
HAL Id: hal-00866190
https://hal.inria.fr/hal-00866190

Submitted on 26 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

QoS Analysis in Heterogeneous Choreography
Interactions

Ajay Kattepur, Nikolaos Georgantas, Valérie Issarny

To cite this version:
Ajay Kattepur, Nikolaos Georgantas, Valérie Issarny. QoS Analysis in Heterogeneous Choreography
Interactions. 11th International Conference on Service Oriented Computing (ICSOC), Dec 2013,
Berlin, Germany. �hal-00866190�

https://hal.inria.fr/hal-00866190
https://hal.archives-ouvertes.fr

QoS Analysis in Heterogeneous Choreography

Interactions

Ajay Kattepur, Nikolaos Georgantas & Valérie Issarny⋆

Equipe ARLES, Inria Paris-Rocquencourt, France.
email: firstname.lastname@inria.fr

Abstract. With an increasing number of services and devices interact-
ing in a decentralized manner, choreographies are an active area of in-
vestigation. The heterogeneous nature of interacting systems leads to
choreographies that may not only include conventional services, but also
sensor-actuator networks, databases and service feeds. Their middleware
behavior within choreographies is captured through abstract interaction
paradigms such as client-service, publish-subscribe and tuple space. In this
paper, we study these heterogeneous interaction paradigms, connected
through an eXtensible Service Bus proposed in the CHOReOS project.
As the functioning of such choreographies is dependent on the Quality of
Service (QoS) performance of participating entities, an intricate analysis
of interaction paradigms and their effect on QoS metrics is needed. We
study the composition of QoS metrics in heterogeneous choreographies,
and the subsequent tradeoffs. This produces interesting insights such as
selection of a particular system and its middleware during design time or
end-to-end QoS expectation/guarantees during runtime. Non-parametric
hypothesis tests are applied to systems, where QoS dependent services
may be replaced at runtime to prevent deterioration in performance.

Keywords: Heterogeneous Choreographies, Quality of Service, Interac-
tion Paradigms, Middleware Connectors.

1 Introduction

Choreographies, unlike centrally controlled orchestrations, involve a decentral-
ized service composition framework where only the participants’ functionality
and associated message passing are described [1]. Service Oriented Architectures
(SOA) allow choreography components to interact via standard interfaces, with
the enterprise service bus (ESB) [3] providing a common middleware protocol to
convey the messaging interactions. However, these are principally based on the
client-service interaction paradigm, as, for instance, with RESTful services [20].

Heterogeneous choreographies that involve conventional services, sensor net-
works and data feeds, such as those seen in the Internet of Things [12], require
additional paradigms to ensure interoperability. Heterogeneous applications are
handled at the middleware level with varied interactions, data structures and
communication protocols made interoperable. In particular, platforms such as

⋆

This work has been partially supported by the European Union’s 7th Framework Programme FP7/
2007-2013 under grant agreement number 257178 (project CHOReOS, http://www.choreos.eu).

http://www.choreos.eu

2 QoS Analysis in Heterogeneous Choreography Interactions

REST [20] based client-service interactions, publish-subscribe based Java Mes-
saging Service [19] or JavaSpaces [9] for tuple space are made interoperable
through middleware protocol converters.

Studies that characterize the Quality of Service (QoS) in web services orches-
trations have conventionally been done at the application level; heterogeneous
choreographies consisting of services and sensor networks require further QoS
analysis of paradigms, unless they can rely on QoS aware middleware [18]. An in-
tricate analysis of QoS at the abstract level of interaction paradigms, in addition
to the application level, would enable analysis of heterogeneous choreographies.

In this paper, we use the eXtensible Service Bus (XSB) proposed by the
CHOReOS project [4,10] in order to deal with the heterogeneous aspects of chore-
ographies. The common protocol of XSB preserves the interaction paradigms of
the individual components, while still allowing interoperability. It supports inter-
operability among the three aforementioned, widely used, middleware paradigms:
client-service, publish-subscribe and tuple space.

We enhance the middleware paradigms that are employed inside heteroge-
neous choreographies with QoS composition frameworks. While our previous
work [15] studies the effect of choreography topology on the QoS, by fine-grained
analysis of message interactions, we evaluate the performance of choreography
participants in relation to heterogeneous paradigms. This methodology enables:
1) Design-time selection of interaction paradigms to match required functional
and QoS goals, and 2) Runtime analysis of composed choreographies to prevent
deterioration of end-to-end QoS of participants. Interesting facets include the
use of non-parametric Kolmogorov-Smirnov hypothesis testing to replace an in-
teraction paradigm with another, when abstracted with a particular QoS metric.

The rest of the paper is organized as follows. An overview of heterogeneous
interaction paradigms and XSB is provided in Section 2. The QoS domains,
metrics and algebra for composition are studied in Section 3. The methodology of
measuring and propagating QoS increments across various domains are analyzed
in Section 4. The results of our analysis through experiments are presented in
Section 5, which includes an analysis of tradeoffs and interaction substitution.
This is followed by related work and conclusions in Sections 6 and 7, respectively.

2 Interconnecting Heterogeneous Interaction Paradigms

In this section, we briefly describe the three interaction paradigms that may be
abstractly applied within our QoS analysis framework. The functional semantics
of these paradigms are abstracted into a set of corresponding middleware con-
nectors proposed by the CHOReOS project. After that, we provide an overview
of the eXtensible Service Bus (XSB) connector, which ensures interoperability
across these connectors and the represented paradigms.

2.1 Interaction Paradigm Connectors

In order to let choreographies include services (typically, client-service interac-
tions), service feeds (publish-subscribe), and sensor-actuator networks (shared
tuple spaces), it is a requirement to allow heterogeneity. We briefly review in

QoS Analysis in Heterogeneous Choreography Interactions 3

Interaction Primitives Arguments

Client-Service send destination, operation, message
receive_sync ↑source, ↑operation, ↑message, timeout
receive_async source, operation, ↑callback(source, operation, message),

↑handle
end_receive_async handle
invoke_sync destination, operation, in_msg, ↑out_msg, timeout
invoke_async destination, operation, in_msg, ↑callback(out_msg), ↑handle

Publish-Subscribe publish broker, filter, event, lease
subscribe broker, ↑filter, ↑handle
get_next handle, ↑event, timeout
listen handle, ↑callback(event)
end_listen handle
unsubscribe handle

Tuple Space out tspace, extent, template, tuple, lease
take tspace, extent, template, policy, ↑tuple, timeout
read tspace, extent, template, policy, ↑tuple, timeout
register tspace, extent, template, ↑callback(), ↑handle
unregister handle

Table 1. APIs of Interaction Paradigms.

the following the relevant interaction paradigms [10], and discuss the Applica-
tion Programming Interfaces (APIs) of corresponding connectors [4]. These APIs
are depicted in Table 1. Their primitives and arguments are provided, with ↑
representing an out or in-out return argument of a primitive.

– Client-Service (CS) - Commonly used paradigm for web services. The client
may send a message with send; the receiving service blocks further execution
until synchronization or timeout, with a receive_sync. Alternatively, asyn-
chronous reception can be set up with receive_async; then, a callback is
triggered by the middleware when a message arrives. The two-way request-
response invocation procedure is further captured by the invoke_sync and
invoke_async primitives. CS represents tight space coupling, with the client
and service having knowledge of each other. There is also tight time coupling,
with service availability being crucial for successful message passing.

– Publish-Subscribe (PS) - Commonly used paradigm for content broadcast-
ing/feeds. Multiple peers interact using an intermediate broker service. Pub-
lishers publish events that may be forwarded to peers via the broker until
a lease period. Filtering (filter) of messages may be done with respect
to subscriptions (subscribe) of the peers. Besides synchronous reception
(get_next with timeout) of an event, asynchronous reception of multiple
events is procured via listen and callback. PS allows space decoupling, as
the peers need not know each other. Additionally, time decoupling is possi-
ble, with the disconnected peers receiving updates synchronously or asyn-
chronously when reconnected to the broker.

– Tuple Space (TS) - Commonly used for shared data with multiple read/write
users. Peers interact with a data space, with participants having write (out),
read and data removal (take) access. The peers can retrieve data whose
value matches a tuple pattern (template), either synchronously with a
timeout or asynchronously via register and callback. A peer may con-
nect to the space at any time and procure data before the lease period. TS
enables both space and time decoupling between interacting peers.

4 QoS Analysis in Heterogeneous Choreography Interactions

2.2 eXtensible Service Bus (XSB)

CHOReOS [4] uses the following abstractions to deal with large scale choreogra-
phies that connect heterogeneous participants:

– Components : The heterogeneity of services and devices encountered are mod-
eled as service interface abstractions, which represent groups of alternative
services that provide similar functionalities through varied interfaces.

– Connectors : This definition relates to the introduction of a new multi-paradigm
eXtensible Service Bus (XSB) connector, which allows components to inter-
operate even if they are based on heterogeneous interaction paradigms. XSB
extends the conventional ESB system integration paradigm [10].

– Coordination Delegates : These are used to enforce the realizability of chore-
ographies despite the autonomy of the composed services. They ensure that
the choreography specifications, such as message ordering integrity, are ad-
hered to by the participating entities.

���������
	ABCADE��
��F�E��

����������
��F�E��

C���ED�

�FA��F

���DAFD�
������AFD

��C����C���

A��

C��F

��������

D��D�FE��

C��F
F��������

	�� �!
	A�����AF
	A���F��F

D���F���E��

D"

D# D$

D%

CAD�

���

CAD�

���

CAD�

���

C���ED���������

A�� F��������

	
A
B
C
A
�
�
�
�

	AAF�E���EA����������

	AAF�E���EA����������

	AAF�E���EA����������

&�� �!
	A�����AF
	A���F��F

��� �!
	A�����AF
	A���F��F

	
A
B
C
A
�
�
�
�

	
A
B
C
A
�
�
�
�

Fig. 1. CHOReOS Choreography Model.

The generic representation of the CHOReOS model is shown in Fig. 1, with
services/devices represented by components abstracting their functional behav-
ior. At the choreography level, the coordination delegates wrap such services and
adapt their roles to message passing specifications. The XSB connector ensures
interoperability across a host of middleware protocols (following the CS, PS, TS
paradigms). Note that there are multiple types of components that may partic-
ipate: Atomic/Composite Services (CS requests-responses); Data Feed Services
(they publish PS events, which are then passed to subscribers); Sensor Actuator
Networks (TS-based interaction).

The semantics of the XSB connector is elicited as the greatest common de-
nominator of the semantics of the CS, PS and TS connectors. As the latter
semantics are incompatible in certain aspects, some enforcement by the applica-
tions employing the heterogeneous connectors may be necessary. For example,

QoS Analysis in Heterogeneous Choreography Interactions 5

Primitives Arguments

post scope, data
get_sync ↑scope, ↑data, timeout
get_async scope, ↑callback(scope, data), ↑handle
end_get_async handle
post_get_sync scope, in_data, ↑out_data, timeout
post_get_async scope, in_data, ↑callback(out_data), ↑handle

Table 2. XSB connector API.

the two-way, time-coupled, CS interaction has no equivalent in the PS and TS
paradigms. In this case, the PS and TS applications interacting with a CS ap-
plication will have to complement the semantics of their underlying connectors
with the lacking behavior (e.g., ensure that a PS peer receiving a published event
will respond by publishing a correlated event that will be received by the ini-
tial publishing peer). Hence, the XSB connector can abstractly represent any of
the three CS, PS and TS connectors. The XSB API is depicted in Table 2. It
employs primitives such as post and get to abstract CS (send, receive), PS
(publish, get_next), and TS (out, take/read) interactions. The data ele-
ment can represent a CS message, PS event or TS tuple. The scope argument
is used to unify space coupling (addressing mechanisms) across CS, PS and TS.
Two-way interaction is enabled with the post-get primitive. Additionally, XSB
is the common bus protocol employed for the interconnection of CS, PS and TS
systems, as seen in Fig. 1. Finally, XSB represents also the end-to-end interaction
protocol among such interconnected systems.

3 Modeling Quality of Service

While conventional middleware connectors focus on heterogeneity and functional
interoperability, choreographies include additional non-functional metrics during
design/runtime. This specifically involves analysis of constraints on QoS perfor-
mance of individual participants (at the application/middleware level) and their
side-effects on choreography enaction. QoS metrics being probabilistic and multi-
dimensional, accurate analysis of increments and composition rules are crucial.
In this section, the QoS domains that are of interest for interactions and the
corresponding algebra for their composition are analyzed.

3.1 QoS Domains

We review the basic domains of QoS that require analysis for heterogeneous
choreography interactions. We identify three basic domains [6]:

– δ: Timeliness incorporates aspects such as latency and reliable message de-
livery. For the case of client-service interactions, timeliness concerns one-way
message or two-way request-response latency. In case of publish-subscribe,
the latency between publication to a broker and subsequent coupled or de-
coupled delivery to peers is examined. With tuple space, the latency between
writing to a tuple and coupled or decoupled access to the data is analyzed.

– S: Security/Data Integrity incorporates the trustworthiness of the interaction
paradigms with respect to the confidentiality of information. This especially
holds in publish-subscribe systems, where there is an intermediate broker, or

6 QoS Analysis in Heterogeneous Choreography Interactions

QoS Metric D ≤ ⊕
∧ ∨

δ: Timeliness R+ < + min max
S : Security/Data Integrity finite set Q >

∨
max min

λ: Resource Efficiency finite set Q < + min max

Table 3. Basic classes of QoS domains

tuple spaces, where there is an intermediate space and multiple peers have
access to the same data. For example, a peer in the tuple space may remove
and modify the data before they are procured by the other peers.

– λ: Resource Efficiency incorporates multiple aspects, such as efficiency in
bandwidth usage and protocol message passing. In the case of publish-
subscribe, for instance, the additional resources needed for subscription mes-
sages are to be included. Generally, this may be traded off with timeliness:
greater bandwidth usage/active sessions help in timely delivery of messages.
Analysis of these tradeoffs will help understand the pros and cons of a par-
ticular interaction paradigm.

3.2 QoS Algebra

In order to aggregate metrics available from heterogeneous interactions, we make
use of an algebraic framework as introduced in [21]. This can handle random
variables drawn from a distribution associated with a lattice domain. A QoS
metric q is a tuple:

q = (D,≤,⊕,
∧

,
∨

) (1)

1. (D,≤) is a QoS domain with a corresponding partially ordered set of QoS
values.

2. ⊕ : D × D → D defines how QoS gets incremented by each new action
or operation, like sending a message or receiving an event. It satisfies the
following conditions:
– ⊕ possesses a neutral element q0 satisfying ∀q ∈ D ⇒ q⊕q0 = q0⊕q = q.
– ⊕ is monotonic: q1 ≤ q′1 and q2 ≤ q′2 imply (q1 ⊕ q2) ≤ (q′1 ⊕ q′2).

3. (
∧

,
∨

) represent the lower and upper lattice, meaning that any q ⊆ D has
a unique greatest lower, least upper bound (

∧

q,
∨

q). When taking the best

QoS with respect to the ordering ≤, we take the lowest QoS value, with
∧

.
When synchronizing (for instance, with fork-joins), the operator

∨

amounts
to taking the worst QoS as per the ordering ≤.

Basic classes of QoS domains are displayed in Table 3 and composed according
to rules specified in Eq. 1. The use of this algebraic framework allows us to
reason, in an abstract way, about the behavior of interaction paradigms and
their effect on choreography performance. The framework may be invoked by any
choreography description language to incorporate QoS composition. It specifies
calculation of the QoS increments via the associated algebra with domains D,
partial order ≤, and operations (⊕,

∨

,
∧

). Note that the algebra is “general”
enough to incorporate multiple units for each domain. For metric S, the domain
Q can be subjective to scaled preferences such as {low,medium, high}. The
operation ⊕ is treated as

∨

, modeling instances where “high” security data is
passed to a “low” security service.

QoS Analysis in Heterogeneous Choreography Interactions 7

4 QoS Analysis of Interactions

In order to upgrade choreography interactions with QoS assessment, we equip
every atomic transaction T in a client-service, publish-subscribe, or tuple space
interaction with a QoS increment; T represents an end-to-end interaction en-
abling sending and receiving of data. From Fig. 1, T includes end-to-end data
transfer between components enabled by the XSB connectors. This produces a
tuple of (T , q) that may be propagated along the choreography. As the choreog-
raphy does not have a centralized QoS control mechanism, this propagation of
tuples can be combined with the algebraic operators to aggregate these incre-
ments. As the QoS values are random variables, the collected increments may be
used either at design time (using statistical data) or for run-time monitoring.

4.1 QoS Model for Generic XSB Transactions

The XSB connector can represent end-to-end transactions for any one of the CS,
PS, TS connectors. One-way interaction can be abstracted as follows: a sender
can post data – representing a message, event or tuple – with a validity period
lease; this is procured (using get) within the timeout period at the receiver
side. The peers initiate their actions independently.

Model for Timeliness. Fig. 2 depicts an one-way XSB transaction as a cor-
relation in time between a post action and a get action. The post and get
operations are asynchronous and have individual time-stamps. The post oper-
ation is initiated at tpost0 . At tmed, the posted data arrive at the intermediary
medium; we introduce this notion to represent the broker/data space in the case
of PS/TS, or the remote CS middleware entity. A timer is initiated at tmed, con-
straining the data availability to the lease period tlease. Note that the lease
period may be set to 0, as in the case of CS messages. Similarly at the receiver
side, the get operation is initiated at tget0 , together with a timer controlling the
timeout period ttimeout. If get returns before the timeout period with valid
data (not exceeding the lease), then the transaction is successful. We consider
this instance also as the end of the post operation. Hence, if the transaction is
successful, the overall QoS increment is:

δ =
∨

(δpost, δget) (2)

where δpost and δget represent the durations of the two corresponding actions.
In the case of failure, there is no overlapping in time between the two actions. In
other words, only one of them takes place, and goes up to its maximum duration,
i.e., δmed + lease for post or timeout for get, while the other’s duration is 0.
Hence, the QoS output is once again as in Eq. 2. Finally, we note that, while
we present the synchronous data reception case, the case with asynchronous get
and callbacks follows similar timeliness composition models.

Model for Security/Data Quality. In order to model the data security level
associated with each transaction, we equip the data-carrying post and get op-
erations, depicted in Fig. 3, with a security level. Note that the post operation

8 QoS Analysis in Heterogeneous Choreography Interactions

�����
�

� ����
����

���

� ��	��
�AB�

�AB�
����

�

����

���� ��AB��C�

DCEE���

�����
�

� ����
����

���

� ��	��
�AB�

�AB�
����

�

����

��AB��C�

F	A�C��

�B��

�B��

����

����

Fig. 2. Analysis of post and get δ increments for success and failure.

�������� 	�AB����CDEE����F��

��

��

��

�

�BA���A��

�����A��

�

� � �

�BA�����F��

�������F��

� � 	

����������

�BA��������

�

�BA���

�

� � �

�BA���
�����

� � 	

�����

�BA���

A��A�������

�FA��A�������

Fig. 3. Analysis of post and get S and λ increments for success and failure.

here refers to the interaction between the sender and what we called above the
medium, i.e., the PS broker, TS data space, or remote CS middleware entity.
Locally executed actions, such as get(msg) in the case of CS schemes, come
equipped with good security levels. In case of TS schemes, as there is a shared
channel between peers (unlike the exclusive channel of CS, PS), the security lev-
els are worse than, for example, PS. For a successful transaction, the supremum
of the security levels linked with the actions are taken, which means the worst
security level among the supported ones:

S =
∨

(Spost, Sget) (3)

In the case of failure, Eq. 3 still holds, with the operation that did not take
place carrying a null security level. Finally, for asynchronous data reception,
the security level composition is similar to the synchronous case presented here.

Model for Resource Efficiency. When measuring resource efficiency, we in-
clude the subset of all networked primitives related to the post and get opera-
tions, as in Fig. 3. In the case of PS, for instance, the subscription level primitives
are taken into account. Note that we only consider synchronous data reception in
our evaluation; for asynchronous callbacks, resource efficiency can be evaluated
in a similar fashion. In case of success, the resultant resource efficiency is:

λ = λpost ⊕ λget (4)

QoS Analysis in Heterogeneous Choreography Interactions 9

Primitives Arguments

post scope, data, q_post
get_sync ↑scope, ↑data, timeout, ↑q_get_sync
get_async scope, ↑callback(scope, data), ↑handle, ↑q_get_async
end_get_async handle, q_end_get_async
post_get_sync scope, in_data, q_post, ↑out_data, timeout, ↑q_post_get_sync
post_get_async scope, in_data, q_post, ↑callback(out_data), ↑handle, ↑q_post_get_async

Table 4. Extending the XSB API for QoS Analysis.

In case of failure, Eq. 4 still holds, with the missing operation contributing a
null value to the metric.

4.2 Upgrading the API

We append the API arguments of Table 2 with QoS parameters that may be
either self-measured by the peers or aggregated through a third party service. The
QoS increments and composition are presented in Table 4. The post operation
is given an initial QoS value q_post. This is, for the example of timeliness, the
timestamp tpost0 (see Fig. 2), which is then used at the receiver to calculate
the final returned output QoS increment. For a successful get_sync, the value
specified in Eq. 2 is returned with q_get_sync. In the case of failure, the resulting
timeliness value can be measured either by the receiver (timeout) or by a probe
installed at the medium (δmed + lease).

4.3 Model for QoS Propagation

The QoS model for generic XSB transactions and the related API introduced in
Sections 4.1 and 4.2 can be applied for measuring QoS in heterogeneous chore-
ographies where CS, PS and TS systems are interconnected via an XSB bus
(see Fig. 1). In particular, the model and API introduced for XSB can be easily
transcribed to the corresponding primitives and transactions of CS, PS and TS.
Additionally, they can be used directly for the transactions performed on the
XSB bus interconnecting heterogeneous systems. For multiple sequential chore-
ography transactions, QoS increments can be propagated along with the trans-
action data and be passed from one transaction to the following one. Hence, QoS
values can be calculated, propagated and aggregated along end-to-end choreog-
raphy links, such as the ones depicted in Fig. 1. For example, in the case of
timeliness for an one-way CS-XSB-PS transaction, we need to aggregate the
three involved transactions:

δ =
∨

(δsend, δreceive)⊕
∨

(δpost, δget)⊕
∨

(δpublish, δgetnext) (5)

In a similar fashion, for timeliness or other QoS metrics, QoS increments can be
composed for both one-way and two-way interaction.

5 Results: QoS in Choreography Interactions

Choreographies involve heterogeneous interactions between services, things (sen-
sors/actuators), computational entities and human participants. The use of our
QoS analysis enables the following:

10 QoS Analysis in Heterogeneous Choreography Interactions

1. Bottom-up Choreography Designs : where the interactions are fixed but the
choreography enaction and the expected QoS can be modified. The compo-
sition models take into account the nature of the interaction and their effect
on the composed QoS. This is primarily done at design-time with previously
collected statistics.

2. Top-down Choreography Designs : fixed choreography specifications that may
be implemented by varied interaction paradigms. At runtime, similar func-
tionality may be replicated by services/things in a registry – leading to late
binding. Focusing on QoS, we study the possibility of replacing an interaction
with another to prevent deterioration of output QoS.

For example, an improvement in performance δ by the interactions is traded
off with deteriorating λ. Thus, if cost of bandwidth is to be taken into consid-
eration, a choice can be made at design time to select a particular interaction
paradigm over another. This involves discovering services that are implemented
with specific interaction paradigms. In case this is not exposed, the worst case
performance for each domain must be expected at design time. At runtime, if
re-configuration [15] or replacement/late-binding occurs, changes that may be
expected through varied interaction paradigms may be evaluated. For instance,
reduced S may be traded off with improvements in δ.

5.1 Comparison of Tradeoffs

To compare the effect of CS/PS/TS paradigms on QoS metrics such as timeliness,
security and message efficiency, simulations were performed according to the
models provided in Section 4.1. As any particular implementation is affected
by the network load, middleware and individual applications’ QoS increments,
we assume some general characteristics in our simulations. The interactions are
assumed to follow tight space-time coupling for CS/PS/TS to prevent failed
transactions (even though our analysis in Section 4.1 can handle this). The details
for the specific interactions are:

– Client-Service - At (tpost0), every client posts a message to a single server.
Two measurements are made: the QoS increments associated with one-way
post-get messages; the QoS increments with round-trip two-way request-
response invocations. CS assumes tight space-time coupling and that the
server is available and connected to the client. The response get(msg) is
linked with the end-to-end QoS increments.

– Publish Subscribe - At (tpost0), a publication to a broker is initiated, which is
then forwarded to the peers. We assume that the broker is efficient and that
it forwards the messages to all subscribed peers synchronously (get_next).
The broker intermediary adds some latency δbroker and has some effect on
the security level Sbroker. The subscription level messages subscribe, un-
subscribe are considered during message efficiency calculations. While PS
schemes typically allow only one-way publisher to subscriber messaging, to
compare with the two-way CS case, we assume that the applications may
behave as a publisher+subscriber for the two-way interaction.

– Tuple Space - At (tpost0), data is written to a tuple, which may be read
by peers. Synchronous write-read scenarios are studied, with the data space

QoS Analysis in Heterogeneous Choreography Interactions 11

QoS Increments MATLAB call

δsend, δreceive, δpub, δgetnext, δout, δread nctrnd(1,10)
δbroker , δtuplespace, δpost, δget nctrnd(1,2)
Ssend, Sreceive, Spub, Sgetnext, Sout, Sread, Sbroker , Spost, Sget randi(3)
Stuplespace randi(2)
λsend, λreceive, λpub, λgetnext, λout, λread, λsub, λendsub, λpost, λget exprnd(5)

Table 5. Simulation Parameters in MATLAB.

being efficient in matching tuples. Note that there may be QoS increments in-
troduced between writing and reading from the tuple, captured by δtuplespace,
Stuplespace. Of particular interest is the data integrity/security of the tuples,
as these may be modified/removed by any of the peers. Two-way interaction
is additionally studied, with a writer to a tuple later functioning as a reader.

– XSB - When converting between these schemes via a common bus protocol
provided by the XSB, QoS increments are produced. These are appended
for various domains using δpost,Sget and so on. The conversion also increases
the bandwidth resource usage that must be taken into account.

Based on [7], the QoS random variables are modeled as follows: δ as a heavy-tailed
(nctrnd) distribution; S as a uniform (randi) distribution; λ as an exponential
(exprnd) distribution. The simulations are done in MATLAB with increments
and random variables provided as in Table 5. We assume uniform performance
of the interactions, with δsend, δpost, δpub drawn from distributions with similar
mean and variances. Slight variations are provided, with faster response times
pertaining to the broker, tuple space and bus protocols. The security level of
the tuple space is set to be lower than other interaction paradigms, as the data
can be maliciously modified by peers. These values can differ according to the
implementations, network load and resource management accorded.

As shown in Fig. 4, there are differences in performance of these schemes
for the evaluated QoS metrics. The cases considered were: one-way interaction:
CS send-receive, PS publish-subscribe, TS write-read; two-way interaction: CS
invocation, PS publish-subscribe-(re)publish-subscribe, TS write-read-(re)write-
read. In case of timeliness δ, the one and two-way CS schemes performed supe-
riorly to corresponding TS and PS schemes. For security S, as an intermediate
broker or data space are employed by the PS/TS schemes, the levels are consis-
tently lower than that of the CS scheme. The security level of the TS scheme is
lower than that of the PS scheme due to the ability of peers to access common
data. Message efficiency λ considers individual subscriptions needed by the PS
scheme, which increases the number of messages per interaction.

We continue this evaluation in Fig. 5 with the effect of using the intermediate
XSB connectors on these metrics. The increments are studied for two-way inter-
action across connectors. While there are not significant differences in domains
δ and S for the CS-PS-TS interconnection, the CS-TS interconnection has lower
message efficiency λ. Having these statistics in mind, it is possible to study the
runtime replacement of a particular connection with another, as we see in the
next section.

5.2 Substituting Interactions

In large spaces of services and devices [12], late-binding and replacement pro-
cedures are commonly employed. The replacement of heterogeneous systems in

12 QoS Analysis in Heterogeneous Choreography Interactions

0 200 400 600 800 1000 1200
0

0.2

0.4

0.6

0.8

1

δ: Timeliness (milliseconds)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.2

0.4

0.6

0.8

1

S: Security (1−low, 2−medium, 3−high)C
um

ul
at

iv
e

D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

λ: Message Efficiency (no. messages per transaction)

CS one−way msg.
PS one−way msg.
TS one−way msg.
CS two−way msg.
PS two−way msg.
TS two−way msg.

Fig. 4. QoS composition with CS, TS, PS paradigms.

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

δ: Timeliness (milliseconds)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0.92

0.94

0.96

0.98

1

S: Security (1−low, 2−medium, 3−high)C
um

ul
at

iv
e

D
en

si
ty

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

λ: Message Efficiency (no. messages per transaction)

CS−PS two−way connector
CS−TS two−way connector
PS−TS two−way connector

Fig. 5. QoS composition across the XSB connector.

such cases should take into account the interaction paradigms and their corre-
sponding QoS. A level of control is to check if the replacement would not affect
the particular QoS metric in hand. In order to compare the statistics provided
by two interaction paradigms, we employ nonparametric hypothesis tests.

The two-sample Kolmogorov-Smirnov test [5] is a nonparametric hypothesis
test that evaluates the difference between the cumulative distribution functions
of two sample data sets. This statistic may also be used to test whether two
underlying one-dimensional probability distributions differ:

KSn,n′ =
∨

q

| F1,n(q)− F2,n′(q) | (6)

where F1,n and F2,n′ are the empirical distribution functions of the first and
the second sample data sets with n and n′ elements in the vectors, respectively.
The hypothesis test result is returned as a logical value: h = 0 indicates an
acceptance of the null hypothesis at α significance level: that the data in vectors
q1 and q2 are from the same distribution; h = 1 indicates the rejection of the
null hypothesis at α significance level: the alternative hypothesis that q1 and q2
are from different distributions. The null hypothesis is accepted at level α if:

√

nn′

n+ n′
KSn,n′ ≤ Kα (7)

QoS Analysis in Heterogeneous Choreography Interactions 13

δ: Timeliness

Connectors CS-PS CS-TS PS-TS
CS-PS – h = 0; KSstat = 0.0115 h = 1; KSstat = 0.0309
CS-TS h = 0; KSstat = 0.0115 – h = 1; KSstat = 0.0240
PS-TS h = 1; KSstat = 0.0309 h = 1; KSstat = 0.0240 –

S: Security
Connectors CS-PS CS-TS PS-TS

CS-PS – h = 0; KSstat = 0.0128 h = 0; KSstat = 0.0088
CS-TS h = 0; KSstat = 0.0128 – h = 0; KSstat = 0.0216
PS-TS h = 0; KSstat = 0.0088 h = 0; KSstat = 0.0216 –

λ: Message Efficiency

Connectors CS-PS CS-TS PS-TS
CS-PS – h = 1; KSstat = 0.3335 h = 0; KSstat = 0.0102
CS-TS h = 1; KSstat = 0.3335 – h = 1; KSstat = 0.3413
PS-TS h = 0; KSstat = 0.0102 h = 1; KSstat = 0.3413 –

Table 6. KS Tests applied to various connectors.

We make use of this test on the observations of the CS, TS, PS schemes when
applied to connectors, such as in Fig. 5. This is to determine whether a partic-
ular scheme can be replaced with another when querying for a particular QoS
metric (δ,S, λ). We set this tests in MATLAB with α = 1% as [h,KSstat] =
kstest2(q1,q2,0.01) in Table 6.

This provides some interesting insights: assuming certain distributions on the
underlying interactions (as in Fig. 5), for timeliness δ, the CS-PS interaction can
be suitably replaced by the CS-TS interaction; for security S, all interactions
are replaceable with the 1% confidence interval selected; for message efficiency
λ, the CS-PS interaction can be suitably replaced by the PS-TS interaction.
Though this can change according to measurements and collected statistics, this
procedure can be applied in general cases to safely replace interactions. For
example, if contractual obligations and SLAs need to be met in certain domains,
deterioration of the QoS metrics due to replacement would be deterred. This
sort of comparison not only takes into account the probabilistic nature of the
QoS metrics, but also the tradeoffs provided due to the multi-dimensional QoS
evaluation and corresponding interaction paradigms.

6 Related Work

QoS issues in web services span multiple topics, such as optimal late-binding
(discovery, selection, substitution) and contract management (SLAs, negotia-
tion, monitoring). Relevant QoS analysis techniques are used by Zeng et al.
[23] for optimal decomposition of global QoS constraints into local constraints
for composition in the case of service orchestrations. An algebraic formulation
based on multi-dimensional probabilistic models is proposed in [21] to compose
QoS metrics in the case of web services orchestrations. This has been used to
support optimization problems for decision making in orchestrations [14]. In our
work, we make use of this algebraic framework and provide an extension for the
case of heterogeneous choreography QoS composition.

While QoS issues in composite services based on centralized control (orches-
trations) have received some attention, the metrics relevant to choreographies are
an active area of research. In [17], Mancioppi et al. provide a structured overview
of the possible metrics to be incorporated within choreographies. A generalized

14 QoS Analysis in Heterogeneous Choreography Interactions

stochastic Petri net model is proposed in [8] to compose QoS in choreographies.
In [2], the MOSES framework is proposed as an efficient and flexible technique
for runtime self-adaptation in service oriented systems. Adaptive and self-healing
choreographies have been studied with the survey by Leite et al. [16] providing
a systematic overview of model, measurement, agent and formal methods driven
techniques for adaptation. In [11], Goldman et al. use a linear programming
framework to predict the QoS of BPMN based web services choreographies. A
constraint based model for QoS dependent choreographies is proposed in [13].
However, these techniques assume typical client-service interactions for analysis.

With an increasing number of devices being interconnected through the Inter-
net of Things [12], extensions to the standard (client-service interaction based)
ESB middleware adapters [3] are required. In the CHOReOS project [4][10], the
XSB connector is provided, which incorporates multiple interaction paradigms
including PS and TS schemes. In order to extend such middleware with QoS, in
[18], metrics are integrated in the middleware architecture for discovery, config-
uration and deployment analysis. In [6], the characteristics of publish-subscribe
interactions that are crucial to QoS composition are studied in considerable de-
tail. In [22], the publish-subscribe middleware interaction is upgraded with the
Harmony overlay messaging to prevent runtime QoS deterioration. Our work
builds on heterogeneous interaction paradigms and enhances them with QoS
composition rules. While QoS in the typical web services setting is done at the
application level, capturing the fine-grained interactions within heterogeneous
paradigms provide us with a detailed outlook of QoS aggregation policies. These
may be exploited during design-time selection or runtime replacement.

7 Conclusions

QoS analysis in choreographies typically considers homogeneous client-service
interactions and is performed at the application level. Choreographies of hetero-
geneous devices, such as those in the Internet of Things, require further fine-
grained QoS analysis of underlying interaction paradigms. In this paper, we
study the effect of heterogeneous middleware connectors, interconnected via the
extensible service bus from the CHOReOS project, on choreography QoS met-
rics. Using multi-dimensional, probabilistic QoS metrics and an algebraic model
for composition, this procedure reveals some interesting results. The tradeoffs
in particular QoS domains may be studied along with interactions, for efficient
selection during design-time. Through hypothesis tests, such as Kolmogorov-
Smirnov, runtime replacement of a particular interaction paradigm with another
can be performed. In the near future, we intend to apply these analysis techniques
on real-world implementations of large scale heterogeneous choreographies, like
the ones currently being developed in the CHOReOS project.

References

1. A. Barker, C. D. Walton, and D. Robertson. Choreographing web services. IEEE
Trans. on Services Computing, 2:152–166, 2009.

QoS Analysis in Heterogeneous Choreography Interactions 15

2. V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F. L. Presti, and R. Miran-
dola. MOSES: A framework for QoS driven runtime adaptation of service-oriented
systems. IEEE Trans. on Software Engineering, 38(5), 2012.

3. D. A. Chappell. Enterprise Service Bus. O’Reilly Media, 2004.
4. CHOReOS. Final CHOReOS architectural style and its rela-

tion with the CHOReOS development process and IDRE. Tech-
nical report, Large Scale Choreographies for the Future Internet,
http://www.choreos.eu/bin/Download/Deliverables, 2013.

5. W. J. Conover. Practical Nonparametric Statistics. Wiley, 1999.
6. A. Corsaro, L. Querzoni, S. Scipioni, T. S. Piergiovanni, and A. Virgillito. Quality

of service in publish/subscribe middleware. Global Data Management, 8:1–19, 2006.
7. P. Cremonesi and G. Serazzi. End-to-end performance of web services. In Perfor-

mance Evaluation of Complex Systems: Techniques and Tools, Performance 2002
Tutorial Lectures, pages 158–178. Springer-Verlag, 2002.

8. A. P. Diaz and D. M. Batista. A methodology to define QoS and SLA requirements
in service choreographies. In 17th Intl. Wksp. on Computer Aided Modeling and
Design of Communication Links and Networks, 2012.

9. E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces Principles, Patterns, and Prac-
tice. Addison-Wesley Professional, 1999.

10. N. Georgantas, G. Bouloukakis, S. Beauche, and V. Issarny. Service-oriented Dis-
tributed Applications in the Future Internet: The Case for Interaction Paradigm
Interoperability. In European Conference on Service-Oriented and Cloud Comput-
ing (ESOCC), 2013.

11. A. Goldman, Y. Ngoko, and D. Milojicic. An analytical approach for predicting
QoS of web services choreographies. In Middleware for Grid and eScience, 2012.

12. D. Guinard, S. Karnouskos, V. Trifa, B. Dober, P. Spiess, and D. Savio. Interacting
with the SOA-based internet of things: Discovery, query, selection, and on-demand
provisioning of web services. IEEE Trans. on Services Computing, 3:223–235, 2010.

13. D. Ivanovic, M. Carro, and M. V. Hermenegildo. A constraint-based approach to
quality assurance in service choreographies. In ICSOC, 2012.

14. A. Kattepur, A. Benveniste, and C. Jard. Optimizing decisions in web services
orchestrations. In ICSOC, pages 77–91, 2011.

15. A. Kattepur, N. Georgantas, and V. Issarny. QoS composition and analysis in
reconfigurable web services choreographies. In Intl. Conf. on Web Services, 2013.

16. L. A. F. Leite, G. A. Oliva, G. M. Nogueira, M. A. Gerosa, F. Kon, and D. S. Milo-
jicic. A systematic literature review of service choreography adaptation. Service
Oriented Computing and Applications, pages 1–18, 2012.

17. M. Mancioppi, M. Perepletchikov, C. Ryan, W.-J. van den Heuvel, and M. P.
Papazoglou. Towards a quality model for choreography. In ICSOC/ServiceWave,
2010.

18. K. Nahrstedt, D. Xu, D. Wichadakul, and B. Li. QoS-aware middleware for ubiqui-
tous and heterogeneous environments. IEEE Communications Magazine, 39:140–
148, 2001.

19. M. Richards, R. Monson-Haefel, and D. A. Chappell. Java Message Service.
O’Reilly, second edition, 2009.

20. L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, 2007.
21. S. Rosario, A. Benveniste, and C. Jard. Flexible probabilistic QoS management

of transaction based web services orchestrations. In IEEE Intl. Conf. on Web
Services, pages 107 –114, 2009.

22. H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei. Message-oriented middleware
with QoS awareness. In ICSOC, pages 331–354, 2009.

23. L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
QoS-aware middleware for web services composition. IEEE Trans. on Software
Engineering, 30:311–326, 2004.

http://www.choreos.eu/bin/Download/Deliverables

	Lecture Notes in Computer Science
	Introduction
	Interconnecting Heterogeneous Interaction Paradigms
	Interaction Paradigm Connectors
	eXtensible Service Bus (XSB)

	Modeling Quality of Service
	QoS Domains
	QoS Algebra

	QoS Analysis of Interactions
	QoS Model for Generic XSB Transactions
	Model for Timeliness.
	Model for Security/Data Quality.
	Model for Resource Efficiency.

	Upgrading the API
	Model for QoS Propagation

	Results: QoS in Choreography Interactions
	Comparison of Tradeoffs
	Substituting Interactions

	Related Work
	Conclusions

