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Abstract

The technique of space invariant embedding, applied to a second order
boundary value problem defined in a cylindrical domain, gives rise to a
system of uncoupled first order initial value problems that includes a non-
linear Riccati equation on a unbounded functional operator. We present
a method to justify this equation that uses a parabolic regularization of
the original problem.
Keywords: Factorization, Riccati equation, invariant embedding.
MSC: 93C20 35A25 35J25

1 Introduction

The invariant embedding method was firstly proposed by Bellman [1]. Henry and
Ramos [3] adapted this method to the case of the Poisson equation in an n-dimensional
cylindrical domain, arising to a decoupled system of first-order initial value problems.
They applied a spatial invariant embedding, using the coordinate along the axis of
the cylinder. The final system includes a Riccati equation satisfied by the Dirichlet to
Neumann operator on the section of the cylinder. Since this operator in unbounded,
a sense must be given to the nonlinear term of the equation. Based on the framework
introduced by J.L. Lions [7], for deriving the optimal feedback for optimal control
problems of parabolic equations, Henry and Ramos [3] gave a complete justification
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for this equation, using a Galerkin method. They also showed that the factorization of
the boundary value problem can be viewed as an infinite dimensional generalization of
the block Gauss LU factorization. Other approaches to justify this Riccati equation
can be found in [2, 4].

In this work, we exploit the relationship with a control problem in order to propose
a regularization of the Riccati equation. This type of regularization will allow us to
generalize the invariant embedding method to more general domains.

2 Factorization by invariant embedding

Let Ω be the cylinder ]0, a[×O in Rn, where O is a smooth bounded open set in
Rn−1. We also consider Σ =]0, a[×∂O to be the “lateral boundary” of the domain,
and Γ0 = {0} × O, Γa = {a} × O the “faces” of the domain. We denote the elements
of RN by (x1, x2, . . . , xN ) = (x, y), where x = x1 and y = (x2, . . . , xN ) to stress the
particular role of x1. In Ω, we consider the Poisson problem:

(P0)


−∆u = − ∂2u

∂x2 −∆yu = f, in Ω

u|Σ = 0, u|Γa
= u1

−∂u
∂x
|Γ0 = u0

where f ∈ L2(Ω), u0 ∈ (H
1/2
00 (O0))′ and u1 ∈ H1/2

00 (Oa) (see [8] for the definition of
these spaces). Then, this problem has a unique solution in X = L2(0, a;H1

0 (O)) ∩
H1(0, a;L2(O)) [3].

 

Now we use the technique of invariant embedding, introduced by Bellman in [1],
in order to embed the problem (P0) in a family of similar problems (Ps,h). For each
s ∈]0, a], the problem (Ps,h) is defined over the subcylinders ]0, s[×O, and we impose
the Dirichlet boundary condition u|Γs

= h, where Γs = {s} × O:

(Ps,h)


−∆u = − ∂2u

∂x2 −∆yu = f, in Ωs

u|Σ = 0,

u|Γs
= h, −∂u

∂x
|Γ0 = u0.

Obviously, (Ps,h) reduces to (P0), when s = a and h = u1.
As in [7], we define:

Definition 2.1 For every s ∈]0, a] we define the Dirichlet to Neumann (DtN) map
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P , by P (s)h =
∂γ

∂x
|Γs , where γ is the solution of


−∆γ = 0, in Ωs

γ|Σ = 0,

−∂γ
∂x
|Γ0 = 0, γ|Γs

= h,

and r(s) =
∂β

∂x
|Γs , where β is the solution of


−∆β = f, in Ωs

β|Σ = 0,

−∂β
∂x
|Γ0 = u0, β|Γs

= 0.

For every s ∈ [0, a], P (s) : H
1/2
00 (O) → (H

1/2
00 (O))′ is a linear operator and r(s) ∈

(H
1/2
00 (O))′, due to the well posedness of the problem and trace properties.
By linearity of (Ps,h), we have

∂u

∂x
|Γs = P (s)h+ r(s), ∀s ∈ [0, a]

where u = γ + β.
Further, the solution of (P0) is given by

∂u

∂x
(x, y) = (P (x)u|Γx

)(y) + (r(x))(y). (1)

We obtain, deriving the previous equation formally with respect to x,

∂2u

∂x2
= −∆yu− f =

∂P

∂x
u+ P

∂u

∂x
+
∂r

∂x
,

and, substituting ∂u
∂x

given by (1),(
∂P

∂x
+ P 2 + ∆y

)
u+

∂r

∂x
+ Pr + f = 0.

Consequently, since u is arbitrary, we obtain the formal system:

∂P

∂x
+ P 2 + ∆y = 0,

∂r

∂x
+ Pr = −f,

−∂u
∂x

+ Pu = −r.

(2)

Again from (1), and considering the initial condition in Γ0, we obtain P (0) = 0
and r(0) = −u0. The initial condition for the third equation is, naturally, u(a) = u1.

From the first two equations of (2), integrating from 0 to a, we can obtain P and
r. Substituting both of them in the third equation, and integrating reversely, we find
u. Thus, (2) is a decoupled system. Further, the first equation of (2) is a Riccati
equation on the operator P (which is an operator on functions on y, depending on x).

We can find in [3] the precise meaning of system (2):
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Theorem 2.2 The solution u of (P0) is the unique solution of (2) in the sense that

1. the operator

P ∈ L∞
(
0, a; L(H1

0 (O), L2(O)) ∩ L(H
1/2
00 (O), (H

1/2
00 (O))′)

∩ L(L2(O), H−1(O))
)

verifies the Riccati equation(
∂P

∂x
h, h

)
+ (Ph, Ph) = (∇yh,∇yh), ∀h, h ∈ H1

0 (O), (3)

with the initial condition P (0) = 0;

2. the function r ∈ C
(
[0, a]; (H

1/2
00 (O))′

)
verifies the equation〈

∂r

∂x
, h

〉
H−1(O),H1

0 (O)

+ 〈Pr, h〉H−1(O),H1
0 (O) = (−f, h), ∀h ∈ H1

0 (O),

with the initial condition r(0) = −u0;

3. the function u ∈ X verifies the equation

−
(
∂u

∂x
, h

)
+ (Pu, h) = −(r, h), ∀h ∈ L2(O),

with the initial condition u(a) = u1.

The operator P appearing on the first equation of (2) is not bounded, and consequently
we can not give a precise meaning to the term P 2. However, in the case of a cylindrical
domain, the equation (3) can be fully justified using either a Galerkin method [3], or
Hilbert-Schmidt operators [4], or a semigroup approach [2]. Unfortunately neither
of these methods seems to work in the case of a more general domain such as, for
instance, a non cylindrical one [6]. For this reason, in the next section, we present a
method based in a regularization of the problem (P0) that can be directly generalized
to other types of domains.

3 Fourth order regularization

Next, we consider a regularization of (P0) with a 4-order transversal operator:

(Pε)


−∂

2uε

∂x2
−∆yuε + ε∆2

yuε = f, in Ω

uε|Σ = 0, ∆yuε|Σ = 0

(
∂uε

∂x
+
√
ε∆yuε)|Γ0 = −u0, uε|Γa = u1.

Considering f ∈ L2(Ω), and u0, u1 ∈ L2(O), this problem has a unique solution in

Xε ={uε∈L2(0, a;H1
0 (O)) :

∂uε

∂x
+
√
ε∆yuε ∈ L2(Ω)}. Further, the problem has also a

unique solution in Y = {uε ∈ L2(0, a;H1
0 (O)) :

∂uε

∂x
+∆yuε ∈ L2(0, a;H1

0 (O)), ∆yuε ∈
L2(Ω)}, for f ∈L2(Ω), and u0, u1 ∈ H1

0 (O).
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This problem corresponds exactly to the optimality system associated to an opti-
mal control problem of a parabolic equation studied in [7]. Consequently, using the

identity
∂uε

∂x
= (Pε −

√
ε∆y)uε + rε, the system can be decoupled to:

∂Pε

∂x
+ P 2

ε −
√
ε(∆yPε + Pε∆y) + ∆y = 0, Pε(0) = 0

−∂rε
∂x

+
√
ε∆yrε = Pεrε + f, rε(0) = −u0

∂uε

∂x
+
√
ε∆yuε = Pεuε + rε, uε(a) = u1.

(4)

Now, we have Pε ∈ L(L2(O), L2(O)) and Pε ∈ L(H1
0 (O), H1

0 (O)). Also, the first
equation of (4) can be written in a variational form as:(∂Pε

∂x
h, h

)
+(Pεh, Pεh)−

√
ε(∆yh, Pεh)−

√
ε(Pεh,∆yh) = (∇yh,∇yh), ∀h, h ∈ H1

0 (O).

Theorem 3.1 Let uε be the solution of problem (Pε), and u the solution of problem

(P0), with u1 ∈ H1/2
00 (O). Then, when ε goes to 0, we have uε → u in L2(0, a;H1

0 (O)),

and
∂uε

∂x
+
√
ε∆yuε →

∂u

∂x
in L2(Ω).

As a consequence,

(
∂uε

∂x
+
√
ε∆yuε

)
|Γs →

∂u

∂x
|Γs in

(
H

1/2
00 (Os)

)′
, when ε goes to 0,

and we obtain the following result:

Theorem 3.2 As ε→ 0, Pε converges to P , which satisfies the Riccati equation(
∂P

∂x
h, h

)
+ (Ph, Ph) = (∇yh,∇yh), ∀h, h ∈ H1

0 (O), (5)

with the initial condition P (0) = 0.

We notice that equation (5) is the same as (3). This method seems to be gener-
alizable to more general types of domains, which will allow us to complete the justi-
fication for the factorization by invariant embedding techniques presented in [5] for a
star-shaped domain, and in [6] for non-cylindrical domains.
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