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Directed acyclic graphs with the unique dipath property

Jean–Claude Bermond, Michel Cosnard, Stéphane Pérennes
MASCOTTE, joint project CNRS-INRIA-UNS,

2004 Route des Lucioles, BP 93, F-06902 Sophia-Antipolis, France

Abstract

Let P be a family of dipaths of a DAG (Directed Acyclic Graph) G. The load of an arc is the
number of dipaths containing this arc. Let π(G, P) be the maximum of the load of all the arcs and
let w(G, P) be the minimum number of wavelengths (colors) needed to color the family of dipaths P

in such a way that two dipaths with the same wavelength are arc-disjoint.
There exist DAGs such that the ratio between w(G, P) and π(G, P) cannot be bounded. An

internal cycle is an oriented cycle such that all the vertices have at least one predecessor and one
successor in G (said otherwise every cycle contains neither a source nor a sink of G). We prove that,
for any family of dipaths P, w(G, P) = π(G, P) if and only if G is without internal cycle.

We also consider a new class of DAGs, called UPP-DAGs, for which there is at most one dipath
from a vertex to another. For these UPP-DAGs we show that the load is equal to the maximum size
of a clique of the conflict graph. We prove that the ratio between w(G, P) and π(G, P) cannot be
bounded (a result conjectured in an other article). For that we introduce “good labelings” of the
conflict graph associated to G and P, namely labelings of the edges such that for any ordered pair of
vertices (x, y) there do not exist two paths from x to y with increasing labels.

Keywords-: DAG (Directed acyclic graphs); load; wavelengths; dipaths; good labelings; conflict

graphs; intersection graphs; chromatic number.

1 Introduction

The problem we consider is motivated by routing, wavelength assignment and grooming in optical net-

works. But it can be of interest for other applications in parallel computing, where the graph will rep-

resent for example the precedence graph of a program or for scheduling complex operations on pipelined

operators. A generic problem in the design of optical networks (see [11]), consists in satisfying a family

of requests (or a traffic matrix) under various constraints like capacity constraints. Satisfying a request

in a WDM optical network consists in assigning to it a route (dipath), but also a wavelength, which

shall stay unchanged if no conversion is allowed. The constraint is that two requests, having the same

wavelength, have to be routed by two arc disjoint dipaths or, equivalently, two requests whose associated

dipaths share an arc, have to be assigned different wavelengths. One optimization problem associated

consists in minimizing the number of wavelengths for a given family of requests. This problem is known

in the literature as the RWA (Routing and Wavelength Assignment) problem and has been extensively

studied (see for example the survey [2]).

The RWA problem is very difficult to analyze, therefore it is often split into two separate problems.

The first one solves the routing problem by determining dipaths which are easy to compute like shortest
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paths or which minimize the load. The load of an arc is the number of routes (dipaths) containing it and

the load of the routing is the maximum load of the arcs. Then in a second step, the routing being given,

the wavelength assignment problem is solved. In that case the input of the problem is not a family of

requests, but a family of dipaths P. We will denote by π(G, P) the maximum of the load of all the

arcs of the digraph G for the family P. Determining the minimum number w(G, P) of wavelengths

(colors) needed to color a family of dipaths P in such a way that two dipaths with the same wavelength

are arc-disjoint is still NP-hard in that case. Indeed it corresponds to finding the chromatic number of

the conflict graph (also called the intersection graph), associated to the digraph G and the family of

dipaths P, whose vertices represent the dipaths and where two vertices are joined if the corresponding

dipaths are in conflict (that is share an arc).

There are examples of topologies and families of dipaths where there are at most 2 dipaths using an

arc (π(G, P) = 2), but where we need an arbitrarily large number of wavelengths. Such an example is

given by considering k dipaths from si to ti. The dipaths starts in si, then go alternatively right and

down till they arrive at the bottom where they go right and up till they arrive at the destination ti.

Figure 1 shows the example for k = 4 wavelengths. Any two dipaths intersect; so the conflict graph is

complete and we need k colors. However the load of an arc is at most 2. Therefore the ratio between

w(G, P) and π(G, P) is unbounded in general.
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Figure 1: A pathological example

Here we consider the class of Directed Acyclic Graphs, DAGs, which plays a central role in Parallel

and Distributed Computing. Part of our motivation came when we tried to extend the results obtained

in [5] for paths motivated by grooming problems ([3, 9]).

The example given above in Figure 1 being a DAG there is no hope to bound the ratio between

w(G, P) and π(G, P) for DAGs. In [4] we fully characterize when w(G, P) = π(G, P) for a DAG. In

fact the necessary and sufficient condition is that G does not contain an internal cycle, i.e. a cycle, such

that all the vertices have at least one predecessor and one successor in G.

Note that a rooted tree is a directed tree where there is a unique dipath from the root to any vertex.

Here, we consider a new (to our best knowledge) class of DAGs, which is of interest in itself, those for

which there is at most one dipath from a vertex to another. Note that, if the original digraph has the



property that for any request (x, y) there is a unique dipath from x to y, then routing is very easy and

it is equivalent to consider a family of requests or a family of dipaths. We call this property the UPP

(Unique diPath Property) and call these digraphs UPP-DAGs. For these UPP-DAGs we show that the

load is equal to the maximum size of a clique of the conflict graph. In [4] we proved that if an UPP-DAG

has only one internal cycle, then for any family of dipaths w(G, P) ≤
⌈

4

3
π(G, P)

⌉

and we exhibit an

UPP-DAG and a family of dipaths reaching the bound. The main result of this article is that for UPP-

DAGs with load 2, the ratio between w(G, P) and π(G, P) cannot be bounded (a result conjectured

in [4]).

The paper is organized as follows. In section 2, we give the basic definitions and show that for an

UPP-DAG the load is equal to the clique number of the conflict graph π(G, P) = Ω(C(G, P)). In

section 3, we give a new shorter proof of the fact that for a DAG, w(G, P) = π(G, P) if and only G

does not contain an internal cycle. We also give examples of UPP-DAGs with one internal cycle and

where there is no equality. Section 4 is devoted to prove our main result: for UPP-DAGs, with load 2,

the ratio between w(G, P) and π(G, P) cannot be bounded. For that we introduce the notion of “good

labelings” of the conflict graph associated to G and P, namely labelings of the edges such that for any

ordered pair of vertices (x, y) there do not exist two paths from x to y with increasing labels. In section

5 we give some open problems.

2 Definitions

We model the network by a digraph G. The outdegree of a vertex x is the number of arcs with initial

vertex x (that is the number of vertices y such that (x, y) is an arc of G). The indegree of a vertex x is

the number of arcs with terminal vertex x (that is the number of vertices y such that (y, x) is an arc of

G). A source is a vertex with indegree 0 and a sink a vertex with outdegree 0. A dipath is a sequence of

vertices x1, x2, . . . , xk such that (xi, xi+1) is an arc of G. If xk = x1 the dipath is called a directed cycle.

A DAG (Directed Acyclic Graph) is a digraph with no directed cycle. However the underlying

(undirected) graph obtained by deleting the orientation can have cycles. An (oriented) cycle in a DAG

consists therefore of an even sequence of dipaths P1, P2, . . . , P2k alternating in direction (see Figure 2a).

The vertices inside the dipaths have indegree and outdegree 1; those where there is a change of orientation

have either indegree 2 and outdegree 0 or indegree 0 and outdegree 2.

An internal cycle of a DAG G is an oriented cycle, such that all its vertices have in G an indegree

> 0 and an outdegree > 0; said otherwise no vertex is a source or a sink. Hence the vertices where there

is a change of orientation in the cycle have a predecessor (resp. a successor) in G, if they are of indegree

0 (resp. outdegree 0) in the cycle (see Figure 2b).

We will say that a DAG has the Unique Path Property if between two vertices there is at most

one dipath. A digraph satisfying this property will be called an UPP-DAG.

If G is an UPP-DAG, then any internal cycle contains at least 2k ≥ 4 vertices where there is a change

of orientation. Otherwise it would consist of a dipath from x to y and a reverse dipath from y to x and

so there would be two dipaths from x to y.

Finally a DAG with no cycles is an oriented tree (its underlying graph has no cycles and so is a

tree).
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Figure 2: An oriented cycle (a) and an internal cycle (b)

Given a digraph G and a family of dipaths P, the load of an arc e is the number of dipaths of

the family containing e:

load(G, P, e) = |{P : P ∈ P; e ∈ P}|

The load of G for P will be the maximum of the loads of all the arcs of G and will be denoted by

π(G, P).

We will say that two dipaths are in conflict (or intersect) if they share at least one arc. We will

denote by w(G, P) the minimum number of colors needed to color the dipaths of P in such a way

that two dipaths in conflict (sharing an arc) have different colors. Note that π(G, P) ≤ w(G, P).

The conflict graph (also called the intersection graph) associated to the digraph G and the family

of dipaths P has as vertices the dipaths of P, two vertices being joined if their associated dipaths are

in conflict. It will be denoted C(G, P). Then w(G, P) is the chromatic number χ of the conflict graph:

that is w(G, P) = χ(C(G, P)). Note that π is only upper bounded by the clique number of the conflict

graph; indeed the π dipaths containing an arc e of maximum load are pairwise in conflict. The following

property shows that if G is an UPP-DAG then π(G, P) is exactly the clique number Ω(C(G, P)) of the

conflict graph.

Property 1 If G is an UPP-DAG then the dipaths in conflict have the following Helly property: if a set

of dipaths are pairwise in conflict, then their intersection is a dipath.Therefore π(G, P) = Ω(C(G, P))

Proof: If two dipaths intersect, then their intersection is a dipath. Indeed suppose their intersection

contains two different dipaths (x1, y1) and (x2, y2) in this order. Then between y1 and x2 there are two

dipaths, one via P1 and the other via P2 (see Figure 3 a).

So suppose P1 and P2 intersect in only one interval (x1, y1), and P3 intersects P1 in an arc disjoint

interval (u1, v1). W.l.o.g. we may assume that v1 is before x1. Let P3 intersects P2 in the interval (u2, v2).

Case 1: v2 is before u1 on P3. v2 cannot be after y1 on P2 otherwise there will be a directed cycle.

So v2 is before x1 on P2 and we have two dipaths from v2 to x1, one via P2 and the other one via P3 till

u1 and then via P1 (see Figure 3 b).



Figure 3: Helly property

Case 2: u2 is after v1 on P3. If u2 is before x1 on P2 we have two dipaths from v1 to x1 one via P1

and the other going from v1 to u2 via P3 and to x1 via P2. If u2 is after y1, we have two dipaths from v1

to u2 one via P3 and the other via P1 till y1 and P2 (see Figure 3 c and d).

3 Relations between π(G, P) and w(G, P)

As we have seen in the introduction, there exist DAGs G and a set of dipaths P such that π(G, P) = 2

and w(G, P) is arbitrarily large (see Figure 1). These DAGs have many internal cycles.

In [4] we showed that the DAGs for which for any family P of dipaths, w(G, P) = π(G, P) are

exactly those with no internal cycles. We give here a new simpler proof.

Theorem 2 Let G be a DAG. Then, for any family of dipaths P, w(G, P) = π(G, P) if and only if G

does not contain an internal cycle.

Proof: Let G be a DAG without internal cycles. If G is an oriented tree, this is a known result as the

conflict graph is a perfect graph (see for example [10] or for a polynomial algorithm in O(n, |P|) [8]).

If G is not an oriented tree, let G′ be the digraph obtained as follows: replace each source s with d+(s)

neighbors vi (i = 1, . . . , d+(s)) by d+(s) sources si and join si to vi. If a dipath P of P contains the arc

(s, vi) associate in G′ the dipath obtained by replacing (s, vi) by (si, vi). Do also the same transformation

for all the sinks replacing the sink t with d−(t) neighbors wj (j = 1, . . . , d−(t)) by d−(t) sinks tj and (wj , t)

by (wj , tj). Let P ′ be the resulting family of dipaths obtained. G′ is an oriented tree; indeed, as there is

no internal cycle, all the cycles in G contain either a source or a sink. So we have w(G′,P ′) = π(G′,P ′).

By construction π(G, P) = π(G′,P ′). To conclude let us color the dipaths P of P following the

coloring of P ′. If P does not contain a source or a sink it belongs to P ′ and we keep its color. If it

contains (s, vi) (resp. (wj , t)) we give to it the color of the associated path in P ′ obtained by replacing

(s, vi) by (si, vi) (resp. (wj , t) by (wj , tj)). We get a valid coloring as there are no conflicts between two

arcs (s, vi) and (s, vj) (resp. (wi, t) and (wj , t)). So we also have w(G, P) = w(G′,P ′) and therefore

w(G, P) = π(G, P).



In [4], we also show that if a DAG G contains an internal cycle, there exists a set P of dipaths, such

that π(G, P) = 2 and w(G, P) = 3. A particular case gives an UPP-DAG G with π = 2 and a set of 5

dipaths such that the conflict graph is a C5 and therefore w = 3. Replacing each of these dipaths with

h identical dipaths we obtain a family of 5h dipaths with π = 2h and w =
⌈

5h
2

⌉

giving a ratio w
π

= 5

4
.

In fact, in [4] we showed that the bound can be improved to 4

3
with the following example that we give

again as it will illustrate the proof of Theorem 9:

Theorem 3 There exists an UPP-DAG G with one internal cycle and a family P of dipaths such that

w(G, P) =

⌈

4

3
π(G, P)

⌉

.

Proof: The following example is due to Frédéric Havet. It consists of 8 dipaths generating the conflict

graph consisting of a cycle of length 8 plus chords between the antipodal vertices (see Figure 4). Here

again π = 2 and w = 3; but if we replace each of these dipaths with h identical dipaths we obtain a

family P of 8h dipaths with π = 2h and w =
⌈

8h
3

⌉

; indeed in the conflict graph an independent set has

at most 3 vertices and so we need at least 8h
3

colors. Therefore this family satisfies the theorem (the

reader can see the relation with fractional coloring).

Figure 4: An other UPP-DAG with π = 2 and w = 3.

In [4] we asked the question whether for any UPP-DAG the ratio w
π

was bounded by some constant.

We were only able to prove (with an involved proof) that it is the case when there is only one internal

cycle obtaining a ratio w
π

= 4

3
which is the best possible in view of the example of Theorem 3. We refer

the reader to [4] for a proof.



Theorem 4 [4] Let G be an UPP-DAG with only one internal cycle. Then for any family of dipaths

P,

w(G, P) ≤

⌈

4

3
π(G, P)

⌉

and the bound is the best possible.

In the next section we show that the ratio is unbounded at least for UPP-DAGs with load 2. For

that we will characterize their conflict graphs.

4 UPP-DAGS with load 2

We will now prove our main result: for UPP-DAGs with load 2, the ratio between w(G, P) and π(G, P)

cannot be bounded. For that we introduce the notion of ”good labeling” of the edges of a graph. We

first show that, if G is an UPP-DAG with load 2, then for any family of dipaths P, the conflict graph

H = C(G, P) admits a ”good labeling” of its edges. Then we show a kind of converse property, namely

that, if H is a graph with a good labeling, then there exists an UPP-DAG G with load 2 and a family

of dipaths P such that H = C(G, P). This property combined with the existence of graphs with good

labelings and arbitrarily large chromatic number gives us the existence of UPP-DAGS and family of

dipaths P with π(G, P) = 2 and with an arbitrarily large w(G, P).

We give two definitions of a good labeling of the edges of a graph H which can be used inter-

changeabily.

Definition 1: Let us label the edges of a graph H with distinct real labels. This labeling is said to

be good if for any ordered pair of vertices (x, y) there do not exist 2 paths from x to y with increasing

labels.

Definition 2: Let us label the edges of a graph H with non necessarily distinct labels. This labeling

is said to be good if for any ordered pair of vertices (x, y) there do not exist 2 paths from x to y with

non-decreasing labels. (Note that as there are m edges, we can in definition use as labels the integers

from 1 to m keeping the order between labels).

Clearly a labeling satisfying Definition 1 satisfies Definition 2.

Conversely if a graph has a good labeling L satisfying Definition 2 it has also a labeling L′ satisfying

Definition 1. Let the distinct labels used in L be ai, 1 ≤ i ≤ k, with a1 < a2 < . . . < ak and suppose

ai is repeated λi times. Let us define the labeling L′ as follows: we label the λi edges having label ai in

L with the distinct labels ai, ai + ǫi, . . . , ai + (λi − 1)ǫi where λiǫi ≤ ai+1 − ai. All the labels of L′ are

distinct (see examples after for this transformation). Now consider any ordered pair of vertices (x, y).

By definition of L there exists at most one path from x to y with non-decreasing labels. So any other

path contains two consecutive edges ek and ek+1 with labels bk and bk+1, where bk = aj for some j and

bk+1 = ai and such that aj > ai. In the labeling L′, these two edges have also decreasing labels as

a′j ≥ aj ≥ ai+1 > ai + (λi − 1)ǫj ≥ a′i. So L′ is a labeling with distinct labels satisfying Definition 1.

Let us give now some examples of graphs having a good labeling or not:



Property 5 The cycles C4, C5 and the conflict graph of Figure 4 with 8 vertices have a good labeling

Proof: Let the C4 be (a, b, c, d), then a good labeling with Definition 2 is obtained by labeling the edges

{a, b} and {c, d} with label 1 and the edges {b, c} and {a, d} with label 3. The labeling L′ is obtained by

giving label 1 to {a, b}, 2 to {c, d}, 3 to {b, c} and 4 to {a, d}.

Let the C5 be (a, b, c, d, e), then a good labeling with Definition 2 is obtained by labeling the edges

{a, b} {c, d} and {a, e} with label 1 and the edges {b, c} and {d, e} with label 4. The labeling L′ is

obtained by giving label 1 to {a, b}, 2 to {c, d}, 3 to {a, e}, 4 to {b, c} and 5 to {d, e}.

For the conflict graph of Figure 4 with 8 vertices, a good labeling (Definition 2) is obtained by labeling

the edges of the external cycle alternately with labels 1 and 3 and the 4 diagonals with label 2.

Property 6 K2,3 does not admit a good labeling.

Proof: This proof is due to J-S Sereni. Let the vertices of K2,3 be respectively a, b and c, d, e. Suppose

it admits a good labeling L with Definition 1. W.l.o.g. we can suppose that L(a, c) < L(a, d) < L(a, e).

Then L(b, c) > L(a, c); otherwise, there will be two increasing paths from b to d: (b, d) and (b, c, a, d).

Then L(a, d) > L(b, d); otherwise, there will be two increasing paths from a to b: (a, d, b) and (a, c, b).

Then L(a, e) > L(b, e); otherwise, there will be two increasing paths from a to b: (a, e, b) and (a, c, b).

But we get a contradiction, as there are two increasing paths from b to a: (b, d, a) and (b, e, a).

Theorem 7 Let G be an UPP-DAG with load 2. Then for any family of dipaths P, the conflict graph

C(G, P) has a good labeling.

Proof: Recall (see the proof of property 1) that, if two dipaths P and Q intersect, they intersect in an

interval [x, y]. As the load of G is 2, the arcs of this interval belong only to these 2 dipaths. Therefore, if

G′ is the digraph obtained from G by replacing the interval [x, y] by a single arc (x, y), then G′ has the

same conflict graph H as G. The edge of H = C(G, P) joining the two vertices P and Q will correspond

to the intersection interval [x, y] of P and Q in G, that is, to the arc (x, y) of G′. (Note that if in G′ we

delete the arcs with load at most 1, that is covered by at most one path of P, then there is a one to one

mapping between the remaining arcs of G′ and the edges of the conflict graph H).

Now we label the arcs of G′ according to the topological order; that is we label with 1 the arcs leaving

a source; then we delete the arcs labeled 1 getting a digraph G′

2 and label with 2 the arcs leaving a source

in G′

2 and so on. As G and therefore G′ is a DAG we can label all the arcs of G′. This implies a labeling

of the edges of the conflict graph H, by giving to the edge joining the two vertices P and Q the label of

the arc (x, y) of G′ associated to the intersection interval [x, y] of P and Q.

Let us now show that this is a good labeling of H. Consider a non-decreasing path in H, from P to

Q, P = P1, P2, . . . , Pk = Q and let (xi, yi) be the arc of G′ associated to the intersection of Pi and Pi+1.

As the labels are non decreasing, then (xi, yi) is in the topological order before (xi+1, yi+1) and so yi is

before xi+1 in Pi+1. Stherefore, we can associate to this non-decreasing path in H the following dipath

in G′: x1, y1, x2, y2, . . . , xk−1, yk−1 (in fact that implies that the labels are strictly increasing). Suppose

we have two non-decreasing paths in H from a vertex P to a vertex Q, then we have in G′ two dipaths

x1, y1, x2, y2, . . . , xk−1, yk−1 and x′

1, y
′

1, x
′

2, y
′

2, . . . , , x
′

m−1, y
′

m−1 with x1, y1 and x′

1, y
′

1 belonging to P and

xk−1, yk−1 and x′

m−1, y
′

m−1 belonging to Q. W.l.o.g. we can suppose x′

1 is after (or equal to) y1 on P .



If x′

m−1 is after yk−1 on Q, we have two dipaths joining y1 and x′

m−1 namely

y1, x2, y2, , . . . , xk−1, yk−1, x
′

m−1 and y1, x
′

1, y
′

1, x
′

2, y
′

2, . . . , , x
′

m−2, y
′

m−2, x
′

m−1.

If y′m−1 is before xk−1 on Q, we have two dipaths joining y1 and xk−1 namely

y1, x2, y2, , . . . , xk−1 and y1, x
′

1, y
′

1, x
′

2, y
′

2, . . . , , x
′

m−1, y
′

m−1, xk−1.

Therefore G′ and so G cannot be an UPP-DAG.

Likewise, using the property 6 we obtain the following corollary proved in [4]:

Corollary 8 Let G be an UPP-DAG with load 2. Then its conflict graph cannot contain a K2,3.

Theorem 9 Let H be a graph with a good labeling. Then there exists an UPP-DAG G with load 2 and

a family of dipaths P, such that H = C(G, P).

Proof: To each edge {P,Q} in H let us associate in G two vertices xPQ and yPQ joined by the arc

(xPQ, yPQ). Now for each vertex P in H, order its neighbors Q1, Q2, . . . , Qh according to the labels of

the edges {P,Qi} that is L(P,Q1) < L(P,Q2) < . . . < L(P,Qh). Then, for i = 1, 2, . . . , h − 1, let us

identify the vertex yPQi
to xPQi+1

, and associate to the vertex P in H the dipath P = (xPQ1
, yPQ1

=

xPQ2
, yPQ2

, . . . , yPQh−1
= xPQh

, yPQh
) in G. The family of dipaths P consists of the dipaths associated

to each vertex of H. The conflict graph associated to the graph G and the family of dipaths P is exactly

the graph H. G has load 2 as an arc xPQ, yPQ of G belongs exactly to the two dipaths P and Q. G is

an UPP-DAG as a dipath in G corresponds to an increasing path in H and so if there were two dipaths

in G joining some yPQ to xP ′Q′ there will be two increasing paths in H from P to P ′.

If we apply the construction of the proof to the conflict graph H of Figure 4, we get exactly the graph

G and the dipaths of the example.

Remark: there is no equivalence between the two properties: G is an UPP digraph with load 2 and

its conflict graph has a good labeling. Indeed there exist digraphs which are not UPP, but whose conflict

graph has a good labeling: for example consider the graph consisting of the 4 dipaths a1, b1, c1; b1, c1, d1;

c1, d1, e1; and a1, b1, f1, d1, e1. It has C4 as conflict graph, but is not UPP as there are two dipaths from

b1 to d1.

Theorem 10 There exists a family of graphs with a good labeling and an arbitrarily large chromatic

number.

Proof: Consider a regular graph H of degree at most k, girth > 2k + 2 and with a large chromatic

number. The existence of such graphs has been shown in [7, 12].

The edges of H can be partitioned in at most k + 1 matchings; indeed we know by Vizing’s theorem

that we can color the edges of a graph with maximum degree ∆ with ∆ + 1 colors. Let us give to the

edges of the ith matching the label i, 1 ≤ i ≤ k + 1. Then any non-decreasing (in fact increasing as

there cannot be two consecutive edges with the same label) path in H has at most k + 1 edges. But

there cannot exist two increasing paths between any pair of nodes; otherwise there will be a cycle in H

of length ≤ 2k + 2 contradicting the value of the girth. Therefore H has a good labeling.



Now using Theorems 9 and 10 we are able to answer the question asked in [4].

Theorem 11 There exist UPP-DAG and a family of dipaths with load π(G, P) = 2 and with an arbi-

trarily large w(G, P).

5 Conclusions

We list below some open problems worth of being investigated. Some concern the relations between

the maximum of the load π(G, P) of all the arcs and w(G, P) the minimum number of wavelengths in

particular for the class of UPP-DAGs. In particular we have the following conjecture (a specialization of

a problem asked in [2]).

Question 1: Let G be a DAG and consider the All To All (ATA) family of dipaths (i.e for each

couple (x,y) connected by a dipath we have a request). We conjecture that w(G, ATA) = π(G, ATA).

Question 2: For which digraphs π(G, P) = Ω(C(G, P))?

Question 3: Given an undirected graph when is it possible to orient its edges such that the digraph

obtained is UPP?

This problem should be NP-Hard. However classes of such graphs could be exhibited.

For graphs with one or a small number of internal cycles we have the following questions.

Question 4: Is Theorem 4 true also for DAGs (not necessarily UPP) with exactly one internal cycle?

Question 5: Is there a simple proof of Theorem 4?

Question 6: What is the bound for graphs with k internal cycles?

In a preliminary version of this paper we asked for a characterization of graphs with a good labeling.

In particular we asked if there exists a polynomial algorithm to decide if a graph has a good labeling.

In [1], the authors exhibit infinite families of graphs for which no such labeling can be found. They also

show that deciding if a graph admits a good labeling is NP-complete. Finally, they give large classes of

graphs admitting a good labeling like forests, C3-free outerplanar graphs, planar graphs of girth at least

6. In [6] they proved that if the girth is at least 5, the average degree of G is less than 3 and G is minimal

without a good labeling, then G is either C3 or K2,3.

A last question consists in extending the results to UPP-DAGs with load > 2 perhaps by using hy-

pergraphs.

Question 7: Characterize UPP-DAGs with load 3 or load h.
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