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Glossary

Bounded set: A subset B of IRn is bounded if there exists a positive real number M such
that ‖ x ‖≤M for all x ∈ B.

Open set: A subset E of IRn is open in IRn if for every point p ∈ E there is a real number
ε > 0 such that the open ball B(p, ε) = {x ∈ IRn : ‖ x− p ‖< ε} is contained in E.

Closed set: A subset F of IRn is closed in IRn if its complement E = IRn \ F is open in IRn.

Closure of a set: The closure Ā of a set A is the smallest closed set containing A.

Compact set: A subset K of IRn is compact in IRn if it is closed and bounded.

Connected set: A subset Ω of IRn is said to be connected if it can not be represented as the
union of two disjoint non-empty open sets of IRn.

State vector: Vector whose elements are the state variables of a dynamical system.

State space: The space to which the state vector belongs.

Continuous time systems: Systems whose evolution is described by differential equations.

Discrete time systems: Systems whose evolution is described by difference equations.

Time invariant systems: Dynamical systems for which the time derivative of the state vector
at a time t depends only on the state vector at the current time t and does not depend explicitly
on time. For instance, the parameters of the model of a time-invariant system are constants.

Vector field: A vector field X on IRn is a function that associates a vector X(x) ∈ IRn to
every point x ∈ IRn. A vector field X is always associated to a differential equation ẋ = X(x).

Characteristic polynomial: The characteristic polynomial of a square n × n matrix A is
defined by PA(X) = det(A − XIn) where In is the n × n identity matrix and det(M) is the
determinant of the square matrix M .

Eigenvalue: A scalar λ is an eigenvalue of a square matrix A if there exists a vector v 6= 0
such that A.v = λv. The eigenvalues of a square matrix A are the roots of its characteristic
polynomial.

Summary
This article presents an overview of three fundamental concepts in Mathematical System The-
ory: controllability, stability and observability. These properties play a prominent role in the
study of mathematical models and in the understanding of their behavior. They constitute the
main research subject in Control Theory. Historically the tools and techniques of Automatic
Control have been developed for artificial engineering systems but nowadays they are more and
more applied to ”natural systems”. The main objective of this article is to show how these
tools can be helpful to model and to control a wide variety of natural systems.



Controllability, Observability, and Stability of Mathematical Models -Abderrahman Iggidr 3

1 Introduction

The main goal of this article is to develop in some details some notions of Control Theory
introduced in the article (Basic principles of mathematical modeling). It concerns more
specifically three structural properties of control systems: controllability, stability and observ-
ability. Based on the references listed in the end of this article, we give a survey of these three
properties with applications to various LSS examples.

By a control system we mean a dynamical system evolving in some state space and that can
be controlled by the user. More precisely we are interested in the study of systems that can be
modeled by differential (respectively difference) equations of the form{
ẋ(t) =

dx

dt
= X(x(t), u(t)),

y(t) = h(x(t)),
(1)

where the variable t represents the time, the vector x(t) is the state of the system at time t,
the vector u(t) is the input or the control, i.e., the action of the user or of the environment
and the vector y(t) is the output of the system that is, the available information that can be
measured or observed by the user. The dynamics function X indicates how the system changes
over time.

We shall address the following problems:
• When the whole state x(t) is not available for measurement, how is it possible to use the

information provided by y(t) together with the dynamics (1) in order to get a ”good”
estimation of the real state of the system? This turns out to be an observability problem.

• How to use the control u(t) in order to meet some specified needs? This is the problem of
controllability and stabilizability.

To illustrate these various concepts, we explain them through a simple LSS system: an epidemic
model for the transmission of an infectious disease. An homogeneous population is divided into
four classes S, E, I and T according to the heath of its individuals. Let S(t) denote the
number of individuals who are susceptible to the disease, i.e., who are not yet infected at time
t. E(t) denotes the number of members at time t who are exposed but not yet infected. I(t)
denotes the number of infected individuals, that is, who are infectious and able to spread the
disease by contact with individuals who are susceptible. T (t) is the number at time t of treated
individuals. The total population size is denoted N = S + E + I + T . The dynamic of the
disease can be described by the following differential system:

dS

dt
= bN − µS − βSI

N
,

dE

dt
= β

SI

N
− (µ+ ε)E,

dI

dt
= εE − (r + d+ µ)I,

dT

dt
= rI − µT,

dN

dt
= (b− µ)N − dI,

(2)

where the parameter b is the rate for natural birth and µ that of natural death. The parameter
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β is the transmission rate, d is the rate for disease-related death, ε is the rate at which the
exposed individuals become infective and r is the per-capita treatment rate. The parameters b,
µ, β, d and ε are assumed to be constant. The per-capita treatment rate may vary with time.

S

I

T

E

µ

µ µ+d

µ

β I
N

r

ε

Figure 1: This diagram illustrates the dynamical transfer of the population.

The system (2) can be written by using the fractions s = S/N , e = E/N , i = I/n and τ = T/N
of the classes S, E, I and T in the population. These fractions satisfy the system of differential
equations:

ds

dt
= b− bs− (β − d)si,

de

dt
= βsi− (b+ ε)e+ dei,

di

dt
= εe− (r + d+ b)i+ di2,

dτ

dt
= ri− bτ + diτ.

(3)

Since s+ e+ i+ τ = 1, it is sufficient to consider the following system

ds

dt
= b− bs− (β − d)si,

de

dt
= βsi− (b+ ε)e+ dei,

di

dt
= εe− (r + d+ b)i+ di2.

(4)

If we suppose that the proportion of infected individuals can be measured and that we can
control the population by choosing the treatment rate then the above system can be seen as
a control system of the form (1) with: the state of the system is x(t) = (s(t), e(t), i(t)), the
control is u(t) = r(t) and the measurable output is y(t) = i(t). The state space is

Ω = {x ∈ IR3 : 0 ≤ s ≤ 1, 0 ≤ e ≤ 1, 0 ≤ i ≤ 1, s+ e+ i ≤ 1}.

The aim of Control Theory is to give answers to the following questions:
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1. Given two configurations x1 and x2 of the system (3), is it possible to steer the system
from x1 to x2 by choosing an appropriate treatment strategy r(t) ? For a given initial state
x0 = (s0, e0, i0) and a given time T , what are all the possible states that can be reached in
time T by using all the possible control functions r(t)?

2. Does the system (3) possess equilibrium points? Are they stable or unstable? How can
the control be chosen in order to make a given equilibrium (for instance, the disease-free
equilibrium) globally asymptotically stable?

3. Since only some variables can be measured (for instance, the proportion i(t) of infected
individuals in the above epidemic example), is it possible to use them together with the
dynamics (3) of the system in order to estimate the non measurable variables s(t) and e(t)?
and how this can be done?

The questions 1 involve the controllability of control systems. We shall give in Section 2 a
general definition of this notion as well as some simple useful criteria that allow to study the
controllability of some nonlinear systems. The questions 2 invoke the stability and the stabi-
lization of nonlinear system, this will be the subject of Section 3 where some classical stability
results are exposed. The questions 3 are connected to the observability and the construction of
observers for dynamical systems. These problems will be addressed in Section 4 and Section 5.

In each section we shall apply the different tools to various models such as predator-prey
systems, fisheries and bioreactors. Concerning the epidemic model (2-4), the divers problems
mentioned above are still under investigation. We can give here just some partial answers. It
can be shown that if the per-capita treatment rate satisfies

r ≥ r0 =
β ε

ε+ b
− d− b (5)

then the system has a unique equilibrium point in the domain Ω. This equilibrium is the
disease free equilibrium s = 1, e = i = τ = 0 and it is globally asymptotically stable, that is, if
(s(0), e(0), i(0)) ∈ Ω is any initial condition then the solution of the system (4) starting from
this state will converge to the disease free equilibrium, i.e., s(t) → 1, e(t) → 0 and i(t) → 0
as t → ∞. Therefore, if the treatment satisfy the condition (5) then the disease will die out.
If r < r0 then the disease free equilibrium becomes unstable and in this case, there is another
equilibrium which belongs to the interior of the domain Ω. This equilibrium is the endemic
equilibrium and it is globally asymptotically stable within the interior of Ω provided that r < r0.
The disease will be endemic in this case.

2 Controllability

In this section, we present an elementary overview of an important property of a system,
namely that of controllability. This concept has been briefly introduced and explained in
(Basic principles of mathematical modeling) . Here, we deal with the problem of testing
controllability of systems of the type

ẋ(t) = X(x(t), u(t)). (6)

The state vector x(t) belongs to the state space M which will always be here IRn or an open
connected subset of IRn. The control functions t 7→ u(t) are defined on [0, ∞) and take values
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in a connected subset U of IRm. These control functions are assumed to belong to an admissible
control set Uad. This admissible control set is generally specified by the problem considered.
Here it is assumed that Uad contains the set of piecewise constant functions as a dense subset,
i.e., any admissible control function can be ”approximated” by piecewise constant functions.
The dynamics function X : M×IRn −→ IRn is assumed to be analytic on (x, u). For each control
value u ∈ U , we denote by Xu the vector field (”vector function”) defined by Xu(x) = X(x, u)
for all x ∈M .

A real-valued function f defined on some open set O ⊂ IR is said to be analytic if for each x0 ∈ O, there exists
a positive real number r > 0 such that f(x) is the sum of a power series for all x with |x− x0| < r:

f(x) =

∞∑
n=0

an (x− x0)
n

for all x satisfying |x− x0| < r.

For an analytic function, the coefficients an can be computed as an = f(n)(a)
n!

In a similar way a function f : V ⊂ IRk → IR of several variables is said to be analytic if it is locally given by
power series. A vector function

X : V ⊂ IRk → IRn

x = (x1, . . . , xk) 7→ X(x) =

 X1(x1, . . . , xk)
...

Xn(x1, . . . , xk)


is analytic if all its components Xi are analytic.

For each x ∈ M and each control function u(.) ∈ Uad, we denote by X
u(.)
t (x) the solution of

(6) satisfying X
u(.)
0 (x) = x. We assume moreover that X

u(.)
t (x) is defined for all t ∈ [0, ∞).

For instance, if X is a linear vector function, that is, X(x, u) = Ax+Bu, with A and B being

matrices with appropriate dimensions, then X
u(.)
t (x) = etAx+

∫ t
0
e(t−s)ABu(s)ds.

2.1 What is controllability

A state x1 ∈M is reachable from x0 ∈M at time T ≥ 0 if there exists a control u(.) ∈ Uad such

that x1 = X
u(.)
T (x0). The set of reachable states from x0 at time T will be denoted AT (x0) and

the reachable set from x0 will be denoted A(x0) =
⋃
T≥0

AT (x0).

For the class of piecewise constant controls, the reachable set at time T from x0 is the set of
points of M of the form:

x = X
up
tp o . . . oX

u2
t2 oX

u1
t1 (x0), u1, . . . , up ∈ U, t1 + . . .+ tp = T.

This formula means that the constant control ui is applied during time ti, i.e., u(t) = u1 for
t ∈ [0, t1), u(t) = u2 for t ∈ [t1, t1 + t2), . . . , u(t) = ui for t ∈ [t1 + . . . ti−1, t1 + . . . ti−1 + ti).

The system (6) will be said to be accessible from x0 if the reachable set A(x0) has a nonempty
interior in the state space M . When the set A(x0) is equal to the whole state space M then the
system is controllable from x0 and it is controllable (or completely controllable) if this property
holds for any x0 ∈ M . More precisely, the system (6) is controllable if any point of M is
reachable from any other point of M , i.e., for any two states x0, x1 ∈ M there exist a finite
time T (that may depend on (x0, x1)) and an admissible control function u(.) : [0, T ] → U
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such that x1 = X
u(.)
T (x0).

The system (6) is strongly controllable if for any given time T > 0 any point of the state space
M is reachable from any other point of M in T or fewer units of time.

Before giving some criteria for accessibility and controllability of control systems, we give a
simple LSS example to illustrate these notions.

Example: Let us consider a simple Lotka-Volterra system that models a population of a
harvested prey in the presence of a predator{
Ṅ = aN − bNP − q uN
Ṗ = −cP + ebNP

(7)

In these equations N and P represent, respectively, the prey and the predator populations, a
is the prey growth rate, b is the predator attack rate, c is the predator mortality rate, and e is
the conversion efficiency of predators. The parameter q represents the catchability coefficient
of the prey and u is the harvesting effort. The term quN is the rate of harvest when the effort
is u and the prey stock is N . All the variables and the constants are positive. Here the state is
x = (N,P ), the state space is the positive quadrant M = IR2

+ = {(N,P ) ∈ IR2 : N > 0, P >
0}, the effort u represents the harvesting policy and can be seen as an input or a control term.
We suppose that u can take two values 0 or 1. Therefore our admissible control set Uad is
simply the set of piecewise constant functions defined on [0, ∞) with values in U = {0, 1}.

The dynamics vector function is X(x, u) =

(
aN − bNP − q uN
−cP + ebNP

)
. The values of the control

u generate two vector fields X0(x) =

(
aN − bNP
−cP + ebNP

)
and X1(x) =

(
aN − bNP − qN
−cP + ebNP

)
.

The trajectory of a vector field X through x ∈M is the curve {Xt(x), t ∈ [0, ∞)} where Xt(x)
is the solution of ẋ = X(x) with initial condition X0(x) = x (we suppose that the solution is
defined for all t ≥ 0). Here, the trajectories of the vector fields X0 and X1 in the interior of
the positive quadrant are closed curves (see Figure 2). More precisely the trajectories are the
level curves of, respectively, the real-valued functions

V0(N,P ) = e bN − c log( e b
c
N) + b P − a log( b

a
P )− (a+ c)

V1(N,P ) = e bN − c log( e b
c
N) + b P − (a− q) log( b

a−qP )− (a− q + c).

The horizontal and the vertical axes are particular trajectories for both X0 and X1.
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Figure 2: Trajectories of X0 and X1 for a = 0.4, b = 0.01, c = 0.3, e = 0.5, q = 0.15.

Now, given an initial state x0, what is the reachable set from x0? if x0 is of the form x0 = (N0, 0)
then the reachable set is A(x0) = {(N, 0) : N ≥ N0} and if x0 = (0, P0) then A(x0) =
{(0, P ) : P ≤ P0} since the vertical and the horizontal axes are positively invariant sets for
the system (7). The interior M of the positive quadrant is positively invariant. Therefore if x0

belongs to M then the whole trajectory starting from x0 is contained in M and so A(x0) ⊂M .
The reachable set of such state x0 is actually the whole set M . For, let x1 be any point of M ,
we shall show that x1 ∈ A(x0). There exist two positive numbers r0 and r1 such that the point
x0 belongs to the level curve Cr0 of V0 defined by V0(x) = r0 and the point x1 belongs to the set
Cr1 : V0(x) = r1. It can be proved that along each level curve Cr of X0, there is a point where
the vector field X1 points inward Cr and a point where the vector field X1 points outward Cr.
This implies that the control u = 1 allows to pass from a given level set Cr to a ”smaller” one
as well as to a ”larger” one. Therefore one can go from the level curve Cr0 to the level curve
Cr1 by using a piecewise constant control u = 0 or u = 1. Hence the system can be driven from
the state x0 to the state x1. The system is then completely controllable on the state space M .
It must be noticed that there are many other possible strategies to achieve the same goal, for
instance, the same reasoning can be done by considering the level curves of X1 instead of those
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of X0. The figure 3 illustrates possible control schemes to go from x0 to x1.
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Figure 3: Two control strategies to drive the system from the state x0 to the state x1.

2.2 Controllability of linear systems

We have seen that the above system is controllable on the positive quadrant. To show this
we have used the geometrical properties of the trajectories of the vector fields generated by
the different values of the control. Unfortunately, it is not often possible to know explicitly
the phase portrait of a vector field. So there is a need to have calculable criteria for testing
controllability or at least accessibility of a given system. For linear systems, there is a simple
controllability criterion known as Kalman’s controllability rank condition. A linear system is a
system governed by{
ẋ = X(x, u) = Ax+Bu,
x ∈ IRn, u ∈ U ⊂ IRm,

(8)

where A and B are respectively n × n and n × m matrices. We start by exploring the con-
trollability properties when the control set is U = IRm, i.e., there are no restrictions on the
size of controls. It can be proved that the following are equivalent: the linear system (8) is (i)
controllable, (ii) accessible from any point x0 ∈ IRn, (iii) accessible from the origin x0 = 0.
The reachable set from the origin A(0) is a linear subspace of IRn. More precisely, it is the
image of the linear map:

IRm+n −→ IRn

(u1, . . . , un) 7−→ (B,AB,A2B, . . . , An−1B)

 u1
...
un

 =
∑n

i=1 A
i−1Bui .

The n×nm block matrix R(A,B) = (B,AB,A2B, . . . , An−1B) whose columns are the columns
of B, AB, . . . , An−1B is called the Kalman controllability matrix. The controllability of the
linear system (8) is related to the rank of this matrix as follows
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Theorem 2.1 The system (8) is controllable if and only if the n× nm Kalman controllability
matrix

R(A,B) =
(
B,AB,A2B, . . . , An−1B

)
is of rank n (the dimension of the state space).

In this case we also say that the pair (A,B) is controllable. It must be noticed that for a
controllable linear system, every state x1 can be reached from any state x0 in a time interval
of arbitrary length (i.e., as small as one wants) provided that the control values set U is
unbounded. For linear systems with unbounded control values set, there is an equivalence
between controllability and strong controllability.

When the linear system (8) is not controllable, we have rank(R(A,B)) = r < n. Let
c1, c2, . . . , cr be r linearly independent columns of the matrix R(A,B) and let e1, . . . , en−r
be any vectors of IRn such that {c1, c2, . . . , cr, e1, . . . , en−r} is a basis of IRn. Then the matrix
T = (c1, c2, . . . , cr, e1, . . . , en−r) is an n × n invertible matrix and with the linear change of
coordinates x = Tz, the system (8) is transformed into

ż1 = A11z1 + A12z2 +B1u,
ż2 = A22z2,
z1 ∈ IRr, z2 ∈ IRn−r

(9)

where the pair (A11, B1) is a controllable pair of matrices. We can remark that the control
cannot act on the z2 component of the state. The eigenvalues (or the eigenvectors) of the
matrix A22 are called the ”uncontrollable modes” of the system.

Controllability with bounded controls: The Kalman’s rank condition is a necessary con-
dition for controllability of linear systems. It is a sufficient condition when the control values set
U is unbounded. When there is a bound on the magnitude of the control u, the rank condition
is no more sufficient to get controllability as it is illustrated by the following linear system

ẋ = x+ u, x ∈ IR, u ∈ IR. (10)

The rank controllability condition is obviously satisfied for this system. hence it is controllable
and even strongly controllable if the control u can take any real value. Now, suppose that the
admissible controls are bounded by a positive constant K, that is, for all u(.) ∈ Uad, one has
|u(t)| ≤ K for all positive time t. The solution of (10) is

x(t) = et
(
x(0) +

∫ t

0

e−su(s)ds

)
.

Since |u(s)| ≤ K, we have
∣∣∣∫ t0 e−su(s)ds

∣∣∣ ≤ K. It follows that x(t) > K for all positive time t

if x(0) > 2K, and therefore the system is not controllable on IR.

The above example shows that controllability of a linear system cannot in general be expected if
there are restrictions on the size of controls. There is actually an additional necessary condition
for controllability when the set U is bounded:
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Theorem 2.2 a. Suppose that the control set U is bounded. Then a necessary condition for
controllability of the linear system (8) is that every eigenvalue of A have its real part equal to
zero.
b. If this necessary condition is satisfied and the set U is a neighborhood of the origin in IRm,
then the linear control system with controls in U is controllable whenever the Kalman’s rank
condition holds, i.e., rank (B,AB,A2B, . . . , An−1B) = n.

It is interesting to remark that
• the controllability of linear systems with unbounded controls is a ”generic” property of

linear systems. This means, roughly speaking, that almost all the pairs (A,B) are con-
trollable when U = IRm. More precisely, if a given pair (A,B) does not satisfy the rank
condition then by a ”small perturbation” of the entries of the matrices, the pair becomes
controllable;

• linear systems are generically not controllable with bounded control because the necessary
condition is easily violated when the entries of the matrix A are perturbed.

2.3 Accessibility criteria for nonlinear systems

For each control value u ∈ U , let Xu = X(., u) be the vector function (vector field) corre-
sponding to the constant control u. We then have a family F = {Xu, u ∈ U} of vector fields
parametrized by the values of the control. To get an accessibility criterion for the system (6)
analogous to the Kalman’s rank condition for linear systems we need to introduce some new
vector fields generated by the elements of F . For any vector functions X and Y , it is possible
to define a new vector function [X, Y ], called the Lie bracket of X and Y , and defined by

∀x ∈ IRn, [X, Y ](x) =
∂Y

∂x
(x)X(x)− ∂X

∂x
(x)Y (x)

where ∂Y
∂x

(x) is the Jacobian of the vector function evaluated at the point x. In a coordinates
system (x1, x2, . . . , xn), if

X(x) =


X1(x1, x2, . . . , xn)
X2(x1, x2, . . . , xn)

...
Xn(x1, x2, . . . , xn)

 and Y (x) =


Y1(x1, x2, . . . , xn)
Y2(x1, x2, . . . , xn)

...
Yn(x1, x2, . . . , xn)


then,

[X, Y ](x) =


Z1(x1, x2, . . . , xn)
Z2(x1, x2, . . . , xn)

...
Zn(x1, x2, . . . , xn)

 with Zi(x) =

j=n∑
j=1

∂Yi
∂xj

(x)Xj(x)− ∂Xi

∂xj
(x)Yj(x).

For example, let X be a linear vector function, say, X(x) = Ax with A an n × n matrix and
let Y be a constant vector function, that is, Y (x) = b ∈ IRn. Then [X, Y ] is a constant vector
function and [X, Y ](x) = −A b, for all x ∈ IRn.
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A geometric interpretation of the Lie bracket: Let us consider a control system{
ẋ = u1X1(x) + u2X2(x)
x ∈ IRn, (u1, u2) ∈ IR2.

(11)

Let x0 ∈ IRn be a given state such that the vectors X1(x0) and X2(x0) are linearly independent,
and let E(x0) = span{X1(x0), X2(x0)} be the vector subspace of IRn spanned by the vectors
X1(x0) and X2(x0). From the point x0, we can steer in all directions contained in E(x0) by
using appropriate constant controls. Is it possible to steer in another direction that does not
belong to E(x0)? If the answer is no then the system can never be accessible from x0. It turns
out that one also can steer in the direction of [X1, X2](x0) by choosing appropriate piecewise
constant control functions. So, if [X1, X2](x0) does not belong to E(x0), then one has a third
steering direction. This shows that the Lie bracket plays a prominent role in determining the
reachable set from a given state x0.

To the control system (6) and the generated family of vector functions F we associate a set of
vector functions called the accessibility Lie algebra of the system (6) and denoted Lie(F). The
set Lie(F) is the Lie algebra of vector functions generated by the family F : every element of
Lie(F) is a combination of repeated Lie brackets of the form

[Xuk , [Xuk−1

, [. . . , [Xu2 , Xu1 ] . . .]]], with ui ∈ U, Xui ∈ F .

For instance, if u1, u2 are any two control values then the vector functions

[Xu1 , Xu2 ], [Xu1 , [Xu1 , Xu2 ]], [Xu2 , [Xu1 , [Xu1 , Xu2 ]]],

are in Lie(F).

The control system (6) satisfies the accessibility rank condition at the point x0 if the set

Lie(F)(x0) = {X(x0), X ∈ Lie(F)}

is a vector space of dimension n (the dimension of the state space). This rank condition is
analogous to the Kalman’s rank condition. It allows to get the following accessibility criterion
for analytic nonlinear systems:

Theorem 2.3 The analytic control system (6) is accessible from the point x0 if and only if the
accessibility rank condition holds at x0.

Remarks: 1. If the control system is not analytic but only smooth (C∞), then the rank
condition is still sufficient but not necessary.
2. For the linear system (8) with U = IRm, it is easy to see that the elements of Lie(F)(x0)
are generated by elements of the form AkBu, k = 0, . . . , n − 1, or Ax0 + Bu, where u ∈ IRm.
Therefore, for the linear system (8), the accessibility rank condition at the origin reduces to
the Kalman controllability rank condition.
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Example: Consider the following system defined on IR3:

ẋ = u1

−2x3e
x1

ex1

0


︸ ︷︷ ︸

X1(x)

+u2

−2(x2 + 1)
0
1


︸ ︷︷ ︸

X2(x)

, x = (x1, x2, x3), (u1, u2) ∈ IR2. (12)

For any state x ∈ IR3, the vectors X1(x) and X2(x) are linearly independent but [X1, X2](x) =
2(x2 + 1)X1(x). Since [X1, X2] is collinear with X1, Lie(X1, X2) has a constant dimension
equal to 2. Therefore, since the system (12) is analytic and the rank condition fails, it is is
not accessible from any point x ∈ IR3, that is, the reachable set A(x) has an empty interior
whatever what the control is.

This fact can be seen directly by performing a change of coordinates that allows to rewrite
the system (12) in a simpler form. Let Φ : IR3 −→ IR3 the map defined by x = (x1, x2, x3) 7→
Φ(x) = y = (y1, y2, y3) with y1 = x1 + 2x2x3 + 2x3, y2 = x2 and y3 = x3. The map Φ is
bijective and its inverse is given by: Φ−1(y1, y2, y3) = (y1 − 2y2y3 − 2y3). It is clear that the
maps Φ and Φ−1 are continuously differentiable. Therefore Φ is a global diffeomorphism and
allows to define a new coordinate system y = Φ(x). We also make the inputs transformation
v1 = exp(y1 − 2y2y3 − 2y3)u1, v2 = u2. Hence in the new coordinates, the system (12) is
expressed by:

ẏ1 = 0
ẏ2 = v1

ẏ3 = v2

It is clear that the reachable set from any state x ∈ IR3 is contained in a vector space of
dimension 2 and, hence, it is of empty interior.

Control affine systems: A control affine system is a control system of the form{
ẋ = X0(x) + u1X1(x) + . . .+ umXm(x),
x ∈M, u = (u1, . . . , um) ∈ U ⊂ IRm,

(13)

where X0, X1, . . . , Xm are analytic vector fields on the state space M , and u1, . . . , um are the
control functions. The vector field X0 is called the drift and the vector fields X1, . . . , Xm are
called controlled vector fields. We assume that the control values set U contains m linearly
independent points of IRm. For example if m = 2 then this assumption is fulfilled if U contains
the two points (1, 0) and (0, 1). The interest of this assumption is that the Lie algebra generated
by the family F corresponding to the control system (13) is independent of U and it is equal
to the Lie algebra generated by the vector fields X0, X1, . . . , Xm, that is,

Lie(F) = Lie{X0, X1, . . . , Xm}.

For control affine systems (13), with U satisfying the above assumption, a controllability crite-
rion is available:

Theorem 2.4 Assume that dim(Lie{X1, . . . , Xm}(x)) = n = dimM for all x ∈M . Then
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(i) the control affine system (13) is controllable whenever there are no restrictions on the size
of controls,

(ii) the driftless (X0 = 0) system (13) is controllable even if there are restrictions on the size
of controls, provided that the convex hull of the constraint set U is a neighborhood of the
origin in IRm.

Example: Consider the following simplified model of maneuvering a car: ẋ1

ẋ2

ẋ3

 = u1

 0
0
1


︸ ︷︷ ︸
X1(x)

+u2

 sinx3

cosx3

0


︸ ︷︷ ︸

X2(x)

, x = (x1, x2, x3) ∈ IR3, (u1, u2) ∈ U ⊂ IR2. (14)

The center of the front axle has coordinates (x1, x2) ∈ IR2, while the rotation of this axle is given
by the angle x3. The controls are the steering wheel moves u1 and the engine speed u2. This sys-
tem is a driftless control affine system. It is reasonable to suppose that the controls take values in
a bounded neighborhood of the origin in IR2. We have dim(Lie{X1, X2}(x)) = 3 for all x ∈ IR3

since [X1, X2](x) =

 − cosx3

sinx3

0

 and for all x ∈ IR3, rank{X1(x), X2(x), [X1, X2](x)} = 3.

Therefore, Theorem 2.4 applies and hence the system is controllable.

Remark: It must be noticed that the sufficient controllability rank condition of the above
theorem 2.4 invokes the Lie algebra generated only by the controlled vector fields X1, . . . , Xm.
This is a stronger condition than the accessibility rank condition that invokes the Lie algebra
Lie{X0, X1, . . . , Xm}. A control affine system may satisfy the accessibility rank condition
without being controllable as illustrated by the following two-dimensional example:

ẋ1 = u,
ẋ2 = x2

1,
(x1, x2) ∈M = IR2, u ∈ U = IR.

(15)

Here, The drift vector field is X0 =

(
0
x2

1

)
, and the controlled vector field is X1 =

(
1
0

)
.

It is obvious that for all x ∈ IR2, dim(Lie{X1}(x)) = 1 . We have [X0, X1] =

(
0

2x1

)
, and

[X1, [X0, X1]] =

(
0
2

)
. Therefore, dim(Lie{X0, X1}(x)) = 2 = dimM everywhere, and hence,

according to Theorem 2.3, the system is accessible. However, it is not controllable since the
reachable set from a given point x0 = (x10 , x20) is contained in the half-space x2 ≥ x20 (see
Figure 4).
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2

.
0A ( )

x0

Figure 4: Reachable set from the state x0 for the system (15).

Theorem 2.4 says that controllability with bounded controls is possible for driftless control
affine systems, i.e., X0 = 0. There also exists a controllability criterion with bounded controls
for the system (13) in the presence of a drift vector field X0 which is not equal to zero but
which is positively Poisson stable. To simplify matters, we assume that the state space M is an
open connected subset of IRn. Let X be an analytic vector field on M and let for each point
x ∈ M , Xt(x) be the solution of the differential equation ẋ = X(x) that satisfies X0(x) = x.
We assume that the vector field X is complete, which means that for any point x ∈ M , the
solution Xt(x) is defined for all t ∈ [0,∞). A point x ∈M is said to be positively Poisson stable
for X if

∀ε > 0, ∀T > 0, ∃t ≥ T : ‖Xt(x)− x‖ < ε.

The vector field X is called positively Poisson stable if the set of positively Poisson stable points
for X is dense in M . A set N ⊂ M is dense in M if for any point p ∈ M and any number
ε > 0, there exists q ∈ N such that ‖p − q‖ < ε. This means ”near any point of M , there are
points of N”.

The linear vector field X(x) = Ax with A =

(
0 1
−1 0

)
is a positively Poisson stable vector

field on IR2. Another example of positively Poisson stable vector field is given by the vector
field X0 corresponding to u = 0 in the predator-prey system (7).

Theorem 2.5 Assume that the drift vector field X0 is positively Poisson stable. Then the
system (13) with controls constrained by ui ∈ {−ai, ai}, ai > 0, i = 1 . . .m is controllable on
M if for each point x ∈M , one has dim (Lie{X0, X1, . . . , Xm}(x)) = n = dimM .

Remark: The control constraint U can actually be any subset of IRm whose convex hull
contains the origin in its interior. For example, if m = 2 then the above theorem can be applied
with U = {(−1

2
, 0), (3, 0), (0,−1), (0, 1

4
)}.
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We go back to the harvested prey system (7) which can be written ẋ = X0(x) + uX1(x),

with x = (N,P ) ∈ M = {(N,P ) ∈ IR2 : N > 0, P > 0}, X0 =

(
aN − bNP
−cP + ebNP

)
, and

X1 =

(
−qN

0

)
. Let us evaluate the rank of the Lie algebra generated by the vector fields

X0 and X1: The vectors X0(x) and X1(x) are linearly independent everywhere (in M) except
at the points of the vertical line N = c

eb
so the vector space spanned by those two vectors

is not of dimension 2 at every point x ∈ M . Hence, we have to compute their Lie bracket

[X0, X1](x) =

(
0

ebNP

)
. It is clear that the vector space spanned by the three vectors

X0(x), X1(x) and [X0, X1](x) is of dimension 2 at any point x ∈ M . Therefore, we have
dim (Lie{X0, X1}(x)) = 2 = dimM and since the vector field X0 is positively Poisson stable
(its trajectories are closed curves in M), we can apply Theorem 2.5, that is, the system (7) is
controllable on M with control constrained by, for instance, u ∈ {−1, 1}. However, we have
seen that the system (7) can be controlled with a piecewise control that can take only the values
0 and 1. This fact has been established by using a qualitative geometrical reasoning. In this
situation, the control values set is U = {0, 1} and its convex hull is co(U) = [0, 1] which does
not contain zero in its interior so Theorem 2.5 can not apply. Below, we give another result
that can be helpful to study controllability even if the system is not control affine nor the origin
is an interior point of the convex hull of the control values set U .

Theorem 2.6 Consider the analytic control system (6). Assume that
(i) the system is symmetric, i.e., X(x,−u) = −X(x, u) for each x ∈M and each u ∈ U , or
(ii) each vector field of the family F = {Xu, u ∈ U} is positively Poisson stable.
Then the system (6) is controllable if and only if the accessibility rank condition holds:

rank(Lie(F)(x)) = n = dimM, for all x ∈M.

Let us consider again the predator-prey system (7):
Ṅ = aN − bNP − q uN,
Ṗ = −cP + ebNP,
x = (N,P ), N > 0, P > 0, u ∈ {0, 1}.

(16)

For this system we have U = {0, 1} and F = {Xu, u ∈ U} = {X0, X1} with

X0(x) =

(
aN − bNP
−cP + ebNP

)
, X1(x) =

(
aN − bNP − qN
−cP + ebNP

)
.

It is important to note that X1 is not the controlled vector field X1 (here, X0 = X0 and
X1 = X0 +X1). The two vector fields X0 and X1 are positively Poisson stable on M because,
as we have seen before, their trajectories are the closed level curves of, respectively, the real-
valued functions

V0(N,P ) = e bN − c log( e b
c
N) + b P − a log( b

a
P )− (a+ c)

V1(N,P ) = e bN − c log( e b
c
N) + b P − (a− q) log( b

a−qP )− (a− q + c).
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Therefore, by Theorem 2.6, system (16) is controllable if and only if rank(Lie{X0, X1}(x)) = 2
for all x ∈M . This rank condition holds since

[X0, X1](x) =

(
0

ebqNP

)
and rank{X0(x), X1(x), [X0, X1](x)} = 2 for all x ∈M .
It is worthwhile noticing that the system (16) remains controllable if U = {u1, u2} for any
non-negative real numbers u1 6= u2. This results from the fact that the generated vector fields
Xu are positively Poisson stable for any value of u and that the generated Lie algebra satisfies
the rank condition provided u1 6= u2.

3 Stability

3.1 General definitions

Let us consider a system of ordinary differential equations

ẋ = X(x) , x ∈ Ω , (17)

where Ω is an open connected subset of Rn and X is a locally Lipschitz continuous map from
Ω to Rn. For each x ∈ Ω, let us denote by Xt(x) the solution of (17) satisfying X0(x) = x.

An equilibrium point or a steady state is a state xe ∈ Ω satisfying X(xe) = 0. Corresponding
to each equilibrium point xe, we have a constant solution Xt(x

e) ≡ xe of (17).

Let xe ∈ Ω be an equilibrium point. The system (17) is stable (we also say Lyapunov stable)
at xe or xe is a stable equilibrium position for (17), if for each ε > 0 there exists a positive real
number δ such that for each x with ‖x−xe‖ < δ, the solution Xt(x) is defined for all t ≥ 0 and
satisfies ‖Xt(x)− xe‖ < ε for all t > 0. When (17) is not Lyapunov stable at xe, we say that it
is unstable at xe, or that xe is an unstable equilibrium for the system (17).

Lyapunov stability of an equilibrium xe means that all solutions starting at nearby points stay
nearby. The Lyapunov stability is an important property. For, let xe be a desired steady-state
of our system. Unpredictable perturbations may cause the system to deviate from xe. Lyapunov
stability guarantees that every state value taken by the system in its future evolution is not
too far from the desired one if the perturbations are small.

The steady state xe is said to be attractive (We also say that (17) is attractive at xe) if there
exists a neighborhood U ⊂ Ω of xe such that for any initial condition x belonging to U , the
corresponding solution Xt(x) of (17) is defined for all t ≥ 0 and tends to xe as t tends to infinity,
i.e., limt→+∞Xt(x) = xe.

Let A be the set of points x ∈ Ω such that

lim
t→+∞

Xt(x) = xe

holds for all solutions Xt(x) starting from x. Then A is connected and it is called the region of
attraction of xe.
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The equilibrium xe is globally attractive if A = Ω, i.e.,

lim
t→+∞

Xt(x) = xe, ∀x ∈ Ω.

Remark: An equilibrium can be attractive without being stable. This can be illustrated by
the following classical two-dimensional system written in polar cordinates (r, θ):{
ṙ = r(1− r)
θ̇ = sin2 θ

2
.

This system has two equilibria: the origin 0 of IR2 and the point P defined by r = 1 and θ = 0.
It can be proved that P is attractive and that its attraction region is A(P ) = IR2\{0}. However
it is not stable. (see figure 5)

-2

-1

0

1

2

-2 -1 1 2
.P x

y

Figure 5: Attractivity without stability.

The steady state xe is said to be asymptotically stable (We also say that (17) is asymptotically
stable at xe) if it is Lyapunov stable and attractive. It is globally asymptotically stable if it is
Lyapunov stable and globally attractive.

Asymptotic stability of the equilibrium xe means that all solutions starting near xe not only
stay nearby, but also tend to the equilibrium xe as time goes to infinity.



Controllability, Observability, and Stability of Mathematical Models -Abderrahman Iggidr 19

. .
.x

X (x)t

.x
X (x)t

is a stable equilibrium is asymptotically stable

xe xe

S(xe
, δ)

S(xe
, δ)

S(xe, ε)

xexe

S(xe, ε)

Figure 6: The phase portrait of a stable and an asymptotically stable equilibrium. S(xe, r) is a sphere centered
at xe with radius r.

The steady state xe is said to be marginally stable if it is stable but not asymptotically stable.
For instance, the origin is a marginally stable equilibrium point for the following planar system{
ẋ = −y
ẏ = x.

The system (17) is exponentially stable (respectively globally exponentially stable) at xe if there
exist two positive constants K an λ such that

‖Xt(x)− xe‖ < K‖x− xe‖e−λt

for all x in a neighborhood of xe (respectively for all x ∈ Ω) and all positive time t.

An equilibrium xe is an isolated equilibrium point for the system (17) if it has a neighborhood
U such that X(x) 6= 0 for all x ∈ U . In the sequel, only isolated equilibrium points will be
considered and since any isolated equilibrium can be shifted to the origin (of IRn) by a change
of variables, x′ = x− xe, we shall assume that xe = 0.

Remark: The above definitions mean that the solution of the differential system (17) has to
be explicitly known before stability conclusions can be drawn. Except for a linear system, it
is often not possible to compute the analytic expression of the solution of (17). To overcome
this difficulty, some tools have been developed to explore the stability properties of nonlinear
systems. The most effective are the linearization technique and the Lyapunov’s second method.
The linearization allows to derive only local conclusions while Lyapunov’s second method allows
to get global results.

3.2 Stability of linear systems

For linear time-invariant system{
ẋ = Ax,
x ∈ IRn,

(18)
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the solution is given by Xt(x) = etAx. Therefore, the previous stability conditions can be
expressed in terms of the eigenvalues of the matrix A. Let σ(A) = {λi = αi + jβi, i = 1 . . . k ≤
n} be the spectrum of A, i.e., the set of all the distinct eigenvalues of A, αi is the real part
of the eigenvalue λi and βi the imaginary part. Let ΨA be the minimal polynomial of A,
that is, the monic polynomial π(λ) of least degree such that π(A) = 0. We have ΨA(λ) =
(λ− λ1)n1(λ− λ2)n2 . . . (λ− λk)nk , with n1 + n2 + . . .+ nk ≤ n. The stability properties of the
system (18) can then be summarized as follows:

Theorem 3.1 The system (18) is asymptotically stable if and only if αi < 0 for all eigenvalues.
In this case, we say that A is a stable matrix or a Hurwitz matrix. If there is an eigenvalue λi
for which αi > 0, then the system (18) is unstable. In this case the matrix A is called unstable.

A matrix which is neither stable nor unstable is called critical. The eigenvalues of a critical
matrix are all with non-positive real parts and at least one of them is with zero real part. The
eigenvalues with vanishing real parts are called critical eigenvalues or critical characteristic
roots.

Theorem 3.2 If the matrix A is critical then the equilibrium of the equation (18) is marginally
stable (stable but not attractive) if all the critical characteristic roots are simple roots of the
minimal polynomial ΨA. Otherwise the equilibrium is unstable.

For discrete-time system x(k + 1) = Ax(k), we have the following analogous criteria:
• the discrete-time system is unstable if there is an eigenvalue λi such that |αi| > 1 or if

there is an eigenvalue λi which is not a simple root of the minimal polynomial ΨA (ni ≥ 2)
for which |αi| ≥ 1;

• the discrete-time system is Lyapunov stable if |αi| ≤ 1 for all eigenvalues that are simple
roots of ΨA and |αi| < 1 for all repeated eigenvalues;

• the discrete-time system is asymptotically stable if |αi| < 1 for all eigenvalues.
It must be noted that for linear systems (continuous or discrete-time), we have the following
equivalences: asymptotic stability ⇐⇒ global asymptotic stability ⇐⇒ exponential stability.

3.3 Linearization and stability of nonlinear systems

Let x = 0 be an equilibrium point for the nonlinear system (17) where the vector function
X : Ω −→ IRn is assumed to be continuously differentiable and Ω is a neighborhood of the
origin (i.e., the origin is an interior point of Ω). In a coordinate system (x1, x2, . . . , xn), the
system (17) is given by the following system of differential equations:

ẋ1 = X1(x) = X1(x1, x2, . . . , xn)
...
ẋn = Xn(x) = Xn(x1, x2, . . . , xn).

(19)



Controllability, Observability, and Stability of Mathematical Models -Abderrahman Iggidr 21

Let A be the Jacobian matrix of the vector function X at the origin, that is,

A =
∂X

∂x
(0) =



∂X1

∂x1
(0) ∂X1

∂x2
(0) . . . . . . ∂X1

∂xn
(0)

∂X2

∂x1
(0) ∂X2

∂x2
(0) . . . . . . ∂X2

∂xn
(0)

...
...

...

∂Xn
∂x1

(0) ∂Xn
∂x2

(0) . . . . . . ∂Xn
∂xn

(0)

 (20)

Then we can write

ẋ = X(x) = Ax+ Y (x)

where the vector function Y satisfies lim
‖x‖→0

‖Y (x)‖
‖x‖

= 0. The linear system ẋ = Ax is called the

linearized system of the nonlinear system (19) at the origin. This linear approximation is valid
for small deviation from the equilibrium point x = 0. Often it is sufficient to draw conclusions
about the local stability properties of the nonlinear system thanks to the following theorem
known as Lyapunov’s first method.

Theorem 3.3 If all the eigenvalues of the Jacobian matrix A have negative real parts, then
the origin is an asymptotically stable equilibrium point for the nonlinear system (19). If at
least one eigenvalue of A has a positive real part, then the origin is unstable for the nonlinear
system (19).

The linearization technique or the Lyapunov’s first method is a simple technique, and is usu-
ally the first method used in the stability analysis of an equilibrium point for a given nonlinear
system. However, it does not say how large is the region of attraction of the considered equilib-
rium when all the eigenvalues of the Jacobian matrix have negative real parts. It also must be
noted that the Lyapunov’s first method is inconclusive when all the eigenvalues of the Jacobian
matrix have non-positive real parts and some of them actually have a zero real part.

3.4 Lyapunov functions

The Lyapunov’s first method uses the linearized system to reveal the stability properties of the
nonlinear system (19). The Lyapunov’s second method (or the direct method) works explicitly
with the nonlinear system (19). This method can often be used to determine the stability of
the equilibrium when the information obtained from the linearization is inconclusive. It also
has the advantage of enabling the analysis to extend beyond only a small neighborhood of the
equilibrium. The Second Method of Lyapunov is based on the use of auxiliary functions called
Lyapunov functions.

Let V be a real-valued function defined and continuous in Ω. We say that the function V is
a Lyapunov function for the system (17) on U ⊂ Ω if it is non-increasing along the solutions
of the system (17), that is, V (Xt(x)) ≤ V (Xt′(x)) for all x ∈ U and all 0 ≤ t ≤ t′. When the
function V is of class C1 then its value never increases along the trajectories of the system if
the time derivative of t 7→ V (Xt(x)) is non-positive, that is, for all x ∈ U ,

V̇ (x) = X.V (x) ≤ 0.
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The function X.V is called the Lie derivative of V along the vector function X, it is defined by

X.V (x) =
d

dt

(
V
(
Xt(x)

))∣∣∣∣
t=0

.

Let (x1, . . . , xn) be a coordinate system. If X(x) = (X1(x), . . . , Xn(x))T , 〈. , .〉 is a scalar
product and ∇V is the gradient of V in these coordinates, then

X.V (x) = 〈X(x) , ∇V (x)〉 =
n∑
i=1

Xi(x)
∂V

∂xi
(x).

This formula shows that the time derivative of the function V along the solutions of the sys-
tem (17) can be computed without explicitly integrating the differential equation.

A real-valued function V is said to be positive definite at a point xe ∈ Ω if there is a neighbor-
hood U of xe such that V (x) > 0 for each x ∈ U \ {xe}. Similarly, the function V is said to be
negative definite at xe on U if V (x) < 0 for all x ∈ U \ {xe}.

We go back to the system (17) and we suppose that the origin is an equilibrium point, i.e.,
X(0) = 0. The stability properties of the system (17) can be studied with the help of Lyapunov
functions thanks to the following result known as Lyapunov’s second method. This method can
be seen as a generalization of the energy method. It has been inspired by the fact that a stable
equilibrium state for a mechanical system corresponds to a local minimum of the total energy.

Theorem 3.4 (Lyapunov 1892) Suppose there exists a C1 function V defined on some neigh-
borhood U of the origin such that
i. The function V is positive definite at the origin, i.e., V (x) > 0 for all x ∈ U \ {0} and

V (0) = 0.
ii. V̇ (x) ≤ 0 for all x ∈ U .
Then the origin is a Lyapunov stable equilibrium point for the system (17).
If moreover the function x 7→ V̇ (x) is negative definite, that is V̇ (x) < 0 for all x ∈ U \{0} and
that V̇ (0) = 0, then the origin is an asymptotically stable equilibrium point for the system (17).

There also exists a global version of this theorem. To this end we need to introduce the notion
of a proper function. A continuous real valued function V : Ω −→ V (Ω) ⊂ IR is said to be
proper if, for all α ∈ V (Ω) ⊂ IR, the set {x ∈ Ω : V (x) ≤ α} is a compact subset of Ω. Proper
functions are useful for proving that the solutions of the system (17) are bounded: Suppose
that the system (17) has a Lyapunov function V on Ω, that is V̇ (x) ≤ 0, for all x ∈ Ω. If the
function V is proper then all the solutions are bounded, i.e.,

∀x ∈ Ω, ∃M ≥ 0 such that ‖Xt(x)‖ ≤M, ∀t ≥ 0.

Since V is assumed to be continuous and Ω is a connected open subset of IRn, we have V (Ω) =
(a, b) (or V (Ω) = [a, b)), b can be a real or +∞. So, another characterization for the function
V to be proper is that

lim
x→∂Ω

V (x) = b, lim
‖x‖→+∞
x∈Ω

V (x) = b
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For instance, V : x 7→ arctan(‖x‖) is proper on IRn. The function W : (x1, x2) 7→ x2
1 +

x2
2

1 + x2
2

is not proper on IR2 because lim
x2→+∞

W (0, x2) = 1.

Now, we give the global version of the Lyapunov’s theorem:

Theorem 3.5 If there exists a C1 function V defined on the whole state space Ω and satisfy-
ing
i. The function V is positive definite at the origin, i.e, V (x) > 0 for all x ∈ Ω \ {0} and

V (0) = 0.
ii. V̇ (x) < 0 for all x ∈ Ω \ {0}.
iii. The function V is proper.
Then the origin is a globally asymptotically stable equilibrium for the system (17).

Example: The Predator-Prey Model
Let us consider again the simple Lotka-Volterra predator-prey model (7) with u = 0:{

Ṅ = aN − bNP
Ṗ = −cP + ebNP

(21)

All the variables and constants are positive. This system has two equilibria: the trivial equi-

librium (0, 0) and the other equilibrium (N∗, P ∗) = (
c

eb
,
a

b
).

The linearization of the system (21) around the point (0, 0) leads to(
Ṅ

Ṗ

)
=

(
a 0
0 −c

)
︸ ︷︷ ︸

A0

(
N
P

)

The matrix A0 has a positive eigenvalue which implies that the point (0, 0) is an unstable
equilibrium point.
The linearization of the system (21) around the point (N∗, P ∗) leads to(
Ṅ

Ṗ

)
=

(
0 −c/e
ea 0

)
︸ ︷︷ ︸

A1

(
N
P

)
.

The matrix A1 has two eigenvalues whose real parts are zero, so the linearization method does
not give any information about the stability of the nonlinear system (21).

In this situation, the Lyapunov’s theorem can be helpful as we shall see. Let Ω be the interior
of the positive quadrant, i.e., Ω = IR2

+> = {(N,P ) ∈ IR2 : N > 0, P > 0}. Let V be the
function defined on Ω by

V (N,P ) = e bN − c log(
e b

c
N) + b P − a log(

b

a
P )− (a+ c).

This function is positive definite at (N∗, P ∗): V (N∗, P ∗) = 0 and V (N,P ) > 0 for all N 6= N∗

and P 6= P ∗. The function V is proper on Ω because we have

V (Ω) = [0,+∞), lim
‖(N,P )‖→+∞

V (N,P ) = +∞, lim
N→0

V (N,P ) = +∞ and lim
P→0

V (N,P ) = +∞.
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Moreover its time derivative is V̇ = 0. Therefore, by Lyapunov’s theorem, the nontrivial
equilibrium (N∗, P ∗) is stable and, since V is proper on Ω, all the solutions are bounded.
Actually, the above function V , known as the ecological Lyapunov function, is a constant of
motion. Hence, the solutions of (21) lie on fixed curves defined by V = k. For a given
initial population distribution (N0, P0), the corresponding solution (N(t), P (t)) of (21) satisfies
V (N(t), P (t)) = V (N0, P0), for all positive time t.

0 50 100 150 200
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V=0.015

Figure 7: The trajectories of (21) for a = 0.4, b = 0.01, c = 0.3, e = 0.5.

Now, if we add to the previous predator-prey system terms representing decay due to crowding,
we get{

Ṅ = aN − bNP − fN2

Ṗ = −cP + ebNP − gP 2 (22)

The nontrivial equilibrium for this system is N∗ =
ag + bc

eb2 + fg
and P ∗ =

abe− cf
eb2 + fg

. This equilib-

rium belongs to Ω if and only if abe− cf > 0.
A candidate Lyapunov function is

V (N,P ) = eN∗
(
N

N∗
− log

(
N

N∗

))
+ P ∗

(
P

P ∗
− log

(
P

P ∗

))
− eN∗ − P ∗.

This function is positive definite at (N∗, P ∗) and it is proper on Ω. Let us evaluate its time
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derivative along the solutions of the system (22):

V̇ (N,P ) = e

(
1− N∗

N

)(
aN − bNP − fN2

)
+

(
1− P ∗

P

)(
−cP + ebNP − gP 2

)
= e (N −N∗)

a− bP − fN − (a− bP ∗ − fN∗)︸ ︷︷ ︸
=0


+ (P − P ∗)

−c+ ebN − gP − (−c+ ebN∗ − gP ∗)︸ ︷︷ ︸
=0


= e (N −N∗) (−f(N −N∗)− b(P − P ∗)) + (P − P ∗)(eb(N −N∗)− g(P − P ∗))
= −ef (N −N∗)2 − g(P − P ∗)2.

Hence V̇ (N,P ) < 0 for all (N,P ) ∈ Ω \ {(N∗, P ∗)} and V̇ (N∗, P ∗) = 0. Thus, by the global
version of Lyapunov’s theorem, we conclude that the nontrivial equilibrium (N∗, P ∗) is globally
asymptotically stable.

In order to use the original Lyapunov’s theorems for the purpose of proving the asymptotic
stability of a given system, we have to find a positive definite function V whose time-derivative
V̇ is negative definite. This is a difficult task in general. The definiteness of the derivative V̇
can actually be relaxed by using the LaSalle’s Invariance Principle that we expose hereafter.

A set G ⊂ Ω is an invariant set for the system (17) if whenever a solution belongs to G at some
time, then it belongs to G for all future and past time. That is, if x ∈ G then Xt(x) ∈ G, for all
t ∈ IR. For example, the following sets are invariant sets for the predator-prey system (21):
• The positive quadrant,
• {(N, 0), N ∈ IR},
• {(0, P ), P ∈ IR},
• {(N,P ) : e bN − c log( e b

c
N) + b P − a log( b

a
P ) = k}, k being a positive constant.

A set G is positively invariant (negatively invariant) if:

x ∈ G =⇒ Xt(x) ∈ G, ∀t ≥ 0 (∀t ≤ 0).

The LaSalle’s Invariance Principle can be stated as follows

Theorem 3.6 Let Ω be a subset of IRn. Assume that Ω is positively invariant for system (17).
Let V : Ω → IR be a C1 scalar function such that V̇ (x) ≤ 0 in Ω. Let E be the set of points
within Ω where V̇ (x) = 0, and let L be the largest invariant set within E. Then every bounded
solution starting in Ω tends to the set L as time goes to infinity.

This theorem is a very useful tool for system analysis. Unlike Lyapunov’s theorem, it does
require neither the function V to be positive definite nor the function V̇ to be negative definite.
However, it gives only information about the attraction. Therefore it can be used to show
that the solutions tend to an equilibrium if the set L is reduced to this equilibrium but it
does not allow to say if this equilibrium is stable or not. Actually, when we are interested in
establishing asymptotic stability of an equilibrium point (assumed to be the origin of IRn), we
use the following corollary of the LaSalle’s Invariance Principle:
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Corollary 3.1 Let Ω be an open connected subset of IRn such that x = 0 ∈ Ω, and x = 0 is
an equilibrium state for the system (17). Let U be a neighborhood of the origin in Ω and let
V : U → IR be a C1 positive definite function, such that V̇ (x) ≤ 0 in U . Let E = {x ∈ U :
V̇ (x) = 0}, and assume that largest invariant set within E is reduced to the origin. Then, the
origin is asymptotically stable.
If the above conditions hold for U = Ω and the function V is proper on Ω, then, the origin is a
globally asymptotically stable equilibrium point for the system (17).

This result contains the original Lyapunov’s theorem as a special case. It must be noted that
the set Ω needs not to be bounded.

Example: Consider again the predator-prey system (21) and suppose that the crowding af-
fects only the prey growth:{
Ṅ = aN − bNP − fN2,

Ṗ = −cP + ebNP.
(23)

This system has two equilibria: the trivial equilibrium N = P = 0 (which is unstable) and

a nontrivial equilibrium N∗ =
c

eb
and P ∗ =

abe− cf
eb2

. This equilibrium belongs to Ω (The

interior of the positive quadrant) if and only if abe − cf > 0. We take again the following
candidate Lyapunov function

V (N,P ) = eN∗
(
N

N∗
− log

(
N

N∗

))
+ P ∗

(
P

P ∗
− log

(
P

P ∗

))
− eN∗ − P ∗.

Its time-derivative along the solutions of (23) is

V̇ (N,P ) = −ef (N −N∗)2 ≤ 0.

In this case V̇ is not negative definite so Lyapunov’s theorem does not apply. Hence, we
have to apply the LaSalle’s Invariance principle. Here, E = {(N,P ) ∈ Ω : V̇ (N,P ) = 0} =

{(N∗, P ), P > 0}. On E, the vector field is

(
Ṅ

Ṗ

)
=

(
(a− bP − fN∗)N∗
0

)
(cf Figure 8 ).

It is then easy to see that the only invariant set within E is the equilibrium point (N∗, P ∗) and
this proves that this equilibrium is globally asymptotically stable.

When the vector field X and the Lyapunov function are analytic, the set L can be computed
according to the following formula:

L = {x ∈ Ω : Xk.V (x) = 0, k = 1, 2, . . .}.

Hence, we just have to solve a system of equations. For the previous system (23), we have,
with x = (N,P ) and X = (aN − bNP − fN2,−cP + ebNP )T ,

X.V (x) = 0 =⇒ N −N∗ = 0 (i)
X2.V (x) = −2ef(N −N∗)(aN − bNP − fN2) = 0 (ii)
X3.V (x) = −2ef(aN − bNP − fN2)− 2ef(N −N∗)(−bN)(−cP + ebNP )
+(a− bP − 2fN)(−2ef(N −N∗)(aN − bNP − fN2) = 0 (iii)

By combining (i) and (iii), we get N = N∗ and P = P ∗.
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Figure 8: The set E where V̇ = 0.
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Figure 9: The time evolution of the prey and the predator governed by (23).
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Figure 10: The trajectories of (23) corresponding to different initial conditions.

3.5 Limit cycle

Thus far the only type of attractors encountered have been equilibrium points. For nonlinear
systems, an other type of attractor is possible, the limit cycle.

Here we consider two-dimensional systems of the form
ẋ1 = X1(x1, x2),
ẋ2 = X2(x1, x2),
x = (x1, x2) ∈ Ω ⊂ IR2, X(x) = (X1(x), X2(x)),

(24)

where X1 and X2 are continuously differentiable.

A solution of (24) through the point x ∈ Ω is said to be periodic if there exists T > 0 such that

Xt+T (x) = Xt(x), ∀t ∈ IR. (25)

The trajectory corresponding to a periodic solution is called a periodic orbit or a closed orbit.
The period of a periodic solution is the smallest T > 0 such that (25) holds. A constant solution
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(equilibrium position) is a trivial periodic solution. Here we are interested in nontrivial periodic
solutions. A system oscillates when it has a (nontrivial) periodic solution.

Consider the linear two-dimensional system ẋ1 = −x2, ẋ2 = x1. All the solutions are periodic
and the corresponding orbits are circles centered at the origin. One can remark that there is
a continuum of periodic orbits and that the amplitude of the oscillations depend on the initial
condition. The above system is an harmonic oscillator.

Now consider the following nonlinear two-dimensional system{
ẋ1 = −x2 + x1(1− x2

1 − x2
2),

ẋ2 = x1 + x2(1− x2
1 − x2

2).
(26)

The origin is an equilibrium point and there is no other equilibrium point. The linearization of
the system (26) at the origin is given by the matrix

A =

(
1 −1
1 1

)
This matrix has two eigenvalues whose real parts are positive. Therefore the origin is an
unstable equilibrium point for (26).

The unit circle is an invariant set of the system (26). This fact can be easily seen by representing
the system in the polar coordinates (r, θ) defined by:

x1 = r cos θ, x2 = r sin θ,

which yields{
ṙ = r(1− r2),

θ̇ = 1.

This shows that the sets defined respectively by r = 0 and r = 1 are invariant sets of the system.
The first set r = 0 is just the origin and the second r = 1 corresponds to the unit circle. The
polar form also shows that the unit circle is the unique periodic orbit for the system (26). One
also can remark that if r < 1 then ṙ > 0 and if r > 1 then ṙ < 0. Therefore all the trajectories
(except the trivial solution Xt(0) ≡ 0) spiral toward the unit circle from inside or outside (see
Figure 11). The unit circle is a stable limit cycle.

Remark: It is possible to show that the unit circle attract all the solutions (except the trivial
one) of the system (26) by considering the real-valued function V (x1, x2) = (1− x2

1 − x2
2)2 and

applying the LaSalle’s Invariance Principle (Theorem 3.6).

A closed orbit γ is called a limit cycle if it is an isolated closed orbit, that is, there exists a
neighborhood of γ which contains no other closed orbits of the system (24). A limit cycle is
a special periodic solution of the planar system (24) that attract all other nearby solutions as
t → ∞ or t → −∞. Geometrically this means that the nearby non-closed trajectories spiral
toward it, either from inside or outside as t→∞ or as t→ −∞.
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Figure 11: The trajectories of (26) corresponding to different initial conditions: the unit circle is a limit cycle.

A limit cycle is called stable when nearby trajectories approach it as time t approaches infinity.
It is unstable if the all the trajectories starting arbitrarily close to it will tend away from it as
t→∞.

The unit circle is a stable limit cycle for the system (26). It is an unstable limit cycle for{
ẋ1 = x2 − x1(1− x2

1 − x2
2),

ẋ2 = −x1 − x2(1− x2
1 − x2

2).
(27)

This system is the same as (26) in reversed time. Therefore, its phase portrait is the same as
the one of (26) but the arrow heads are reversed.

We present a celebrated result known as Poincaré-Bendixson theorem which is very useful
for establishing the existence of periodic orbits, and for exploring the stability properties of
nonlinear two dimensional systems. It must be noted however that it has no generalization to
higher dimensional systems.

Theorem 3.7 (Poincaré-Bendixson) Let D be a positively invariant compact set for the
planar system (24) containing a finite number of equilibria. Let x be a point of D, and consider
the corresponding solution Xt(x) of (24). Then one of the following possibilities holds.
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i. The solution Xt(x) is a periodic solution;
ii. the solution Xt(x) approaches a periodic solution as t→∞;
iii. the solution Xt(x) approaches a cycle graph as t→∞.

A cycle graph is the union of equilibria and trajectories Xt(y) such that limt→−∞Xt(y) and
limt→∞Xt(y) are equilibria. A cycle graph can be seen as the union of equilibria and orbits
connecting them.

The Poincaré-Bendixson theorem says that a bounded trajectory that does not approach any
equilibrium point is either a closed periodic orbit or approaches a closed periodic orbit as
t→∞.

An implication of this theorem is that a nonempty compact set that is positively or negatively
invariant contains either an equilibrium point or a limit cycle.

The following criterion is practical in ruling out the presence of closed orbits in a region of the
plane.

Theorem 3.8 (Bendixson’s negative criterion) If on a simply connected domain D ⊂ Ω

(that is D is a connected set without holes) the expression
∂X1

∂x1

+
∂X2

∂x2

is not identically zero

and does not change sign, then the system (24) has no closed orbits lying entirely in D.

A consequence of the above criterion is that limit cycles can only be obtained with nonlinear
systems.

Another criterion that can be used to preclude the existence of periodic solutions in a region
of the plane when the Bendixsons fails is the following result due to Dulac.

Theorem 3.9 (Dulac’s negative criterion) Suppose there exists a real-valued function ρ,
continuously differentiable in a simply connected domain D ⊂ Ω, such that the expression
∂(ρX1)

∂x1

+
∂(ρX2)

∂x2

is not identically zero and does not change sign, then the system (24) has

no closed orbits lying entirely in D.

Example: Consider the following simple epidemic model which is a simplified version of the
system (2) introduced in Section 1 without the class E and without a disease-related death
(d = 0).

Ṡ = bN − µS − βSI
N
,

İ = β
SI

N
− (r + µ)I,

Ṫ = rI − µT,

Ṅ = (b− µ)N.

(28)
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The proportions s = S/N , i = I/N , and τ = T/N satisfy the following system of differential
equations

ṡ = b− bs− βsi,

i̇ = βsi− (r + b)i,

τ̇ = ri− bτ.
(29)

Since s+ i+ τ = 1 it is sufficient to study the planar system{
ṡ = b− bs− βsi = X1(s, i),

i̇ = βsi− (r + b)i = X2(s, i).
(30)

The system evolves in the set D = {(s, i) ∈ IR2 : 0 ≤ s ≤ 1, 0 ≤ i ≤ 1, 0 ≤ s+ i ≤ 1} and has
two equilibria:

The disease-free equilibrium: s∗ = 1, i∗ = 0.

The endemic equilibrium: s∗ =
b+ r

β
=

1

R0

, i∗ =
b (β − (b+ r))

(b+ r) β
. This equilibrium belongs to

D only if b+ r < β.

The linearization technique allows to get the following local stability properties: The disease-
free equilibrium (s∗ = 1, i∗ = 0) is asymptotically stable if b + r > β and it is unstable if
b+r < β. The endemic equilibrium is asymptotically stable when it exists, that is, if b+r < β.
To rule out the existence of periodic orbits we first apply the Bendixson’s criterion on D which
is simply connected:

∂X1

∂s
+
∂X2

∂i
= −b− βi+ βs− (r + b) ≤ −b− βi+ β − (r + b) since s ≤ 1.

Therefore the planar system (30) has no periodic solutions if b + r > β. When b + r ≤ β,
Bendixson’s criterion does not allow to conclude. We apply the Dulac’s criterion with the
function ρ(s, i) = 1

si
which is continuously differentiable in D1 = {(s, i) ∈ D : s > 0, i > 0}:

∂(ρX1)

∂s
+
∂(ρX2)

∂i
= − b

s2i
< 0, ∀(s, i) ∈ D1.

Thus, for any values of the positive parameters, the system has no periodic orbits lying entirely
in D1. The set D\D1 can not contain a periodic orbit since it is just the union of two segments.
Therefore there are no periodic orbits in D.

Now the Poincaré-Bendixson theorem allows to get the following global stability properties:
• For any values of the parameters, the set D0 = {(s, i) ∈ D : i = 0} is positively invariant

and the disease-free equilibrium attracts all the trajectories emanating from this set.
• If b + r ≥ β then the disease-free equilibrium (s∗ = 1, i∗ = 0) is globally attractive in D:

the disease dies out.
• If b + r < β then the endemic equilibrium is globally asymptotically stable in the region
D \ D0 = {(s, i) ∈ D : i > 0}: the disease will spread.
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3.6 Stabilization

Now, we consider a controlled system with an equilibrium state at the origin of IRn
ẋ(t) = X(x(t), u(t)),
X(0, 0) = 0,
x(t) ∈ IRn, u(t) ∈ U ⊂ IRm.

(31)

We assume that the function X is sufficiently smooth and we want to know if it is possible
to control this system in order to stabilize it at its equilibrium state. There are two ways to
achieve this goal. The first one consists in finding the control u as a function of the time variable
t and corresponds to what is called an open-loop control. The second strategy is to build the
stabilizing control as a function u(x) of the state x, this is a feedback control or a closed-loop
control. Here, we develop the basis of the second strategy.

We shall say that the system (31) is stabilizable if there exists a state feedback control u(x),
which is at least continuous ( as a function of the state x), and such that the origin is an
asymptotically stable equilibrium point for the closed-loop system

ẋ(t) = X(x(t), u(x(t))).

The function u(x) is called a static stabilizing feedback law. The system (31) can also be
dynamically stabilizable by use of a dynamic feedback. This means that we control the system
by using other systems. So, we add to the system (31) another dynamical system whose input
is x. Hence, we obtain an interconnected system:{
ẋ = X(x, u)
ẏ = G(y, x), y ∈ Rq (32)

We shall then say that the system (31) is dynamically stabilizable if there exists a feedback law
u(x, y) that stabilizes the system (32) at (x, y) = (0, 0). In this article, emphasis will be put on
the static stabilization.

A necessary condition for the existence of a C1 static feedback u(x) that stabilizes locally the
system (31) around its equilibrium point 0 is that
(i) there exists a neighborhoodN of the origin such that for each state ξ ∈ N there is a control

uξ steering the system from x = ξ at t = 0 to x = 0 at t =∞, i.e., lim
t→+∞

X
uξ
t (ξ) = 0;

(ii) the image of the map

X : IRn × U −→ IRn

(x, u) 7−→ X(x, u)

contains a neighborhood of the origin;
(iii) the linearized system has no uncontrollable modes (see Controllability of linear systems

2.2) associated with eigenvalues whose real part is positive.
A system ẋ = X(x, u) satisfying the condition (i) is said to be asymptotically controllable to
the origin or open-loop stabilizable.

The conditions (i) and (ii) are necessary even if one requires that the stabilizer u(x) is only
continuous. The condition (iii) is not necessary if the stabilizer is required to be only con-
tinuous. When the condition (i) holds but the condition (ii) is not satisfied, then it is not
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possible to stabilize the system (31) by a continuous feedback law u(x); however, it is possible
to stabilize it by a time-varying feedback u(x, t) if some technical conditions hold. Moreover,
for a given positive number T > 0, it is possible to choose a periodic stabilizer u(x, t) that
satisfies: u(x, t+ T ) = u(x), for all t ≥ 0.

Examples: We present some examples to illustrate the above obstructions to stabilizability:

1. The first example (due to R. Brockett) concerns a system that satisfies the conditions (i)
and (iii) but does not satisfy the second condition (ii):

ẋ = X(x, u), with (x1, x2, x3) ∈ IR3, (u1, u2) ∈ IR2, and X(x, u) =

 u1

u2

x2u1 − x1u2

 (33)

On the one hand, this driftless three-dimensional system is controllable (see Theorem 2.4).
Hence the condition (i) is satisfied. On the other hand, the condition (iii) is obviously fulfilled
since the linearized system at the origin

ẋ1 = u1 ,
ẋ2 = u2 ,
ẋ3 = 0 ,

has two controllable modes and one uncontrollable mode associated with a vanishing eigenvalue.
However the condition (ii) is not satisfied since it is not possible to find (x, u) ∈ IR3× IR2 such
that X(x, u) = (0, 0, ε) with ε 6= 0. Therefore, the system (33) can not be stabilized at the
origin by means of a continuous feedback law u(x).

2. Consider the system
ẋ1 = x1(x2

1 + x2
2) ,

ẋ2 = u ,
(x1, x2) ∈ IR2, u ∈ IR .

(34)

The conditions (ii) and (iii) are not violated but the condition (i) is not satisfied because
for any α > 0, the origin can not be asymptotically reached from any point of the open half
space x1 > α. Hence there exists no continuous feedback law u(x1, x2) which makes the origin
asymptotically stable for the system (34).

3. The two-dimensional system
ẋ1 = x1 − x3

2 ,
ẋ2 = u ,
(x1, x2) ∈ IR2, u ∈ IR ,

(35)

satisfies the conditions (i) and (ii) but does not satisfy the condition (iii) because the linearized
system at the origin{
ẋ1 = x1 ,
ẋ2 = u ,

has an uncontrollable mode associated with a positive eigenvalue. Therefore, the system (35)
can not be stabilized at the origin by means of a C1 feedback law u(x1, x2).
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3.6.1 Sufficient stabilizability conditions

For linear systems, the stabilization problem has been completely solved and the construction of
static feedback stabilizers can be done in a systematic way. For nonlinear systems, the problem
is a hard task and still under intensive investigation. No general method is available but many
powerful techniques have been developed, each one allows to compute the stabilizers for a class
of nonlinear systems. Here, we shall expose just one of these techniques because it is one of the
most general and very simple to apply.
We consider an affine control system defined by smooth (C∞) vector fields X, Y1, . . . , Ym, with
an equilibrium point at the origin of IRn: ẋ = X(x) +

m∑
i=1

uiYi(x).

X(0) = 0, Yi(0) = 0.
(36)

If there exists a positive definite and proper smooth function V : IRn → IR such that:
(i) The Lie-derivative of V with respect to the vector field X satisfies

X ·V (x) ≤ 0, ∀x ∈ IRn,

(ii) The set W = {x ∈ IRn |Xk+1 ·V (x) = Xk ·Yi ·V (x) = 0, k ∈ IN, i = 1, . . . ,m} is reduced
to the set {0}.

Then the affine system (36) is globally stabilizable by the smooth state feedback control law

u(x) = −

 Y1 ·V (x)
...

Ym ·V (x)

 . (37)

Remark: The above feedback is known as the Jurdjevic-Quinn feedback. It must be noted
that if the assumptions (i) and (ii) are satisfied then, for any smooth real-valued function β
satisfying β(x) > 0 for all x ∈ IRn \ {0}, the feedback law

u(x) = −β(x)

 Y1 ·V (x)
...

Ym ·V (x)

 (38)

also stabilizes the system (36) at the origin because the time derivative of the function V along
the solutions of the closed-loop system (36-38) is

V̇ (x) = X ·V (x)− β(x)
m∑
i=1

(Yi ·V (x))2 ≤ 0

and the assumption (ii) implies that the largest invariant set contained in the set {V̇ = 0}
is reduced to the origin. Hence the LaSalle’s Invariance Principle allows to conclude that the
origin is a globally asymptotically stable equilibrium for the closed loop-system (36-38).
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Example: A harvested fish population. Consider the following stage-structured model of
a fish population that has been built by Touzeau-Gouzé. It includes (n+ 1) stages represented
by their abundance xi(t), stage 0 being the pre-recruits stage. Each stage is characterized by
its fecundity, mortality and predation rates:

ẋ0(t) = −αx0(t)−m0x0(t) +
∑n

i=1 filixi(t)−
∑n

i=0 pixi(t)x0(t),
ẋ1(t) = αx0(t)− αx1(t)−m1x1(t),

...
ẋn(t) = αxn−1(t)− αxn(t)−mnxn(t),

(39)

where
• mi: linear mortality rate.
• α: linear aging coefficient.
• p0: juvenile competition parameter.
• pi: predation rate of class i on class 0.
• fi: fecundity rate of class i.
• li: reproduction efficiency of class i.
The mortality coefficient can be written as a sum of the natural mortality rate Mi and the fishing
mortality coefficient Fi. Hence one can write: mi = Mi + qiE, where qi is the catchability of
stage i and E is the fishing effort that can be seen as a control term. Denoting αi = α + Mi,
we get

ẋ0(t) = −α0x0(t) +
∑n

i=1 filixi(t)−
∑n

i=0 pixi(t)x0(t)
ẋ1(t) = αx0(t)− (α1 + q1E(t))x1(t)

...
ẋn(t) = αxn−1(t)− (αn + qnE(t))xn(t)

(40)

The origin is an equilibrium point which corresponds to an extinct population and is therefore
not very interesting. Under some conditions and for a constant fishing effort Ē, there exists
another nontrivial equilibrium x∗ whose coordinates are

x∗0 =

∑n
i=1 filiπi − α0

p0 +
∑n

i=1 piπi
x∗i = πix

∗
0

πi =
αi∏i

j=1(αi + qiĒ)

(41)

The goal is to compute the fishing effort as feedback control E(x) = Ē + u(x), in order to
maintain the fish population around its steady state x∗. The state x∗ becomes a globally
asymptotically stable equilibrium for the closed-loop system within Ω, the positive quadrant.
The system can be rewritten as follows

ẋ =


−α0x0 +

∑n
i=1 filixi −

∑n
i=0 pixix0

αx0 − (α1 + q1Ē)x1
...

αxn−1 − (αn + qnĒ)xn


︸ ︷︷ ︸

X(x)

+u


0

−q1x1
...

−qnxn


︸ ︷︷ ︸

Y (x)

. (42)
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Let V be the following candidate Lyapunov function

V (x) =
1

2

(
(x0 − x∗0)2 +

n∑
i=1

(∑n
j=i kjπj

αi + qiĒ

)(xi − x∗i
πi

)2
)
, ki = fili − pix∗0 i = 1, . . . , n.

V is a positive definite function on Ω provided that

x∗0 < min
i=1,...,n

∑n
j=i fjljπj∑n
j=i pjπj

Its derivative along the drift vector field X satisfies

X.V (x) = 〈X(x),∇V (x)〉 ≤ −1

2

n∑
i=1

kiπi

(
(x0 − x∗0)− (

xi − x∗i
πi

)

)2

≤ 0

A candidate stabilizer given by (37) is u = Φ(x) = −〈Y (x),∇V (x)〉 =
n∑
i=1

γiqixi(xi − x∗i ), with

γi =

∑n
j=i kjπj

(αi + qiĒ)π2
i

. However, the function Φ is unbounded and takes positive as well as negative

values, hence E(x) = Ē + u(x) can take negative values which is not possible in practice (E
is a fishing effort). Thus, instead of using the feedback given by the formula (37), we use the
feedback law given by the formula (38) u(x) = β(x)Φ(x) and we choose the function β such

that β(x)Φ(x) ≥ −Ē. A simple computation shows that Φ(x) ≥ −
∑n

i=1 γiqi
x∗i
4

. Therefore we

take β(x) =
4Ē∑n

i=1 γiqix
∗
i

and

u(x) =
4Ē∑n

i=1 γiqix
∗
i

Φ(x) . (43)

We then have u(x) ≥ −Ē which ensures that E(x) ≥ 0 for all x ∈ Ω. The figure 12 presents a
simulation for a five stages system controlled by the feedback law given by the formula (43).

Stage i i = 0 i = 1 i = 2 i = 3 i = 4
pi 0.2 0 0.1 0.1 0.1

fi 0 0.5 0.5 0.5

li 0 10 20 15

qi 0 0 0 0.1 0.15

α 0.8

αi 1.3 1 1 0.9 0.85

Ē 1

Table 1: The parameter values used in the simulation.
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Figure 12: The time evolution of the different stages for the closed-loop system (42-43) with the parameter
values given in Table 1 and with initial conditions: x0(0) = 20, x1(0) = 20, x2(0) = 45, x3(0) = 10 and
x4(0) = 3.
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4 Observability

We consider the standard input-output finite dimensional system:
ẋ(t) = X(x(t), u(t)) = Xu(x(t)),

y(t) = h(x(t)),

x(t) ∈M, u(t) ∈ U ⊂ IRm, y(t) ∈ Y ⊂ IRq

(44)

Here M is an open connected subset of IRn. We assume that the vector field X and the map h
are C∞ or analytic (when needed). The point x(t) in M is called the state of the system, u(t)
is the input and y(t) is the measurable output of the system. The introduction of y is due to
the fact that usually we do not have access to the whole state: we can observe or measure only
a part of the actual state of the system.
The class of admissible inputs Uad = {u(.) : t ∈ IR+ 7→ u(t) ∈ U} is contained in the set of
measurable controls with values in U and contains the class of piecewise constant controls with
values in U .
We shall use the notation X

u(.)
t (x0) to denote the solution of the differential equation (44)

corresponding to the admissible control u(.) ∈ Uad and with initial condition x0: X
u(.)
0 (x0) = x0.

The corresponding output is y(x0, u(.), t) = h
(
X
u(.)
t (x0)

)
.

Two states x1, x2 ∈ M are said to be indistinguishable if y (x1, u(.), t) = y (x2, u(.), t) for any
admissible control (or input) u(.) ∈ Uad and any t for which both sides are defined. Roughly
speaking, this means that the information provided by the measurable output is not enough to
tell us if the evolution of the system is given by the solution of (44) emanating from the state
x1 or by the one emanating from the state x2.

Example: Consider the single input system with two outputs{
ẋ = u

y = h(x) = (sin x, cosx)

where x ∈ M = IR, u ∈ IR, y = (y1, y2) ∈ IR2. We have, for any real x, any integer k and any
input u

y1 (x+ 2kπ, u(.), t) = sin
(
x+ 2kπ +

∫ t
0
u(s)ds

)
= sin

(
x+

∫ t
0
u(s)ds

)
= y1 (x, u(.), t) .

y2 (x+ 2kπ, u(.), t) = cos
(
x+ 2kπ +

∫ t
0
u(s)ds

)
= cos

(
x+

∫ t
0
u(s)ds

)
= y2 (x, u(.), t) .

Hence the states x and x+ 2kπ are indistinguishable.

Two states x1, x2 ∈ M (x1 6= x2) are said to be distinguishable if there exists an admissible
control (or input) u(.) ∈ Uad and a time t ≥ 0 such that y (x1, u(.), t) 6= y (x2, u(.), t).
An admissible input which distinguishes every pair of states is called an universal input.

Consider the single input single output system{
ẋ = u

y = h(x) = x2



Controllability, Observability, and Stability of Mathematical Models -Abderrahman Iggidr 40

where x ∈ M = IR, u ∈ IR, y ∈ IR. Every pair of distinct states x1 and x2 are distinguishable:
it is sufficient to take u = c 6= 0. However, the input u(t) ≡ 0 is not an universal input: it does
not distinguish the states x and −x.

The system (44) is observable if any pair of distinct initial states (x1, x2) are distinguishable.
The system (44) is uniformly input observable (or observable for any input) if for any input
u(.) ∈ Uad and for any pair of distinct initial states (x1, x2), there exists a time t ≥ 0 such that
y(x1, u(.), t) 6= y(x2, u(.), t).

Example: Bacterial growth in a chemostat.
Consider the following model of the chemostat:

ẋ = µ(s) x− ux

ṡ = −kµ(s) x− u(s− sin)

y = x

(45)

where x(t) and s(t) are respectively the concentration in micro-organisms and substrate, the
function µ(s) is the absorbing rate of the substrate by the micro-organisms and k is a constant.
For this system, the input is the flow rate u and the output is usually the concentration x(t).
If the map s 7→ µ(s) is injective then the chemostat (45) is uniformly input observable.

Observability also means that the data of the output y(t) and the input u(t) on any finite time
interval [t0, t1] allow to recover the initial state x0 and therefore the trajectory starting from
this initial state.

4.1 Observability of linear systems

In this section, we study the observability properties of linear systems

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

x(t) ∈ IRn, u(t) ∈ U ⊂ IRm, y(t) ∈ IRq,

A, B, and C are respectively n× n, n× p and m× n matrices.

(46)

For the linear time-invariant system (46), we have

y (x1, u(.), t) = CetAx1 + C

∫ t

0

e(t−s)ABu(s)ds .

Hence,

y (x1, u(.), t)− y (x2, u(.), t) = CetA(x1 − x2).

Thus, x1 and x2 are indistinguishable if and only if CetA(x1 − x2) = 0 for all t ≥ 0. By
analyticity of CetAx, this is equivalent to say that all the derivatives of t 7→ CetA(x1 − x2)
vanish at t = 0, i.e,

dk

dtk
CetA(x1 − x2)

∣∣∣∣
t=0

= 0, for all k = 0, 1, 2, . . . ,
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which can be written :

CAk(x1 − x2) = 0, for all k = 0, 1, 2, . . . .

Thanks to Cayley-Hamilton theorem, this is equivalent to :

C(x1 − x2) = CA(x1 − x2) = . . . = CAn−1(x1 − x2) = 0.

Therefore x1 and x2 are indistinguishable if and only if

x1 − x2 ∈ ker C ∩ ker CA ∩ ker CA2 ∩ . . . ∩ ker CAn−1

We remark that this condition is independent of the input. So the linear system (46) is uniformly
input observable if and only if it is observable if and only if the matrix:

O(C,A) =



C

CA

CA2

...

CAn−1


is of rank n. In this case we say that the system (46), or the pair (C, A), satisfies the Kalman
rank condition for observability.

Another interpretation of observability for linear systems: Let us consider now the
system (46) with a single output, that is, y(t) ∈ IR (q = 1). If the system considered is
observable (we also say the pair (C, A) is observable) then the linear change of coordinates
z = O(C,A)x allows us to write system (46) in the following observability canonical form :{
ż(t) = Ãz(t) + B̃u(t),

y(t) = C̃z(t),
(47)

with: Ã =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
...

...
0 0 0 0 . . . 1
−a0 −a1 −a2 −a3 . . . −an−1

 and C̃ =
(

1 0 0 . . . 0
)
.

Let us compute the successive time derivatives of the output:

y(t) = C̃z(t)

ẏ(t) = C̃ż(t) = C̃Ãz(t) + C̃B̃u(t)

ÿ(t) = C̃Ã2z(t) + C̃ÃB̃u(t) + C̃B̃u̇(t)

...

y(n−1)(t) = C̃Ãn−1z(t) + C̃Ãn−2B̃u(t) + C̃Ãn−3B̃u̇(t) + . . .+ C̃B̃u(n−2)(t)
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This can be written in a condensed form :

O(C̃,Ã)z(t) =



y(t)

ẏ(t)− C̃B̃u(t)

ÿ(t)− C̃ÃB̃u(t)− C̃B̃u̇(t)

...

y(n−1)(t)− C̃Ãn−2B̃u(t)− C̃Ãn−3B̃u̇(t)− . . .− C̃B̃u(n−2)(t)


.

From this relation we see that, if the functions t 7→ y(t) and t 7→ u(t) are known then one can
compute the state vector z(t) uniquely since the matrix O(C̃,Ã) is invertible.

4.2 Observability of nonlinear systems

We go back to the nonlinear system (44). To simplify the notations, we shall consider systems
with single output, i.e., q = 1 and y(t) = h(x(t)) ∈ IR.

In order to derive an observability condition for (44), we need to recall that a smooth (C∞)
vector field X defined on M operates on C∞(M), the set of C∞ functions Φ : M −→ IR, by
Lie differentiation in the following way:

C∞(M) −→ C∞(M)
Φ 7−→ X.Φ

with

X.Φ (x) =
d

dt

(
Φ
(
Xt(x)

))∣∣∣∣
t=0

In the coordinate system (x1, . . . , xn), let 〈. , .〉 denote a scalar product and ∇Φ the gradient
of Φ in these coordinates. If

X(x) =

(
n∑
i=1

Xi∂/∂xi

)
(x) =


X1(x1, . . . , xn)

X2(x1, . . . , xn)
...

Xn(x1, . . . , xn)

 ,

then

X.Φ (x) = 〈∇Φ(x) , X(x)〉 =
n∑
i=1

Xi(x)
∂Φ

∂xi
(x)

The function X.Φ is called the Lie derivative of Φ along the vector field X. It is also denoted
LXΦ. For a given positive integer k > 0, the Lie derivative of order k of Φ along X is defined
by induction as follows:

Xk.Φ = X.(Xk−1.Φ) .
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Example: ẋ = X(x) = Ax, y = h(x) = Cx. Here, we have Xt(x0) = etAx0. Hence

X.h(x0) = d
dt

(
CetAx0

)∣∣∣
t=0

= CAx0 and it is easy to see that Xk.h(x0) = CAkx0.

The observation space of (44) O is the linear space (over IR) of functions on M containing
the observation function h and which is closed under Lie differentiation by all elements of
F = {Xu, u ∈ U}. (F is just the set of vector fields corresponding to constant controls).
It can be proved that O can be defined as the set of all the linear combination of all repeated
Lie derivatives of functions of the form Xuk . . . Xu2Xu1 .h. i.e.:

O = spanIR{(Xul)kl . . . (Xu2)k2 .(Xu1)k1 .h : l ≥ 0, u1, . . . , ul ∈ U, ki = 0, 1, 2, . . .}.

For analytic systems, the observability is equivalent to the fact that the observability space O
separates the points of M .

Remark: The observation space O contains the output function and all derivatives of the
output function along the system trajectories. In particular, for a system without input

ẋ(t) = X(x(t)), y(t) = h(x(t)),

O is constructed by taking y = h(x) together with all repeated time derivatives ẏ = X.h(x),
ÿ = X2.h(x), . . ..

For the linear system (46), the observation space is generated by the functions

Cx, CAx, . . . , CAn−1x.

Remark: We have seen that the observability of linear systems does not depend on the input.
This is no more true for nonlinear systems as it can be shown by the following example: ẋ =

(
1 0
1 −1

)
x+ u

(
0 1
1 0

)
x,

y = x1.
(48)

Here x = (x1, x2) ∈ M = IR2, u ∈ U = {0, 1}. This is a very simple nonlinear system : it is
a bilinear system. This system is observable, because with the input u(t) ≡ 1, we obtain an

observable linear system ẋ = Ax , y = Cx, with A =

(
1 1
2 −1

)
and C =

(
1 0

)
. It is easy to

see that the Kalman rank condition for observability is satisfied. One also can remark that it is
possible to reconstruct the state (x1(t), x2(t)) from y(t) = x1(t) and ẏ(t) = x1(t)+x2(t). Hence,
the input u(t) ≡ 1 distinguish every pair of distinct initial states x0 and x̃0 and this proves that
the system (48) is observable. However this system is not uniformly input observable because
the input u(t) ≡ 0 does not distinguish states x0 and x̃0 satisfying: x0

1 = x̃0
1 and x0

2 6= x̃0
2.
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4.3 Examples from life support systems

Leslie type systems: Models describing the growth of a stage structured population are
usually represented by Leslie-type systems :

ẋ1 = F1(x1, x2, . . . , xn, u)

ẋ2 = F2(x1, x2, u)

...

ẋn−1 = Fn−1(xn−2, xn−1, u)

ẋn = Fn(xn−1, xn, u)

(49)

In these models, all the variables are positive, x1 represents the youngest stage (often eggs).
The function F1 describes the so-called recruitment function, i.e., eggs laying from the other
stages. The function xi−1 7→ Fi(xi−1, ., .) corresponds to the transfer from stage i− 1 to stage
i, and it is often an increasing function. The fishery model (40) is a particular example of
Leslie-type systems (49) where the input is the fishing effort.
Suppose we measure only the last stage (the oldest), that is the output of the system (49) is
y = xn. This system is observable for any input. Indeed, suppose that for two initial states x
and x̄ we have the same output, i.e., xn(t) = x̄n(t), for all t ≥ 0 then by differentiation we get:

Fn(xn−1(t), xn(t), u(t)) = Fn(x̄n−1(t), x̄n(t), u(t)), ∀t ≥ 0.

Since ∂Fn/∂xn−1 is positive, the map xn−1 7→ Fn(xn−1, xn, u) is injective. Hence, the above
equality (together with xn(t) ≡ x̄n(t)) implies that xn−1(t) ≡ x̄n−1(t). Once again, by differen-
tiation of this equality we get:

Fn−1(xn−2(t), xn−1(t), u(t)) = Fn−1(x̄n−2(t), x̄n−1(t), u(t)), ∀t ≥ 0.

Thanks to the same argument (xi−1 7→ Fi(xi−1, xi, u) is monotone), we deduce that xn−2(t) ≡
x̄n−2(t). And so on, we show that for all t ≥ 0,

xn(t) = x̄n(t),

xn−1(t) = x̄n−1(t),

...

x1(t) = x̄1(t).

Hence, y(x, u(.), t) ≡ y(x̄, u(.), t) implies that x = x̄ which proves that the Leslie-type sys-
tem (49) is uniformly input observable.

Trophic chains: Models describing trophic chains represent the dynamics of an ecosystem
from nutrient (x1), phytoplankton (x2), ... to higher levels such as fish (xn). They can be
written as

ẋ1 = F1(x1, x2, u)

ẋi = Fi(xi−1, xi, xi+1, u) for i ∈ {2, ..., n− 1}

ẋn = Fn(xn−1, xn, u).

(50)
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The functions Fi are generally monotone functions of the variable xi+1, i.e., xi+1 7→ Fi(., ., xi+1, .)
is monotone. These systems are uniformly input observable if one can measure on-line the first
compartment of the chain or the last one, i.e., y = x1 or y = xn.

5 Observers

We consider an input-output nonlinear system described by{
ẋ = f(x, u)

y = h(x),
(51)

where x(t) ∈ IRn is the state of the system at time t, u(t) ∈ U ⊂ IRm is the input and y(t) ∈ IRq

is the measurable output of the system.
Here, f : IRn × IRm → IRn and h : IRn × IRm → IRq are smooth functions.
We have seen that the observability of the system (51) means that it is theoretically possible to
recover the state x(t) from the input u(t) and the output y(t) together with their repeated time
derivative u̇, ü, . . . , ẏ, ÿ, . . . , y(k), . . . along the solution of the system. However, in practice,
the use of the derivatives may not give sufficiently accurate performance, especially in the case
of noisy measurements as it can be illustrated by the following example:

ẋ1 = x2

ẋ2 = x3

ẋ3 = u

y = x1

(52)

This system is observable for any input. Moreover, the state can be completely recovered
because x1 is measured and one can deduce x2 and x3 by x2 = ẏ and x2 = ÿ. However,
if the measurement of x1 is corrupted by a sinusoidal disturbance with a small amplitude
then the error on x2 and x3 (computed according to the above rules) can become very large.
For instance, if y(t) = x1(t) + ε sin(100t) then ẏ(t) = x2(t) + 100 ε cos(100t) and ÿ(t) =
x3(t)− 10000 ε sin(100t).

To avoid the use of the time derivatives of the output and at the same time to counter the
induced effects of disturbances, another tool has been developed to reconstruct the state from
available outputs. This tool is called an observer or a software sensor. An observer for the the
system (51) is a dynamical system whose inputs are the inputs and outputs of the system (51),
which produces an estimate x̂(t) of the state x(t) such that x(t) − x̂(t) → 0 as t → +∞ and
the estimation error must remain small if it starts small.



Controllability, Observability, and Stability of Mathematical Models -Abderrahman Iggidr 46

^x = g( x, u, y)
.̂

y=h(x)u .
x=X(x,u)   

x̂

 Real system 

  Observer

Figure 13: An observer.

A common form for the observers is the following

˙̂x(t) = g(x̂(t), y(t), u(t)), (53)

where g is smooth. In practice, an on-line estimation of the state is obtained by choosing an
initial condition x̂(0) and integrating equation (53) on a computer. We must notice here that
it is not possible to do the same thing with the system (51) (which is supposed to model a real
system) because we do not know the initial condition x(0).
Let e(t) = x(t)− x̂(t) be the estimation error. The error equation is then given by

ė = f(x, u)− g(x̂, y, u). (54)

If the system (53) is an observer for the system (51), then e = 0 must be an equilibrium for (54)
which implies that g(x, h(x), u) = f(x, u) for all x and all admissible inputs u. Furthermore
the null solution e(t) ≡ 0 of (54) has to be globally asymptotically stable. If it is only locally
asymptotically stable then the dynamical system (53) is a local observer for the system (51).
System (53) is said to be an exponential observer if the estimation error decreases at an expo-
nential rate, that is, there exist positive constants c and a in such a way that the solutions x(t)
and x̂(t) of (51) and (53) satisfy for any initial conditions x(0) and x̂(0)

‖x(t)− x̂(t)‖ ≤ c ‖x(0)− x̂(0)‖ e−a t , ∀t > 0.

To construct an observer for a given system, one has to find the ”good” function g that satisfy
the above conditions. For linear systems this problem has been solved by the Luenberger
observer. For nonlinear systems, there is no ”universal” solution but several methods have
been developed for some classes of systems. Usually, the simplest and the most natural way to
construct an observer for the system (51) is to take a copy of it and to add a corrective term
that depends on the difference h(x̂(t))− y(t), for instance

g(x̂, y, u) = f(x̂, u) +K(x̂) (h(x̂)− y) .

5.1 Observers for linear systems

We consider an observable linear system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

x(t) ∈ IRn, u(t) ∈ U ⊂ IRm, y(t) ∈ IRq,

A, B, and C are respectively n× n, n×m and q × n matrices.

(55)
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An observer (called Luenberger Observer) for this system is

˙̂x(t) = Ax̂(t) +Bu(t) +K
(
y(t)− Cx̂(t)

)
(56)

where the n × q matrix K is to be computed. The observer is an n-dimensional system with
state vector x̂(t). The inputs of the observer consist of a copy of the inputs of the original
system (55) and the measurements y(t) available from the original system (55). The estimation
error e(t) = x(t)− x̂(t) is governed by the differential equation

ė(t) = Ae(t)−K
(
y(t)− Cx̂(t)

)
= Ae(t)−K

(
Cx(t)− Cx̂(t)

)
= (A−KC)e(t) .

System (55) is assumed to be observable, so the pair (A, C) is observable and this is equivalent
to say that the pair (AT , CT ) (T = transpose) is controllable. For a pair of controllable matrices,
we can apply the Pole-Shifting Theorem which says that given any nth−order real polynomial
p(λ) = λn + an−1λ

n−1 + . . . + a0 there is a real matrix F such that the matrix AT + CTF has
p(λ) as its characteristic polynomial. In other words, for any given set S = {α1, . . . αn} of n
complex numbers satisfying z ∈ S ⇒ z̄ ∈ S, it is possible to find a matrix F in such a way
that the spectrum of AT + CTF is σ(AT + CTF ) = S.
Since the spectrum of a real matrix M and the one of its transpose MT are equal, we have

σ(AT + CTF ) = σ
(

(AT + CTF )T
)

= σ(A + F TC). In particular, there exists a matrix F

such that all the eigenvalues of (A + F TC) are with negative real part. Therefore, if we take
K = −F T then the estimation error satisfies

‖e(t)‖ ≤ c e−αt, where c > 0, α > 0, and α = max
λ∈σ(A−KC)

|Re(λ)|.

It follows that the Luenberger observer (56) is an exponential observer for the system (55).
Moreover the rate of convergence can be arbitrary chosen.

Example: Consider a Leslie type system for the dynamic of a three stage structured popu-
lation

ẋ1(t)

ẋ2(t)

ẋ3(t)

 =


−α1 0 µ3

β1 −α2 0

0 β2 −α3


︸ ︷︷ ︸

A


x1(t)

x2(t)

x3(t)

 .

The entries of the Leslie matrix A are assumed to be independent of the environment and we
suppose that we observe only the last stage, that is, the output of the system is y(t) = x3(t).
Here, C =

(
0 0 1

)
. The transfer from stage i− 1 to stage i being positive, i.e, β1 > 0 and

β2 > 0, the Kalman observability rank condition is fulfilled. Therefore the following system is
an exponential observer (or software sensor) for the above Leslie system:

˙̂x1(t)

˙̂x2(t)

˙̂x3(t)

 =


−α1 0 µ3

β1 −α2 0

0 β2 −α3




x̂1(t)

x̂2(t)

x̂3(t)

+ (y(t)− x̂3(t))


k1

k2

k3

 .
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The gain matrix K =
(
k1 k2 k3

)T
can be selected in order to force the eigenvalues of A−KC

to have desired values. For instance, if one wants to have σ(A−KC) = {−3, −2, −1}, then
the coefficients of the matrix K are:

k1 = −−6 + 11α1 − 6α1
2 + α1

3 − β1 β2 µ3

β1 β2

,

k2 = −−11 + 6α1 − α1
2 + 6α2 − α1 α2 − α2

2

β2

,

k3 = 6− α1 − α2 − µ3.

The corresponding estimation error satisfies for all initial conditions x(0) and x̂(0) (recall that
x(0) is unknown but x̂(0) can be chosen by the user) and any positive time t

‖e(t)‖ ≤ c‖x(0)− x̂(0)‖ e−3t.

Discrete-time systems: Now we consider an n−dimensional discrete-time linear system{
x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k).

If the pair (C,A) is observable then, by the Pole-Shifting Theorem, it is possible to find a matrix
K in such a way that A −KC is a nilpotent matrix, i.e, (A −KC)n = 0. The corresponding

observer x̂(k + 1) = Ax̂(k) + Bu(k) + K
(
y(k) − Cx̂(k)

)
is called a deadbeat observer. It has

the particularity that the estimate becomes equal to the state after n steps.

5.2 Some nonlinear observers

The construction of nonlinear observers attracted much attention during the last decades.
Efficient methods have been designed by many authors. For lack of space we shall only expose
the high-gain constructions developed recently by J.P. Gauthier, H. Hammouri, I. Kupka and
S. Othman. To avoid complex calculus, we consider only single output nonlinear system.

5.2.1 System with no input

Let us consider an observable single output system
ẋ = X(x),

y = h(x),

x ∈ IRn, y ∈ IR.

(57)

The output function h together with its first n − 1 derivatives along the vector field X allow
to define the following map{

Φ : IRn −→ IRn

x 7−→ Φ(x) = (h(x), X.h(x), . . . , Xn−1.h(x))T
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We assume that Φ is a global diffeomorphism. This assumption implies that the state can be
recovered from the output and its first n − 1 time-derivatives. In the coordinates defined by
z = Φ(x), the system (57) is governed by the following differential equation:

ż =


0 1 0 ... 0
0 0 1 ... 0
. . . . .
0 0 ... 0 1
0 0 ... 0 0


︸ ︷︷ ︸

A

z +


0
0
...
0

ψ(z)

 = F (z)

y = z1 = (1, 0, . . . , O)︸ ︷︷ ︸
C

z.

(58)

Assume that ψ is globally Lipschitz. Then, for θ ≥ 1 large enough, an exponential observer (a
Luenberger type observer) for the system (58) is given by the following dynamical system:

˙̂z = F (ẑ)−∆θK(Cẑ − y), (59)

where

∆θ =


θ 0 . . . 0
0 θ2 . . . 0
...

. . .

0 . . . 0 θn

 ,

and K is chosen such that the matrix A −KC has all its eigenvalues with negative real part.
This is possible since the pair (C,A) is observable.

Remark: In the equation of the observer (59), the term ∆θK can be replaced by S−1
θ CT with

Sθ being the solution of

θSθ + ATSθ + SθA = CTC.

The matrix Sθ can be analytically computed by

Sθ(i, j) =
(−1)i+j

θi+j−1

(i+ j − 2)!

(i− 1)!(j − 1)!
.

5.2.2 Affine control systems

Consider a single input single output (SISO) nonlinear system that can be modeled by
ẋ = X(x) + uY (x),

y = h(x),

x ∈ IRn, y ∈ IR, u ∈ IR.

(60)
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If the above map Φ defines a global diffeomorphism then the system (60) can be rewritten:

ż =


0 1 0 ... 0
0 0 1 ... 0
. . . . .
0 0 ... 0 1
0 0 ... 0 0


︸ ︷︷ ︸

A

z +


0
0
...
0

ψ(z)

+ u


g1(z)
g2(z)

...
gn−1(z)
gn(z)

 = F (z) + uG(z)

y = z1 = (1, 0, . . . , O)︸ ︷︷ ︸
C

z.

(61)

If moreover the system is observable for any input then the map G satisfies gi(z) = gi(z1, . . . , zi).
This means that

∂

∂zj

(
Y X i−1h(φ−1(z))

)
= 0, for i = 1, . . . , n− 1 and j = i+ 1, . . . , n

If ψ and gi are globally Lipschitz then an exponential observer for the system (61) is, for θ large
enough, given by:

˙̂z = F (ẑ) + uG(ẑ)− S−1
θ CT (Cẑ − y). (62)

For the original system (60), the observer is:

˙̂x = X(x̂) + uY (x̂)−
[
∂Φ

∂x

]−1

x=x̂

S−1
θ CT (Cx̂− y). (63)

For the system (60), it is possible to give another type of observer called the extended Kalman
filter:{ ˙̂z = F (ẑ) + uG(ẑ)− 1

r
S(t)−1CT (Cẑ − y),

Ṡ = −SQθS − [A?(ẑ, u)]TS − SA?(ẑ, u) + 1
r
CTC,

(64)

where r, θ are positive real numbers, Qθ = ∆θQ∆θ, Q is a given symmetric positive definite
n× n matrix, A?(ẑ, u) is the Jacobian matrix of F (z) + uG(z) evaluated at z = ẑ, i.e,

A?(ẑ, u) =
∂

∂z
(F (z) + uG(z))

∣∣∣∣
z=ẑ

.

Once again, for θ ≥ 1 and large enough, the system (64) is an exponential observer for the
system (61). The difference with the Luenberger-like observer (62) is that the gain S−1

θ CT used
in the correction term is not constant but it is dynamically computed as a solution of a Ricatti
matrix differential equation and hence, takes into account the information appearing at the
current time t. Therefore, the Kalman observer is more robust with respect to noise that may
affect the measurement output.
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Example: The chemostat. We consider the following chemostat model
ẋ = µ(s) x− ux,

ṡ = −kµ(s) x− u(s− sin),

y = x.

(65)

Where µ(s) =
ms

a+ s
is the Monod absorption response of the substrate by the micro-organisms.

The domain Ω = {x̃ = (x, s) ∈ IR2 : x > 0, s > 0, s+ kx < sin} is positively invariant under
the flow of (65). This can be proved by checking that the vector field is always tangent or
pointing inside the boundary of Ω. However, the system is not observable on the closure Ω̄ of
Ω because all the initial conditions (0, s) produce the same output y(t) ≡ 0 and so, for s1 6= s2,
the states (0, s1) and (0, s2) are indistinguishable whatever the input is. Therefore, we shall
choose an open subset Ω1 of Ω such that the system is observable on Ω1. To this end we assume

that 0 < umin ≤ u ≤ umax < m. Let d be the positive number defined by d =
aumin

m− umax
and c

be any positive number satisfying kc+ d < sin. We, then, define Ω1 by

Ω1 = Ω ∩ {(x, s) : x > c, s > d}.

It is easy to see that Ω1 is positively invariant and that the system is observable on Ω1 for all
input satisfying the condition 0 < umin ≤ u ≤ umax < m.

We perform the change of coordinates given by

Φ : z1 = y = x, z2 = µ(s)x =
ms

a+ s
x.

Conversely:

Φ−1 : x = z1, s =
az2

mz1 − z2

.

The domain Ω is transformed by Φ in

Φ(Ω) = {(z1, z2) ∈ IR2 : z1 > 0, 0 < z2 < mz1, mkz
2
1 − kz1z2 + (a+ sin)z2 −msinz1 < 0},

and the domain Ω1 is transformed by Φ in

Φ(Ω1) = {(z1, z2) ∈ IR2 : z1 > c,
dm

a+ d
z1 < z2 < mz1, mkz

2
1−kz1z2 +(a+sin)z2−msinz1 < 0}

The sets Ω and Φ(Ω) (corresponding to the parameters: a = 10, m = 1, sin = 30, k = 1) are
drawn in Figure 14, and the sets Ω1 and Φ(Ω1) are drawn in Figure 15.

The map Φ is bijective from Ω1 to Φ(Ω1). The Jacobian matrices of Φ and Φ−1 are

dΦ

dx̃
=

 1 0

ms

a+ s

max

(a+ s)2

 ,
dΦ−1

dz
=

 1 0

−amz2

(mz1 − z2)2

amz1

(mz1 − z2)2

 ,
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Figure 14: The invariant domain Ω and its image by Φ.
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Figure 15: The invariant domain Ω1 and its image by Φ.

which are invertible for all (x, s) ∈ Ω1 and all (z1, z2) ∈ Φ(Ω1). Therefore Φ is a diffeomorphism
from Ω1 to Φ(Ω1) (it is also a diffeomorphism from Ω to Φ(Ω)). With the new coordinates,
the system (65) is defined, for (z1, z2) ∈ Φ(Ω1), by

ż1 = z2 − uz1,

ż2 =
z2

2

z1

− kz2(mz1 − z2)2

amz1

+ u

(
−z2 −

(mz1 − z2)z2

mz1

+
(mz1 − z2)2

amz1

sin

)
,

y = z1.

(66)

We extend this system to the whole IR2 as follows:

ż1 = z2 − uz1,

ż2 = ψ(z1, z2) + ug(z1, z2),

y = z1,

(z1, z2) ∈ IR2,

(67)
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where ψ and g are any C∞ (or at least continuous) functions that are globally Lipschitz on IR2

and such that their restrictions to Φ(Ω1) are:

ψ/Φ(Ω1) : (z1, z2) 7→ z2
2

z1

− kz2(mz1 − z2)2

amz1

,

g/Φ(Ω1) : (z1, z2) 7→ −z2 −
(mz1 − z2)z2

mz1

+
(mz1 − z2)2

amz1

sin

The system (67) has the same form as the system (61) and it satisfies all the required conditions
on IR2. Therefore a Luenberger-like observer can be built. To this end, we compute the following
matrices

S−1
θ =

(
2θ θ2

θ2 θ3

)
, S−1

θ CT =

(
2θ

θ2

)
.

And then an exponential observer for (67) is{ ˙̂z1 = ẑ2 − uẑ1 − 2θ(ẑ1 − y),

˙̂z2 = ψ(ẑ) + ug(ẑ)− θ2(ẑ1 − y).
(68)

Therefore, for all α > 0, it is possible to find θ ≥ 1 such that the solutions of (68-67) satisfy:

∃ C1 > 0, ∀t ≥ 0, ∀(ẑ(0), z(0)) ∈ IR2 × IR2, ‖ẑ(t)− z(t)‖ ≤ C1‖ẑ(0)− z(0)‖ exp(−αt).

Now, let Φ̃ : IR2 → IR2 be a global diffeomorphism such that Φ̃ and its inverse Φ̃−1 are globally
Lipschitz and such that the restriction of Φ̃ to the compact set Ω1 is equal to Φ, that is,
Φ̃(x̃) = Φ(x̃) for all x̃ ∈ Ω1. An estimation of the state vector x̃(t) = (x(t), s(t)) is then given
by:

ˆ̃x(t) = (x̂(t), ŝ(t)) = Φ̃−1(ẑ1(t), ẑ2(t)) = Φ̃−1(ẑ(t)), (69)

where ẑ(t) is given by the differential system (68). This estimation converges exponentially to
the real state x̃(t). Indeed, let K1 and K2 be the Lipschitz constants of respectively Φ̃ and Φ̃−1,
then we have

∀t ≥ 0, ‖ˆ̃x(t)− x̃(t)‖ = ‖Φ̃−1(ẑ(t))− Φ̃−1z(t)‖
≤ K2‖ẑ(t)− z(t)‖ ≤ K2C1‖ẑ(0)− z(0)‖ exp(−αt)
≤ K2K1C1‖x̃(0)− x̃(0)‖ exp(−αt).

Remark: Another way (which is less rigorous than the above one and which is often used for
the simulations purpose) to compute the estimations (x̂(t), ŝ(t)) is just to apply the formula
(63) without extending the system to the whole space IR2. To this end we need to compute the
following matrices

[
∂Φ

∂x̃

]−1

x̃=ˆ̃x

=

 1 0

−ŝ(a+ ŝ)

ax̂

(a+ ŝ)2

amx̂

 [
∂Φ

∂x̃

]−1

x̃=ˆ̃x

S−1
θ CT =

 2θ

−2
ŝ(a+ ŝ)θ

ax̂
+

(a+ ŝ)2θ2

amx̂

 .
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The observer for the chemostat is then given by:
˙̂x = µ(ŝ) x̂− ux̂− 2θ(x̂− x),

˙̂s = −kµ(ŝ) x̂− u(ŝ− sin)−
(
−2

ŝ(a+ ŝ)θ

ax̂
+

(a+ ŝ)2θ2

amx̂

)
(x̂− x).

(70)

In Figure 16, we present a simulation with the parameter values: a = 10, m = 1, sin = 30,
k = 1 and with a constant input u = 0.1. We have chosen θ = 7. The first figure represents
the evolution of, respectively, the biomass x and its estimation x̂. The second represents the
evolution of, respectively, the substrate s and its estimation ŝ. The curves show the convergence
of the estimations provided by the observer (70) to the states of the system (65) and it can be
noted that the convergence is quite fast.
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Figure 16: The convergence of the estimations x̂(t) and ŝ(t) to the real states x(t) and s(t).

5.2.3 Observers for a class of non-affine control systems

Consider the following analytic system defined on IRn

ẋ(t) =


ẋ1(t)

...
ẋi(t)

...
ẋn(t)

 =


f1(x1, x2, u)

...
fi(x1, x2, . . . , xi, xi+1, u)

...
fn(x1, x2, . . . , xn, u)

 = f(x, u)

y = h(x1, u)

(71)

where:
• Each of the map fi is globally Lipschitz with respect to (x1, . . . , xi) uniformly with respect

to xi+1 and u, i.e, there exists a constant Mi that does not depend neither on xi+1 nor on
u such that

‖fi(x1, . . . , xi, xi+1, u)− fi(z1, . . . , zi, xi+1, u)‖ ≤Mi‖(x1, . . . , xi)− (z1, . . . , zi)‖.
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• There exist two real numbers α, β, 0 < α < β, such that

α ≤ | ∂h
∂x1

| ≤ β, α ≤ | ∂fi
∂xi+1

| ≤ β, for i = 1, . . . n− 1.

Let A(t) and C(t) be respectively n× n and 1× n time-dependent real matrices:

A(t) =


0 φ2(t) 0 . . . 0
0 0 φ3(t) . . . 0
...

. . .
...

0 0 . . . 0 φn(t)
0 0 . . . 0 0

 , C(t) =
(
φ1(t), 0, . . . , 0

)
.

If the functions φi(t) satisfy

α ≤ φi(t) ≤ β, for i = 1, . . . n− 1.

Then, there is a real λ > 0, a vector K ∈ IRn, and a symmetric positive definite n× n matrix
S, depending only on α and β, such that:(
A(t)−KC(t)

)T
S + S

(
A(t)−KC(t)

)
≤ −λId.

The above vector K allows to construct a Luenberger-like observer for the system (71) as
follows:

˙̂x = f(x̂, u)−∆θK(h(x̂1, u)− y), (72)

where θ ≥ 1 and ∆θ =


θ 0 . . . 0
0 θ2 . . . 0
...

. . .

0 . . . 0 θn

 .

This observer is an exponential one. Moreover, it is possible to choose the convergence rate,
that is, for any α > 0, one can find θ large enough in such a way that for any initial conditions
(x0, x̂0), the corresponding solutions x(t) of the system (71) and x̂(t) of the observer (72) satisfy

∀t ≥ 0, ‖x̂(t)− x(t)‖ ≤ P (α)e−αt‖x̂0 − x0‖,

where P is some polynomial of degree n.

Remark: We have seen that the above observer constructions are made under the assumption
that some functions have to be globally Lipschitz. This is a very restrictive condition. However,
for real systems, the state space (or at least the set of interest) is often a bounded connected
open subset Ω of IRn and so the global Lipschitz condition is met on Ω̄ the closure of Ω.
Therefore the functions considered can be extended to the whole IRn by smooth and globally
Lipschitzian functions on IRn.



Controllability, Observability, and Stability of Mathematical Models -Abderrahman Iggidr 56

5.2.4 Asymptotic observers

For all the above observers, it is possible to assign an arbitrarily (fast) exponential rate of
convergence of the error estimation. However, they require the full knowledge of the structure
of the model, i.e, the function X(x, u) has to be exactly known and the system has to satisfy
some strong observability conditions. When one of the two above conditions is not satisfied,
it is still possible in some situations to construct an estimator of the state of the given system
but in general, it will not be possible to choose the convergence rate of the estimate to the real
state. To illustrate this, we give just two examples. The first one concerns linear systems that
are not completely observable, i.e, the rank of the observability matrix is strictly less than the
dimension of the state space. The second example concerns biotechnological processes whose
dynamical models are partially known, especially the mathematical structure of the biological
kinetics is unknown.

Observers for detectable linear systems: Consider again the linear system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),

x(t) ∈ IRn, u(t) ∈ U ⊂ IRm, y(t) ∈ IRq,

A, B, and C are respectively n× n, n×m and q × n matrices,

(73)

and assume that the pair (C, A) is not observable, that is, the rank of the observability matrix
O(C,A) is less than the dimension n of the state space. In this case the Luenberger observer
does not work but one can still built an observer for the system (73) if it is detectable which
means that the unobservable space corresponds to the stable modes of the matrix A. More
precisely let r = rank O(C,A), there exists a linear change of coordinates x = Tz under which
the equations (73) are transformed into

ż1 = A11z1 +B1u,

ż2 = A12z1 + A22z2 +B2u,

y(t) = C1z1,

(74)

where z1 ∈ IRr, z2 ∈ IRn−r, A11 is r× r, A12 is (n− r)× r, A22 is (n− r)× (n− r), B1 is r×m,
B2 is (n− r)×m and C1 is q × r. The pair (C1, A11) is observable.
The system is detectable if A22 is a stable matrix, that is, all its eigenvalues are with negative
real part. An observer for (74) is then given by{ ˙̂z1 = A11ẑ1 +B1u+K(y − C1ẑ1),

˙̂z2 = A12ẑ1 + A22ẑ2 +B2u.
(75)

Indeed, the estimation error satisfies the differential equation{
ė1 = (A11 −KC1)e1,

ė2 = A12e1 + A22e2.
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On the one hand, since the pair (C1, A11) is observable, it is possible to choose the matrix K in
such a way that the matrix A11−KC1 has all its eigenvalues with negative real part. Therefore
‖e1(t)‖ converges to zero. On the other hand, the matrix A22 is stable so ‖e1(t)‖ converges
to zero as well. However, we must notice that one can choose the convergence speed of e1(t)
whereas the convergence rate of e2(t) is completely determined by the eigenvalues of A22.

An observer for a biotechnological process: Let us consider a more general model of the
chemostat:

ẋ = µ(x, s) x− u(t)x,

ṡ = −kµ(x, s) x− u(t)(s− sin),

y = x.

(76)

Here we assume that the concentration of micro-organisms x(t) is measured on-line. It is
reasonable to assume that the dilution rate (or the flow rate) u(t), the substrate concentration
sin in the inflow and the constant k are known. However the function µ(x, s) is is often a very
complex function of the state of the process which depends on the operating conditions. Its
analytical expression is still the subject of intensive investigation. For the same process there
exist several possible models in the literature, so, which one to choose? For this reason, it is not
possible to use one of the above exponential observers. Therefore another type of estimators has
been developed for this kind of systems. These estimators are often called asymptotic observers.
For the chemostat (76) an asymptotic estimator for the unmeasured substrate concentration
s(t) can be built as follows. We perform a linear change of coordinates:{
z1 = x,

z2 = kx+ s.

With these new coordinates, the system (76) becomes:{
ż1 = µ(z1, z2 − kz1)− u(t)z1,

ż2 = −u(t)z2 + u(t)sin.

The advantage of the above change of coordinates is that the dynamic of the unmeasured
variable z2 does not depend on the unknown function µ(x, s). Therefore a candidate estimator
for z2 can be given by

˙̂z(t) = −u(t)ẑ(t) + u(t)sin.

The dynamic of the estimation error e(t) = ẑ2(t)− z2(t) is

ė = −u(t)e.

If the dilution rate u(t) satisfies the condition 0 < umin ≤ u(t), for all positive time t, then

|e(t)| ≤ |e(0)|e−umint, ∀t ≥ 0.
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Hence an estimate of the unmeasured substrate concentration s(t) is given by ŝ(t) which is
computed by{

˙̂z(t) = −u(t)ẑ(t) + u(t)sin

ŝ(t) = ẑ(t)− kx(t).

The convergence of the estimator is exponential but its rate of convergence can not be chosen
by the user, it is completely determined by the dilution rate u(t).
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Birkhäuser. [This seminal article gives some necessary conditions for the existence of a sta-
bilizing feedback for a nonlinear system].

Gauthier J.-P., Hammouri H. and Othman S. (1992). A simple observer for nonlinear systems,
applications to bioreactors. IEEE Trans. Automat. Control, 37(6), pp 875–880. [We have used
the construction of exponential observers for affine control systems provided by this seminal



Controllability, Observability, and Stability of Mathematical Models -Abderrahman Iggidr 59

article].

Gauthier, J.-P., and Kupka, I. (2001). Deterministic Observation Theory and Applications,
Cambridge University Press. [This self contained book presents the theoretical foundations
of observability. It provides very general results in the construction of exponential observers
for nonlinear systems. This monograph requires a good background in differential geometry].

Jurdjevic, V. (1997). Geometric control theory, 492 p. Cambridge Studies in Advanced
Mathematics. 52. Cambridge University Press. [This book presents the essential aspects of
nonlinear control theory including optimal control].

Nijmeijer H. and Van der Schaft A.J. (1990). Nonlinear Dynamical Control Systems, 467
pp. New York, Springer-Verlag. [This book presents many techniques for the study of input-
output nonlinear systems].
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