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Cohesion-Driven Decomposition of Service
Interfaces Without Access to Source Code

Dionysis Athanasopoulos, Apostolos V. Zarras, Member, IEEE, George Miskos, Valerie Issarny,

and Panos Vassiliadis Member, IEEE

Abstract—Software cohesion concerns the degree to which the elements of a module belong together. Cohesive software is

easier to understand, test and maintain. Improving cohesion is the target of several refactoring methods that have been proposed

until now. These methods are tailored to operate by taking the source code into consideration. In the context of service-oriented

development, cohesion refers to the degree to which the operations of a service interface belong together. In this context, we

propose an approach for the cohesion-driven decomposition of service interfaces. The very philosophy of services dictates that

all that is exported by a service is the service specification. Hence, our approach for the cohesion-driven decomposition of service

interfaces is not based on how the services are implemented. Instead, it relies only on information provided in the specification

of the service interfaces. We validate the approach in 22 real-world services provided by Amazon and Yahoo. We show the

effectiveness of the proposed approach, concerning the cohesion improvement and the size of the produced decompositions.

Moreover, we show that the proposed approach is useful, by conducting a user study, where developers assessed the quality of

the produced decompositions.

Index Terms—Cohesion, Decomposition, Service interface

F

1 INTRODUCTION

Alice in the Web services world: Alice is an ordinary
Java developer. Some time ago, she discovered the
benefits of using Web services for developing soft-
ware. Alice finds them very handy. As it is typically
done, the applications that she develops access ser-
vices via JAX-WS1 proxies, generated from the WSDL
specifications of the services interfaces. A JAX-WS
proxy looks much like an ordinary Java class, but its
methods delegate calls to service operations and bring
the results back to the application.

However, using services also has its drawbacks.
Often, new versions of the Web service interfaces are
released and Alice spends quite some time to test
and maintain her software, when this happens. For
instance, one of the projects that Alice is involved
relies on the Amazon SQS service2 (Figure 1). This ser-
vice provides functionalities for message-based com-
munication. Messages are stored/retrieved to/from
message queues, which are allocated on the Amazon
Cloud. Apart from the messaging operations, the
service provides operations for the management of
queue attributes, the management of queue access
grants and the management of message visibility
timeouts. Since 2007, the main interface of the service
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1. download.oracle.com/otndocs/jcp/jaxws-2 0-fr-eval-oth-JSpec/

2. aws.amazon.com/sqs/

Fig. 1. A client application that relies on the

MessageQueue interface.

has been changed more than 4 times 3. Whenever
the MessageQueue interface changes, the continuous
integration development platform (CIDP) that is used
in the project traces that the MessageQueue proxy
has changed. Following, the CIDP rebuilds the whole
application and retests all the classes since they de-
pend on the changed proxy. This overall process takes
too long. Worst, Alice spends much time on checking
the built logs and the test results to find out which
tasks went right, or wrong.

On the back of her head, Alice has an idea that
could save her from this burden. The idea is to split
the MessageQueue interface into a set of new inter-
faces and develop a corresponding set of surrogate
classes that implement these interfaces (Figure 2).
The methods of the surrogate classes would then
call the actual MessageQueue operations, via the
MessageQueue proxy. Making the application use
the surrogate classes, instead of directly using the

3. aws.amazon.com/articles/Amazon-SQS/1148
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Fig. 2. A client application that relies on a cohesive

decomposition of the MessageQueue interface.

MessageQueue proxy, will decouple the constituent
parts of the application from service operations that
are not actually used in these parts. In this setting,
changes to the MessageQueue interface shall affect
certain surrogate classes. Then, only the parts of the
application that use the affected surrogate classes will
have to be re-built and re-tested. In fact, this idea
would be useful for many others that use Amazon
SQS. So, Alice plans to make her new interfaces and
the surrogate classes that implement them available as
an open source Java API. Alice thinks that the same
idea could also be useful in the case of services that
provide a large number of operations. Amazon EC24,
for instance, provides 87 operations grouped in a
single interface. Similarly, the Yahoo KeywordService5

provides 34 operations, grouped in a single interface.
The decomposition of such large interfaces could be
used to develop APIs that provide the developers
with higher-level views of what the services do.

Having in mind a larger community of developers
that could benefit from her idea, puts Alice into
deeper thoughts about the proper splitting of service
interfaces. The decomposition of service interfaces
should be done in a principled way. Alice recalls the
the fundamental notion of cohesion. In general, soft-
ware cohesion refers to the degree to which the elements
of a module belong together [1]. Cohesive software is
easier to understand, test and maintain. In the case of
Web service interfaces, the splitting should rely on a
certain notion of cohesion that reflects the relatedness
of the operations which are grouped in the same
interface [2], [3], [4], [5], [6].
Technical challenge: Unfortunately, Alice cannot ob-
tain her desideratum of splitting a service interface
into a set of cohesive interfaces via the state of the
art cohesion-driven refactoring methods [7], [8], [9],
[10], [11], [12], [13], [14], [15]. On the one hand, like
all Web services, the ones that Alice uses do not expose
their internals, i.e., their source code; on the contrary,

4. aws.amazon.com/ec2/

5. developer.searchmarketing.yahoo.com/docs/V6/reference/services/

the very philosophy of Web services dictates that all
that is exported by a Web service is the Web service
specification. On the other hand, the cohesion-driven
refactoring methods are tailored to operate by taking
the source code into consideration. To overcome this
problem, in this paper we propose an approach that
facilitates the cohesion-driven decomposition of service
interfaces, without information of how the services are
implemented.
Contribution: The contributions of this paper are as
follows.

First, we define a suite of cohesion metrics that quan-
tify the degree to which the operations of a service
interface are related based on interface-level relations,
extracted from the service interface specification. The
first two metrics, namely the Lack of Message-Level
Cohesion (LoCmsg) and the Lack of Conversation-
Level Cohesion (LoCconv), rely on relations between
operations that have similar types of inputs/outputs.
The third metric, called Lack of Domain-Level Cohe-
sion (LoCdom), considers relations between operations
that are characterized by similar domain-level terms,
which are extracted from the names of the operations.
The proposed metrics extend our early ideas intro-
duced in [6].

Second, we propose a cohesion-driven decomposition
method that accepts as input a cohesion metric and a
service interface. The given interface is progressively
split into interfaces that are more cohesive than the
given interface. If it is no longer possible to produce
more cohesive interfaces, the decomposition stops.

Third, we have validated the proposed approach
based on 22 case studies that concern services pro-
vided by Amazon and Yahoo. We have evaluated
the effectiveness of our approach from a quantitative
perspective by assessing the cohesion improvement
and the size of the decompositions produced by the
proposed approach. Moreover, we have assessed the
usefulness of our approach, by conducting a user
study, where developers assessed the quality of our
method’s outcomes, as well as the success of each of
the proposed cohesion metrics.

The rest of this paper is structured as follows. In
Section 2, we discuss our contribution with respect to
the state of the art. In Section 3, we present the co-
hesion metrics that we employ for the decomposition
of service interfaces. In Section 4, we detail the modus
operandi of the proposed decomposition method. In
Section 5, we discuss the results that we obtained.
Finally, in Section 6 we summarize our contribution
and discuss the future perspectives of this work.

2 RELATED WORK

In this section we discuss in further detail the con-
tribution of our approach with respect to the state of
the art. More specifically, in Section 2.1 we discuss
the relation of our approach with previous efforts on
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software refactoring. Then, in Section 2.2 we focus on
the cohesion metrics that we employ and their relation
with cohesion metrics that have been proposed in the
object-oriented and the service-oriented paradigms.

2.1 Refactoring

Refactoring is a behavior preserving changing pro-
cess that improves the quality of a software sys-
tem [16]. To this end, several interesting approaches
have been proposed, concerning various develop-
ment paradigms (e.g., object-oriented refactoring [17],
[18], [19], component-based refactoring [20], aspect-
oriented refactoring [21], [22], etc.). For an excellent
survey on refactoring the interested reader may refer
to [23].

Our approach, is more closely related to metrics-
driven refactoring methods, which employ metrics
to discover and repair design problems. To achieve
this goal, the state of the art methods rely on
implementation-level relations, derived from source code
(Appendix A, Table 5). Specifically, in [24], Harman
& Tratt focus on the improvement of coupling. To
this end, they rely on dependencies between classes,
quantified based on the well-known CBO metric [25].
In [8], [9] and [7], the goal is to improve the cohesion
of classes, by taking into account relations between
class methods and attributes (or other methods), used
by the methods. Certain approaches consider the im-
provement of multiple quality properties. In particu-
lar, the methods proposed in [10] and [11] focus on
both coupling and cohesion. The methods proposed
in [12], [13] account for coupling, cohesion and code
complexity. In [14] the proposed method considers
the improvement of coupling, cohesion and code size.
Finally, the method proposed in [15] accounts for
coupling, cohesion, code complexity and size.

Concerning their modus operandi, the metrics-driven
refactoring methods can be divided in two categories.
In the first category, the methods require more in-
volvement from the developer [8], [13], [7]. In par-
ticular, based on the values of the metrics that are
considered, the methods identify possible refactorings
that can improve the values of the metrics. Following,
the developer is supposed to select and apply the
refactoring that suits his/her preferences. In the sec-
ond category, the methods do more work on behalf of
the developer. These methods consider the refactoring
as an iterative process. As long as the design of
the classes can be improved the refactoring process
keeps going. The algorithms that are used to realize
the refactoring process vary. We have methods that
rely on meta-heuristic optimization algorithms [26],
[27] (e.g., hill-climbing [24], [14], simulated annealing
[14], genetic algorithms [12], [15]). Moreover, we have
methods that are based on clustering [9].

Our approach differs from the state of the art meth-
ods in two main points:

• It deals with a novel problem, i.e., the cohesion-
driven decomposition of service interfaces, with-
out knowledge of how the services are imple-
mented.

• To address this problem, our approach is based
on interface-level relations, instead of being based
on implementation-level relations.

2.2 Cohesion Metrics

In the early 90’s Chidamber and Kemerer proposed
the well-known LCOM metric (Lack of Cohesion
of Methods) for measuring the cohesion of object-
oriented software [25]. The interested reader may refer
to [28] and [29] for two interesting surveys of the co-
hesion metrics that have been proposed since the sem-
inal work of Chidamber and Kemerer. In the service-
oriented paradigm, cohesion was recognized as an
important principle of service design in several in-
teresting approaches that concern the overall service-
oriented development methodology [2], [3], [4]. The
first efforts for measuring cohesion have been made
in the work of Perepletchikov et al. [5]. The first study
that investigated the issue of cohesion in the case
of real-world services is reported in Athanasopoulos
& Zarras [6]. Finally, another interesting work that
concerns the cohesion of services is presented in [30].

In the object-oriented paradigm, the majority of
the cohesion metrics measure the degree to which
the methods of a class are related based on
implementation-level relations (Appendix A, Table 6).
Two class methods are considered as being related
if they use common class attributes (or methods).
In the object-oriented paradigm, we also have cohe-
sion metrics that assess the relatedness of methods
based on interface-level relations. In these metrics,
two methods are considered as being related if they
have parameters of the same type.

In the service-oriented paradigm, the SIIC metric [5]
measures the relatedness of service operations, with
respect to implementation-level relations. According
to SIIC, two operations are related if the use com-
mon implementation elements. Similarly, in the SCV
metric [30] two operations are considered as being
related if they access related business entities, where
the term business entity refers to an information
entity involved in a particular business process. The
SIDC and the SISC metrics [5] rely on interface-level
relations. In particular, in SIDC two operations are
considered as being related if they have input (or
output) parameters of the same type. In SISC, if the
type of an output parameter of one operation satisfies
the type of an input parameter of another operation,
the two operations are considered as being related.
The SIUC metric [5], also operates at the interface-
level; two operations are related if they are used by
the same service clients.

Concerning the state of the art metrics that we
previously discussed and our prior work on cohesion
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Fig. 3. The meaning of LoC∗.

metrics for service interfaces [6], the added value of
this paper is the following:

• LoCmsg and LoCconv take into account the struc-
ture of input/output data types, instead of con-
sidering only relations between operations that
have inputs/outputs of the same type.

• LoCdom is an additional metric that extends the
suite of metrics that we introduced in [6] and fol-
lows a completely different direction for measur-
ing the cohesion of service interfaces, as it relies
on relations between operations that are charac-
terized by similar domain-level terms, which are
extracted from the names of the operations.

3 INTERFACE-LEVEL COHESION METRICS

In this section, we focus on the cohesion metrics that
we employ for the decomposition of service interfaces.
In Section 3.1 we discuss the basic concepts that are
shared among the metrics. Then, in Section 3.2 we
define the metrics. Finally, in Appendix B we provide
an analytic validation of the metrics, with respect to
the theoretical framework of Briand et al. [31].

3.1 Basic Concepts

Our overall approach for measuring cohesion is based
on a generic view of the notion of service interface,
which is given in the following definition.

Definition 1: (Service interface) A service inter-
face, si, is characterized by a name and a set of
operations, si.O (Table 1(1)). An operation is charac-
terized by a name, an input message and an output
message (Table 1(2)). A message is a set of parameters
(Table 1(3)). Each parameter has a name and a type,
which may be either an XML build-in type, or an XML
complex type (Table 1(4)).

To measure cohesion, we further employ the con-
cept of interface-level graph, which represents the
interface-level relations between the operations of a
given service interface. In general, two operations are
related if their properties (e.g., names, parameters)
are similar to some extent, according to a particular
similarity function. More formally, the definition of
the interface-level graph is given below.

Definition 2: (Interface-level graph) An interface-
level graph, G∗si = (Vsi, Esi, OpS∗), for a service inter-
face, si, and a similarity function, OpS∗ : si.O×si.O →
[0, 1] that reflects the degree to which the operations of
si are related, is a weighted graph with the following
properties (Table 1(5)):

• The nodes, Vsi, of the graph represent the opera-
tions of si.

• The edges, Esi, of the graph represent interface-
level relations between pairs of operations.

• An edge, (opi, opj), belongs to Esi, iff
OpS∗(opi, opj) > 0; the weight that characterizes
the edge is OpS∗(opi, opj).

TABLE 1

Basic concepts.

si = (name : string,O) (1)

O = {op : operation}

operation = (name : string, (2)

in : message, out : message)

message = {p : parameter} (3)

parameter = (name : string, type : anyType) (4)

G∗
si = (Vsi, Esi, OpS∗) (5)

LoC∗(si, OpS∗) = 1−

∑
∀(opi,opj)∈Esi

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

(6)

Based on the concept of interface-level graph, the
lack of interface-level cohesion is defined as follows.

Definition 3: (Lack of interface-level cohesion)
Ideally, a service interface, si, would be fully co-
hesive if every operation of si is related with all
the others and the similarity between every pair of
operations is maximum (Figure 3, left). Hence, the
ideal interface-level graph G∗ideal = (Vsi, Eideal, OpS∗)
for si has two properties: (1) G∗ideal is complete; (2)
for all, (opi, opj) ∈ Eideal, OpS∗(opi, opj) = 1. Intu-
itively, the lack of cohesion for the service interface
si measures the amount of transformation that the
actual interface-level graph G∗si = (Vsi, Esi, OpS∗) of
si must withstand to become identical to the ideal
graph, G∗ideal. This practically amounts to adding
the missing edges and complementing the weights
of the existing edges to become equal to 1. For-
mally speaking, the lack of cohesion of si measures
the relative difference between G∗si and G∗ideal, i.e.,

LoC∗(si, OpS∗) =
|Eideal|−

∑
∀(opi,opj)∈Esi

(OpS∗(opi,opj))

|Eideal|
.

Given that |Eideal| =
|Vsi|∗(|Vsi|−1)

2 , with simple alge-
braic calculations we get the formula that is given in
Table 1(6).

3.2 Metrics Definitions

The proposed cohesion metrics refine the generic
definition of LoC∗ that was given in Section 3.1. In
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particular, the definitions of the metrics that we pro-
vide in the following paragraphs employ the notion
of interface-level graph; the interface-level graph that
is used for each metric relies on a different similarity
function between operations.

Message-Level Cohesion

The notion of message-level cohesion assumes that two
operations are related if their input (respectively, out-
put) messages are similar. To measure the similar-
ity between two messages we employ the notion of
message-level graph that is defined below.

Definition 4: (Message-level graph) A message-
level graph, Gm = (Vm, Em), for a message, m, is a
generic representation of the structure of m. Specifi-
cally, Gm consists of 3 layers:

• The first layer, comprises a node, vm ∈ Vm, that
represents the message itself.

• The second layer, comprises a set of nodes, which
represent the parameters that constitute m. The
edges between the first layer and the second layer
nodes represent whole-part relations.

• The third layer, details the structure of the types
of the parameters that constitute m. Hence, the
third layer may contain nodes that represent
primitive XML elements, or complex XML ele-
ments that consist of further (primitive or com-
plex) XML elements. The edges between the sec-
ond layer and the third layer nodes represent
type-of relations.

TABLE 2

Similarity functions.

MsgS(mi,mj) =
|Vmi∩mj

|

|Vmi∪mj
|

(1)

OpSmsg(opi, opj) =
MsgS(opi.in, opj .in)

2
+ (2)

MsgS(opi.out, opj .out)

2

OpSconv(opi, opj) =
MsgS(opi.in, opj .out)

2
+ (3)

MsgS(opi.out, opj .in)

2

OpSdom(opi, opj) =
|Topi

∩ Topj
|

|Topi
∪ Topj

|
(4)

Definition 5: (Message similarity) The similarity
between the two messages, mi, mj , (Table 2(1)) is
measured with respect to the message-level graphs,
Gmi

, Gmj
, of mi, mj . Specifically, let Gmi∩mj

=
(Vmi∩mj

, Emi∩mj
) denote the maximum common

subgraph of Gmi
, Gmj

that represents a syntacti-
cally correct XML schema. Moreover, let Gmi∪mj

=
(Vmi∪mj

, Emi∪mj
) be the union of Gmi

, Gmj
(i.e.,

Vmi∪mj
= Vmi

∪ Vmj
and Emi∪mj

= Emi
∪ Emj

).
Then, the similarity, MsgS(mi,mj), between mi and
mj is the number of nodes of Gmi∩mj

, divided by the
number of nodes of Gmi∪mj

.

(a) Messages of the GetQueueAttributes operation.

(b) Messages of the SetQueueAttributes operation.

Fig. 4. Examples of message-level graphs for

MessageQueue.

In general, finding the maximum common sub-
graph for two graphs is a hard problem to solve.
However, solving the problem for two message-level
graphs is much easier because the search space is
limited to a set of subgraphs that represent the XML
types of the parameters that constitute the messages.
Typically, the definitions of these XML types are pro-
vided in the service descriptions, separately from the
specification of the service interfaces (see WSDL 1.1,
WSDL 2.0 [32]).

Taking a step further, we define the message-level
similarity between two operations as follows.

Definition 6: (Message-level operation similarity)
The message-level similarity, OpSmsg , between two
operations, opi, opj ∈ si.O of a service interface, si,
is the average of (Table 2(2)):

1) the similarity between the input messages of opi
and opj and

2) the similarity between the output messages of
opi and opj .

Taking the example of Amazon SQS, Figure 4(a)
shows the message-level graph for the input
message of the GetQueueAttributes operation.
The GetQueueAttributesRequestMsg node
represents the message (first layer). The
GetQueueAttributes node is a parameter that
comprises of sequence of attributes (second layer).
The Attribute node represents a primitive XML
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string element (third layer).
Figure 4(a), further gives the message-

level graph for the output message of
the GetQueueAttributes operation. The
GetQueueAttributesResponseMsg node
represents the message (first layer). The
GetQueueAttributes node represents a parameter
that comprises of sequence of attribute value
pairs (second layer). The AttributedValue node
represents a complex XML element, which consists
of two primitive XML string elements, represented
by the Attribute and the Value nodes.

Similarly, Figure 4(b) gives the message-level
graphs for the input and the output messages of the
SetQueueAttributes operation.

The maximum common subgraph for the message-
level graphs of the two input messages comprises
only the Attribute node. The union of the two
graphs consists of 7 nodes. Hence, the similarity
between the two input messages is 1

7 . On the other
hand, the message-level graphs of the two output
messages have nothing in common. Thus, the similar-
ity between the two output messages is 0. Overall, the
message-level similarity between the two operations

is
1
7+0

2 .
Based on the message-level similarity between op-

erations, we refine the LoC∗ metric.
Definition 7: (Lack of message-level cohesion) For

a service interface, si, the lack of message-level co-
hesion, LoCmsg(si), is an alias for LoC∗(si, OpSmsg).
Specifically, LoCmsg(si) measures the relative dif-
ference between the interface-level graph, G

msg
si =

(Vsi, Esi, OpSmsg), defined based on the message-level
similarity function, OpSmsg , and the ideal interface-
level graph, Gmsg

ideal.

Fig. 5. G
msg
MessageQueue for MessageQueue.

In our example, Figure 5, gives the interface-level
graph for the MessageQueue interface that is derived
with respect to OpSmsg . For presentation purposes the
edges’ width is proportional to the similarity between
the operations. We see that the graph is not com-
plete. Moreover, the message-level relations between

the operations are weak; the similarities between the
operations range from 0.07 to 0.21. Overall, the lack of
message-level cohesion is LoCmsg(MessageQueue) =
0.98.

Conversation-Level Cohesion

The notion of conversation-level cohesion assumes that
an operation is related with another if the former’s
input (respectively output) message is similar with
the latter’s output (respectively input) message. More
formally, we define the conversation-level similarity
between two operations as follows.

Definition 8: (Conversation-level operation simi-
larity) The conversation-level similarity between two
operations, opi, opj ∈ si.O, of a service interface, si, is
the average of (Table 2(3)):

1) the similarity between the input message of opi
and the output message of opj and

2) the similarity between the output message of opi
and the input message of opj .

Returning to our example, the input message of
GetQueueAttributes (Figure 4(a)) and the out-
put message of SetQueueAttributes (Figure 4(b)),
have nothing in common. On the other hand,
the maximum common subgraph for the output
message of GetQueueAttributes and the input
message of SetQueueAttributes includes three
nodes (AttributedValue, Attribute and Value).
Hence, the conversation-level similarity between the

two operations is
3
7+0

2 .
Given the conversation-level similarity between op-

erations, we introduce the following refinement of the
LoC∗ metric.

Definition 9: (Lack of conversation-level cohe-
sion) For a service interface, si, the lack of
conversation-level cohesion, LoCconv(si), is an alias
for LoC∗(si, OpSconv). In particular, LoCconv(si) mea-
sures the relative difference between the interface-
level graph, Gconv

si = (Vsi, Esi, OpSconv), defined with
respect to the conversation-level similarity function,
OpSconv , and the ideal interface-level graph, Gconv

ideal.
Regarding our example, the interface-level graph

that shows the conversation-level relations for the
MessageQueue interface is given in Figure 6. As in
the case of message-level cohesion, the graph is not
ideal. The overall lack of conversation-level cohesion
is LoCconv(MessageQueue) = 0.98.

Domain-Level Cohesion

The basic intuition behind the notion of domain-level
cohesion is that the names of the operations that are
provided by a service reflect what these operations do.
More specifically, the names of the operations com-
prise terms that correspond to certain actions (e.g., set,
get) and terms that correspond to concepts of the domain
that is targeted by the service (e.g., queue, attribute,
message). Based on this intuition, two operations
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Fig. 6. Gconv
MessageQueue for MessageQueue.

are considered as being related if their names share
domain-level terms.

In our approach, we extract the domain-level terms
from the names of the operations, based on the nam-
ing conventions of the particular coding style that is
followed by the service provider. For instance, the
Amazon services follow the PascalCase coding style6

(the names of operations are sequences of terms with
the first letter of each term being capitalized). On the
other hand, the Yahoo services follow the Java coding
style7. Then, we measure the domain-level similarity
between two operations with the following similarity
function.

Definition 10: (Domain-level operation similarity)
Let Topi

and Topj
denote the sets of the domain-level

terms that are extracted from the names of two oper-
ations, opi, opj ∈ si.O, of a service interface, si. The
domain-level similarity between the two operations
(Table 2(4)) is the Jaccard similarity for Topi

and Topj

(i.e., the size of the intersection divided by the size of
the union of Topi

and Topj
).

Getting back to our example, the name of
GetQueueAttributes consists of the action term
Get, which is related with two domain-level
terms, Queue and Attributes. The name of
SetQueueAttributes comprises the action term
Set, which is also related with Queue and
Attributes. Therefore, the domain-level similarity
between the two operations is 2

2 .
The refinement of the LoC∗ metric, with respect to

the domain-level similarity between two operations,
is given below.

Definition 11: (Lack of domain-level cohesion)
The lack of domain-level cohesion, LoCdom(si), for a
service interface, si, is an alias for LoC∗(si, OpSdom).
LoCdom(si) measures the relative difference between
the interface-level graph, Gdom

si = (Vsi, Esi, OpSdom),
defined with respect to the domain-level similarity

6. msdn.microsoft.com/en-us/library/x2dbyw72(v=vs.71).aspx

7. www.oracle.com/technetwork/java/codeconventions-135099.html

Fig. 7. Gdom
MessageQueue for MessageQueue.

function, OpSdom, and the ideal interface-level graph,
Gdom

ideal.

Concerning our example, in Figure 7, we have
the interface-level graph that shows the domain-
level relations for the MessageQueue interface. As
in Figures 5 and 7 the graph is not complete. How-
ever, the domain-level relations are generally strong;
the similarities between operations range from 0.3
to 1. Overall, the lack of domain-level cohesion is
LoCdom(MessageQueue) = 0.81.

4 COHESION-DRIVEN DECOMPOSITION

In this section, we detail the method that exploits
the metrics defined in Section 3 for the cohesion-
driven decomposition of service interfaces. Moreover,
in Appendix C we provide a complementary analysis
that concerns the stopping criteria and the complexity
of the method.

At a glance, the cohesion-driven decomposition of
service interfaces accepts as input a service interface,
si, which is progressively split in more cohesive in-
terfaces (Algorithm 1). Note that although we assume
as input a single service interface, the method can be
easily applied in the case of a service that provides
multiple interfaces. In such case, the interfaces of the
service can be merged into a single interface. Then,
this interface can be given as input to the cohesion-
driven decomposition method. As the decomposition
proceeds, si is split in several interfaces, all of which
are candidates to be further divided. To this end, we
employ a queue, Q, which contains the interfaces that
are candidates for decomposition (Algorithm 1, line
1). Initially, Q contains only the given interface, si

(Algorithm 1, line 3). During each step (Algorithm 1,
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Algorithm 1: decomposeInterface()

Input: si : Interface /* An interface that is decomposed in more
cohesive interfaces */

Output: RI = {r : Interface} /* The produced set of interfaces */
1. var Q : Queue /* A queue that stores intermediate interfaces */
2. RI ← ∅
3. Q.enqueue(si)
4. repeat
5. var ri : Interface /* holds an intermediate interface picked from

the queue Q */
6. var rs : Interface /* the splinter interface that comprises

operations removed from ri */
7. var rr : Interface /* the interface that comprises the remaining

operations of ri */
8. ri ← Q.dequeue()
9. rs ← null

10. rr ← null
11. (rs, rr)← createSplinter(ri) /* Phase 1: Returns the splinter rs

and rr . */
12. if rs = null then
13. RI ← RI ∪ {ri} /* LoC∗(ri) can not be further improved. */
14. else
15. (rs, rr)← populateSplinter(rs, rr, ri) /* Phase 2: Populate

rs. */
16. Q.enqueue(rr)
17. Q.enqueue(rs)
18. end if
19. until Q.size() = 0
20. return RI

lines 5-20), the method dequeues from Q an interme-
diate interface ri and checks whether it is possible
to improve the cohesion of ri, by removing a set of
operations, which form a new interface rs. Hereafter,
we use the term splinter interface to refer to rs, while
rr denotes the interface that comprises the rest of the
operations of ri.

The construction of the splinter interface takes place
in two phases. The first phase, called createSplinter,
checks if it is possible to improve the cohesion of
ri, by removing an operation (Algorithm 1, line 11).
If this phase fails to find such an operation, ri is
inserted in the results set, RI (Algorithm 1, lines 12-
13). Otherwise, the splinter interface, rs, that contains
the operation is returned as a result of createSplinter,
along with the interface rr that contains the re-
maining operations of ri. The second phase, called
populateSplinter, further improves the cohesion of rs
and rr, by moving operations from rr to rs (Algo-
rithm 1, line 15). Finally, the two interfaces, rs, rr are
inserted in Q (Algorithm 1, lines 16-17).

In further detail, the two phases of the decomposi-
tion are discussed below.

The createSplinter phase accepts as input the in-
termediate interface, ri, that is picked from Q (Al-
gorithm 2). Following, it iterates over the operations
of ri (lines 9-16). Each iteration checks whether the
removal of a single operation, opi, from ri improves
the cohesion of the interface (line 12). To this end,
the removal of opi is simulated with the help of a
temporary interface, rtmp. Moreover, each iteration
keeps track of the maximum cohesion improvement,
δmax, that can be achieved, and of the operation, ops,

Algorithm 2: createSplinter()
Input: ri : Interface /* An intermediate interface picked from Q */
Output: rs : Interface /* The splinter interface that is created */

rr : Interface /* The interface that contains the remaining
operations of ri */

1. var ops : Operation /* The operation, whose removal maximizes the
cohesion improvement of ri */

2. var δmax : Float /* The max cohesion improvement that can be
achieved by removing an operation from ri */

3. var rtmp /* A temporary interface used to simulate the interface that
results from the removal of an operation from ri */

4. rs ← null
5. rr ← null
6. δmax ← 0
7. ops ← null
8. rtmp ← null
9. for all opi ∈ ri.O do

10. rtmp ← new Interface
11. rtmp.O ← ri.O − {opi}
12. if LoC∗(ri)− LoC∗(rtmp) > δmax then
13. δmax ← LoC∗(ri)− LoC∗(rtmp)
14. ops ← opi

15. end if
16. end for
17. if δmax > 0 then
18. rs ← new Interface
19. rs.O ← {ops}
20. rr ← new Interface
21. rr.O ← ri.O − {ops}
22. end if
23. return (rs, rr)

that should be removed to achieve this improvement
(lines 12-15). After this iterative process, if δmax > 0,
the splinter interface, rs, that contains ops is cre-
ated, along with the interface, rr that contains the
remaining operations of ri (lines 17-22). The two new
interfaces are returned as the results of createSplinter
(line 23). On the other hand, if is not possible to
improve the cohesion of ri, by removing an operation
(i.e., δmax = 0), the results of createSplinter are null.

The populateSplinter phase accepts as input the
intermediate interface, ri, and the newly created inter-
faces, rs, rr (Algorithm 3). Then, it repeatedly moves
operations from rr to rs (lines 9-33) as follows:

• The populateSplinter iterates over the operations
of rr (lines 15-28). Each iteration checks if an
operation, opi, can be moved from rr to rs. To
perform this check, the movement of the oper-
ation is simulated with the help of two tempo-
rary interfaces, rrtmp

, rstmp
. In particular, rrtmp

is
employed to calculate the cohesion improvement,
δrr , that can be achieved for rr, if the operation is
moved (lines 16-18). Similarly, rstmp

is employed
to calculate the cohesion improvement, δrs , that
can be achieved for rs (lines 19-21). The opera-
tion, opi, is considered as a candidate to be moved
if the following conditions hold (line 22): (a) the
cohesion of rr, after the move, is improved, i.e.,
δrr > 0, (b) the cohesion of rs, after the move,
is also improved, i.e., δrs > 0, and (c) the lack of
cohesion of rs, after the move, is smaller than the
lack of cohesion of the intermediate interface ri
that was picked from Q. Each iteration further
keeps track of the total cohesion improvement
that can be achieved, by moving opi, from rr to
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Algorithm 3: populateSplinter()
Input: ri : Interface /* An intermediate interface picked from Q */

rs : Interface /* The splinter interface that was created in Phase 1 */
rr : Interface /* The interface that contains the remaining
operations of ri */

Output: rs : Interface /* The populated splinter interface that comprises
operations removed from rr */
rr : Interface /* The interface that contains the remaining
operations of ri */

1. var δrr : Float /* The cohesion improvement that can be achieved
by removing an operation from rr */

2. var δrs : Float /* The cohesion improvement that can be achieved
by adding an operation to rs */

3. var δtotal : Float /* The total cohesion improvement (δrr + δrs )
that can be achieved by moving an operation from rr to rs */

4. var ops : Operation /* The operation that is moved from rr to rs */
5. var rrtmp

, rstmp
: Interface /* Temporary interfaces used to

simulate the interfaces that result after moving an operation from rr
to rs */

6. rrtmp
← null

7. rstmp
← null

8. /* Move operations from rr to rs */
9. repeat

10. ops ← null
11. δrr ← 0
12. δrs ← 0
13. δtotal ← 0
14. /* Find the operation ops that improves the cohesion of rr and rs,

and maximizes δtotal */
15. for all opi ∈ rr.O do
16. rrtmp

← new Interface

17. rrtmp
.O ← rr.O − {opi}

18. δrr ← LoC∗(rr)− LoC∗(rrtmp
)

19. rstmp
← new Interface

20. rstmp
.O ← rs.O ∪ {opi}

21. δrs ← LoC∗(rs)− LoC∗(rstmp
)

22. if ((δrr > 0) ∧ (δrs > 0) ∧ (LoC∗(rstmp
) < LoC∗(ri)))

then
23. if δrs + δrr > δtotal then
24. δtotal ← δrs + δrr
25. ops ← opi

26. end if
27. end if
28. end for

/* Move the operation ops */
29. if ops 6= null then
30. rr.O ← rr.O − {ops}
31. rs.O ← rs.O ∪ {ops}
32. end if
33. until ops = null
34. return (rs, rr)

rs. Moreover, it keeps track of the operation ops
that maximizes the total cohesion improvement
that can be achieved (lines 23-26).

• The operation, ops, that maximizes the total co-
hesion improvement, δtotal, is moved from rr to
rs (lines 29-32).

• The whole process stops when ops = null (line
33) and the updated rs, rr are returned (line 34).

Back to our example, Figures 8, 9 and 10, give
the three different decompositions of MessageQueue
that result based on LoCmsg , LoCconv and LoCdom,
respectively 8. In particular, the message-level decom-
position of MessageQueue consists of 6 interfaces.
The average lack of message-level cohesion of the
interfaces is 0,92. Hence, an improvement has been
made compared to the initial interface (Figure 5), but
the improvement is small. This result is anticipated

8. The input to the method was the 2007 version of the interface,
aws.amazon.com/articles/Amazon-SQS/1148

Fig. 8. Decomposition of MessageQueue, based on

LoCmsg.

Fig. 9. Decomposition of MessageQueue, based on

LoCconv.

because the message-level relations between the op-
erations of MessageQueue are not strong (Figure 5).
The conversation-level decomposition consists of 7
interfaces. The average lack of conversation-level co-
hesion in this case is 0.88. Again, the improvement
compared to the initial interface is small, because the
conversation-level relations between the operations
of MessageQueue are not strong (Figure 6). The
domain-level decomposition of MessageQueue con-
sists of 4 interfaces and the average lack of domain-
level cohesion is 0.13. The improvement in this case
is high, since the domain-level relations between the
operations of MessageQueue are quite strong (Fig-
ure 7).

Figure 11, provides an detailed view of the execu-
tion of Algorithm 1 in the case of LoCdom. Specifi-
cally, in the first step, the general queue management
operations (DeleteQueue, SetQueueAttributes

and GetQueueAttributes) are removed from
MessageQueue. These operations constitute the
splinter interface, rs1 (in Figure 2, this interface
appears with the name QueueMgt). The remain-
ing operations form rr1 . Overall, the lack of co-
hesion of rs1 is 0.33, while the lack of co-
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Fig. 10. Decomposition of MessageQueue, based on

LoCdom.

hesion of rr1 is 0.72. In the second step, rr1
is decomposed. In particular, the timeout man-
agement operations (GetVisibilityTimeout and
SetVisibilityTimeout) are removed from rr1 ,
and the splinter interface, rs2 , is formed (in Figure 2,
this interface is called TimeoutMgt). The rest of the
operations of rr1 , form rr2 . The lack of cohesion of
rs2 is 0, while the lack of cohesion of rr2 is 0.61.
In the last step, rr2 is decomposed, by removing
the access rights management operations (AddGrant,
RemoveGrant and ListGrants), which constitute
the splinter interface, rs3 (in Figure 2, this interface
is named GrantsMgt). The rest of the operations are
related to messaging and form rr3 (in Figure 2, this
interface appears as MsgMgt). The lack of cohesion
of rs3 is 0, while the lack of cohesion of rr3 is
0.2. To sum up, the results of the decomposition of
MessageQueue are RI = {rs1 , rs2 , rs3 , rr3}.

5 VALIDATION

Amazon and Yahoo are two major service providers
that offer a wide variety of Web services. To validate
the proposed approach, we selected services that pro-
vide interfaces with at least 10 operations. Overall,
we used 11 Amazon services and 11 Yahoo services9.
Hereafter, we use identifiers A1-A11 and Y1-Y11 to
refer, respectively, to the interfaces of the Amazon
and the Yahoo services that we used. Table 3 provides
the mapping between the identifiers and the service
interfaces, along with the sizes of the interfaces (i.e.,
the number of provided operations) and the values of
LoCmsg , LoCconv and LoCdom for the interfaces.

In the rest of this section we detail our findings.
In Section 5.1 we concentrate on the effectiveness of
the proposed approach from a quantitative perspec-
tive. In Section 5.2, we discuss the usefulness of the

9. The WSDL specifications of the Amazon and the Yahoo services can be
found at: www.cs.uoi.gr/˜zarras/WS-Decomp-Material/

Fig. 11. Decomposing the MessageQueue interface.

approach from the developers’ perspective. Finally, in
Section 5.3 we discuss threats to validity.

TABLE 3

Amazon & Yahoo case studies.

(a) Amazon: aws.amazon.com/

Service Interface
Name Size ID LoCmsg LoCconv LoCdom

AmazonEC2PortType 87 A1 0.98 0.99 0.94
MechanicalTurkRequesterPortType 27 A2 0.92 0.84 0.83

AmazonFPSPortType 27 A3 0.92 0.97 0.96
AmazonRDSv2PortType 23 A4 0.91 0.96 0.56
AmazonVPCPortType 21 A5 0.95 0.98 0.82

AmazonFWSInboundPortType 18 A6 0.93 0.96 0.73
AmazonS3 16 A7 0.89 0.97 0.75

AmazonSNSPortType 13 A8 0.96 0.97 0.84
ElasticLoadBalancingPortType 13 A9 0.93 0.97 0.72

MessageQueue 13 A10 0.98 0.98 0.81
AutoScalingPortType 13 A11 0.96 0.98 0.79

(b) Yahoo:developer.searchmarketing.yahoo.com/docs/V6/reference/

Service Interface
Name Size ID LoCmsg LoCconv LoCdom

KeywordService 34 Y1 0.84 0.93 0.91
AdGroupService 28 Y2 0.84 0.94 0.65

UserManagementService 28 Y3 0.96 0.97 0.91
TargetingService 23 Y4 0.74 0.96 0.74
AccountService 20 Y5 0.92 0.98 0.88

AdService 20 Y6 0.79 0.89 0.88
CampaignService 19 Y7 0.83 0.91 0.91

BasicReportService 12 Y8 0.91 0.99 0.92
TargetingConverterService 12 Y9 0.84 0.80 0.53

ExcludedWordsService 10 Y10 0.72 0.81 0.54
GeographicalDictionaryService 10 Y11 0.79 0.99 0.65

5.1 Effectiveness

To assess the effectiveness of the approach from a
quantitative perspective we focus on the following
research questions:

RQ1: To what extent is cohesion improved by adopting
the proposed method ?

RQ2: Is the number of produced interfaces reasonable
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with respect to the size of the decomposed inter-
face ?

To respond to these questions we decomposed
the examined service interfaces, based on the met-
rics that we defined in Section 3, and the method
that we detailed in Section 4. To address RQ1, we
measured the cohesion improvement, CI(si), that is
achieved for a service interface si. Formally, for
a set of interfaces, RI , produced by the proposed
method for si, the cohesion improvement is: CI(si) =

LoC∗(si,OpS∗)−

∑
∀r∈RI

(LoC∗(r,OpS∗))

|RI |

LoC∗(si,OpS∗)
∗ 100%. To address

RQ2, we measured the number of interfaces, DS(si) =
|RI |, produced by the proposed method for si. We
further examined the relation between the number of
operations offered by si (the independent variable)
and DS(si) (the dependent variable), using ordinary
least squares regression (OLS). Hereafter, we use the
term, decomposition of si, to refer to the set of interfaces,
RI , that is produced by the proposed method for si.
Moreover, we use to term, size of decomposition, to refer
to DS(si).

RQ1: Figure 12(left col.), gives the values of CI

that we obtained for the examined service interfaces.
Concerning our first question, the combination of
the proposed method with the domain-level cohesion
metric (i.e., LoCdom) was effective in all cases. The
cohesion improvement for the domain-level decom-
positions is medium-high (CI ranges from 38% to
100%). The combination of the proposed method with
the message-level cohesion metric (i.e., LoCmsg) was
also effective in all cases. The cohesion improvement
for the message-level decompositions is medium (CI

is up to 41.9%). Finally, the combination of the pro-
posed method with the conversation-level cohesion
metric (i.e., LoCconv) was effective in 77% of the cases.
The cohesion improvement for the conversation-level
decompositions is low. In 5 cases (A9, Y2, Y4, Y7,
Y10), the similarities between the operations of the
examined interfaces were such that the conversation-
level cohesion of the initial interfaces could not be
further improved.

RQ2: Figure 12(middle col.), gives the values of DS

that resulted for the examined interfaces. Moreover,
Figure 12(right col.) gives the results of the OLS
analysis; in the x-axis of the scatter plots we have the
number of the operations that are offered by the ex-
amined interfaces, in the y-axis we have the values of
DS, and at the lower left corner of the scatter plots we
have the regression equations and the values of the R2

statistic. In general, the values of the R2 statistic range
from 0 to 1; high R2 values indicate that a regression
equation explains well the relationship between the
variables involved in the equation. In our analysis, the
values of the R2 statistic are quite high (ranging from
0.71 to 0.89). Thus, the size of the decompositions,
produced by the proposed method, linearly increases

with the number of operations that are offered by
the decomposed interfaces. The regression equations
that we obtained for the different cohesion metrics
are similar. The maximum value of the regression
coefficients that could result from the OLS analysis
is 1. A regression coefficient that equals to 1, would
mean that the number of interfaces that are produced
by the decomposition method equals to the number
of operations of the decomposed interface. In our
analysis, the regression coefficients are quite small,
ranging from 0.33 to 0.35. Hence, the size of the
produced decompositions is reasonable, with respect
to the number of operations of the decomposed in-
terface. Nevertheless, there are certain cases where
the size of the produced decompositions is relatively
high – see Fig. 12(middle col.). For instance, for the
combination of the decomposition method with the
domain-level cohesion metric we have the cases of
A3 and Y3. Similarly, for the combination of the de-
composition method with the message-level cohesion
metric we have the cases of A3 and Y7. Finally, for
the combination of the decomposition method with
the conversation-level cohesion metric we have the
cases of A2 and Y5.

5.2 The Developers’ Opinions

To evaluate the usefulness of the approach from the
developers’ perspective we investigate the following
research questions:

RQ1: Does the proposed approach produce useful re-
sults for the developers ?

RQ2: What are the developers’ preferences (if any)
concerning the metrics that are employed ?

RQ3: To what extent should the results be refined to
fully satisfy the developers’ needs ?

To address the aforementioned questions we looked
for volunteers with the following skills: software
development experience; knowledge of the service-
oriented computing paradigm, related technologies
and standards. Overall, 10 volunteers participated in
our study. The participants had 3 to 15 years experi-
ence in software development. They were all familiar
with the service-oriented computing paradigm.

We organized the participants in two groups. The
first group assessed the decompositions of the Ama-
zon service interfaces, while the second group as-
sessed the decompositions of the Yahoo service inter-
faces.

In a first meeting with the participants, we ex-
plained the overall purpose of the study, without
giving any details, concerning the metrics and the
method used for the decomposition of the examined
service interfaces. Following, we gave to each partic-
ipant a document 10 that contained the following in-
formation for each one of the examined interfaces: (a)

10. The documents can be found at
www.cs.uoi.gr/˜zarras/WS-Decomp-Material/
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Cohesion Improvement (CI) Decomposition Size (DS) Regression Analysis

Domain
level
decomp.
(LoCdom)

Message-
level
decomp.
(LoCmsg)

Conv.-
level
decomp.
(LoCconv)

Fig. 12. Effectiveness Assessment

a high-level description (represented as a UML class)
of the interface; (b) the domain-level, the message-
level and the conversation-level decompositions of the
interface. The decompositions were given in random
order. The document further contained detailed in-
structions concerning the assessment tasks that should
be performed for each one of the examined service
interfaces:

• In the first task, the participants had to choose
whether a service interface should be decom-
posed, or remain as is.

• In the second task, the participants had to report
which of the provided decompositions is closest
to their preferences; in this task the participants
could also report that none of the provided de-
compositions is satisfactory.

• The third task was to suggest, if necessary, further
changes on a selected decomposition.

In a second meeting with each of the participants,
we collected the documents and we analyzed the
participants’ feedback. The participants’ feedback is
summarized in Figure 13. In this figure we use the
following notations that correspond to the possible
choices that could be made by a participant for a par-
ticular service interface: NO-SPLIT - the participant
suggested that the interface should not be decom-
posed; NONE - none of the provided decompositions
was selected by the participant; Msg - the participant
selected the message-level decomposition; Conv - the
participant selected the conversation-level decompo-
sition; Dom - the participant selected the domain-level
decomposition. Figure 13(a), gives for each service the
percentage of the participants that made a particular
choice. Finally, Figure 13(b) gives for each participant
the percentage of the services for which he/she made
a particular choice.

(a) The choices made for each service.

(b) The choices made by each participant.

Fig. 13. Usefulness from the developers’ perspective.

RQ1: Concerning the first question, the participants
suggested to decompose most of the examined in-
terfaces. The only exceptions are Y3, Y6, Y7 and
Y11 (Figure 13(a)). For Y3, Y7 and Y11, one of the
participants suggested to leave the interface as is,
while the others were in favor of decomposing the
interface. For Y6, two of the participants suggested
to leave the interface as is. For most of the service
interfaces, the participants selected decompositions
that were among the ones that we provided. In the
Amazon services, we have 4 cases (A3, A6, A7, A11
in Figure 13(a)), for which one of the participants was
not satisfied by any of the provided decompositions.
For A6 and A7, the participants proposed their own
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decompositions. Specifically, the proposed decompo-
sition for A6 was: ”3 interfaces to manage fulfilment,
items and shipments”. For A7 the suggestion was: ”3
interfaces for objects, buckets, access policies”. In the
Yahoo services, we have the case of Y1 (Figure 13(a)),
for which two of the participants were not satisfied by
any of the provided decompositions. The participants
pointed out that the proposed decompositions do not
separate clearly the underlying concepts (keywords,
bids, adGroups, optimization guidelines). Moreover,
in the Yahoo services we have the case of Y5 (Fig-
ure 13(a)), for which one of the participants proposed
his own decomposition: ”three sets of operations one
for the standard accounts, one for the mobile accounts
and one for the credit cards”.

RQ2: Regarding the second question, the domain-
level cohesion metric worked very well for the par-
ticipants. Specifically, in 63% of the services, more
than 80% of the participants selected the domain-
level decomposition (Figure 13(a)). Concerning each
one of the participants, the percentage of the services
for which the domain-level decomposition was se-
lected ranges from 36% to 100% (Figure 13(b)). On
the other hand, the percentage of the services for
which the message-level decomposition was selected
ranges from 0% to 36% (Figure 13(b)). Finally, the
percentage of the services for which the conversation-
level decomposition was selected ranges from 0% to
9% (Figure 13(b)).

RQ3: Concerning the third question, in several cases
the participants did not suggest any changes in the
selected decompositions. In the 55 decompositions
that have been chosen for the Amazon services (5
participants × 11 services) there were 21 such occur-
rences; in the 55 decompositions of the Yahoo services
this amounted to 18 occurrences. However, we also
have several cases for which the participants moved
certain operations between interfaces. In the 55 de-
compositions that have been chosen for the Amazon
services there were 20 such occurrences; in the 55 Ya-
hoo decompositions, this amounted to 14 occurrences.
Moreover in several cases the participants decreased
the size of the decompositions by merging certain
interfaces. Specifically, we had 21 occurrences for the
Amazon services and 24 occurrences for the Yahoo
services. The details of the individual participants
suggestions are found in Appendix D.

To conclude this study, we performed a X2 test, so
as to check the statistical significance of the results.
The goal of the test was to examine the following null
hypothesis:
H0: The choices that have been made by the partici-
pants are not significantly different from the ones that
we would have by chance alone.

Table 4 provides the details for the X2 test that we
performed. In particular, the first row of Table 4 gives
the percentages of NO-SPLIT, NONE, Msg, Conv and
Dom that we observed in the study in the overall 110

TABLE 4

X2 test for the overall results.

NO-SPLIT NONE Msg Conv Dom

Observed 4.50% 13.51% 2.70% 73.87% 5.40%
Expected 20.00% 20.00% 20.00% 20.00% 20.00%
Squared diffs. 12.00 2.10 14.95 145.11 10.65
X2 184.83
ρ value 6.81E-39

choices that have been made by the participants (22
services × 5 participants per service). The second row
of Table 4 gives the percentages of NO-SPLIT, NONE,
Msg, Conv and Dom, that we would have by chance
alone. Based on the squared differences between the
expected and the observed percentages, the overall X2

value that we got is 184.83. Then, according to the X2

distribution, the probability of having a X2 as large
as 184.83, by chance alone, is too small (ρ ≪ 0.001).
Therefore, we rejected H0.

5.3 Threats to Validity

A possible threat to the internal validity of the results
that we obtained from the developers’ involved in the
validation is the developers’ fatigue or boredom [33].
To reduce this threat we arranged our study according
to the developers’ availability, instead of imposing a
strict schedule. To avoid effects caused by interactions
between the developers [33], we made clear that the
required tasks should not be performed in a collabo-
rative manner. Finally, to avoid learning effects [33],
the different decompositions of each interface were
provided to the developers in a random order.

External validity concerns whether the results of a
study can be generalized to a wide population [33].
Regarding external validity, the positive aspects of our
validation are the following:

• It is among the very few ones [34], [6] that involve
real services. Specifically, we used a represen-
tative set of services, provided by two major
service providers; the services offer diverse func-
tionalities and their interfaces vary in size and
complexity.

• It was based on a representative set of develop-
ers that have knowledge of the service-oriented
computing paradigm, related technologies and
standards.

On the other hand, a possible limitation is that
the validation was not based on a large number of
developers. Nevertheless, the number of developers
that we considered is comparable with other similar
studies [5], [9], [7].

6 CONCLUSION

In this paper, we have proposed an approach that
enables the cohesion-driven decomposition of service
interfaces, without information of how the services
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are implemented. The proposed approach iteratively
decomposes a given service interface in a set of more
cohesive interfaces. We validated the approach in 22
real-world services provided by Amazon and Yahoo.
Our findings showed that the proposed approach is
able to improve cohesion. The number of interfaces
produced by the approach linearly increases with
the size of the decomposed interface. In general,
the developers found the proposed approach useful.
As anticipated, the decompositions produced by the
method are not perfectly adjusted to the developers’
needs. In certain cases the developers would prefer
smaller and even more cohesive decompositions. Fu-
ture work can be pursued towards avoiding unneces-
sary splits, interactiveness with the user and working
with semantically annotated services.
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APPENDIX A
SUMMARY OF RELATED WORK

Table 5, provides a summary of metrics-driven refac-
toring approaches that have been proposed in the
past and highlights the contribution of our approach
for the cohesion-driven decomposition of service in-
terfaces. Moreover, Table 6, briefly summarizes the
relation between the cohesion metrics that we employ
in our approach, the object-oriented cohesion metrics
surveyed in [29], and the service-oriented cohesion
metrics that have been proposed in [5], [6], [30].

TABLE 5

A summary of metrics-driven refactoring approaches.

Refactoring Purpose Type of relations
Approach
[24] Class coupling Implementation-level
[7] Class cohesion Implementation-level
[8] Class cohesion Implementation-level
[9] Class cohesion Implementation-level
[10] Class coupling, Implementation-level

cohesion
[11] Class coupling, Implementation-level

cohesion
[12] Class coupling, Implementation-level

cohesion,
code complexity

[13] Class coupling, Implementation-level
cohesion,
code complexity

[14] Class coupling, Implementation-level
cohesion, code size

[15] Class coupling, Implementation-level
cohesion, code size,
code complexity

Proposed Service interfaces Interface-level
approach cohesion

TABLE 6

A summary of cohesion metrics [29], [5], [6], [30].

Implementation-level Interface-level
Class LCOM1, LCOM2, CAMC, NHD,
cohesion LCOM3, LCOM4, SNHD, MMAC

LCOM5, TCC, LCC, CAMC,
DCD, DCI , CC,
SCOM , DMC,
CBMC, LSCC

Service SIIC, SCV SIDC, SISC, SIUC
cohesion Proposed metrics:

LoCmsg , LoCconv , LoCdom

APPENDIX B
ANALYTIC VALIDATION OF COHESION MET-
RICS

In the 90’s, Briand et al. [31] proposed a mathematical
framework for the theoretical validation of cohesion
metrics. Here, we rely on this framework for the

validation of the metrics that we employ for the
cohesion-driven decomposition of service interfaces.
Briefly, in [31], a software system is represented by
a graph S = (E,R), where E is the set of elements
that constitute the system and R ⊆ E × E is a set of
relations between elements. A module of the system
is represented by a graph m = (Em, Rm), where
Em ⊆ E, and Rm ⊆ R. According to Briand et al., a
cohesion metric has to satisfy the following properties:

• Nonnegativity and normalization: The cohesion of
a module m = (Em, Rm) belongs to a specified
interval, i.e., cohesion(m) ∈ [0,M ].

• Null value: The cohesion of a module m =
(Em, Rm) is null if Rm is empty, i.e., Rm = ∅ ⇒
cohesion(m) = 0.

• Monotonicity: Let m = (Em, Rm) and m′ =
(Em, Rm′) be two modules (with the same set
of elements), such that Rm ⊆ Rm′ . Then,
cohesion(m) ≤ cohesion(m′).

• Cohesive modules: Let m1 = (Em1 , Rm1) and m2 =
(Em2

, Rm2
) be two unrelated modules and m1∪2

is the union of m1, m2. Then, cohesion(m1∪2) ≤
max(cohesion(m2), cohesion(m2)).

For brevity, we focus our validation on LoC∗. The
three different refinements of LoC∗ can be validated
identically. Differently from [31], the metrics that we
consider measure the lack of cohesion of service in-
terfaces. Moreover, the interface-level graphs that we
employ are weighted. Hence, we appropriately adapt
the properties that should hold for the proposed
metrics. We begin our validation with the proof of
a supportive lemma, which concerns the similarity
functions that we employ. Then, we prove that LoC∗
satisfies the properties of the Briand et al. framework.

Lemma 1: The similarity functions that we use for
the different notions of cohesion belong to the interval
[0, 1].

Proof: In the case of message-level cohesion, the simi-
larity, OpSmsg(opi, opj), between two operations is the
average of the similarities between the input/output
messages of opi, opj . The similarity, MsgS(mi,mj),
between two messages is measured based on the
message-level graphs Gmi

, Gmj
of the messages. On

the one extreme, the maximum common subgraph
Gmi∩mj

of Gmi
, Gmj

may be trivial if Gmi
, Gmj

have
nothing in common. In this case we have:

|Vmi∩mj
| = 0 (1)

On the other extreme, Gmi
, Gmj

may be identical, in
which case we have:

|Vmi
| = |Vmj

| = |Vmi∩mj
| = |Vmi∪mj

| (2)

From (1) and (2) we have:

0 ≤ MsgS(mi,mj) ≤ 1 ⇒

0 ≤ OpSmsg(opi, opj) ≤ 1 (3)
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In conversation-level cohesion, the similarity
OpSconv(opi, opj) is also an average of message
similarities. Hence:

0 ≤ OpSconv(opi, opj) ≤ 1 (4)

In domain-level cohesion, the similarity OpSdom(opi, opj)
is measured based on the sets of domain-level terms
Topi

and Topj
. On the one extreme, Topi

and Topj
may

have nothing in common. In this case we have:

|Topi
∩ Topj

| = 0 (5)

On the other extreme, Topi
and Topj

may be identical,
in which case we have:

|Topi
| = |Topj

| = |Topi
∪ Topj

| = |Topi
∩ Topj

| (6)

(5) and (6) imply that:

0 ≤ OpSdom(opi, opj) ≤ 1 (7)

Theorem 1: For a service interface, si, and the
interface-level graph, G∗si = (Vsi, Esi), that represents
the interface, 0 ≤ LoC∗(si, OpS∗) ≤ 1.

Proof: Based on Lemma 1, for any two operations
opi, opj of si we have:

0 ≤ OpS∗(opi, opj) ≤ 1 (8)

From graph theory we further have:

|Esi| ≤
|Vsi| ∗ (|Vsi| − 1)

2
(9)

Based on (8) and (9) the following holds:

0 ≤

∑
∀(opi,opj)∈Esi

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

≤ 1 ⇒

0 ≤ LoC∗(si, OpS∗) ≤ 1 (10)

Theorem 2: Let si be a service interface, represented
by the interface-level graph, G∗si = (Vsi, Esi). If Esi =
∅, then LoC∗(si, OpS∗) = 1.

Proof: Given that Esi is empty we have:

Esi = ∅ ⇒
∑

∀(opi,opj)∈Esi

OpS∗(opi, opj) = 0 ⇒

LoC∗(si, OpS∗) = 1 (11)

Theorem 3: Let si, si′ be two service
interfaces, represented by the interface-level
graphs, G∗si = (Vsi, Esi), G∗si = (Vsi, Esi′).
G∗si and G∗si′ have the same nodes. Moreover,
Esi ⊆ Esi′ and

∑
∀(opi,opj)∈Esi

OpS∗(opi, opj) ≤∑
∀(opi,opj)∈Esi′

OpS∗(opi, opj). Then,
LoC∗(si, OpS∗) ≥ LoC∗(si

′, OpS∗).

Proof: Given the initial assumptions
of the theorem for si and si′ (i.e., G∗si
and G∗si′ have the same nodes, Esi ⊆
Esi′ , and

∑
∀(opi,opj)∈Esi

OpS∗(opi, opj) ≤∑
∀(opi,opj)∈Esi′

OpS∗(opi, opj)), the following
implications hold:

∑
∀(opi,opj)∈Esi

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

≤

∑
∀(opi,opj)∈Esi′

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

⇒

1−

∑
∀(opi,opj)∈Esi

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

≥

1−

∑
∀(opi,opj)∈Esi′

OpS∗(opi, opj)

|Vsi|∗(|Vsi|−1)
2

⇒

LoC∗(si, OpS∗) ≥ LoC∗(si
′, OpS∗) (12)

Theorem 4: Let si1, si2 be two unrelated ser-
vice interfaces, represented by the interface-level
graphs, G∗si1 = (Vsi1 , Esi1), G∗si2 = (Vsi2 , Esi2).
Let si1∪2 be the union of si1, si2, represented by,
G∗si1∪2

= (Vsi1∪2
, Esi1∪2

). Then, LoC∗(si1∪2, OpS∗) ≥
max(LoC∗(si1, OpS∗), LoC∗(si2, OpS∗)).

Proof: Without loss of generality, we assume that
si2 is more cohesive than si1. Based on this assump-
tion, we have:

LoC∗(si1, OpS∗) ≥ LoC∗(si2, OpS∗) ⇒∑
(opi,opj)∈Esi1

OpS∗(opi, opj)

|Vsi1
|∗(|Vsi1

|−1)

2

≥

∑
(opi,opj)∈Esi2

OpS∗(opi, opj)

|Vsi2 |∗(|Vsi2 |−1)

2

⇒

|Vsi2 | ∗ (|Vsi2 | − 1) ∗
∑

Esi1

OpS∗(opi, opj) ≥

|Vsi1 | ∗ (|Vsi1 | − 1) ∗
∑

Esi2

OpS∗(opi, opj) (13)

Given that si1, si2 are unrelated we have that:

∀(opsi1 , opsi2) ∈ Vsi1 × Vsi2 ,

OpS∗(opsi1 , opsi2) = 0 (14)

From (14) we derive the following for the interface-
level graph G∗si1∪2

that represents the union of si1, si2:

Vsi1∪2
= Vsi1 ∪ Vsi2 (15)

Esi1∪2
= Esi1 ∪ Esi2 (16)

From (15), (16) we have that:
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LoC∗(si1∪2, OpS∗) = (17)

1−

∑
Esi1

OpS∗(opi, opj) +
∑

Esi2
OpS∗(opi, opj)

(|Vsi1 |+|Vsi2 |)∗(|Vsi1 |+|Vsi2 |−1)

2

Given (17), to prove the theorem we have to show
that the following inequality holds:

1−

∑
Esi1

OpS∗(opi, opj) +
∑

Esi2
OpS∗(opi, opj)

(|Vsi1
|+|Vsi2

|)∗(|Vsi1
|+|Vsi2

|−1)

2

≥

1−

∑
(opi,opj)∈Esi1

OpS∗(opi, opj)

|Vsi1
|∗(|Vsi1

|−1)

2

(18)

From (18), with trivial algebraic operations, we derive
the following inequality that must hold to prove the
theorem:

2 ∗ |Vsi1 | ∗ |Vsi2 |+ (19)

|Vsi2 | ∗ (|Vsi2 | − 1) ∗
∑

(opi,opj)∈Esi1

OpS∗(opi, opj) ≥

|Vsi1 | ∗ (|Vsi1 | − 1) ∗
∑

(opi,opj)∈Esi2

OpS∗(opi, opj)

Given that (13) holds, (19) is also true.

APPENDIX C
DECOMPOSITION METHOD TERMINATION &
COMPLEXITY

The analysis of the proposed decomposition method
focuses on two issues. First, we prove that the
cohesion-driven decomposition of service interfaces
terminates. Second, we show that the complexity of
decomposing a given interface with the proposed
method is, in the worst case, cubic to the number of
operations, offered by the given interface.

Theorem 5: Given a service interface si,
decomposeInterface (Algorithm 1) terminates.

Proof: decomposeInterface performs a number of
iterations, until the size of Q is 0. During each itera-
tion, decomposeInterface picks a service interface ri
from Q. If the cohesion of ri can not be improved, ri
is put in the results set RI . Otherwise, the cohesion
of ri is improved by splitting it in two new interfaces
rr, rs, which are stored in Q. decomposeInterface can
not perform infinite splits because:

• The lower bound for the lack of cohesion of a
service interface is 0 (Theorem 1).

• The lower bound for the number of operations of
a service interface is 1.

Therefore, the size of Q eventually becomes 0 and
decomposeInterface terminates.

Theorem 6: In the worst case, the complexity of
decomposing a service interface, si, is cubic to the
number of operations of si.

Proof: In the worst case scenario,
decomposeInterface (Algorithm 1) starts with si

that provides |si.O| operations and results in |si.O|
new interfaces, one per operation. To achieve this,
the algorithm starts with si and splits it in two
new interfaces rr and rs. The new interfaces are
enqueued in Q. In the i-th iteration, one of the
intermediate interfaces, ri is chosen and split again.
Hence, at the end of the i-th iteration, Q contains i+1
new interfaces. Once, the size of Q becomes |si.O|,
there are another |si.O| iterations to dequeue the
interfaces that are held in Q (again in the worst case).
Therefore, in the worst case decomposeInterface

performs 2 ∗ |si.O| iterations.
The two factors that affect the complexity of split-

ting an intermediate interface ri in two interfaces
is the creation (Algorithm 2) and population of the
splinter interface rs (Algorithm 3).

• createSplinter performs |ri.O| iterations to find
the operation, ops, whose removal maximizes the
cohesion improvement of ri. Then, it creates rs
that contains ops, and rr that contains the rest of
the ri operations.

• populateSplinter, takes as input the interfaces
rr, rs that result from createSplinter. Hence,
|rr.O| = |ri.O| − 1 and |rs.O| = 1. To improve the
cohesion of the two interfaces populateSplinter

moves operations from rr to rs. In the worst case,
we can have |rr.O| − 1 = |ri.O| − 2 operations
moved, i.e., the outer loop of populateSplinter

performs |ri.O| − 1 iterations. To find the first
operation, the inner loop of populateSplinter per-
forms |ri.O| − 1 iterations. To find the i-th opera-
tion, the inner loop of populateSplinter performs
|ri.O| − 1− i+ 1 iterations, and so on. Therefore,
the overall number of iterations performed is∑|ri.O|−1

i=1 |ri.O|−i =
∑|ri.O|−1

i=1 i = |ri.O|∗(|ri.O|−1)
2 .

Based on the previous analysis, in the worst case
the complexity of decomposing si is O(|si.O|3).

APPENDIX D
INDIVIDUAL PARTICIPANTS’ SUGGESTIONS

FOR IMPROVEMENT

Tables 7, 8 give a detailed summary of the changes
that have been performed by the participants on the
decompositions that they selected. In particular, for
each one of the examined interfaces and each partici-
pant we provide the percentage of the moved opera-
tions (over the size of the examined interface) and the
percentage of the decomposition size decrease.

Overall, the percentage of moved operations ranged
from 1.15% to 15.38% whenever this happened in
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TABLE 7

Amazon services: Changes per participant: % of

moved operations and % of decomposition size

decrease.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5
ID % move % DS % move % DS % move % DS % move % DS % move % DS

oper. decr. oper. decr. oper. decr. oper. decr. oper. decr.
A1 01.15 14.81 02.30 03.70 03.45 11.11 02.30 14.81 00.00 07.41
A2 03.70 00.00 00.00 10.00 03.70 10.00 03.70 10.00 00.00 30.00
A3 00.00 00.00 07.41 06.25 07.41 12.50 00.00 00.00 00.00 16.67
A4 04.35 16.67 00.00 16.67 04.35 16.67 04.35 16.67 00.00 00.00
A5 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
A6 00.00 00.00 00.00 00.00 - - 00.00 00.00 00.00 25.00
A7 - - 06.25 00.00 06.25 00.00 12.50 16.67 - -
A8 00.00 16.67 00.00 16.67 00.00 00.00 00.00 16.67 00.00 16.67
A9 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
A10 07.69 00.00 07.69 00.00 15.38 00.00 07.69 00.00 00.00 00.00
A11 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 15.38 00.00

TABLE 8

Yahoo services: Changes per participant: % of moved

operations and % of decomposition size decrease.

Participant 6 Participant 7 Participant 8 Participant 9 Participant 10
ID % move % DS % move % DS % move % DS % move % DS % move % DS

oper. decr. oper. decr. oper. decr. oper. decr. oper. decr.
Y1 00.00 20.00 00.00 00.00 00.00 13.33 - - - -
Y2 00.00 11.11 00.00 00.00 00.00 11.11 03.57 22.22 00.00 33.33
Y3 14.29 00.00 07.14 18.18 10.71 14.29 00.00 14.29 00.00 28.57
Y4 00.00 00.00 13.04 00.00 17.39 12.50 13.04 12.50 00.00 20.00
Y5 - - 00.00 00.00 05.00 18.18 00.00 09.09 - -
Y6 - - 00.00 11.11 00.00 22.22 00.00 11.11 - -
Y7 00.00 00.00 00.00 00.00 00.00 11.11 00.00 11.11 00.00 33.33
Y8 08.33 00.00 16.67 00.00 25.00 14.29 00.00 00.00 08.33 25.00
Y9 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00 00.00
Y10 00.00 25.00 20.00 00.00 00.00 00.00 20.00 00.00 00.00 00.00
Y11 00.00 00.00 00.00 00.00 - - 00.00 00.00 00.00 00.00

Amazon services and 03.57% to 25% for the Yahoo
services. The percentage of the decomposition size
decrease ranged from 3.70% to 25% for Amazon and
11.11% to 33.33% for Yahoo services.


