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Computing Period and Shape of Oscillations in

Piecewise Linear Lur’e Systems: a Complementarity Approach

Valentina Sessa!, Luigi Iannelli!, Vincent Acary♭, Bernard Brogliato♭ and Francesco Vasca!

Abstract— Autonomous piecewise linear systems in the Lur’e
form may exhibit periodic steady-state oscillations. For many
practical systems belonging to this class the period and the
shape of the oscillation is difficult to be predicted a priori.
In this paper the complementarity approach is used to tackle
the issue. The complementarity formalism is used to represent
the closed-loop system and a phase condition acting as an
anchor equation for the periodic solution. By discretizing the
dynamics a mixed complementarity problem is formulated. The
corresponding solution provides an accurate prediction of the
steady-state oscillation and its period. Numerical results show
the effectiveness of the proposed technique for the computation
of stable and sliding periodic solutions. The analysis of the
steady-state solution of a Colpitts oscillator is considered as an
illustration.

I. INTRODUCTION

A piecewise linear (PWL) system in Lur’e form, as the

one shown in Fig. 1, can be represented as the feedback

interconnection of a linear time-invariant dynamical system

Σ with a piecewise linear static relation R which relates the

system output, y and the opposite of the system input, λ.

This class of dynamical systems has attracted a considerable

interest in the literature, because they may exhibit several

interesting behaviors. For instance, such systems tend to peri-

odically oscillate also without external excitation. This means

that the period related to the periodic solution is difficult to

be a priori predicted. In the literature various mathematical

methods, basically classified as time-domain or frequency-

domain have been proposed to compute the steady-state

periodic solution and its period. Time-domain approaches

are based mainly on the so-called shooting method which

determines the initial condition and the period for the peri-

odic solution by solving a sequence of nonlinear initial value

problems with the Newton-Raphson method, [1], [2], [3].

The main drawback of this method is the evaluation of the

sensitivity matrix, which is often computationally expensive

and becomes even more complicated for nonsmooth sys-

tems, [4], [5]. In frequency-domain, harmonic balance is

the classical technique used for determining the steady-state

behaviour of nonlinear autonomous systems that exhibit a

single periodic attractor, [6]. The describing function (i.e.

harmonic balance with a single harmonic) provides simple

results about the existence of a periodic oscillation and

its parameters (the amplitude and the period), but it is
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not able to accurately predict them particularly when the

system under consideration does not satisfy the assumption

of filtering out the higher-order harmonics, [7]. In [8] a

mixed time-frequency-domain approach is used to analyze

a nonlinear oscillator by linearizing the system along the

solution predicted by the harmonic balance technique and

then by computing the Floquet’s multipliers by using the

time-domain numerical algorithm.

The recent literature has shown that the complementar-

ity framework can be useful for investigating PWL sys-

tems, [9], [10]. In [11], [12] and [13], the complementarity

framework is used for the computation of periodic solutions

in autonomous Lur’e systems. In those papers it has been

shown how the linear or mixed linear complementarity rep-

resentation of the feedback characteristic allows to represent

the discretized closed-loop system as a linear complementar-

ity system. Then the solution of the corresponding comple-

mentarity problem allows to obtain the periodic solution of

the discretized system. The main drawback of the previous

approaches is that the period must be known a priori or, at

least, a certain estimation of the period must be computed

by using, for instance, the describing function technique.

Instead in this paper the period is considered as a further

unknown and it is computed together with the periodic

solution by constructing a suitable mixed complementarity

problem (MCP).

The paper is organized as follows. In Section II some

preliminaries about the solution concept for autonomous

PWL systems and the complementarity theory are presented.

In Section III we show how to formulate a MCP in order

to compute a periodic solution together with the period.

In Section IV three interesting applications are considered:

a saturation Lur’e system, a relay feedback system which

exhibits a periodic solution with sliding, and a practical

electronic oscillator. The numerical results demonstrate the

effectiveness of the proposed approach. The paper is con-

cluded in Section V.

II. PWL LUR’E SYSTEMS AND PERIODIC SOLUTIONS

The Lur’e system in Fig. 1, for the analysis considered in

this paper, can be represented in the following state space

form

ẋ = Ax+B(−λ) + g (1a)

y = Cx+D(−λ) + h (1b)

(y,λ) ∈ R (1c)

where (A,B,C,D) is a minimal state space realization with

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
m×n, D ∈ R

m×m, g ∈



Σ

R

u y

λ

−

Fig. 1. Block diagram of a Lur’e system.

R
n×1 and h ∈ R

m×1 all being constant, R is a static PWL

relation that includes also set-valued characteristics, and the

time derivative is meant almost everywhere.

Definition 1: A solution of the system (1) is any ab-

solutely continuous function x(t) : [t0,+∞) $→ R
n that

satisfies (1) for almost every t ≥ t0, given an initial condition

x(t0).
We assume that, for every initial condition x(t0), (1) has at

least one solution.

Definition 2: A solution x of the system (1) is periodic

if there exists T such that x(t+ T ) = x(t) for any t ∈ R.

The PWL feedback relation R is represented by using

the mixed complementarity problem formulation. A MCP is

defined as follows, [14].

Problem 1: Given a function f : Rr → R
r and lower and

upper bounds l, u ∈ R
r ∪ {−∞,+∞}r,

find z ∈ R
r, w ∈ R

r
+, v ∈ R

r
+ (2a)

s.t. f(z) = w − v (2b)

l ≤ z ≤ u, (z − l)⊤w = 0, (u− z)⊤v = 0. (2c)

When f(z) is affine, Problem 1 defines a mixed linear

complementarity problem (MLCP), that can be defined as

follows.

Problem 2: Given a vector q ∈ R
r, a real matrix M ∈

R
r×r and lower and upper bounds l, u ∈ R

r∪{−∞,+∞}r,

find z ∈ R
r, w ∈ R

r
+, v ∈ R

r
+ (3a)

s. t. Mz + q = w − v (3b)

l ≤ z ≤ u, (z − l)⊤w = 0, (u− z)⊤v = 0. (3c)

A linear complementarity problem can be formulated as

Problem 2 by setting the lower bound equal to zero and

the upper bound equal to infinity: in this case z and w are

the usual complementarity variables.

Problem 2 can be used to represent the class of relation

(y,λ) considered in this paper, where y is the input of the

relation and λ is the output. For instance, by choosing z = λ

and q = −y, Problem 2 can be rewritten in the following

form.

Problem 3: Given a vector y ∈ R
m, a real matrix

M ∈ R
m×m and lower and upper bounds lλ, uλ ∈ R

m ∪

{−∞,+∞}m,

find λ ∈ R
m, wλ ∈ R

m
+ , vλ ∈ R

m
+ (4a)

s. t. Mλ− y = wλ − vλ (4b)

lλ ≤ λ ≤ uλ, (λ− lλ)
⊤wλ = 0, (uλ − λ)⊤vλ = 0.

(4c)

A wide class of PWL characteristics can be represented in

the mixed linear complementarity framework, [13], such as

the unitary single-input single-output saturation characteristic

that can be represented by using Problem 3 with M = 1,

lλ = −1 and uλ = 1. See [15] for a more exhaustive

analysis about PWL representations in the complementarity

framework.

Let x(t) be a nonconstant periodic solution of (1) with the

unknown period T . Since the phase of a periodic solution

belonging to an autonomous systems is not fixed, any time

translation of the periodic solution gives another ‘different’

periodic solution. In other words, if the closed-loop system

admits a periodic solution, it admits an infinite number of

periodic solutions each one differing from the others by

a translation in time. In order to fix the initial phase of

the periodic solution, one more equation is required. In the

literature it has been proposed to add an anchor equation that

allows to block the profile of the periodic solution. Such

a normalization is frequently called phase condition. The

most known anchor equation is the orthogonality condition

that is successfully used in the continuation method for the

bifurcation analysis, [16] and it is also applied to the shooting

method, [17]. For our approach it seems to be more natural

the phase condition proposed in [18]:

ẋj(t̄) = c⊤j (Ax(t̄)−Bλ(t̄) + g) = 0, (5)

where xj is a generic j-th component of the state at a

chosen time instant t̄ ∈ [0, T ] and c⊤j ∈ R
1×n is a zero

vector whose j-th element is 1. Note that the index j can be

chosen arbitrarily in the case of sufficiently smooth solutions.

Indeed, in the case of periodic solutions x(t) ∈ C1, the time

derivative of each state variable must be zero at least at one

time instant t̄ ∈ [0, T ]. If x(t) ∈ C0 as in the case of the

sliding motion, we have to pay attention to the fact that the

time derivative can jump. We should assume that there exists

a small time interval in which ẋj = 0. This paper will not

take into account solutions with jumps in the state.

The dynamic model and the anchor equation can be

normalized with respect to the unknown period by using

the time scaling t = T τ , where τ is a dimensionless time

variable. Then the system (1) can be written as

x′ = TAx+ TB(−λ) + Tg (6a)

y = Cx+D(−λ) + h (6b)

(y,λ) ∈ R (6c)

where x′ is the derivative with respect to τ . A periodic

solution of (1) with period T will correspond to a periodic

solution of (6) with period equal to 1. For the system (6) the

phase condition can be written as

xj
′(τ̄) = Tc⊤j (Ax(τ̄)−Bλ(τ̄) + g) = 0 (7)

for some τ̄ ∈ [0, 1].

III. MCP FOR THE COMPUTATION OF A PERIODIC

SOLUTION AND ITS PERIOD

The MCP formulation for the computation of periodic

solutions in Lur’e systems requires some preliminary no-



tations. In the following we assume that col( · ) indicates a

vector obtained by stacking in a unique column the column

vectors in its argument, IN denotes the N×N identity matrix

and 1N , ∞N are the N -dimensional vectors of ones and of

infinity, respectively. The symbol ⊗ indicates the Kronecker

product.

By discretizing (6) with the (θ, γ)-technique, [19] and

a sampling period 1/N , N being an integer, we get the

following discrete-time system:
(

In −
T

N
θA

)

xk −

(

In +
T

N
(1− θ)A

)

xk−1 =

− γ
T

N
Bλk −

T

N
(1− γ)Bλk−1 +

T

N
g (8a)

yk = Cxk −Dλk + h (8b)

(yk,λk) ∈ R (8c)

with k = 1, . . . , N , θ ∈ [0, 1] and γ ∈ [0, 1]. By opportunely

rearranging (8b) for all samples k = 1, . . . , N , by using the

periodicity constraint x0 = xN and λ0 = λN and by adding

the discretized version of the phase constraint (7), we obtain

a MCP which can be represented in the form of Problem 1

with

z = col(λ, x, T ) (9a)

f(z) = col(fλ(z), fx(z), fT (z)) (9b)

l = col(lλ, lx, lT ) = col(lλ · 1N ,−∞N ·n,−∞) (9c)

u = col(uλ, ux, uT ) = col(uλ · 1N ,+∞N ·n,+∞)
(9d)

with x̄ = col(x1, x2, . . . , xN ), λ̄ = col(λ1, λ2, . . . , λN )
and ȳ = col(y1, y2, . . . , yN ) and where

fλ(z) = −Cx+ (D +M)λ− h (10a)

fx(z) =

(

In −
T

N
θA

)

xk −

(

In +
T

N
(1− θ)A

)

xk−1+

+ γ
T

N
Bλk +

T

N
(1− γ)Bλk−1 −

T

N
g, k = 1, . . . , N

(10b)

fT (z) = c⊤j (xk̂
− x

k̂−1) for a chosen k̂ and a chosen j
(10c)

with

M = IN ⊗M, C = IN ⊗ C (11a)

D = IN ⊗D, h = 1N ⊗ h. (11b)

Note that the choice of the unbounded limits on the variables

x and T implies that fx(z) and fT (z) are equal to zero.

Depending on the relation (y,λ), constant solutions of (1)

are also possible. For instance, when g and h are zero

and (0, 0) ∈ (y,λ), the origin is also a solution (an

equilibrium) of the Lur’e system. We are interested in the

solution that corresponds to a nonconstant one, i.e. a solution

that corresponds to a periodic solution. Since the phase

constraint (7) does not exclude the trivial solution (and

more in general constant solutions), one must add a further

constraint which excludes the zero solution. To this aim the

following condition can be used

x⊤

(•,̂i)x(•,̂i) > 0 (12)

for some chosen î, where x(•,̂i) ∈ R
N×1 is the vector

obtained by collecting all samples of the î-th component

of the state space. It is necessary to represent (12) in a

suitable complementarity form. A possible complementarity

representation of (12) is the following:

find ρ ∈ R, wρ ∈ R+, vρ ∈ R+ (13a)

s. t. x⊤

(•,̂i)x(•,̂i) − ε = wρ − vρ (13b)

lρ ≤ ρ ≤ uρ, (ρ− lρ)wρ = 0, (uρ − ρ)vρ = 0, (13c)

where ε is a small positive parameter, lρ = 0 and uρ = +∞

that implies vρ = 0. Indeed the nonnegativity of the variable

wρ in (13b) implies that x⊤

(•,̂i)
x(•,̂i) must be different from

zero.

The approach presented above for the elimination of the

trivial solution can be simply extended for the elimination

of a nonzero constant solution.

Now, we are able to formulate the MCP that allows to

compute the nontrivial periodic solution and its period.

Problem 4: Given the matrices A,B,C,D, g, h of the

model (1), the matrix M of the feedback relation represen-

tation (4), the discretization technique parameters (θ, γ) and

the number of discrete samples N

find λ ∈ R
N ·m, x ∈ RN ·n, T, ρ ∈ R

wλ, vλ ∈ R
N ·m
+ , wx, vx ∈ R

N ·n
+ ,

wT , vT , wρ, vρ ∈ R+

s. t. − Cx+ (D +M)λ− h = wλ − vλ (14a)
(

In −
T

N
θA

)

xk −

(

In +
T

N
(1− θ)A

)

xk−1+

+ γ
T

N
Bλk +

T

N
(1− γ)Bλk−1 −

T

N
g = wx − vx,

k = 1, . . . , N (14b)

c⊤j (xk̂
− x

k̂−1) = wT − vT for a chosen k̂

and a chosen j (14c)

x⊤

(•,̂i)
x(•,̂i) − ε = wρ − vρ for a chosen î (14d)

lλ ≤ λ ≤ uλ, (λ− lλ)
⊤wλ = 0, (uλ − λ)⊤vλ = 0

(14e)

lx ≤ x ≤ ux, (x− lx)
⊤wx = 0, (ux − x)⊤vx = 0

(14f)

lT ≤ T ≤ uT , (T − lT )wT = 0, (uT − T )vT = 0
(14g)

lρ ≤ ρ ≤ uρ, (ρ− lρ)wρ = 0, (uρ − ρ)vρ = 0 (14h)

with x0 = xN , λ0 = λN , C, D, M , h given by (11), lower

bounds lλ, lx, lT given by (9c), lρ = 0 and upper bounds

uλ, ux, uT given by (9d), uρ = +∞.



IV. NUMERICAL RESULTS

The effectiveness of the proposed technique for the com-

putation of period and waveform of oscillations is shown by

considering different examples: a saturation feedback system,

a relay feedback system with sliding motion and the Colpitts

electronic oscillator. The solution of Problem 4 for a given

N is compared with that obtained with a large value of N,

say Nmax, which is chosen for a reasonable computational

effort, e.g. time elapsed less than 1 hour. According to

the numerical simulation schemes presented in [19], we

show numerical results obtained by varying the values of

θ and γ. Problem 4 is solved by using the efficient PATH

solver [14], that is a generalization of the Newton method

for nonsmooth problems, so it requires an initial condition,

say [λ
0
, x0, T 0, ρ0]. The default starting point in the PATH

solver is a zero vector. In order to help the solver in avoiding

the trivial solution, we choose as initial condition a vector

different from the trivial one and, in particular, we decided

to choose as a guess value T 0, the one computed by means

of the describing function.

A. A limit cycle in a saturation feedback system

Consider the system (1) with the following matrices

A =





0 1 0
0 0 1
0 −3 −4



 , B =





0
0
20



 , g =





0
0
0





C =
[

1 0 0
]

, D = 0, h = 0

and the piecewise linear feedback (y,λ) being a unitary

saturation. Since the relation R is a Lipschitz continuous

function of x, the solution is expected to be of class C1.

See [13] for the definition and a graphical representation

of the limit cycle. Figure 2 shows the evolution of the error

obtained using different discretization schemes. In particular,

in Fig. 2(a) the error is defined as the difference between Tref,

that is the value of the period computed by solving Problem 4

with N = Nmax = 8500, and the value of period obtained

with the same discretization scheme, but by varying N from

200 to 1000 samples. The same reasoning is carried out to

obtain the results in Fig. 2(b) where the maximum value of

the component x1 is considered. For θ = 1, γ = 1, we obtain

as expected an order 1 convergence which is represented by

straight lines on the graph. For values of θ = 0.5 and γ

towards 0.5 the accuracy is improved but we do not achieve

order 2 when γ = 0.5. This may be mainly due to the lack

of regularity of the computed solution. This phenomenon is

generally observed when higher order method is used for a

solution with limited smoothness (see [20, §9.1]).

B. A limit cycle with sliding motion

Consider a relay feedback system, in which the dynamical

system is represented by the following matrices

A =





−3 1 0
−3 0 1
−1 0 0



 , B =





1
−2
1



 , g =





0
0
0





C =
[

1 0 0
]

, D = 0, h = 0.
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Fig. 2. Lur’e system with feedback saturation function. Error in the
steady-state solution computation obtained with different time discretization
schemes and with N ∈ [200, 1000]: (a) error in the period (b) error in the
trajectory.

By using Problem 3 with the parameters M = 0, lλ = −1
and uλ = 1 the relay characteristic can be easily represented.

In [21], it is shown that the state evolution of this system

partially evolves along the switching surface {x ∈ R
n :

Cx = 0}. This type of solution is known as sliding solution.

In this case the solution x(t) is absolutely continuous, so

since the smoothness of the solution is one degree lower with

respect to the previous example, the time-stepping scheme is

chosen by fixing γ = 1 and by varying only θ. Qualitatively

the same comments about the accuracy of the error can be

repeated, see Fig. 3.

C. Colpitts oscillator

Consider the Colpitts oscillator, which is shown in Fig. 4,

where the bipolar junction transistor is represented by using

the Ebers-Moll model. It is known in the literature that with

appropiate values of parameters, this circuit presents a stable

periodic oscillation, [22]. The circuit model can be simply

written by applying the Kirchhoff currents and voltages laws

to the equivalent circuit in Fig. 4:
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Fig. 3. Relay feedback system. Error in the steady-state solution compu-
tation obtained with different time discretization schemes and with N ∈

[200, 1000]: (a) error in the period (b) error in the trajectory.

C1ẋ1 = −
1

RC

x1 −
1

RC

x2 + x3 +
1

RC

VCC − iC (17a)

C2ẋ2 = −
1

RC

x1 −

( 1

RC

+
1

RB

+
1

RE

)

x2 + x3

+
1

RB

λ2 +
1

RC

VCC −
1

RE

VEE (17b)

Lẋ3 = −x1 − x2 + VCC , (17c)

and the transistor collector and base currents are given

respectively by

iC = −
1− αFαR

1− αF

λ1 +
αF

1− αF

iB (18a)

iB =
1

RB

(λ2 − x2). (18b)

By substituting (18) in (17) and by choosing as outputs

y1 = −x1 (19a)

y2 =
1

(1− αF )RB

x2 (19b)

one can write the dynamic system in the form of (1a)-(1b).

The feedback relation (y,λ) can be obtained by applying

the Kirchhoff laws to the equivalent circuit and by using the

VCC

−

+

L

x3

RC

C1

+

−

x1

iC

−

+

w1

λ1

αFw2

−

+

λ2

w2

αRλ1

RE

−VEE

RB

iB

C2

+

−

x2

Fig. 4. Colpitts oscillator: R are resistances; C are capacitors; L is the
inductance; VEE and VCC are constant voltage sources; αR and αF are
transistor parameters; the subscripts B, E and C are used for the transistor
base, emitter and collector nodes, respectively.

ideal diode complementarity models

λiwi = 0,λi ∈ R+, wi ∈ R+ (20)

with i = 1, 2. Indeed, the choice of the output as in (19),

allows to rewrite the relation (y,λ) in the form of Problem 3

with

M =

[

0 1
−

1−αR

1−αF

1
(1−αF )RB

]

(21a)

lλ = col(0, 0), uλ = col(+∞,+∞). (21b)

Consider the following parameters RC = 10 Ω, L = 0.1 H,

C1 = 2 F, C2 = 0.8 F, RE = 20 Ω, RB = 0.5 Ω, αF =
0.99, αR = 0.015, VCC = 10 V and VEE = 20 V. The

collector and emitter voltages computed with the pair (θ =
0.5, γ = 0.5) and N = Nmax = 900 are shown in Fig. 5(a),

while Fig. 5(b) shows the steady-state values of the collector

and base currents. Figure 6 shows that the error decreases

when the number of the samples is increased confirming the

effectiveness of the proposed approach.

V. CONCLUSION

In this paper, a suitable mixed complementarity prob-

lem is formulated in order to compute periodic solutions

in autonomous Lur’e systems. A phase condition is used

and a nonlinear version of the complementarity problem is

formulated in order to compute also the period of the periodic

solution. A method that allows to eliminate the constant

solutions has been also presented. Numerical examples are

considered as case studies: a saturation feedback system, a

relay feedback system with sliding motion and an electronic

oscillator. The simulations, implemented by using different

discretization schemes, show that the error between the real

solution and the one computed by varying the number of
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Fig. 5. Steady-state oscillations computed with (θ = 0.5, γ = 0.5) and
by fixing Nmax = 900: (a) collector voltage (black line) and emitter voltage
(blue line) (b) collector current iC (black line) and base current iB (blue
line).

samples decreases when the number of samples increases.

Future work will investigate the use of the proposed tool for

the computation of limit cycles bifurcation diagrams.
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