subcodes of a code, like the hull, which capture the
characteristics and inherit the properties of the original code in terms of
invariants for the LCE problem?

Last but not least, we would like to note that the apparent hardness of the
LCE problem over Fq, for q ≥ 5 arises from the absence of an easy computable
invariant and not the inexistence of an algorithm.
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7 Relationships between the various problems

We first remark that, as stated in §4.1, and because there are few field auto-
morphisms, we have a polynomial time reduction between linear code equiva-
lence and semilinear code equivalence problems. This hold for the decisional as
well as the computational problems. We thus exclude the semi-linear case and
we examine in this section the relationships between the various other code
equivalence problem. The arguments we present here are sometimes formal,
sometimes less formal, leading to yet unsolved open problems. We start with a
discussion about the computation of the automorphism group of a code. Next,
the questions we will answer or discuss relate with the relationships between
decisional and computational then with the relationships between monomial
and permutation code equivalence.

7.1 Computing automorphism groups

Let C denote a q-ary linear code of length n. We denote PAut(C) its permu-
tation group and MAut(C) its monomial group (see §2 for definitions).

7.1.1 Permutation group versus monomial group

As previously remarked by Leon in [15], computing the monomial group of a
code can be reduced to computing the permutation group of another longer
code. In fact, every time the code has no duplicate coordinate (up to a scalar),
from Remark 1 any element in the permutation group of its closure is a mono-
mial permutation and monomial permutations are in one-to-one correspon-
dance with linear isometries. When there are duplicate coordinates, they can
first be removed, the group computed then adjusted by taking into account
the duplicates. We do not detail this here.

7.1.2 Computing permutation groups

The computation of the permutation group of a code was described by Leon
[15] based on concepts developed by Sims [25]. Let G denote subgroup of Sn.
A base of G is a subset B = (b1, . . . , b`) of In such that at most one element of
G has prescribed values on B. For any i, 1 ≤ i ≤ `, we denote Bi = (b1, . . . , bi)
and GBi the subgroup of G stabilizingBi. Effective computation in permutation
group will use an increasing sequence of group

{1} = GB ⊂ GB`−1
⊂ · · · ⊂ GB1 ⊂ G.

A strong generating set SB according to B is a set of generators of G such
that for all i, SBi

= S ∩ GBi
is a set of generators of GBi

. A strong generating
set is a convenient object which allows the easy computation of all sorts of
properties (membership, orbits, . . . ). The set SB is computed recursively, and
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to expand SBi into SBi−1 , it is enough find one or several permutation stabi-
lizing Bi−1 and such that the union of all orbits of bi under the action of those
permutations is maximal. Table 5 present a simplified version of an algorithm
computing the permutation group of a code. To instantiate this algorithm, we

Table 5 A simplified algorithm to compute the permutation group of a code

function PAut

input: G ∈ Fk×n
q , B ⊂ In

output: a strong generating set according to B
if B = In then return {1}
i← In \B // chosen arbitrarily
S ← PAut(G,B ∪ {i})
for j ∈ In \ (B ∪ {i})

(*) σ ← {σ ∈ PAut(〈G〉) | σ(i) = j, σ(b) = b, ∀b ∈ B}
if σ 6= fail and σ 6∈ 〈S〉 then

S ← S ∪ {σ}
return S

In practice the stopping condition and the control of the for loop can be improved,
but the general idea is that after picking a polynomial number of permutations in
step (*) the algorithm returns a strong generating set of the permutation group.
The set returned by the call PAut(G,B) is a strong generating set of the stabilizer
of B in PAut(〈G〉). The initial call will be PAut(G, ∅).

need to specify the step (*) which is indeed the difficult part. If this can be
achieved accurately and efficiently the algorithm will be efficient, else . . .

7.1.3 Reducing the computation of permutation groups to the computational
permutation code equivalence problem?

We use the notations of Table 5 and denote C = 〈G〉 the target code. All
elements of the set {σ ∈ PAut(C) | σ(i) = j, σ(b) = b,∀b ∈ B} in which
we wish to pick σ are solutions to CPE(CB∪{i}, CB∪{j}) the computational
permutation code equivalence problem applied on C punctured in B∪{i} and
C punctured in B ∪{j}. This would hold also with shortened codes or for any
sequence of puncturing and shortening, as long as the sequence is the same for
both arguments of CPE. Unfortunately, it may happen that there are other
solutions to CPE(CB∪{i}, CB∪{j}) and thus replacing the (*) step with

(**) σ ← CPE(CB∪{i}, CB∪{j})

will not work for all code and thus do not provide a reduction. For most codes,
the permutation group of the code punctured in i will be equal to the stabilizer
of {i}. However the permutation group may very well increase when the code
is punctured.

It is possible that a more elaborate call to CPE, or a polynomial number
of such calls, allows the computation of a suitable σ. We found no solution
though and so far a polynomial reduction from CPE the PAut remains an
open problem.
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7.2 Decision vs. computation

If two codes of length n are equivalent for some isometry Ψ , with σ = perm(Ψ),
then for all i ∈ In the codes punctured (or shortened) in i and j = σ(i) are
also equivalent. This holds for any notion of equivalence (permutation, linear,
semi-linear). To exploit this property, we may wish to use the algorithm of

Table 6 Reduction from decisional code equivalence to computational code equivalence

Parameter: an oracle equiv which tells us whether its arguments span equivalent
codes. It can be defined for any form of equivalence (permutation, linear, semilin-
ear).

function find perm

input: G,G′ ∈ Fk×n
q

if not equiv(G,G′) then return not equivalent
for all (i, j) ∈ I2n

if equiv(Gi, G
′
j) // in fact testing equivalence of punctured codes

σ(i)← j ; ci ← ci + 1 // ci = 0 initially
if ∀i, ci = 1 then return σ else return fail

Table 6 which tries to find matching positions in the two codes. Note that for
one call to find perm only a polynomial number of calls to equiv (at most
n2 + 1) have to be performed. The principle of Table 6 is used in SSA and
works very in many situation. In fact, for any code verifying the following
property, we can guaranty the good behavior of the reduction.

Property 1 Let C be a q-ary linear code of length n. The property P1(C) holds
if for all i 6= j in In, we have Ci 6∼ Cj .

Proposition 8 We consider an intance of the algorithm of Table 6 with inputs
G and G′. We denote C = 〈G〉 and C ′ = 〈G′〉.

1. The equiv parameter in Table 6 is an oracle for permutation equivalence.

If C
PE∼ C ′ and P1(C) holds, then P1(C ′) holds and find perm returns a

permutation σ such that σ(C) = C ′.
2. The equiv parameter in Table 6 is an oracle for linear equivalence.

If C
LE∼ C ′ and P1(C) holds, then P1(C ′) holds and find perm returns a

permutation σ such that Ψ(C) = C ′ with perm(Ψ) = σ.

Proof First, we remark that if C ′ = ψ(C) for some isometry Ψ with σ =
perm(Ψ) then for all i we have Ci ∼ C ′σ(i). It follow that if either P1(C) or

P1(C ′) holds, the other also holds. We use below the noations of Table 6.

1. Let C ′ = π(C). For all i, we have Ci ∼ Cπ(i) thus ci ≥ 1. If we had
Ci ∼ C ′j for some j 6= π(i) then we would also have Ci ∼ Cπ−1(j) ∼ C ′j and
P1(C) would not hold. Thus ci = 1 for all i and the algorithm returns the
permutation σ = π.
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2. Let C ′ = Ψ(C). The proof is identical, we must have ci = 1 for all i and
the permutation returned by the algorithm can only be perm(Ψ).

Finally, note that if C ′ = Ψ(C) and σ = perm(Ψ) recovering the isometry Ψ
can be achieved in polynomial time (see Proposition 3).

The Property 1 does not hold for all codes. In particular, when its auto-
morphism group is non trivial, the code C punctured in i is equivalent the code
C punctured on any element of the orbit of i under the action of MAut(C).
We briefly consider this case in the next section.

It is worth noting however that even with a trivial group a code may
not verify the Property 1. There are various interesting questions related to
that. For instance, what are exactly the codes which codes do not verify the
property? If we can describe them, can we adjust the reduction and keep it
polynomial?

7.2.1 Non trivial automorphism group

When the automorphism group is non trivial, it is probably also possible to
obtain a (limited) reduction from the decisional to the computational problem.
When a code is punctured, its automorphism group will often reduce to the
subgroup which stabilizes this position. If we limit the reduction to codes that
behave well in that respect we may find a sequence of puncturing (in the spirit
of Table 2 for the SSA when we are confronted to a pair of codes) such that
the automorphism group gradually vanishes. At this point, we may apply the
reduction of Table 6.

7.3 Linear code equivalence vs. permutation code equivalence

Because of the properties of the closure, namely Lemma 4, there is a reduction
from LCE to PCE for both the decisional and the computational problems.
The reduction in the other way does not seem to be easy to obtain and remains
an open problem.

This is very paradoxal. On one hand it seems that for q ≥ 5, solving the
linear code equivalence problem is hard of almost all instances while solving the
permutation equivalence problem is easy for almost all instances. On the other
hand, when we consider the worst-case complexity, the linear code equivalence
is provably not harder than the permutation equivalence problem. Somehow,
the closure seems to map linear equivalence problems precisely onto some of
the few hard instances of the permutation equivalence problem (namely weakly
self-dual codes).

Finally, note that the reduction from LCE to PCE leads by transitity to a
proof that the Graph Isomorphism (GI) problem is not harder than the Linear
Code Equivalence (LCE) problem. This last reduction was already obtained,
but only recently, by Thomas Feulner [7] with a different approach.
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8 Conclusion

In this paper, we explored the hardness of the (Computational) Linear
Code Equivalence problem(s) over Fq. We showed that an extension of
SSA for solving the latter problems when q ∈ {3, 4} is possible, in (almost)
polynomial time, however for q ≥ 5 its complexity growth becomes exponen-
tial for all instances. Moreover, we conjectured that, for q ≥ 5, the compu-
tational and decisional version of linear code equivalence are hard for almost
all instances. Our argument, is supported by some impossibility results on the
Tutte polynomial of a graph which corresponds to the weight enumerator of a
code. On the bright side, the negativity of our claim, might lead to some inter-
esting features for applications. For example, in cryptography, zero-knowledge
protocols have been designed in the past, based on the hardness of the Per-
mutation Code Equivalence problem [11]. Moreover, the relation of the
automorphism groups of the code and its closure might be of cryptographic
interest. The context of the framework built in [5] suggests that codes with
large automorphism groups resist quantum Fourier sampling as long as permu-
tation equivalence is considered. It would thus be intriguing to investigate, if
this result can also be extended for the linear and semilinear code equivalence.

Acknowledgements The authors are grateful to the reviewers for their comments and
suggestions that improved the quality and the presentation of the paper. The work of the
second author was carried out during the tenure of an ERCIM “Alain Bensoussan” Fe-
llowship Programme. The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
no. 246016.

References

1. Babai, L., Codenotti, P., Grochow, J.A., Y.Qiao: Code equivalence and group isomor-
phism. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’11, pp. 1395–1408. SIAM (2011)

2. Betten, A., Braun, M., Fripertinger, H., Kerber, A., Kohnert, A., Wassermann, A.:
Error-Correcting Linear Codes: Classification by Isometry and Applications, Algorithms
and Computation in Mathematics, vol. 18. Springer, Berlin, Heidelberg (2006)

3. Bouyukliev, I.: About the code equivalence. Ser. Coding Theory Cryptol. 3, 126–151
(2007)

4. Danielsen, L.E., Parker, M.G.: Edge local complementation and equivalence of binary
linear codes. Des. Codes Cryptography 49, 161–170 (2008)

5. Dinh, H., Moore, C., Russell, A.: Mceliece and niederreiter cryptosystems that resist
quantum fourier sampling attacks. In: Proceedings of the 31st annual conference on
Advances in cryptology, CRYPTO’11, pp. 761–779. Springer-Verlag, Berlin, Heidelberg
(2011)

6. Feulner, T.: The automorphism groups of linear codes and canonical representatives of
their semilinear isometry classes. Adv. Math. Commun. 3, 363–383 (2009)
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