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Abstract

The invariance of the similarity measure in photomet-
ric distortions as well as its capability in producing sub-
pixel accuracy are two desired and often required features
in most stereo vision applications. In this paper we pro-
pose a new correlation-based measure which incorporates
both mentioned requirements. Specifically, by using an ap-
propriate interpolation scheme in the candidate windows
of the matching image, and using the classical zero mean
normalized cross correlation function, we introduce a suit-
able measure. Although the proposed measure is a non-
linear function of the sub-pixel displacement parameter, its
maximization results in a closed form solution, resulting in
reduced complexity for its use in matching techniques. Ap-
plication of the proposed measure in a number of bench-
mark stereo pair images reveals its superiority over existing
correlation-based techniques used for sub-pixel accuracy.

1 Introduction

The determination of the 3-D location of objects given
different views (images) of the object scene is of great im-
portance in the three dimensional (3-D) object reconstruc-
tion problem as well as in a large number of imaging ap-
plications. The actual position of a scene element can be
determined from the disparity of its two (or more) depicted
intensities on the image pair (sequence). However, prior to
establishing disparity, the correspondence problem known
as the image matching problem must be solved.

Matching techniques according to the strategy they fol-
low to solve the correspondence problem, and thus constru-
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cting the disparity map, can be broadly classified into two
main categories [3]. More specifically, techniques that
construct the disparity map by solving the correspondence
problem in a pixel by pixel basis are referred as local, while
techniques that consider the correspondence problem as a
global optimization problem are referred as global. Among
the most well known techniques belonging into the afore-
mentioned categories, are the differential matching, the
cross correlation, graph cuts, the global energy optimiza-
tion method and dynamic programming based methods to
name a few.

All local methods, typically use an appropriate measure
in order to quantify the existed similarity between the tem-
plate window and the candidate ones. Widely used simi-
larity measures are the sum of squared differences (SSD),
the sum of absolute differences (SAD), and the normalized
cross-correlation (NCC) as well as their zero-mean coun-
terparts [7]. Among these measures, only the zero-mean
normalized cross correlation is invariant to both shift and
scale photometric distortion [7]. This property is required in
many stereo vision algorithms, especially in outdoor appli-
cations where the illumination of the scene is nonuniform.

Except the invariance in photometric distortions, another
feature which is desired in a large number of applications,
is the ability of the matching algorithm for producing a
disparity map with sub-pixel accuracy. In [2] a compara-
tive study in a registration framework for methods used for
sub-pixel accuracy is presented and an iterative scheme for
an intensity interpolation method is proposed. The most
commonly used approach in stereo matching is based on
several polynomial interpolation schemes including correla-
tion interpolation methods, intensity interpolation methods
or phase correlation interpolation [1], [4]. However, there
exist some limitations resulting from the application of this
approach into the correspondence problem [4]. In [6] a sim-
ilarity measure which is insensitive to image sampling is
presented. According to this approach locally linearly inter-



polated templates of the two compared windows are used. A
modification of this approach based on interpolated images
to produce a disparity map with the desired sub-pixel accu-
racy is proposed in [5]. However, the computational cost re-
quired by the solution of the resulting correspondence prob-
lem increases as the interpolation factor increases and thus
these methods can not be considered suitable for real-time
applications.

In this paper we propose a new similarity measure which
is based on the correlation coefficient that we call Enhanced
Normalized Cross Correlation (ENCC). More specifically,
by using an appropriate linear interpolation scheme on the
intensities of two adjacent candidate windows, we succeed
in introducing a suitable similarity measure. This measure,
although is based on a linear interpolation scheme, does not
demand the reconstruction of any intensity value, while at
the same time it has infinite precision in its sub-pixel esti-
mates. Although the proposed measure is a non linear func-
tion of the sub-pixel displacement its maximization results
in a closed form solution.

The paper is organized as follows. In Section 2, we for-
mulate the correspondence problem based on the common
framework used in local window-based methods. We also
introduce the correlation coefficient and outline some of its
most important properties. We define the proposed simi-
larity measure and formulate an appropriate optimization
problem for the optimum specification of the desired sub-
pixel displacement. We also present with a theorem the op-
timum solution in closed form. In Section 3, we use the
proposed similarity measure in specific image correspon-
dence problems and we compare its performance against the
Normalized Cross Correlation (NCC) with parabola fitting
technique. Finally Section 4, contains our conclusions.

2 Problem Formulation

Let us consider a rectified stereo image pair of images,
with IL(i, j) and IR(i, j) denoting their intensity func-
tions. Then, the stereo correspondence problem aims at
finding a univalued nonnegative disparity map dL(i, j) such
that the following relation approximately holds

IL(i, j) = IR(i, j − dL(i, j)). (1)

In order to solve the image correspondence problem in the
framework of a local window-based method, let us consider
that W (n,m) denotes an image window of size N1 × N2

with its center located at the point with coordinates n,m,
and let

w(n,m) = [w1 w2 . . . wN−1 wN ]t (2)

be the vector resulting by stacking up the columns of the
window W (n,m), where N = N1N2 is its length. Let

us also define the zero mean normalized version of vector
w(n,m) as

w̄◦(n,m) =
w(n,m)− w̄(n,m)

‖w(n,m)− w̄(n,m)‖2
(3)

where w̄(n, m) and ‖w(n, m)‖2 denote its mean value and
Euclidean norm respectively.

By selecting a template window WL(n,m) in the refer-
ence image, and a window WR(n,m − d) in the matching
image, we can define, using the above notation, their corre-
lation coefficient as the inner product of the vectors

ρn,m,d = w̄◦tL (n,m)w̄◦R(n,m− d) (4)

and use it as a similarity measure for the centers of the above
defined windows.

A remarkable property satisfied by the similarity mea-
sure defined in Equ (4) is its invariance to both shift and
scale photometric distortions. This property establishes the
correlation coefficient as a suitable similarity measure for
the image correspondence problem.

Having defined the similarity measure and by assuming
that the disparity inside the fixed size window is constant,
the solution of the correspondence problem between the
center of the windows WL(n,m) and WR(n,m − d), re-
sults from the solution of the following “winner takes all”
[3] maximization problem:

max
0≤d≤R

ρn,m,d (5)

whereR is the disparity range.
By solving the maximization problem for each pixel of

the reference image, we obtain a disparity map that con-
tains an estimation of the scene depth in pixel accuracy.
Although, in most applications pixel accuracy may be ad-
equate, several problems [8] require sub-pixel accuracy of
the disparity map. In the next section we propose a new
correlation-based measure capable of producing such in-
creased resolution.

2.1 Sub-Pixel Resolution and the Proposed Mea-
sure

We need to redefine the correlation coefficient of Equ
(4) in such a way to become a similarity measure capable of
producing a disparity map with sub-pixel accuracy. Since
we are interested in sub-pixel accuracy, we must reconstruct
the candidate windows of the matching image. Usually this
goal can be achieved by using some realizable one dimen-
sional interpolation kernel. In such a case it is expected
that the correlation coefficient defined in Equ (4) will be-
come a function of the continuous spatial variable τ and



the maximization problem solving the sub-pixel correspon-
dence problem will take the following form

max
0≤d≤R

max
τ

ρn,m,d(τ). (6)

It is clear that the specific form of the correlation function
ρ(τ) and the computational cost of the maximization prob-
lem defined in (6), heavily depend on the specific form of
the interpolation kernel we use for the reconstruction of the
matching windows. Notice also that if the maximization
of the correlation function with respect to the displacement
parameter τ has a closed form solution, we expect that the
computational cost of the total correspondence problem will
increase only slightly as compared to the computational cost
of the original problem with pixel accuracy. In the oppo-
site case, a maximization algorithm is required resulting in
a substantial increase of the computational cost. Alterna-
tively, we can change the order of the two maximizations in
(6), and by sampling the continuous spatial variable τ , we
can solve the total correspondence problem. Notice though
that by following such a strategy, the accuracy of the es-
timated displacements is bounded while the computational
cost increases considerably. To avoid these drawbacks, in
the sequel we will incorporate an appropriate first order
interpolation kernel into the similarity measure defined in
(4). Let us therefore introduce the followingN -dimensional
vector function

wR(n,m+τ) = wR(n,m)+τ(wR(n,m)−wR(n,m−1))
(7)

which is a continuous linear function of the spatial variable
τ resulting from the application of a first order interpola-
tion kernel based on the backward differences along each
row of the matching windows. Notice that if we spatially
sample each element of the N -dimensional vector func-
tion wR(n,m + τ) with a sampling rate of M samples per
vector element, then we create an N × M matrix where
each column τn, n = 0, 1, . . . ,M − 1 constitutes the n-th
linearly interpolated (if τn ∈ [−1 0]) or extrapolated (if
τn 6∈ [−1 0]) sample from adjacent pairs of pixels in the
selected windows. In that sense, the vector function defined
in Equ (7) can be considered as a linearly interpolated (or
extrapolated) function with an infinite interpolation factor.
Equ (7) can be rewritten in the following form

wR(n,m+ τ)= wR(n,m− 1) + (1 + τ)(wR(n,m)−
wR(n,m− 1)) (8)

and thus revealing the equivalence of the forward and back-
ward difference operator in the proposed first order interpo-
lation scheme.

In fact, instead of the backward operator, we can use any
difference operator Φ(wR(· ,m+1),wR(· ,m),wR(· ,m−
1)) which estimates the derivative of the matching windows

along its rows. A characteristic example, is the central dif-
ferences operator.

Our goal now is to incorporate the intensity vector func-
tion of τ into the similarity measure defined in Equ (4). To
this end, let us define the following correlation function

ρn,m,d(τ) = w̄◦tR (n,m− d+ τ)w̄◦L(n,m). (9)

Using the definitions of the inner product and zero mean
normalized vector of Equ (4), and after some mathematical
manipulations, Equ (9) can be rewritten as1

ρd(τ) =
ρd + τ(ρd − λρd−1)√

(1 + λ2 − 2λr)τ2 + 2(1− λr)τ + 1
(10)

where

λ =
‖wR(n,m− d− 1)− w̄(n,m− d− 1)‖2
‖wR(n,m− d)− w̄(n,m− d)‖2

(11)

is the ratio of norms of the adjacent windows and

r = w̄◦tR (n,m− d)w̄◦R(n,m− 1− d) (12)

their correlation coefficient.
Having defined the correlation coefficient as a continu-

ous function of the translation parameter τ , and for a given
value d0 of d ∈ [0,R], in the next paragraph we are going
to solve the following maximization problem:

max
τ

ρd0(τ). (13)

2.2 The Optimum Displacement Parameter

Although the correlation coefficient defined in Equ (10)
is nonlinear with respect to the displacement parameter τ ,
its maximization results in a closed form solution. We
present the corresponding formula, without proof, in the
next theorem.

Theorem 1: Let d0 be given and λ and r be as they de-
fined in Equs (11) and (12). Suppose that the denominator
of Equ (10) is not degenerate then, ρn,m,d0(τ) attains its
unique extremum on

τ0 =
ρd0−1 − rρd0

λ(rρd0−1 − ρd0) + r ρd0 − ρd0−1
. (14)

The extremum is a maximum, if and only if the denomina-
tor of optimum displacement τ◦ in (14) is negative, and its
corresponding value is given by

ρd0(τ0) =

√
ρ2d0 + ρ2d0−1 − 2rρd0ρd0−1

1− r2
. (15)

1In order to simplify our notation, from this point on the subscripts
m, n of the correlation function will be removed.



Using the results of Theorem 1, we can achieve the op-
timum sub-pixel displacement. We must stress that accord-
ing to our formulation, the increase in computational cost,
as compared to the classical correlation-based method, is
negligible.

Having completed the presentation of our similarity
measure, in the next section we are going to adapt our re-
sults to the image correspondence problem.

3 Simulation Results

In this section we apply the proposed similarity measure
in specific image correspondence problems and compare its
performance against alternative matching techniques which
are based on the classical cross-correlation measure. More
precisely, we use the Shimizu-Okutomi image model pro-
posed in [4] in order to evaluate the accuracy of the pro-
posed method and compare its performance, in terms of the
resulting displacement estimation error, against the NCC
with parabola fitting technique as well as its modifica-
tion proposed in [4]. Furthermore, using two known si-
nusoidal models for the generation of artificially translated
images, we evaluate the performance of the proposed mea-
sure against the NCC measure in a registration framework,
in terms of the achieved RMS error for various values of
the displacement parameter. Finally, we use the Map, the
Sawtooth and the Venus image pairs from the Middlebury
database in order to evaluate the performance of the pro-
posed measure in stereo matching problems.

A. Shimizu-Okutomi Image Model

The Shimizu-Okutomi image model exclusively depends
on the standard deviation σ of a Gaussian distribution func-
tion, where σ > 0.7 (for details see [4]). In this paragraph
using this model we are going to evaluate our method in
terms of the resulting displacement estimation error against
the NCC measure and the modification proposed in [4]. To
this end, let us consider that do is the optimal solution of
the maximization problem defined in Equ (5). Then, in or-
der to evaluate the estimated sub-pixel displacement for the
NCC measure using parabola fitting over three consecutive
points, we use the following relation [4]

t̂ =
ρdo−1 − ρdo+1

2ρdo−1 − 4ρdo + 2ρdo+1
(16)

where ρ is the correlation coefficient defined in Equ (4).
Based on this image model, in Figure 1 we plot the er-

ror variation in a logarithmic scale for the two values of σ
used in [4], as a function of the displacement τ which takes
values in the interval [−.5, .5]. For the computation of the
error, we use Equ (14) for the proposed method; Equ (16)
for the NCC and its modification proposed by Shimizu and
Okutomi, that can cancel out the estimation error by making
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Figure 1. Estimation error of the proposed method (solid line),
the parabola fitting method (dotted line) and the Shimizu-Okutomi
method (dashed line) for σ = 1.2 (left) and σ = 1.7 (right) using
the Shimizu-Okutomi image model

use of shifted interpolated signal. From the plots it is clear
that our approach outperforms the parabola fitting method
as well as Simizu-Okutomi modification.

B. Experiments Using Artificial Images

In this experiment we apply two different sinusoidal
functions to generate artificially translated images in or-
der to evaluate the RMS estimation error resulting from the
application of the proposed measure for various values of
the displacement. We also compare the performance of the
proposed measure against the NCC measure using parabola
fitting. More specifically we use the following sinusoidal
forms. Form I is a 2-D function proposed in [2] and defined
as

R(i, j)=120
sin(Kx(i− 50.1))

Kx(i− 50.1)

sin(Ky(j − 50.1))

Ky(j − 50.1)

L(i, j)=R(i− ti, j − tj) (17)

where Kx = 0.4 and Ky = 0.2. Different values of Kx,
Ky cause the images to have different shapes along the re-
spective axes. Form II is another 2-D function used in [4]
and is given by

R(i, j)=
1

2
+

1

4

(
cos

(
πi2

P

)
+ cos

(
πj2

P

))
L(i, j)=R(i− ti, j − tj) (18)

where P is the position with spatial frequency equal to 1
[1/pixel]. The value of P is equal to 1000 as in [4]. In our
case we do not have translation along the columns, so we
consider ti = 0. Form II causes heavier distortion between
images because of the involution, so we expect an increase
in RMS error.

Table 1 contains the RMS error of the methods for dif-
ferent values of tj . We consider images with size 200×200
while the size of the window is 7×7. We test the algorithms
with the shift taking values in the interval [0, 1]. In Figure
2 the distributions of the estimation of a specific value of
tj obtained by the ENCC and the NCC methods are shown.
Notice that the variance of the estimated displacement ob-
tained by ENCC is significantly smaller than the variance
of the error obtained by NCC.



Root Mean Square Error
Form I Form II

shift NCC ENCC NCC ENCC

0.0613 0.0818 0.0017 0.1145 0.0053

0.1111 0.0800 0.0028 0.1116 0.0088

0.3333 0.0581 0.0064 0.0832 0.0170

0.5000 0.0324 0.0099 0.0590 0.0182

0.8122 0.0758 0.0046 0.1135 0.0122

Table 1. RMS error variation resulted from NCC and ENCC
method for various displacements.
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Figure 2. Distribution of estimated displacement obtained by
NCC (left) and ENCC (right) for tj = 0.4333 using Form I.

C. Experiments Using Stereo Image Pairs

Let us now apply the matching techniques to stereo pairs
and use as measure of performance, the percentage of bad
matching pixels inside a desired region R of the reference
image. More specifically, following [3] we define

BR =
1

NR

∑
(x, y)∈R

|dC(x, y)− dG(x, y)| > δ (19)

where dC(x, y) and dG(x, y) are the computed and the
ground true disparity map respectively, δ is the error toler-
ance and NR is the number of the pixels belonging in some
regionR. Assuming that most of the existing local window-
based stereo matching algorithms do not produce meaning-
ful results in occluded regions (O) and depth discontinuity
regions (D) of the reference image, we exclude the corre-
sponding pixels. We therefore evaluate the measure defined
in (19) only inside the regions composed by the intersec-
tion of the non-occluded regions and the depth continuous
regions, i.e. D

⋂
O.

Table 2 contains the bad matching pixel percentage of
the corresponding methods for different values of tolerance
δ. From Table 1 we observe that the proposed method out-
performs NCC for almost all values of the tolerance δ.

Figure 3 depicts the resulting matching errors in dispar-
ity maps. Notice the systematic errors exhibited by NCC
in some areas of the disparity map, while ENCC gives only
spurious outliers which can be easily removed using, for
example, a median filter.

Matching Performance — Bad Pixels %
Map Sawtooth Venus

δ ENCC NCC ENCC NCC ENCC NCC

0.25 18.34 23.71 27.95 27.46 12.80 16.32
0.50 2.71 3.08 7.97 8.56 3.91 5.05
0.75 1.08 1.22 3.70 4.26 2.75 3.19
1.00 0.74 0.93 1.99 2.49 2.39 2.89

Table 2. Bad matching pixel percentages usingBD
⋂

O , resulted

from the application of the methods under comparison in different
stereo image pairs, for different values of the tolerance δ.

Figure 3. Bad pixels (δ = 1) using ENCC (left) and NCC (right)
without sub-pixel refinement (Shaded area contains occlusions and
depth discontinuities).

In order to examine the performance of the proposed
measure when it is applied to photometrically distorted im-
ages, we have nonlinearly distorted one image of the stereo
image pairs. In Figure 4, the left image of the sawtooth pair,

Figure 4. The photometrically adjusted left image and the true
disparity map of the Sawtooth Stereo Image Pair.

which has been artificially distorted, and the true disparity
map are depicted while Table 3 contains the bad matching
pixel percentage. Since we are interested in investigating
the behavior of the raw algorithm, we do not take into ac-
count any constraints, such as ordering or uniqueness [3]
or any post-processing refinement steps. We believe that
by using such constraints, the performance of the proposed
technique will be substantially improved.

In the last experiment we investigate the behavior of
the proposed method in terms of the “pixel-locking” ef-
fect. Shimizu and Okutomi define “pixel-locking” as the
tendency of the estimated sub-pixel displacements from
the parabola fitting technique to concentrate towards inte-
ger disparity values. In Figure 5 are shown the distribu-
tion of the ground truth disparity values inside the range



Matching Performance — Bad Pixels %
Map Sawtooth Venus

δ ENCC NCC ENCC NCC ENCC NCC

0.25 20.18 24.82 29.69 28.58 15.44 18.13
0.50 3.23 3.42 9.40 9.74 5.72 6.54
0.75 1.20 1.35 4.54 4.96 4.32 4.54
1.00 0.82 1.01 2.72 3.07 3.75 4.02

Table 3. Bad matching pixel percentages using BD
⋂

O , re-

sulted from the application of the methods under comparison in
photometrically distorted images, for different values of the toler-
ance δ.

[15−, 17+] of the sawtooth image pair (available accuracy
0.125 of pixel), and the histograms of the estimated dis-
parities resulting from the application of NCC, Shimizu-
Okutomi method and ENCC respectively. From this fig-
ure, it is evident that the produced histogram of NCC in-
deed suffers from the pixel locking effect, while Shimizu-
Okutomi method although suppress slightly the undesired
“pixel locking” effect, the resulting histogram is far away
from the desired ideal one. Our method on the other hand
produces an almost uniform histogram which is very close
to the distribution of the ground truth disparity values.
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Figure 5. Distribution of ground truth disparity values inside
the range [15−, 17+] for the Sawtooth Image Pair (up left) and
sub-pixel estimated disparities using NCC with parabola fitting (up
right), Shimizu-Okutomi method (down right) and ENCC (down
left).

4 Conclusions

In this paper we propose a new enhanced correlation-
based similarity measure which is invariant in photomet-
ric distortions and capable of producing sub pixel accuracy.
The optimum value of the displacement results from the so-
lution of a well defined optimization problem and can be
computed with the help of a closed form formula. In a large
number of simulation examples the proposed method out-
performs the well known parabola fitting technique. Further
improvement to our scheme can be obtained by incorporat-
ing known stereo matching constraints or post-processing
refinement steps.
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