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Multiple Limited-Birthday Distinguishers and
Applications
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2 SECRET Project-Team - INRIA Paris-Rocquencourt

3 Nanyang Technological University, Singapore

Abstract. In this article, we propose a new improvement of the rebound
techniques, used for cryptanalyzing AES-like permutations during the
past years. Our improvement, that allows to reduce the complexity of the
attacks, increases the probability of the outbound part by considering
a new type of differential paths. Moreover, we propose a new type of
distinguisher, the multiple limited-birthday problem, based on the limited-
birthday one, but where differences on the input and on the output might
have randomized positions. We also discuss the generic complexity for
solving this problem and provide a lower bound of it as well as we propose
an efficient and generic algorithm for solving it. Our advances lead to
improved distinguishing or collision results for many AES-based functions
such as AES, ECHO, Grøstl, LED, PHOTON and Whirlpool.

Key words: AES-like permutation, distinguishers, limited-birthday, re-
bound attack.

1 Introduction

On October the 2nd of 2012, the NIST chose Keccak [4] as the winner
of the SHA-3 hash function competition. This competition started on
2008, and received 64 submissions. Amongst them, 56 passed to the first
round, 14 to the second and 5 to the final on December 2010. Through
all these years, a large amount of cryptanalysis has been published on the
different candidates and new techniques have been proposed. One of the
new techniques that can be fairly considered as among the most largely
applied to the different candidates is the rebound attack. Presented in [24],
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at first for analyzing AES-like compression functions, it has found many
more applications afterwards.

Rebound attacks is a freedom degrees utilization method, and, as such,
it aims at finding solutions for a differential characteristic faster than
the probabilistic approach. The characteristic is divided in two parts: a
middle one, called inbound, and both remaining sides, called outbound.
In the inbound phase, the expensive part of the characteristic, like one
fully active AES state around the non-linear transformation, is considered.
The rebound technique allows to find many solutions for this part with an
average cost of one. These solutions are then exhausted probabilistically
forwards and backwards through the outbound part to find one out of
them that conforms to the whole characteristic.

Several improvements have appeared through the new analyses, like
start-from-the-middle attack [23] or Super-SBoxes [14,20], which allow to
control three rounds in the middle, multi-inbounds [22] which extend the
number of rounds analyzed by a better use of the freedom degrees (better
ways of merging the inbounds were proposed in [25]), or non-fully-active
states [28] that permits to reduce the complexity of the outbound part.
In [18], a method for controlling four rounds in the middle with high
complexity was proposed, and it allows to reach a total of 9 rounds with
regards to distinguishers in the case of a large permutation size.

This class of attacks is interesting mostly for hash functions, because
they require the attacker to be able to know and to control the internal
state of the primitive, which is not possible if a secret is involved, for
example in a block cipher. Yet, another application is the study of block
ciphers in the so-called known-key or chosen-key models, where the attacker
knows or even has full control of the secret key. These models were recently
made popular because many SHA-3 or new hash functions are based on
block ciphers or fixed-key permutations, and also one may want to be sure
that a cipher has no flaw whatsoever, even in weaker security models.

Various types of attacks are possible for hash functions, such as colli-
sion and (second) preimage search, or even distinguishers. Indeed, hash
functions being often utilized to mimic the behavior of random oracles [8]
in security protocols, e.g. RSA-OAEP [2], it is important to ensure that
no special property can be observed that allows an attacker to distinguish
the primitive from a random oracle. Distinguishers on hash functions,
compression functions or permutations can be very diverse, from classi-
cal differential distinguishers (limited-birthday [14] or subspace [21]) to
rotational [19] or zero-sum distinguishers [7]. In any case, for the distin-
guisher to be valid, the cryptanalyst has to compare the cost of finding



the specific property for the function analyzed and for an ideal primitive.
The bounds compared in this article refer to the computational bounds,
and not information-theoretic bounds like for example in [5].

Rebound-like techniques are well adapted for various types of distin-
guishers and it remains an open problem to know how far (and with what
complexity) they can be pushed further to attack AES-like permutations
and hash/compression functions. So far, the best results could reach 8 or
9 rounds, depending on the size of the permutation attacked.

Our contributions. In this paper, we propose a new improvement of
the previous rebound techniques, reducing the complexity of known dif-
ferential distinguishers and by a lower extend, reducing some collision
attack complexities. We observed that the gap between the distinguisher
complexity and the generic case is often big and some conditions might be
relaxed in order to minimize as much as possible the overall complexity.
The main idea is to generalize the various rebound techniques and to relax
some of the input and output conditions of the differential distinguishers.
That is, instead of considering pre-specified active cells in the input and
output (generally full columns or diagonals), we consider several possible
position combinations of these cells. In some way, this idea is related to
the outbound difference randomization that was proposed in [12] for a
rebound attack on Keccak, a non-AES-like function. Yet, in [12], the ran-
domization was not used to reduce the attack complexity, but to provide
enough freedom degrees to perform the attack.

As this improvement affects directly the properties of the inputs and
outputs, we now have to deal with a new differential property observed and
we named this new problem the multiple limited-birthday problem (LBP),
which is more general than the limited-birthday one. A very important
question arising next is: what is the complexity of the best generic algorithm
for obtaining such set of inputs/outputs? For previous distinguishers, where
the active input and output columns were fixed, the limited-birthday
algorithm [14] is yet the best one for solving the problem in the generic
case. Now, the multiple limited-birthday is more complex, and in Section 3.3
we discuss how to bound the complexity of the best generic distinguisher.
Moreover, we also propose an efficient, generic and non-trivial algorithm
in order to solve the multiple limited-birthday problem, providing the best
known complexity for solving this problem.

Finally, we generalize the various rebound-like techniques in Section 4
and we apply our findings on various AES-like primitives. Due to space
constraints, Section 5 presents our main results, while the full results are



detailed in the extended version of our paper. Our main results dealing with
AES [10] and Whirlpool [1] are summarized and compared to previous
works in Table 1. In the full version, we also derive results on ECHO [3],
Grøstl [13], LED [16], PHOTON [15], that are reported in Appendix A.

Table 1: Known and improved results for three rebound-based attacks on AES-based
primitives.

Target Subtarget Rounds Type Time MemoryIdeal Reference

AES-128 Cipher

8 KK dist. 248 232 265 [14]
8 KK dist. 244 232 261 Section 5.1
8 CK dist. 224 216 265 [11]
8 CK dist. 213.4 216 231.7 Section 5.1

AES-128 DM-mode
5 CF collision 256 232 265 [23]
6 CF collision 232 216 265 Section 5.1

Whirlpool CF
10 dist. 2176 28 2384 [21]
10 dist. 2115.7 28 2125 Section 5.2

Whirlpool CF
7.5 collision 2184 28 2256 [21]
7.5 collision 2176 28 2256 Section 5.2

Whirlpool Hash func.
5.5 collision 2184 28 2256 [21]
5.5 collision 2176 28 2256 Section 5.2

2 AES-like permutations

We define an AES-like permutation as a permutation that applies Nr

rounds of a round function to update an internal state viewed as a square
matrix of t rows and t columns, where each of the t2 cells has a size of c
bits. We denote S the set of all theses states: |S| = 2ct

2 . This generic view
captures various permutations in cryptographic primitives such as AES,
ECHO, Grøstl, LED, PHOTON and Whirlpool.

The round function (Figure 1) starts by xoring a round-dependent
constant to the state in the AddRoundConstant operation (AC). Then,
it applies a substitution layer SubBytes (SB) which relies on a c × c
non-linear bijective S-box S. Finally, the round function performs a linear
layer, composed of the ShiftRows transformation (SR), that moves each
cell belonging to the x-th row by x positions to the left in its own row, and
the MixCells operation (MC), that linearly mixes all the columns of the
matrix separately by multiplying each one with a matrix M implementing
a Maximum Distance Separable (MDS) code, which provides diffusion.

Note that this description encompasses permutations that really follow
the AES design strategy, but very similar designs (for example with a



AC SBt

t c

SR MC

C ←M× C

Figure 1: One round of the AES-like permutation instantiated with t = 4.

slightly modified ShiftRows function or with a MixCells layer not im-
plemented with an MDS matrix) are likely to be attacked by our techniques
as well. In the case of AES-like block ciphers analyzed in the known/chosen-
key model, the subkeys generated by the key schedule are incorporated
into the known constant addition layer AddRoundConstant.

3 Multiple limited-birthday distinguisher

In this section, we present a new type of distinguisher: the multiple limited-
birthday (Section 3.3). It is inspired from the limited-birthday one that
we recall in Section 3.2, where some of the input and output conditions
are relaxed. We discuss how to bound the complexity of the best generic
algorithm for solving this problem, as well as we provide an efficient
algorithm solving the problem with the best known complexity. Due to
the keyless particularity of the primitives, we precise the relevance of
distinguishers in that context.

3.1 Structural Distinguishers

We precise here what we consider to be a distinguishing algorithm for a
keyless primitives. Let F be a primitive analyzed in the open-key model
(either known- or chosen-key). In that context, there is no secret: F could
be for instance a hash function or a block cipher where the key is placed
into the public domain.

To formalize the problem, we say that the goal of the adversary is
to validate a certain property P on the primitive F . For example, if F
is a hash function, P could be “find two different inputs x, x′ such that
F (x) = F (x′)” to capture the collision property. One other example, more
related to our approach, would be P = LPB, the limited-birthday problem.
In that sense, limited-birthday, collision and other similar problems are all
particular kinds of distinguishers.

It is easy to see that when no random challenge is input to the adversary
(like for collision definition for example) there always exists (at least) one



algorithm that outputs a solution to P in constant time and without any
query to F . We do not know this algorithm, but its existence can be proven.
The main consequence about this argument is the lower bound on the
number of queries Q of the distinguishing algorithm. Indeed, because of
that algorithm, we have 0 ≤ Q. Therefore, we cannot reach any security
notion in that context.

Now, we can circumvent this problem by introducing a challenge C
to the problem P , that is, we force the distinguishing algorithm to use
some value it does not know beforehand. To ease the formal description,
one can think of an adversarial model where the memory is restricted
to a fixed and constant amount M . That way, we get rid of the trivial
(but unknown) algorithms that return a solution to P in constant time,
since they do not know the parameter/challenge C. More precisely, if
it does return a solution in constant time, then it is a wrong one with
overwhelming probability, such that its winning advantage is nearly zero.
Consequently, reasonable winning advantages are reached by getting rid of
all those trivial algorithms. Then, the lower bound increases and becomes
dependent of the size of C.

As an example, a challenge C could be an particular instantiation
of the S-Box used in the primitive F . One could say that C selects a
particular primitive F in a space of structurally-equivalent primitives, and
asks the adversary to solve P on that particular instance F .

In all the published literature, the distinguishers in the open-key model
do not consider any particular challenges, and they also ignore the trivial
algorithms. From a structural point of view, there is no problem in doing
so since we know that those distinguishers would also work if we were to
introduce a challenge. But formally, these are not proper distinguishers
because of the constant time algorithms that make the lower bound
0 ≤ Q. In this article, we do not claim to have strong distinguishers in
the theoretical sense, but we provide structural distinguishing algorithms
in the same vein as all the previously published results (q-multicollision,
k-sum, limited-birthday, etc.).

3.2 Limited-birthday

In this section, we briefly recall the limited-birthday problem and the best
known algorithm for solving it. As described in Section 3.1, to obtain a
fair comparison of algorithms solving this structural problem, we ignore
the trivial algorithms mentioned. That way, we can stick to structural
distinguishers and compare their time complexities to measure efficiency.



Following the notations of the previous section, the limited-birthday
problem consists in obtaining a pair of inputs (x, x′) (each of size n) to a
permutation F with a truncated difference x⊕ x′ on log2(IN) predeter-
mined bits, that generates a pair of outputs with a truncated difference
F (x)⊕ F (x′) on log2(OUT ) predetermined bits (therefore IN and OUT
represent the set size of the admissible differences on the input and on the
output respectively).

The best known cost for obtaining such a pair for an ideal permutation
is denoted by C(IN,OUT ) and, as described in [14], can be computed the
following way:

C(IN,OUT ) = max
{
min

{√
2n/IN,

√
2n/OUT

}
,

2n+1

IN ·OUT

}
. (1)

The main differences with the subspace distinguisher [21] is that in
the limited-birthday distinguisher both input and output are constrained
(thus limiting the ability of the attacker to perform a birthday strategy),
and only a single pair is to be exhibited.

3.3 Multiple limited-birthday and generic complexity

We now consider the distinguisher represented in Figure 2, where the
conditions regarding previous distinguishers have been relaxed: the number
of active diagonals (resp. anti-diagonals) in the input (resp. output) is
fixed, but their positions are not. Therefore, we have

(
t

nB

)
possible different

configurations in the input and
(

t
nF

)
in the output. We state the following

problem.

Problem 1 (Multiple limited-birthday). Let nF , nB ∈ {1, . . . , t}, F
a permutation from the symmetric group SS of all permutations on S, and
∆IN be the set of truncated patterns containing all the

(
t

nB

)
possible ways

to choose nB active diagonals among the t ones. Let∆OUT defined similarly
with nF active anti-diagonals. Given F , ∆IN and ∆OUT , the problem asks
to find a pair (m,m′) ∈ S2 of inputs to F such that m⊕m′ ∈ ∆IN and
F (m)⊕ F (m′) ∈ ∆OUT .

As for the limited-birthday distinguisher, we do not consider this
problem in the theoretical sense, as there would be a trivial algorithm
solving it (see Section 3.1). Therefore, and rather than introducing a
challenge that would confuse the description of our algorithm, we are
interested in structural distinguishing algorithms, that ignore the constant-
time trivial algorithms. Following notations of the previous section, the



(
t

nB

)
Possible inputs

(
t

nF

)
Possible outputsP

Figure 2: Possible inputs and outputs of the relaxed generic distinguisher. The blackbox
P implements a random permutation uniformly drawn from SS . The figure shows the
case t = 4, nB = 1 and nF = 2.

permutation defined in Problem 1 refer to the general primitive F of
Section 3.1 and the particular property P the the adversary is required to
fulfill on P has been detailed in the problem definition.

We conjecture that the best generic algorithm for finding one so-
lution to Problem 1 has a time complexity that is lower bounded by
the limited-birthday algorithm when considering IN =

(
t

nB

)
2t·c·nB and

OUT =
(

t
nF

)
2t·c·nF . This can be reasonably argued as we can transform

the multiple limited-birthday algorithm into a similar (but not equiva-
lent) limited-birthday one, with a size of all the possible truncated input
and output differences of IN and OUT respectively. Solving the simi-
lar limited-birthday problem requires a complexity of C(IN,OUT ), but
solving the original multiple limited-birthday problem would require an
equal or higher complexity, as though having the same possible input
and output difference sizes, for the same number of inputs (or outputs),
the number of valid input pairs that can be built might be lower. This
is directly reflected on the complexity of solving the problem, as in the
limited-birthday algorithm, it is considered that for 2n inputs queried, we
can build 22n−1 valid input pairs. The optimal algorithm solving Problem 1
would have a time complexity T such that: C(IN,OUT ) ≤ T .

We have just provided a lower bound for the complexity of solving Prob-
lem 1 in the ideal case, but an efficient generic algorithm was not known.
For finding a solution, we could repeat the algorithm for solving the limited-
birthday while considering sets of input or output differences that do not



overlap, with a complexity of min{C(IN,OUT ), C(IN,OUT )}, where
IN = 2t·c·nB , OUT = 2t·c·nF , IN =

(
t

nB

)
2t·c·nB and OUT =

(
t

nF

)
2t·c·nF .

We propose in the sequel a new generic algorithm to solve Problem 1
whose time complexity verifies the claimed bound and improves the com-
plexity of the algorithm previously sketched. It allows then to find solutions
faster than previous algorithms, as detailed in Table 2. Without loss of
generality, because the problem is completely symmetrical, we explain the
procedure in the forward direction. The same reasoning applies for the
backward direction, when changing the roles between input and output of
the permutation, and the complexity would then be the lowest one.

From Problem 1, we see that a random pair of inputs have a probability
Pout =

(
t

nF

)
2−t(t−nF )c to verify the output condition. We therefore need at

least P−1out input pairs so that one verifying the input and output conditions
can be found. The first goal of the procedure consists in constructing a
structure containing enough input pairs.

Structures of input data. We want to generate the amount of valid
input pairs previously determined, and we want do this while minimizing
the numbers of queries performed to the encryption oracle, as the com-
plexity directly depends on them. A natural way to obtain pairs of inputs

D0 D1 D2 D3

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

nB n′
B

(a) Structure.

D0 D1

(b) Example of pair.

Figure 3: Structure of input data: example with nB = 2 and n′B = 4. We construct a
pair with nB active diagonals like (b) from the structure depitected on (a). Hatched
cells are active, so that the structure allows to select

(
n′
b

nB

)
different patterns to form

the pairs (one is represented by the bullets •).

consists in packing the data into structured sets. These structures contain
all 2ct possible values on n′B different diagonals at the input, and make the
data complexity equivalent to 2n

′
Bct encryptions. If there exists n′B ≤ nB



such that the number N of possible pairs
(
2n
′
Bct

2

)
we can construct within

the structure verifies N ≥ P−1out, then Problem 1 can be solved easily by
using the birthday algorithm. If this does not hold, we need to consider
a structure with n′B > nB. In this case, we can construct as many as(
n′B
nB

)
2(n
′
B−nB)tc

(
2nBtc

2

)
pairs (m,m′) of inputs such that m ⊕m′ already

belongs to ∆IN . We now propose an algorithm that handles this case.
We show how to build a fixed number of pairs with the smallest

structure that we could find, and we conjecture that the construction is
optimal in the sense this structure is the smallest possible. The structure
of input data considers n′B diagonals D1, . . . , Dn′B

assuming all the 2ct

possible values, and an extra diagonal D0 assuming 2y < 2ct values (see
Figure 3). In total, the number of queries equals 2y+n′Btc. Within this
structure, we can get1 a number of pairs parameterized by n′B and y:

Npairs(n
′
B, y) :=

(
n′B
nB

)(
2nBct

2

)
2y 2(n

′
B−nB)tc

+

(
n′B

nB − 1

)(
2y+(nB−1)ct

2

)
2(n
′
B−(nB−1))ct.

(2)

The first term of the sum considers the pairs generated from nB diagonals
among the D1, . . . , Dn′B

diagonals, while the second term considers D0 and
nB − 1 of the other diagonals. The problem of finding an algorithm with
the smallest time complexity is therefore reduced to finding the smallest
n′B and the associated y so that Npairs(n

′
B, y) = P−1out. Depending on the

considered scenarios, P−1out would have different values, but finding (n′B, y)
such that Npairs(n

′
B, y) = P−1out can easily be done by an intelligent search

in log(t) + log(ct) simple operations by trying different parameters until
the ones that generate the wanted amount of pairs P−1out are found.

Generic algorithm. Once we have found the good parameters n′B and
y, we generate the 2y+n′Bct inputs as previously described, and query their
corresponding outputs to the permutation F . We store the input/output
pairs in a table ordered by the output values. Assuming they are uniformly
distributed, there exists a pair in this table satisfying the input and output
properties from Problem 1 with probability close to 1.

To find it, we first check for each output if a matching output exists in
the list. When this is the case, we next check if the found pair also verifies

1 When y = 0, we compute the number of terms as Npairs(n
′
B , 0) :=(

n′
B

nB

)(
2nBct

2

)
2(n

′
B−nB)tc.



the input conditions. The time complexity of this algorithms therefore
costs about 2y+n′Bct+22y+2n′BtcPout operations. The first term in the sum
is the number of outputs in the table: we check for each one of them if a
match exists at cost about one. The second term is the number of output
matches that we expect to find, for which we also test if the input patterns
conform to the wanted ones.

Finally, from the expression of Pout, we approximate the time complex-
ity 2y+n′Bct + 22y+2n′BtcPout to 2y+n′Bct operations, as the second term is
always smaller than the first one. The memory complexity if we store the
table would be 2y+n′Bct as well, but we can actually perform this research
without memory, as in practice what we are doing is a collision search. In
Table 2, we show some examples of different complexities achieved by the
bounds proposed and by our algorithm.

Table 2: Examples of time complexities for several algorithms solving the multiple
limited-birthday problem.

Parameters
(t, c, nB , nF )

bound:
C(IN,OUT )

Our algorithm C(IN,OUT )

(8, 8, 1, 1) 2379 2379.7 2382

(8, 8, 1, 2) 2313.2 2314.2 2316.2

(8, 8, 2, 2) 2248.4 2250.6 2253.2

(8, 8, 1, 3) 2248.19 2249.65 2251.19

(4, 8, 1, 1) 261 262.6 263

(4, 4, 1, 1) 229 230.6 231

4 Truncated characteristic with relaxed conditions

In this section, we present a representative 9-round example of our new
distinguisher.

4.1 Relaxed 9-round distinguisher for AES-like permutation

We show how to build a 9-round distinguisher when including the idea of
relaxing the input and output conditions. In fact, this new improvement
allows to reduce the complexity of the distinguisher, as the probability
of verifying the outbound is higher. We point out here that we have
chosen to provide an example for 9 rounds as it is the distinguisher that
reaches the highest number of rounds, solving three fully-active states in
the middle. We also recall that for a smaller number of rounds, the only



difference with the presented distinguisher is the complexity Cinbound for
the inbound part, that can be solved using already well-known methods
such as rebound attacks, Super-SBoxes or start-from-the-middle, depending
on the particular situation that we have. For the sake of simplicity, in
the end of this section, we provide the complexity of the distinguisher
depending on the inbound complexity Cinbound.

In the end of the section, we compare our distinguisher with the
previously explained best known generic algorithm to find pairs conforming
to those cases. We show how the complexities of our distinguisher are still
lower than the lowest bound for such a generic case.

Following the notations from [18], we parameterize the truncated
differential characteristic by four variables (see Figure 4) such that trade-
offs are possible by finding the right values for each one of them. Namely,
we denote c the size of the cells, t × t the size of the state matrix, nB
the number of active diagonals in the input (alternatively, the number of
active cells in the second round), nF the number of active independent
diagonals in the output (alternatively, the number of active cells in the
eighth round), mB the number of active cells in the third round and mF

the number of active cells in the seventh round.
Hence, the sequence of active cells in the truncated differential charac-

teristic becomes:

t nB
R1−→ nB

R2−→ mB
R3−→ tmB

R4−→ t2
R5−→ tmF

R6−→ mF
R7−→ nF

R8−→ t nF
R9−→ t2, (3)

with the constraints nF +mF ≥ t+1 and nB +mB ≥ t+1 that come from
the MDS property, and relaxation conditions on the input and output,
meaning that the positions of the nB input active diagonals, and of the
nF active anti-diagonals generating the output can take any possible
configuration, and not a fixed one. This allows to increase the probability
of the outbound part and the number of solutions conforming to the
characteristic. This is reflected in a reduction of the complexity of the
distinguisher. The amount of solutions that we can now generate for the
differential path equals to (log2):

log2

((
t

nB

)(
t

nF

))
+ ct2 + ctnB

− c(t− 1)nB − c(t−mB)− ct(t−mF )− c(t− 1)mF − c(t− nF )

= c(nB + nF +mB +mF − 2t) + log2

((
t

nB

)(
t

nF

))
.

(4)

If follows from the MDS constraints that there are always at least
(

t
nB

)(
t

nF

)
22c

freedom degrees, independently of t.
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Figure 4: The 9-round truncated differential characteristic used to distinguish an
AES-like permutation from an ideal permutation. The figure shows some particular
values: t = 8, nB = 5, mB = 4, mF = 4 and nF = 5.

To find a conforming pair we use the algorithm proposed in [18] for
solving the inbound part and finding a solution for the middle rounds. The
cost of those uncontrolled rounds is given by:

Coutbound :=
2c(t−nB)(

t
nB

) · 2
c(t−nF )(

t
nF

) =
2c(2t−nB−nF )(

t
nB

)(
t

nF

) , (5)

since we need to pass one nB ← mB transition in the backward direction
with

(
t

nB

)
possibilities and onemF → nF transition in the forward direction

with
(

t
nF

)
possibilities.

4.2 Comparison with ideal case

As we discussed in Section 3.3, in the ideal case, the generic complexity T
is bounded by C(IN,OUT ) ≤ T ≤ min

{
C(IN,OUT ), C(IN,OUT )

}
,

where we have IN =
(

t
nB

)
2t·c·nB , OUT =

(
t

nF

)
2t·c·nF , IN = 2t·c·nB and

OUT = 2t·c·nF .
We proposed the algorithm with the best known complexity for solving

the problem in the ideal case in Section 3.3, for being sure that our
distinguishers have smaller complexity than the best generic algorithm,
we compare our complexities with the inferior bound given: C(IN,OUT ),
so that we are sure that our distinguisher is a valid one. We note that
the algorithm we propose gives a distinguisher for 9 rounds of an AES-like
permutation as soon as the state verifies t ≥ 8.

We recall here that the complexity of the distinguishers that we build
varies depending on the number of rounds solved in the middle, or the
parameters chosen, and we provide some examples of improvements of
previous distinguishers and their comparisons with the general bounds and
algorithms in the next section.



5 Applications

In this section, we apply our new techniques to improve the best known
results on various primitives using AES-like permutations. Due to a lack
of space, we do not describe the algorithms in details, and refer to their
respective specification documents for a complete description. When we ran-
domize the input/output differences positions, the generic complexities that
we compare with are the ones coming from the classical limited-birthday
problem C(IN,OUT ) (updated with the right amount of differences), since
they lower bound the corresponding multiple limited-birthday problem.

5.1 AES

AES-128 [10] is an obvious target for our techniques, and it is composed
of 10 rounds and has parameters t = 4 and c = 8.

Distinguisher. The current best distinguishers (except the biclique
technique [6] which allows to do a speed-up search of the key by a factor
of 0.27 for the full AES) can reach 8 rounds with 248 computations in the
known-key model (see [14]) and with 224 computations in the chosen-key
model (see [11]). By relaxing some input/output conditions, we are able
to obtain a 8-round distinguisher with 244 computations in the known-key
model and with 213.4 computations in the chosen-key model.

In the case of the known-key distinguisher, we start with the 8-round
differential characteristic depicted in Figure 5. One can see that it is
possible to randomize the position of the unique active byte in both states
S1 and S6, resulting in 4 possibles positions for both the input and output
differences. We reuse the Super-SBox technique that can find solutions
from state S2 to state S5 with a single operation on average. Then, one has
to pay 224/4 = 222 for both transitions from state S2 to S1 backward and
from state S5 to S6 forward, for a total complexity of 244 computations.
In the ideal case, our multiple limited-birthday problem gives us a generic
complexity bounded by 261.

Concerning the chosen-key distinguisher, we start with the 8-round
differential characteristic depicted in Figure 6. Here, we use the technique
introduced in [11] that can find solutions from state S2 to state S6 with a
single operation on average. It is therefore not possible to randomize the
position of the unique active byte in state S6 since it is already specified.
However, for the transition from state S2 to S1, we let two active bytes to
be present in S2, with random positions (6 possible choices). This happens
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Figure 5: Differential characteristic for the 8-round known-key distinguisher for
AES-128

with a probability 6 · 2−16 and the total complexity to find a solution
for the entire characteristic is 213.4 computations. In the ideal case, our
multiple limited-birthday problem gives us a generic complexity bounded
by 231.7.
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Figure 6: Differential characteristic for the 8-round chosen-key distinguisher for
AES-128

Collision. It is also interesting to check what happens if the AES cipher
is plugged into a classical Davies-Meyer mode in order to get a compression
function. A collision attack for this scenario was proposed in [23] for 5
rounds of AES with 256 computations. By considering the characteristic
from state S1 to state S7 state in Figure 5 (the MixCells in the last
round is omitted for AES, thus S7 contains only a single active byte), and
by using the technique introduced in [11] (only for chosen-key model, but
in the Davies-Meyer mode the key input of the cipher is fully controlled
by the attacker since it represents the message block input), we can find
solutions from state S2 to state S6 with a single operation on average.
Then, one has to pay a probability 2−24 for the differential transition from



state S2 to state S1 when computing backward. One can not randomize
the single active cells positions here because the collision forces us to place
them at the very same position. Getting the single input and output active
bytes to collide requires 28 tries and the total complexity of the 6-round
collision search is therefore 232 computations.

5.2 Whirlpool

Whirlpool [1] is a 512-bit hash function whose compression function is
built upon a block cipher E in a Miyaguchi-Preneel mode: h(H,M) =
EH(M) ⊕M ⊕H. This block cipher E uses two 10-round AES-like per-
mutations with parameters t = 8 and c = 8, one for the internal state
transformation and one for the key schedule. The first permutation is fixed
and takes as input the 512-bit incoming chaining variable, while the second
permutation takes as input the 512-bit message block, and whose round
keys are the successive internal states of the first permutation. The current
best distinguishing attack can reach the full 10 rounds of the internal
permutation and compression function (with 2176 computations), while
the best collision attack can reach 5.5 rounds of the hash function and
7.5 rounds of the compression function [21] (with 2184 computations). We
show how to improve the complexities of all these attacks.

Distinguisher. We reuse the same differential characteristic from [21]
for the distinguishing attack on the full 10-round Whirlpool compression
function (which contains no difference on the key schedule of E), but we
let three more active bytes in both states S1 and S8 of the outbound part
and this is depicted in Figure 7. The effect is that the outbound cost
of the differential characteristic is reduced to 264 computations: 232 for
differential transition from state S2 to S1 and 232 from state S7 to S8.
Moreover, we can leverage the difference position randomization in states
S1 and S8, which both provide an improvement factor of

(
8
4

)
= 70. The

inbound part in [21] (from states S2 to S7) requires 264 computations to
generate a single solution on average, and we obtain a final complexity of
264·264·(70)−2 = 2115.7 Whirlpool evaluations, while the multiple limited-
birthday problem has a generic complexity bounded by 2125 computations.

Collision. We reuse the same differential characteristic from [21] for the
7.5-round collision attack on the Whirlpool compression function (which
contains no difference on the key schedule of E), but we let one more active
byte in both states S0 and S7 of the outbound part (see Figure 8). From
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Figure 7: 10-round truncated differential characteristic for the full Whirlpool com-
pression function distinguisher.

this, we gain an improvement factor of 28 in both forward and backward
directions of the outbound (from state S1 to S0 and from state S6 to
S7), but we have two byte positions to collide on with the feed-forward
instead of one. After incorporating this 28 extra cost, we obtain a final
improvement factor of 28 over the original attack (it is to be noted that
this improvement will not work for 7-round reduced Whirlpool since
the active byte position randomization would not be possible anymore).
The very same method applies to the 5.5-round collision attack on the
Whirlpool hash function.
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Figure 8: 7.5-round truncated differential characteristic for the Whirlpool compres-
sion function collision.

6 Conclusion

In this article, we propose a new type of distinguisher for AES-like permuta-
tions that we call the multiple limited-birthday distinguisher. It generalizes
the simple limited-birthday one in the sense that it allows more than just
one pattern of fixed difference at both the input and the output of the
permutation. We provide an algorithm to efficiently solve the problem for
the ideal case, while it remains an open problem to prove its optimality,
which can probably be reduced to proving the optimality of the simple
limited-birthday algorithm in terms of number of queries. As applications
of this work, we show how to improve almost all previously known rebound
distinguishers for AES-based primitives.
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A Other results

Table 3: Other improvements for various rebound-based attacks on AES-based primi-
tives. Our results marked as New are detailed in the extended version of this article.

Target SubtargetRounds Type Time MemoryIdeal Reference

ECHO Permutation

7 dist. 2118 238 21025 [28]
7 dist. 2102 238 2256 New
8 dist. 2151 267 2257 [25]
8 dist. 2147 267 2256 New

Grøstl-256 Permutation

8 dist. 216 28 233 [28]
8 dist. 210 28 231.5 New
9 dist. 2368 264 2385 [18]
9 dist. 2362 264 2379 New

Grøstl-256 Comp. func. 6 collision 2120 264 2257 [29]
6 collision 2119 264 2257 New

Grøstl-256 Hash func. 3 collision 264 264 2129 [29]
3 collision 263 264 2129 New

LED-64 Cipher

15 CK dist. 216 216 233 [16]
16 CK dist. 233.5 232 241.4 [26]
20 CK dist. 260.2 261.5 266.1 [26]
19 CK dist. 218 216 233 New

PHOTON-80/20/16 Permutation 8 dist. 28 24 211 [15]
8 dist. 23.4 24 29.8 New

PHOTON-128/16/16 Permutation 8 dist. 28 24 213 [15]
8 dist. 22.8 24 211.7 New

PHOTON-160/36/36 Permutation 8 dist. 28 24 215 [15]
8 dist. 22.4 24 213.6 New

PHOTON-224/32/32 Permutation

8 dist. 28 24 217 [15]
8 dist. 22 24 215.5 New
9 dist. 2184 232 2193 [18]
9 dist. 2178 232 2187 New

PHOTON-256/32/32 Permutation 8 dist. 216 28 225 [15]
8 dist. 210.8 28 223.7 New
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