
HAL Id: hal-00845791
https://hal.inria.fr/hal-00845791v2

Submitted on 2 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Certified, Efficient and Sharp Univariate Taylor Models
in COQ

Érik Martin-Dorel, Micaela Mayero, Ioana Pasca, Laurence Rideau, Laurent
Théry

To cite this version:
Érik Martin-Dorel, Micaela Mayero, Ioana Pasca, Laurence Rideau, Laurent Théry. Certified, Efficient
and Sharp Univariate Taylor Models in COQ. SYNASC 2013 - 15th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Sep 2013, Timisoara, Romania. �hal-
00845791v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49747807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00845791v2
https://hal.archives-ouvertes.fr

Certified, Efficient and Sharp
Univariate Taylor Models in COQ

Érik Martin-Dorel, Laurence Rideau,
and Laurent Théry
Inria Sophia Antipolis

2004 route des Lucioles, BP 93
06902 Sophia Antipolis Cedex, France
Email: erik.martin-dorel@ens-lyon.org

Email: laurence.rideau@inria.fr
Email: laurent.thery@inria.fr

Micaela Mayero
Université Paris 13

LIPN (UMR CNRS 7030), Institut Galilée
99 avenue Jean-Baptiste Clément

93430 Villetaneuse, France
Email: micaela.mayero@lipn.univ-paris13.fr

Ioana Paşca
Université Montpellier 2

IUT de Nîmes
8 rue Jules Raimu

30907 Nîmes Cedex 2, France
Email: ioana.pasca@iut-nimes.fr

Abstract—We present a library for univariate Taylor
models that has been developed with the COQ proof as-
sistant. Each algorithm of this library is executable and
has been formally proved correct. Using this library,
one can then effectively compute rigorous and sharp
approximations of univariate functions composed of
usual functions such as 1/x,

√
x, ex, sin x among others. In

this paper, we present the key parts of the formalisation
as well as of the proofs of correctness, and we evaluate
the quality of our certified library on a set of examples.

I. Introduction and Motivations

Polynomial approximations are a practical way to rep-
resent real-valued functions. In fact, on processors, where
the only primitive arithmetic operations are +, −, and ×,
they are the only effective way to compute real-valued
functions. The quality of the approximation naturally
comes into play: being able to guarantee some bounds
on the error that occurs when using the approximation
instead of the real function is mandatory for the reliability
of numerical software. Yet bounds are not always available
and when so they are often very difficult to be proved
formally.

The work presented here addresses this issue of relia-
bility. We provide a systematic way to formally prove the
error bounds of some specific polynomial approximations.
This is done in the COQ system but the same approach
could be implemented in any other proof assistant. Our
starting point is the notion of rigorous polynomial approx-
imations (RPAs), which consists of pairs (P,∆) where
P is a polynomial in a given basis and ∆ an interval
error bound. Several symbolic-numeric techniques that
rely on such a data type have been presented in [1].
They heavily rely on interval arithmetic. For instance,
most of these algorithms manipulate polynomials with
tight interval coefficients. Also, rounding errors that may
occur when computing the polynomial approximation can
easily be handled in this setting. In the following, we will
especially focus on RPAs in the Taylor polynomial basis,

This work was supported by the TaMaDi project of the French
Agence Nationale de la Recherche.

which we will refer to as Taylor models (TMs), borrowing
the term coined by Berz and Makino [2], [3].

We formalise univariate Taylor models in the COQ
proof assistant, aiming at:

• Genericity: the formalisation should be modular
(to easily switch implementation of data struc-
tures) and extensible (to easily add new functions
by specialising some generic algorithms);

• Efficiency: computing the approximations (even if
performed in a trusted environment with restricted
computing power) should be reasonably fast;

• Correctness: no underestimate is possible, the com-
puted error-bounds should be formally proved cor-
rect;

• Sharpness: the algorithms should lead (most of the
time) to sharp bounds.

A preliminary version of this work was already presented
in [4]. It was composed of a first implementation of the
algorithms in order to evaluate the feasibility and accuracy
of what could be obtained while computing within COQ.
The main achievement of what is presented here is that,
now, a machine-checked correctness proof is attached to
each of these algorithms. Also, some major improvements
in the algorithms have been made in order to get tighter
error bounds for basic functions as well as for the division
of Taylor models.

Our implementation of Taylor models is composed of a
set of models for basic functions (exp, sin,

√
·, and others)

and another set of algorithms that are used to combine
these models (for addition, multiplication, composition,
or division of two functions). We start, in Section II, by
describing the general framework of Taylor models as well
as the formal tools that are needed for their implementa-
tion and proof. In Section III, we present in detail the
issues related to Taylor models for basic functions. We
then present Taylor models for composite functions in
Section IV. In Section V, we provide some benchmarks,
including a comparison with respect to [4]. Finally, Sec-
tion VI relates our work with other approaches.

mailto:erik.martin-dorel@ens-lyon.org
mailto:laurence.rideau@inria.fr
mailto:laurent.thery@inria.fr
mailto:micaela.mayero@lipn.univ-paris13.fr
mailto:ioana.pasca@iut-nimes.fr

II. Generic Taylor Models and their
Formalisation

Given a point x0 and an interval I around this point,
a Taylor model usually consists of a pair (P,∆) where P
is a polynomial in the Taylor basis around x0 and ∆ is an
interval. In the following, we use the convention that in-
tervals as well as polynomials with interval coefficients will
always be printed in bold. A Taylor model approximates a
whole set of functions : the functions that are at a distance
of less than ∆ over I. More formally, (P,∆) approximates
f if and only if ∀x ∈ I, f(x)−P (x) ∈∆. Starting from a
given function f , a natural way to derive a Taylor model
(P,∆) is to use the Taylor–Lagrange formula

Theorem 1: If f is a real-valued function that is n+ 1
times differentiable on an interval I and x0 is a point of I
then we can consider the nth-order Taylor expansion of f
around x0. For all x in I, there exists a ξ between x0 and
x such that

f(x) =
(

n∑
i=0

f (i)(x0)
i! (x− x0)i

)
︸ ︷︷ ︸

P (x)

+ f (n+1)(ξ)
(n+ 1)! (x− x0)n+1︸ ︷︷ ︸

∆(x0,x,ξ)

.

If f (n+1)(ξ) can be bounded over the interval I, it is then
easy to compute an interval ∆ so that ∆(x0, x, ξ) ∈∆ for
x, ξ ∈ I and build the approximation (P,∆). Doing so, ∆
accumulates the “method error”. Note that, in practice, it
is not always possible to compute an approximation with
exact numbers. The coefficients of the polynomial need to
be rounded to rational numbers, or even more restrictively
to floating-point numbers. This is not a problem for Taylor
models since rounding errors can always be incorporated
into the ∆. The approximation is then less accurate but
still valid.

As explained in the introduction, a key ingredient to
get effective Taylor models is to use interval arithmetic. In
this setting, the polynomial of a Taylor model has tight
interval coefficients. As usual, we represent polynomials as
lists of coefficients, but we do not enforce that the leading
coefficient is non-zero. In the following, we will then talk
about the “order” of a Taylor model rather than its “de-
gree” and reason in terms of the size of the corresponding
list of coefficients. An nth-order Taylor model (P ,∆) will
satisfy size(P) = n + 1. Moreover, the “expansion point”
will not be a point x0 but rather a small interval x0. Taylor
models can thus be built around an irrational expansion
point. The definition of validity is then rephrased as

Definition 1: (P ,∆) is a valid TM for f : R→ R over
I around x0 if we have x0 ⊂ I, 0 ∈∆, and for all ξ0 ∈ x0,
there exists a polynomial Q over R such that

sizeQ = size P ,

∀k < size P , Qk ∈ P k,

∀x ∈ I, f(x)−
∑

i<sizeQ
Qi · (x− ξ0)i ∈∆.

Formalising this definition in COQ is straightforward. The
type R in COQ is defined via a classical axiomatisation of
an Archimedean ordered complete field [5] in the Reals

Table I. Semantics of the inductive type for intervals

COQ term mathematical meaning
Ibnd (Xreal x) (Xreal y) with x > y ∅
Ibnd (Xreal x) (Xreal y) with x 6 y [x, y]
Ibnd (Xreal x) Xnan [x,+∞[
Ibnd Xnan (Xreal y)]−∞, y]
Ibnd Xnan Xnan R
Inan R ∪ {NaN}

standard library. It provides all the basic theorems usu-
ally involved in real analysis, e.g., about differentials or
integrals, but no computation is available.

For the intervals, we use the Coq.Interval library [6].
It provides abstract data types for an interval arithmetic
that handles undefined values (NaNs):
R := Xnan | Xreal (r : R).
interval := Inan | Ibnd (l u : R).

The semantics of these “NaN” values is summarised in Ta-
ble I. Note that, in this context, we have Xnan ∈ Inan but
Xnan /∈ (Ibnd Xnan Xnan). In the formal development,
Definition 1 is formalised as a predicate i_validTM, with
two slight differences: f has type R→ R instead of R→ R,
and the coefficients of Q are in R instead of R.

For the polynomials, we use the library provided by the
SSReflect extension [7]. This extension provides its own
tactic language and libraries, and has been designed to
make it easier to formalise mathematics. In this work, two
libraries are of special interest. A first one defines standard
algebraic structures and the theorems associated to them.
A second one provides a very powerful theory bigop for
iterated “big” operations like summations. For polynomial
approximations over R, the theory bigop was quite handy
to use, except that we had to circumvent the fact that
in R, the neutral element of addition, (Xreal 0), is not
an absorbing element for the multiplication. This issue is
directly related to the presence of undefined values such
as Xnan and Inan in the formalism of Coq.Interval. Some
careful case analyses are then frequently required when
developing our correctness proofs.

The Coq.Interval library also provides ways to instan-
tiate intervals and in particular to get intervals we can
compute with. One such instantiation uses two floating-
point numbers to represent the bounds of the interval. The
floating-point numbers are also defined within Coq.Interval
either by pairs of integers (a mantissa and an exponent)
or by an undefined value :
float := Fnan | Float (m e : Z).

The operations on these numbers are defined in
Coq.Interval (such as +, −, ×, ÷,

√
·, comparison, etc.)

but they do not assume any bound on the exponent. Yet
they take a precision argument that is used for rounding
the mantissa of the result. Using such an instantiation, it
is then possible to specialise the previous definition that
uses intervals to polynomials with simple floating-point
coefficients, as explained below.

From any pair (P ,∆) that is a valid TM according to
Definition 1, we can easily produce a pair (P,∆′) where
P is polynomial with floating-point coefficients satisfying:

Definition 2: (P,∆′) is a valid TM for f : R→ R over
I around x0 if we have x0 ⊂ I, 0 ∈∆′, and

∀ξ0 ∈ x0, ∀x ∈ I, f(x)−
∑

i<sizeP
Pi · (x− ξ0)i ∈∆′.

It suffices to take the midpoint of each interval coefficient
of P and add the corresponding errors to ∆. In the formal
development, Definition 2 is formalised as a predicate
f_validTM, and the function i2f_tm transforms (P ,∆)
into (P,∆′).

Generic implementation of polynomials, coefficients
and intervals: COQ provides three mechanisms for mod-
ularisation: type classes, structures, and modules. Modules
are less generic than the other two (which are first-class
citizens) but they have a better computational behaviour:
module applications are performed statically, so the code
that is executed is often more compact. More details can
be found in [4] and in [8]. As our generic implementation
only requires simple parametricity, we have been using
modules only. First, abstract interfaces called Module
Types are defined. Then concrete “instances” of these
abstract interfaces are created in the form of Modules that
implement all the fields of the Module Type. The definition
of Modules can be parameterised by other Modules. These
parameterised modules are crucial to factorise code in our
structures.

We describe abstract interfaces for polynomials and
for their coefficients in the form of Module Types. The
interface for coefficients contains the common base of all
kinds of “computable real numbers” we may want to
use. Usually coefficients of a polynomial are taken in a
ring. We cannot do this here. For example, addition of
two intervals with floating-point bounds is not associa-
tive. Therefore, our abstract interface for coefficients only
contains the required operations (addition, multiplication,
etc.). The usual properties (associativity, distributivity,
etc.) are specified in a specialised abstract interface for
exact arithmetic. The case of abstract polynomials is
similar. They are also declared as a Module Type but
this time parameterised by the coefficients. The interface
only contains the operations on polynomials (addition,
evaluation, iterator, etc.) along with the properties that
are satisfied by all common instantiations of polynomials:
these properties are essentially the size of the various
operations on polynomials, an induction scheme based on
the zero-size polynomial and the function (c, p) 7→ c+X ·p,
and the behaviour of a “fold-right” iterator with respect
to these two constructors. Finally for intervals, we directly
use the IntervalOps abstract interface provided by the
Coq.Interval library.

We are now able to give the definition of our RPA.
Module RigPolyApprox

(C: BaseOps)(Pol: PolyOps C)(I: IntervalOps).
Record rpa := RPA { approx: Pol.T; error: I.type }.

The module is parameterised by C (the coefficients), by
Pol (the polynomials with coefficients in C), and by I
(the intervals). An rpa structure consists of a polynomial
approx and an interval error. Taylor models will be
defined as an instance of the generic rpa structure.

III. Taylor Models for Basic Functions
A. Mathematical setup

In order to compute a Taylor model associated with an
expression f(x), we can rely on Theorem 1 and take an
interval enclosure of ∆(x0, x, ξ) with respect to x0 ∈ x0,
x ∈ I and ξ ∈ I to get a value for ∆. Yet this strategy
would yield very pessimistic error bounds for composite
functions such as x 7→ e1/ cos x [9]. Hence, it is better to
follow a two-level strategy:

• For each basic function (
√
x, ex, sin x, etc.) in-

volved in the leafs of the expression tree of f(x),
compute a Taylor model using, for instance, a naive
enclosure of the Taylor–Lagrange remainder;

• Combine the various Taylor models computed for
the atoms of expression f(x) using the algebraic
rules that correspond to operations +, ×, as well
as ◦ (composition).

For example, in order to compute a Taylor model for
the function x 7→ e1/ cos x we can notice that e1/ cos x =
(exp ◦ inv ◦ cos)(x) and first compute a Taylor model for
cosx, then deduce a Taylor model for the overall function
by using twice the algebraic rule for composition with the
inverse function and the exponential. We will give more
details on these rules in Section IV.

B. Formal setup
In this section we give some insight on our formalisation

of Taylor models for basic functions. The focus is on the
design of the generic algorithm and its correctness proof.

A first building block is composed by the formalisa-
tion of Theorem 1. This is the topic of the upcoming
Section III-B1. Section III-B2 is devoted to the formali-
sation of an efficient computation of Taylor polynomials.
Section III-B3 focuses on the generic computation of sharp
error bounds for these polynomials. Finally, Section III-B4
deals with the specialisation of our generic framework to
concrete functions.

1) Formal proof of the Taylor–Lagrange theorem: As the
Taylor–Lagrange theorem (Theorem 1) was not available
in the Reals standard library of COQ, our first task has
been to prove this result. In the Reals library, we can talk
about the derivative of a function only when having a proof
that the function is actually differentiable. This is often
annoying when doing proofs involving derivatives. Here,
in order to talk about the (n + 1)th-order derivative of
a given function f over an interval [a, b], we consider a
total function D : N→ R→ R that satisfies the following
properties: (i) D0 = f ; (ii) ∀k 6 n, Dk is differentiable
over]a, b[and its derivative is Dk+1; (iii) ∀k 6 n, Dk is
continuous over [a, b]. Next, for some given x0, x ∈ [a, b],
we define an auxiliary function g, differentiable over]a, b[:

g(y) := D0(x)−
(

n∑
i=0

Di(y)
i! (x− y)i

)
− c · (x− y)n+1,

where the constant c is chosen so that g(x0) = 0 holds. As
we also have g(x) = 0, we can apply Rolle’s theorem to

the function g. This yields a ξ between x0 and x such that
g′(ξ) = 0, and some elementary calculation leads to c =
Dn+1(ξ)
(n+1)! . Combined with g(x0) = 0, this proves Theorem 1.

In our formalisation we use real numbers extended with
a NaN value. This means that a specific version of the
Taylor–Lagrange theorem is needed for the type R where
the variables x0 and x have type R, but the witness ξ is in
in R. The advantage of working in R is that derivatives can
be handled more easily : if a function is not differentiable
at a point, its derivative simply takes the value Xnan at this
point. The drawback, of course, is that extra case analyses
are often needed in proofs in order to coverall potential
Xnan values.

2) Efficient computation of Taylor polynomials for the
class of D-finite functions: In order to implement Taylor
models for basic functions in a generic way, we consider a
large class of functions whose successive derivatives can
be computed in a uniform and efficient way. We thus
focus on the so-called D-finite functions. They correspond
to solutions of homogeneous linear ordinary differential
equations (LODEs) with polynomial coefficients, that is
equations of the form

ar(x)y(r)(x) + · · ·+ a1(x)y′(x) + a0(x)y(x) = 0,

where the ak are univariate polynomials over a given
field. Most common functions are D-finite, while a simple
counter-example is tan. A nice feature of this class of
functions is that the Taylor series coefficients of any D-
finite function satisfy a linear recurrence relation.

We thus provide the functions trec1, trec2 and trecN
that allow one to compute polynomials whose coefficients
are given by a first order, second order, or N th-order
recurrence along with the appropriate number of initial
conditions. Having specific functions for recurrences of
small order makes it possible to have an optimised im-
plementation for these frequent cases. For instance, trec1
is a function defined using tail-recursion, which has type

trec1 : (T → N → T) → T → N → Pol.T

and returns the polynomial trec1(G, c0, n) =
∑n
k=0 ckX

k

where ck = G(ck−1, k) for all k > 1.

3) Zumkeller’s technique and sharp error bounds: Let f
be a basic function, and assume that we have a function
T : T → N → Pol.T (possibly based on the D-finite
recurrences presented in the previous section) to compute
the nth-order Taylor polynomial of f around a given point.
Then we can compute a Taylor model of f by using
Algorithm 1 below.

Algorithm 1 (Zumkeller’s technique):
Input: F : interval evaluator for function f
Input: T (y0, n): nth-order Taylor polynomial around y0
Input: x0 ⊂ I and n ∈ N
Output: (P ,∆)
1: P ← T (x0, n)
2: Γ←

[
Xn+1]T (I, n+ 1)

3: if (sup Γ 6 0 or inf Γ > 0) and I is bounded then
4: a← [inf I, inf I]
5: b ← [sup I, sup I]

6: ∆a ← F (a)− P (a− x0)
7: ∆b ← F (b)− P (b− x0)
8: ∆x0 ← F (x0)− P (x0 − x0)
9: ∆←∆a ∨∆b ∨∆x0
10: else
11: ∆← Γ× (I − x0)n+1

12: end if

The notation [Xn]Q denotes the coefficient ofQ of degree n
and the notation ∆a ∨∆b denotes the smallest interval
that contains the two intervals ∆a and ∆b.

The computation of P is straightforward but that of ∆
deserves some detailed explanation. To start with, the else
branch computes a naive enclosure of the Taylor–Lagrange
remainder. In particular, due to the very similar shape of
this enclosure with respect to a Taylor coefficient of degree
(n + 1) “around I”, we compute both this enclosure and
the Taylor coefficients of P in a uniform way (cf. Line 1
and Line 2).

Now let us focus on the then branch of Algorithm 1.
This part of the algorithm is an optimisation with respect
to the implementation that was presented in [4]. The
expressions ∆x0 , ∆a and ∆b correspond to the evaluation
of the Taylor–Lagrange remainder on the small intervals
x0, a and b (composed of the endpoints of I). As a result,
beyond the slight rounding errors that may occur in these
evaluations, the value of ∆ that is obtained in this branch
is the sharpest possible bound we could achieve. It then
remains to ensure that this value is not underestimated.

We give below an overview of the main steps involved
in its formal proof, which relies on the Proposition 2.2.1
in Mioara Joldeş’ thesis [1], itself based on Lemma 5.12 in
Roland Zumkeller’s thesis [10]. Let us denote the Taylor–
Lagrange remainder of f by

Rn(f, ξ0)(x) := f(x)−
n∑
i=0

f (i)(ξ0)
i! · (x− ξ0)i.

We have successively proved the following steps in COQ.

• If the condition holds on Line 3, then f (k)(x) is
never Xnan for 0 6 k 6 n + 1 and x ∈ I, and
f (n+1) has a constant sign over [inf I, sup I].

• We have ∀ξ0 ∈ I, ∀x ∈ I, Rn(f, ξ0)′(x) =
Rn−1(f ′, ξ0)(x), and, by Theorem 1, there exists
ξ′ between ξ0 and x such that Rn−1(f ′, ξ0)(x) =
(f ′)(n)(ξ′)

n! (x−ξ0)n (the case where n = 0 is handled
separately in the formalisation).

• Then we study the sign of the expression
Rn(f, ξ0)′(x) to conclude that Rn(f, ξ0) is
monotonous over [inf I, ξ0] as well as over
[ξ0, sup I].

• Since inf I ∈ a, the enclosure properties of F and
P proves that Rn(f, ξ0)(inf I) belongs to F (a) −
P (a − x0) = ∆a, which is a sub-interval of ∆.
Similarly, we prove that we have Rn(f, ξ0)(sup I) ∈
∆ and Rn(f, ξ0)(ξ0) ∈∆.

• Finally, for any x ∈ I, we have x ∈ [inf I, ξ0]
or x ∈ [ξ0, sup I], so combining the monotonic-

ity of Rn(f, ξ0) and the convexity of ∆ gives
Rn(f, ξ0)(x) ∈∆.

4) Specialising generic proofs to handle usual functions:
In order to add a function to our framework, the user has
to provide:

• the recurrence relation between the Taylor coef-
ficients of the function in order to be able to
compute the coefficients,

• the interval evaluator for the function in order to
be able to provide an initial value,

• the definition of the abstract function and proper-
ties of the function and of its derivatives to be able
to prove correct the computed Taylor model.

We detail here the example of the exponential function.
Its Taylor coefficients (cn)n∈N satisfy cn = cn−1

n . The
corresponding COQ code is thus

Definition exp_rec (c : T)(n : N) := tdiv c (tnat n).

where tdiv represents division and tnat an injection of
integers into the type of coefficients. Note that all these
functions are defined for an abstract type of numbers T.
The user will then be able to instantiate the recurrence
with real numbers, or floating-point numbers, or intervals,
according to his or her needs.

The generic Taylor polynomial for the exponential is
given by the trec1 function for first-order recurrences,
which was presented in Section III-B2:

Definition T_exp y0 n := trec1 exp_rec (texp y0) n.

Notice that one of the arguments passed to trec1 is (texp
y0), the value of the exponential at y0. This is where
the evaluator for the function is used to “initialise” the
computation.

In order to provide an nth-order Taylor model for exp
over interval I, an nth-order Taylor polynomial around
x0 is combined with an enclosure of the Taylor–Lagrange
remainder as computed by Algorithm 1 (named Ztech in
the code). The Taylor model that is obtained is an instance
of the rpa structure described in Section II:

Definition TM_exp x0 I n : rpa :=
let P := (T_exp x0 n) in
RPA P (Ztech T_exp P texp x0 I n).

Note that we have omitted a precision argument for read-
ability in all the above COQ definitions. This argument
allows the user to set the desired precision of each compu-
tation.

As regards to proofs, the generic theorems of correct-
ness apply to Taylor models with interval coefficients. The
correctness is proved with respect to functions from the
Reals standard library. The properties required for the
correctness concern:

• the compatibility of the interval function with the
real function,

• the appropriate behaviour on the NaN value,

• the compatibility between the function and the
recurrence used to compute the Taylor coefficients.

In order to ease the verification of this latter property in
future versions of the library, we expect to benefit from on-
going formalisation efforts in the Coquelicot1 project that
is coordinated by the Toccata team of Inria. The long-term
goal of formalizing the DDMF,2 undertook by the SpecFun
team of Inria, may also lead to a more generic approach
for defining the functions that we want to approximate.

Once all these properties are provided, we can prove
the following correctness lemma of our algorithm by simply
applying the generic theorem.
Lemma TM_exp_correct :

forall x0 I n, x0 ⊂ I -> x0 6= ∅ ->
i_validTM x0 I (TM_exp x0 I n) Xexp.

This result states that the computed Taylor model TM_exp
is a valid model (in the sense of Definition 1) of Xexp, which
is the exponential function defined in the standard library
of COQ, lifted from R to R.

Available functions and current restrictions: The
current version of our CoqApprox library provides fully
formally proved Taylor model algorithms for the following
functions: constants, identity, inv, sqrt, inv ◦ sqrt, exp, sin,
and cos.

All of these functions are D-finite functions, so they fit
in our framework perfectly. The implementation as well as
the correctness proof of each of these functions are just
instantiations of the generic algorithms and proofs. For
these functions, all the necessary ingredients were already
available in the Coq.Interval library and the Reals library.
However, other functions require more work in order to
have an associated Taylor model.

For example, the logarithm function is available in the
Reals library, but we are not able to compute a Taylor
model as the interval evaluator is not yet implemented in
Coq.Interval.

Another special case is the tangent function. It is not a
D-finite function. Its ordinary differential equation is not
linear. So we cannot describe the Taylor coefficients of the
tangent using a linear recurrence relation. However, we
may describe them with a non-linear recurrence relation.
Since our generic framework and in particular Algorithm 1
is not restricted to Taylor polynomials given by linear
recurrence relations, we could implement tangent in this
way. The other option is to deal with tan(x) as sin x

cos x , which
can be handled through the Taylor models algorithms for
composite functions, but yields a much slower algorithm.

IV. Taylor Models for Composite Functions
In order to provide Taylor models for the addition,

multiplication, composition and division of two functions
we do not use a Taylor expansion (as for the base func-
tions) but we introduce an arithmetic on Taylor models by

1URL: http://coquelicot.saclay.inria.fr/
2The Dynamic Dictionary of Mathematical Functions, available at

the URL http://ddmf.msr-inria.inria.fr/

http://coquelicot.saclay.inria.fr/
http://ddmf.msr-inria.inria.fr/

providing a specific algorithm for each of these operations.
The main reason for this choice is to ensure tighter bounds
on the error estimated for the Taylor model. The algo-
rithms and proofs we use for these operations on Taylor
models closely follow those described in [1].

A. Mathematical setup

Consider two Taylor models (P 1,∆1) and (P 2,∆2) of
nth-order, approximating f1 and f2 over the interval I. We
define the following operations on these Taylor models and
obtain in each case an nth-order Taylor model.

Addition: (P 1,∆1)⊕(P 2,∆2) := (P 1 +P 2,∆1 +∆2);

Multiplication: (P 1,∆1) � (P 2,∆2) := (P ,∆) where
P := (P 1 · P 2)6n and ∆ := ∆1 ·∆2 + eval(P 1) ·∆2 +
∆1 · eval(P 2) + eval

(
(P 1 · P 2)>n

)
.

In the above definition (Q)6n denotes the polynomial
(with interval coefficients) containing all the monomials
of Q up to degree n, and (Q)>n those of higher degree;
eval(Q) is the evaluation of polynomial Q over interval I.

As regards the composition of two functions f1 ◦ f2,
the Taylor model algorithm is essentially the evaluation of
the polynomial corresponding to f1 in the Taylor model
of f2. This is accomplished by relying on the addition and
multiplication of Taylor models. The error is composed of
the error that results from this evaluation and the error of
the Taylor model of f1.

We also define the inverse of a Taylor model and the
division of two Taylor models. We compute a Taylor model
for 1

f(x) by using the Taylor model algorithm for the
composition inv ◦ f . We compute a Taylor model for f(x)

g(x)
as the multiplication of a Taylor model for f(x) by a Taylor
model for 1

g(x) .

All the correctness theorems for addition, multiplica-
tion and composition of Taylor models (TMs) have the
same form. For example, the correctness for the addition
is stated as follows: if (P 1,∆1) and (P 2,∆2) are two valid
TMs for functions f1 and f2 over I, then the sum defined
as above is a valid TM for f1 + f2 over I.

B. Formal setup

The arithmetic operations on Taylor models are imple-
mented using the algorithms summarised in the previous
section. As for the basic functions, we have generic algo-
rithms for these operations, that are then instantiated with
the type of coefficients and the type of polynomials desired.
Here is the COQ code for the definition of addition:

Definition TM_add (Mf Mg : rpa) : rpa :=
RPA (Pol.tadd (approx Mf) (approx Mg))

(I.add (error Mf) (error Mg)).

The formal proofs of correctness for addition, mul-
tiplication and composition closely follow the pen-and-
paper proofs that can be found in [1, Chap. 2]. The main
adjustments that we have to make concern the use of NaN
values that can occur in our setting.

For example, some steps in the proof of correctness for
the multiplication of Taylor models involve distributivity
results about big operators. But for these steps we cannot
directly reason over extended reals (R,+, ·), because the
neutral element of addition, namely (Xreal 0), is not
an absorbing element for multiplication, as pointed out
in Section II. In this case, we can adjust the proof by
passing through big operators over R. However, in some
situations we have to exclude the undefined values from the
theorem. For example, the correctness of the composition
of Taylor models can only be proved for polynomials whose
size is greater than zero, i.e., they must have at least one
coefficient. In practice, however, this is not a problem. We
never generate such polynomials with no coefficients in our
formalisation.

Finally as regards the correctness proof for division, it
is immediately given by applying the generic theorems as-
serting the correctness of Taylor models for multiplication,
composition, and the basic function inv : x 7→ 1

x .

V. Running the Library

Our library is freely available at the following URL:
http://tamadi.gforge.inria.fr/CoqApprox/

The following table compares the status of the current
library with respect to what was presented at NFM 2012
[4].

Lines of code # Proved
Specs Proofs lemmas

CoqApprox v1 794 570 47
CoqApprox v2 2707 4564 452

These figures illustrate the amount of work that was
needed in order to get a fully-proved library from our initial
prototype.

The current version of our library is compatible with
both the native-coq branch3 of COQ [11] and the current
version of COQ (version 8.4pl2). For evaluating the per-
formances of our library, we rely on the native-coq version,
which features native machine integers and a compilation
to fast and native OCaml code.

A state-of-the-art implementation of univariate Taylor
Models written in C is available in the Sollya tool4 [12].
Roughly speaking, Sollya represents polynomials as arrays
of interval coefficients with multiple-precision floating-
point bounds and relies on several C libraries such as GMP
and MPFR.

Table II gives the timing and the quality of the ap-
proximation obtained for a selection of functions. A laptop
based on an Intel Core i7 processor clocked at 2.60GHz
running the 2013-03-15 version of native-coq with OCaml
3.12.1, and Sollya 4.0 has been used for these tests.

In particular, the computations that are performed
with Sollya rely on the taylorform() function. As regards
the computations performed with COQ, we use the instan-
tiation of our hierarchy with polynomials as lists (with

3URL: https://github.com/maximedenes/native-coq
4URL: http://sollya.gforge.inria.fr/

http://tamadi.gforge.inria.fr/CoqApprox/
https://github.com/maximedenes/native-coq
http://sollya.gforge.inria.fr/

linear access time) gathering interval coefficients with
floating-point bounds, themselves built upon the machine-
efficient big integers that are provided by the BigZ library
of COQ.

Table II. Benchmarks for our library on Taylor Models

Execution time Approximation error
COQ Sollya ratio naive COQ COQ Sollya

f(x) = ex

I = [2, 4]
order=80
prec=500

0.174s 0.092s 1.9 1.52·2-396 1.14·2-397 1.14·2-397

f(x) = sin x
I = [−1, 1]
order=80
prec=500

0.146s 0.092s 1.6 1.79·2-402 1.79·2-402 1.79·2-402

f(x) = 1
x

I = [1, 3]
order=100
prec=125

0.022s 0.165s 0.13 1·20 1·2-101 1·2-101

f(x) =
√
x

I = [1, 3]
order=100
prec=125

0.037s 0.169s 0.22 1.98·2-12 1.60·2-112 1.60·2-112

f(x) = 1√
x

(as a basic function)

I = [1, 3]
order=100
prec=125

0.029s 0.424s 0.068 1.80·2-5 1.27·2-105 1.27·2-105

f(x) = exsin x
I = [− 3

2 ,
3
2]

order=50
prec=500

0.497s 0.048s 10 1.94·2-166 1.94·2-166 1.94·2-166

f(x) = exsin x
I = [− 3

2 ,
3
2]

order=100
prec=500

1.010s 0.306s 3.3 1.63·2-423 1.63·2-423 1.63·2-423

f(x) = e1/cos x

I = [0, 1]
order=50
prec=100

6.378s 0.095s 67 1.46·2-23 1.45·2-41 1.45·2-41

f(x) = e1/cos x

I = [0, 1]
order=100
prec=100

52.92s 0.653 81 1.97·2-49 1.99·2-89 1.98·2-89

f(x) = sin x
cos x

I = [−1, 1]
order=50
prec=100

1.228s 0.083s 15 1.06·214 1.66·2-32 1.10·2-52

f(x) = sin x
cos x

I = [−1, 1]
order=100
prec=100

11.15s 0.570s 20 1.45·226 1.12·2-64 1.82·2-96

f(x) = 1√
x

(as a composite function)

I = [1, 3]
order=100
prec=125

37.683s 0.424s 89 1.98·2-12 1.27·2-105 1.27·2-105

The first column of Table II gives the function and the
interval I. In these experiments, we have chosen to develop
the Taylor models at the middle of the interval, that is
x0 := [c, c] where c := 1

2 (inf I + sup I). This column also
gives the order of the TM, and the working precision for
floating-point operations in radix 2.

The three subsequent columns give the timing for
computing the respective Taylor model, and the ratio
TimeCOQ/TimeSollya. We thus notice that these timings
are of the same order of magnitude for all basic functions
(the shortest ones being printed in bold). We also notice

that on these examples ranging up to degree 100, the
COQ timings for composite functions are only 3 to 89
times slower than the Sollya implementation, which is
reasonable, given that the COQ implementation is being
executed in a trusted environment with restricted comput-
ing power.

The last three columns give the magnitude of the error
interval that takes into account both the method error and
the rounding errors involved in the approximation. To sum
up, it corresponds to the value max {|inf ∆′| , |sup ∆′|}
rounded towards +∞, where ∆′ has been computed to
satisfy Definition 2. The column “naive COQ” corresponds
to our former implementation of Taylor Models for ba-
sic functions that simply relies on a naive enclosure of
the Taylor–Lagrange remainder, while the column “COQ”
corresponds to the optimised implementation, based on
Algorithm 1. For the sake of readability, all these bounds
are written as a power of 2 multiplied by a decimal number
between 1 and 2.

First, we can notice that the optimisation due to Algo-
rithm 1 significantly improves the bounds for some basic
functions such as the reciprocal function or the square root,
as well as for the composite functions that involve division.
Then, we notice that for each basic function, the error
bounds computed by COQ, resp. Sollya, have exactly the
same order of magnitude. As regards the composite func-
tions, the same remark applies, except that Sollya’s bounds
for tan x = sin x

sin x are tighter than those of COQ. We expect
that this latter difference is explained by a difference in
the implemented algorithms, since our tangent is seen as
a composite function. Finally, the availability of a Taylor
model algorithm for x 7→ 1√

x
seen as a basic function allows

one to check, as expected, that this algorithm is much
faster than considering x 7→ 1√

x
as a composite function.

Yet as regards the provided error bounds, we do not notice
any difference for this particular function.

VI. Related Works

To our knowledge, the first formalisation of multivari-
ate Taylor models is described in [13]. It relies on exact real
arithmetic, but no formal proof is available. A formally-
proved implementation of univariate Taylor models in the
PVS proof assistant is presented in [14]. However, the Tay-
lor models are defined in an ad-hoc way for few functions
and with 6 as maximal degree. Another formally-proved
implementation is described in [15]. The coefficients are
axiomatised floating-point numbers so the formalisation is
not directly executable. Finally, more recently, a formally-
proved library to solve nonlinear inequalities using Taylor
approximations in HOL Light has been proposed in [16].
This last work focuses on small-degree, multivariate poly-
nomials to automatically solve inequations that occur in
the proof of the Kepler conjecture. In the application we
envision, i.e. certifying polynomial approximations, we are
mostly interested in high-degree (up to 90 in some cases)
univariate Taylor models. The computing power provided
by COQ is then crucial.

VII. Conclusion and Future Work

Our initial interest in developing a certified library
that manipulates Taylor models comes from a long-term
project to validate the worst cases for correct rounding of
elementary functions. A first step in this validation is to
be able to certify the quality of an approximation. Given a
function f , an approximation P , a bound ε and an interval
I, we would like to derive automatically within COQ that
|f(x) − P (x)| < ε for x ∈ I. What we have achieved
with our library of Taylor models is to be able to prove
automatically something like |f(x) − TM f (x)| 6 ε1 for
x ∈ I. For this work, we have followed a “prototype and
prove” strategy. In the first stage, we have used the COQ
system as a mere programming language to implement our
library. This is the prototyping phase that was described
in [4]. We ended up with a library that was worth proving.
The second stage (and the most time-consuming one) was
to formally verify this library. The resulting library has the
following characteristics:

• It is generic. Thanks to our design based on
modules, we can easily and independently change
various aspects of the library (representation of
the polynomials, representation of coefficients, rep-
resentation of intervals). Also, we have taken a
great care to develop proofs that are as generic
as possible.

• It is efficient enough. We have made a number of
tests that seems to indicate that we are only one
order of magnitude slower than the implementa-
tion of Sollya.

• It has been formally verified. We have correctness
proofs for the operations on Taylor models (namely
+,×, ◦,÷) as well as for the basic functions x 7→ 1

x ,√
·, 1√

· , exp, sin and cos.

• It returns sharp bounds. In particular, we have
performed a number of tests to demonstrate the
impact of an optimisation of our algorithms (based
on a result from Roland Zumkeller’s thesis).

The library could still be further improved. Some inter-
esting basic functions are still missing like arctan, tan
and log. Also, Karatsuba algorithm could be implemented
in order to multiply two Taylor models more efficiently.
Nevertheless, our next priority is to complete our vali-
dation by providing an automatic tool within COQ to
bound a polynomial on an interval. Different standard
techniques exist and have already been applied in a formal
setting, such as sum of squares [17] or Bernstein polyno-
mials [18]. Combined with our Taylor models which prove
|f(x)−TM f (x)| 6 ε1 for x ∈ I, we could also derive that
|TM f (x) − P (x)| < ε2. Then, a simple application of the
triangle inequality would lead to the expected validation
|f(x)− P (x)| < ε for a judicious choice of ε1 and ε2.

Acknowledgment

The formalisation presented here would not have been
possible without the help of Nicolas Brisebarre, Mioara
Joldeş, and Jean-Michel Muller. We deeply benefit from

their expertise on Taylor models so that the whole formal
development, including the machine-checked proofs of the
correctness of their algorithms, could successfully be car-
ried out.

References
[1] M. Joldeş, “Rigourous Polynomial Approximations and

Applications,” Ph.D. dissertation, ENS Lyon, 2011. [Online].
Available: http://tel.archives-ouvertes.fr/tel-00657843/en/

[2] K. Makino and M. Berz, “Taylor Models and Other Validated
Functional Inclusion Methods,” International Journal of Pure
and Applied Mathematics, vol. 4, no. 4, pp. 379–456, 2003.

[3] K. Makino, “Rigorous Analysis of Nonlinear Motion in Particle
Accelerators,” Ph.D. dissertation, Michigan State University,
East Lansing, Michigan, USA, 1998.

[4] N. Brisebarre, M. Joldeş, É. Martin-Dorel, M. Mayero, J.-M.
Muller, I. Paşca, L. Rideau, and L. Théry, “Rigorous Polyno-
mial Approximation Using Taylor Models in Coq,” in NFM’12,
ser. LNCS, vol. 7226. Springer, 2012, pp. 85–99.

[5] M. Mayero, “Formalisation et automatisation de preuves en
analyses réelle et numérique,” Ph.D. dissertation, Paris VI
University, France, 2001.

[6] G. Melquiond, “Floating-point arithmetic in the Coq system,”
Information and Computation, vol. 216, pp. 14–23, 2012.

[7] G. Gonthier, A. Mahboubi, and E. Tassi, “A Small Scale
Reflection Extension for the Coq system,” INRIA, Research
Report RR-6455, 2008. [Online]. Available: http://hal.inria.fr/
inria-00258384/en/

[8] É. Martin-Dorel, “Contributions to the Formal Verification
of Arithmetic Algorithms,” Ph.D. dissertation, ENS Lyon,
Sep. 2012. [Online]. Available: http://tel.archives-ouvertes.fr/
tel-00745553/en/

[9] S. Chevillard, J. Harrison, M. Joldeş, and C. Lauter, “Efficient
and accurate computation of upper bounds of approximation
errors,” Theoretical Computer Science, vol. 16, no. 412, pp.
1523–1543, 2011.

[10] R. Zumkeller, “Global Optimization in Type Theory,” Ph.D.
dissertation, École polytechnique, France, 2008. [Online].
Available: http://alacave.net/~roland/FormalGlobalOpt.pdf

[11] M. Boespflug, M. Dénès, and B. Grégoire, “Full Reduction at
Full Throttle,” in CPP, ser. LNCS, vol. 7086. Springer, 2011,
pp. 362–377.

[12] S. Chevillard, M. Joldeş, and C. Lauter, “Sollya: An Environ-
ment for the Development of Numerical Codes,” in Mathemat-
ical Software - ICMS 2010, ser. LNCS, vol. 6327. Springer,
September 2010, pp. 28–31.

[13] R. Zumkeller, “Formal Global Optimisation with Taylor Mod-
els,” in IJCAR, ser. LNCS, U. Furbach and N. Shankar, Eds.,
vol. 4130. Springer, 2006, pp. 408–422.

[14] F. Cháves, “Utilisation et certification de l’arithmétique
d’intervalles dans un assistant de preuves,” Ph.D.
dissertation, ENS Lyon, Sep. 2007. [Online]. Available:
http://tel.archives-ouvertes.fr/tel-00177109/en/

[15] P. Collins, M. Niqui, and N. Revol, “A Validated Real Function
Calculus,” Mathematics in Computer Science, vol. 5, no. 4, pp.
437–467, 2011.

[16] A. Solovyev and T. C. Hales, “Formal Verification of Nonlinear
Inequalities with Taylor Interval Approximations,” in NFM’13,
ser. LNCS, vol. 7871. Springer, 2013, pp. 383–397.

[17] J. Harrison, “Verifying Nonlinear Real Formulas Via Sums of
Squares,” in TPHOLs, ser. LNCS, vol. 4732, 2007, pp. 102–118.

[18] C. Muñoz and A. Narkawicz, “Formalization of Bernstein Poly-
nomials and Applications to Global Optimization,” Journal of
Automated Reasoning, pp. 1–46, 2012.

http://tel.archives-ouvertes.fr/tel-00657843/en/
http://hal.inria.fr/inria-00258384/en/
http://hal.inria.fr/inria-00258384/en/
http://tel.archives-ouvertes.fr/tel-00745553/en/
http://tel.archives-ouvertes.fr/tel-00745553/en/
http://alacave.net/~roland/FormalGlobalOpt.pdf
http://tel.archives-ouvertes.fr/tel-00177109/en/

	I Introduction and Motivations
	II Generic Taylor Models and their Formalisation
	III Taylor Models for Basic Functions
	III-A Mathematical setup
	III-B Formal setup
	III-B1 Formal proof of the Taylor–Lagrange theorem
	III-B2 Efficient computation of Taylor polynomials for the class of D-finite functions
	III-B3 Zumkeller's technique and sharp error bounds
	III-B4 Specialising generic proofs to handle usual functions

	IV Taylor Models for Composite Functions
	IV-A Mathematical setup
	IV-B Formal setup

	V Running the Library
	VI Related Works
	VII Conclusion and Future Work
	Acknowledgment
	References

