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Abstract

In this paper, we introduce MobIoT, a service-oriented middleware that enables
large-scale mobile participatory sensing. Scalability is achieved by limiting the partici-
pation of redundant sensing devices. Precisely, MobIoT allows a new device to register
its services only if it increases the sensing coverage of a physical attribute, along its
expected path, for the set of registered devices. We present the design and implementa-
tion of MobIoT, which mobile devices use to determine their registration decision and
become accessible for their services. Through experiments performed on real datasets,
we show that our solution scales, while meeting sensing coverage requirements.

1. Introduction

In its traditional definition, Participatory Sensing, also known as mobile crowd-
sensing [1] assigns mobile devices to form participatory sensor networks that enable
public and professional users to gather, analyze and share local knowledge [2].

In existing participatory sensing solutions, it is common to adopt a decoupled ap-
proach where the sensing of and the querying for information operations are asyn-
chronous (as seen in solutions presented in [3]), i.e., the sensor is tasked to sample the
real world periodically, continuously or based on some event, etc., but is not triggered
by a user’s request. In many cases, the latter leads to more appropriate results. In-
deed, sensing the world independently of the measurement request time and intended
use of the data is not necessarily the best option; such approach may lead to large
out-dated streams of data that can be of low benefit while more useful up-to-date mea-
surements are missing. The issue of data freshness versus response time arises in this
case. Our position is that many scenarios can handle a slower response as long as data
is more up to date. Further, most existing solutions in the participatory sensing field are
domain-specific, designed to monitor either the environment, traffic, health, or social
interactions, etc. [3]. However, with the increasing popularity of participatory sens-
ing, providing common support to different sensing applications belonging to different
categories becomes a must, as it saves development efforts and time.

To that end, our work focuses on domain-agnostic support for large-scale mobile
participatory sensing. When performing large-scale sensing —where sensing devices
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Figure 1: The operations of a service-oriented mobile participatory sensing system.

are not necessarily in the geographical vicinity of the requestors— adopting a dis-
tributed approach does not perform well since routing and communication costs will
grow unmanageable when millions of devices become involved. Therefore, the infor-
mation about devices willing to provide their sensing measurements at the time of the
query must be made available somewhere, e.g., in a registry. Hence, we augment the
definition of participatory sensing with the identification of two main components:

1. Mobile Devices: Computers, smartphones, tablets, etc., hosting different sensors
and actuators. Those devices are numerous and have limited energy resources.

2. Registry: Web-based component that holds metadata of sensing services. The
component has performance capacity directly proportional to monetary cost.

The two components interact with each other in two phases (shown in Figure 1):

1. Registration: Each mobile device is expected to periodically advertise its ser-
vices to the Registry which holds their metadata.

2. Lookup and Access: When data about the physical environment of a remote
region is required, the Registry is queried for devices with the relevant sensing
services to then access them and acquire their measurements, which can be pro-
cessed to obtain the desired results.

For example, consider a query of the form “what is the average crowd level at the Jardin
de Tuileries in Paris right now?”. The answer can be generated by sensing the sound
level surrounding each mobile device at the location of interest and using it to compute
the crowd level through some mathematical expression. Although the solution above
seems straightforward, there are several important challenges to address (for a detailed
discussion, we refer readers to [4]). The first issue to overcome is the heterogeneity
of devices as participatory sensing networks are bound to contain devices from an as-
sortment of vendors, with varying sensing characteristics such as error distributions,
sampling rates, spatial resolution, and so on. Second, the network is characterized by
an unknown and dynamic structure resulting from the mobility of devices [5]. Last but
not least, any approach must be scalable as mobile participatory sensing involves mil-
lions of mobile devices, a number that has important repercussions on communication,
storage, memory and time consumption costs.
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To address the above challenges, we adopt the service-oriented paradigm [6, 7]
to decouple the high level sensing system logic from the low level network hetero-
geneity and mobility issues. We provide a service-oriented middleware that supports
the following, traditional functionalities: Discovery of, Composition of, and Access
to sensing services (Figure 1). Sensing services are, in this context, software logic
that abstracts sensors and have functional (e.g., the attribute to measure) and non func-
tional (e.g., measurement accuracy) properties. Discovery is used by devices wishing
to provide measurements of the real world, to publish (register) their sensing services
in registries that hold service metadata and to look for sensing services that can satisfy
a sensing request. Composition of services is used when discovered sensing services
are unable to fulfill the request. In such case, other registered sensing services are
combined to provide a new, more convenient functionality. The composed services can
further be used for more complex compositions, all of which should be defined, then
executed in a composition engine provided by the middleware. Finally, Access enables
interaction with discovered services.

Traditional approaches in mobile participatory sensing require input from as many
sensors as possible to have the most accurate information about the real world [8]. We
postulate that this should not be the governing rule for two main reasons. First, given
today’s abundant sensor availability through smart mobile devices, involving them all
to partake in a sensing task provides redundant measurements that do not necessarily
benefit the sensing quality noticeably, yet increase the communication and energy con-
sumption costs. Second, in many cases, having the most accurate answer is not always
the priority. In some situations, users might be satisfied with less accurate answers that
have a “good enough” geographical sensing coverage of the real world. Consequently,
this allows us to address the data freshness versus response time issue, mentioned ear-
lier, that on-demand sensing may face. That is because sensing tasks triggered by
users’ requests can now provide up-to-date data with lower measurement latency as
less devices are involved, and therefore less communication and computation efforts
must be paid. Our contribution builds on that logic as we design our middleware to
limit the number of participating sensing devices, based on the devices’ mobility char-
acteristics, while satisfying required sensing coverage through a revisited version of
service discovery, namely in registration. Sensing coverage refers to the geographical
area covered, i.e., sensed by a sensing device.

We first provide an approach that determines, with high accuracy, if the path of
a new device will intersect with those of registered devices by acquiring information
on their mobility. It is then possible to determine, from the computed result, if a cer-
tain percentage of the new device’s path can already by covered, i.e., sensed, by the
registered ones. If so, the new device is considered redundant and need not register.
However, this approach is costly and requires a computation time that increases linearly
with the number of registered devices. To enhance the performance of our solution, we
substitute the mobility paths information with a mobility model that allows us to esti-
mate the mobility of registered devices and then compute a probability of the possible
coverage (introduced in our previous work in [9]). Although this probabilistic approach
is less accurate, it is faster and still meets required sensing coverage.

By adopting probabilistic device registration, the overall sensing system no longer
requires expensive registries with high processing capabilities and can instead use
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cheaper ones with basic capacities. Furthermore, reducing the number of participat-
ing devices benefits the lookup and access phases since having less devices to search
through and access accelerates the query answering process. Second, having only de-
vices that increase the sensing coverage register their services eliminates the system’s
need to deal with large amounts of redundant data. Third, the fewer devices get in-
volved, the more energy is saved until the —hitherto redundant— devices are needed.

Mobile coverage estimation has been used before for resource allocations [10],
routing techniques [11, 12], or for robotic entities with controlled mobility [13]. The
novelty of our approach is that it adopts mobile coverage estimation to provide “good”
sensing coverage while having less mobile devices register their services. Our contri-
butions in this paper are as follows:
• The design and analysis of a deterministic registration approach for mobile de-

vices that computes a registration decision based on accurate knowledge of mo-
bility paths of already registered nodes (Section 2).

• The mathematical modeling, design and analysis of a probabilistic registration
approach for mobile devices that computes a registration decision based on an
estimation of the mobility paths of already registered nodes (Section 3).

• The design and implementation of MobIoT, a domain-agnostic service-oriented
middleware that builds on the proposed registration approach to enable scalable
and mobile participatory sensing (Section 4).

• The evaluation of the performance of our probabilistic registration approach with
real mobility traces and its comparison to the deterministic approach (Section 5).

Finally, we present the related works in Section 6 and the conclusion and future work
in Section 7.

2. Deterministic Registration Approach

The problem we solve is twofold: Providing domain-agnostic support for on
demand participatory sensing while guaranteeing the scalability of the solution by
controlling whether or not devices should register their services.

2.1. System Model

The mobile sensor network comprises one or several types of sensors hosted on
mobile devices spread over a total area of interest A. The registration decision for a
new mobile device entering the network is based on the device’s path and whether or
not this path will be covered by other known mobile devices, i.e., whether other devices
with similar sensing capacities will be present at this device’s future locations when it
passes through them. The path is represented as a sequence of (x, y) coordinates and
timestamps representing the times at which the device will reach each pair of coordi-
nates. Notations are summarized in Table 1. Descriptions of the network and device
characteristics on which we build our solution follow.
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Symbol Meaning
Mobility

D Diffusion constant
v Speed of mobile devices

Deployment/Area
A Total area of deployment

Cl,rτ Circle of center l and radius rτ
Σl,rτ Smallest square outside Cl,rτ with edges parallel to the coordinate axes
σl,rτ Largest square inside circle Cli,rτ with edges parallel to the coordinate axes

Device
T The set of all sensor types
R The set of all registered devices
k A registered (mobile) device ∈ R
τ A type of sensor, τ ∈ T
Rτ The subset of R with devices hosting sensors of type τ
Sτ Sensor of type τ hosted on a device ∈ Rτ
ejτ Expansion set ejτ ⊆ T containing sensor types that together can substitute a sensor of type τ
Eτ Set of all expansion sets that can each replace a sensor of type τ
rτ The identical sensing range rτ of devices hosting sensors of type τ

Registration
t0 Time at which the new device joins the network
li Location of the new device at time ti
lk0 Location of device k at time t0
lki Location of device k at time ti
δki Displacement of device k during t0 → ti
dimax Maximum distance from beyond which a device can not reach li at time ti

Table 1: Notations used in this paper.

Network Characteristics. The mobile network has the following characteristics:
• Large number of sensors: The network consists of a large set R of registered

mobile devices with each embedding several types of sensors. Rτ is a subset of
R containing devices hosting sensors of type τ , and T is the set of possible types
of sensors. A sensor is denoted as Sτ , where τ ∈ T .

• Dynamic structure: The most commonly used devices in mobile participatory
sensing are smart phones hosting several types of sensors. Each mobile device κ
moves to different locations lκi , starting from lκ0 .

Mobile Device Characteristics. A mobile device has the following characteristics:
• Mobility: All devices in the network are mobile. Devices following the same

mobility model (pedestrian, in vehicles, etc.) have, on average, a constant speed
v (an assumption commonly made in existing solutions such as [14]).

• Location-awareness: Each device is equipped with the ability to identify its
location as (x, y) coordinates (e.g., GPS receiver) [5].

• Path awareness: Each device in our system is aware of the path it will follow and
the final destination to reach during a mobility period. It is increasingly common
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for individuals using vehicles, even pedestrians, to follow paths specified by the
navigation systems on their devices.1 If users do not have navigation systems on
their devices, it is possible for them to provide their future locations as input or
estimate their most likely future path using some prediction techniques.

• Fixed, identical sensing range: All sensors of the same type τ in the network
have an identical sensing range rτ , and each sensor has a 360◦ coverage and can
sense events in a circle Cli,rτ with radius rτ and centered at location li. This is
known as the boolean disk model [15].

2.2. Deterministic Registration Solution

For the sensing system to be truly scalable, it must be able to support a large num-
ber of devices (millions and more) spread over large areas. To that end, our goal is to
limit the number of registered devices while meeting minimum sensing coverage re-
quirements. We present an approach to reach this goal through a registration approach
that determines whether or not registered devices will cover the path of the new mobile
device. If the coverage of already registered devices is above the minimum required
coverage, the new device does not need to register its sensing service and vice versa.
The minimum required coverage (threshold) is sensor-specific and specified in a knowl-
edge base describing metadata about sensors, actuators, physics, etc. (for more details
we refer the reader to [16]). We take two cases into account when computing coverage:

1. Direct coverage: only the set of devices hosting a service of similar type to the
new device’s service is taken into account when computing coverage.

2. Coverage by composition: all possible service compositions are computed through
an expansion process where types of sensors that together substitute a sensor Sτ
are determined. Services abstracting such sensors are expansion services. Each
possible combination of expansion services is referred to as an expansion set ejτ
and Eτ = ∪j ejτ is the set of all expansion sets for a sensor type τ . This in-
formation is modeled in the knowledge base mentioned above. For example, a
wind-chill sensor (type τ ) can be expanded into (substituted by) a thermometer
(type τ1) and an anemometer (type τ2). In such case, ejτ = {τ1, τ2}.

To compute coverage, the approach requires details on the mobility paths of de-
vices. Specifically, upon actual registration, each device is required to send the path it
will follow to the registry. The paths of registered devices that provide a similar sens-
ing service to the one hosted on the new device will be checked to determine if any
of them will intersect with the new device. For this purpose, the registry estimates the
location of the devices based on their paths at the exact time ti at which the new device
is supposed to cross location li on its path. The estimation is done through an interpo-
lation function that finds the location of a registered device κ at time tκj and tκj+1 such
that tκj ≤ ti < tκ(j+1) and estimates its location at time ti. The deterministic registra-
tion decision algorithm is presented in Algorithm 1, which uses methods presented in
Algorithm 2 and Algorithm 3.

1Services such as http://www.google.com/mobile/maps/ provide turn-by-turn driving and
walking navigation.
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Algorithm 1 Deterministic Registration decision process for service of type τ
Input: L, rτ , τ, threshold, R,Eτ
Output: decision ∈ {true, false}

1: let C ← ∅ // C is the set of covered location
2: for each li ∈ L do
3: intersect← false
4: for each s ∈ Rτ do
5: Ls ← s.path

// Check if s is at li at time ti.
6: if intersects(li, ti, Ls, rτ ) then
7: intersect← true
8: C ← C ∪ {li}
9: break // Break if intersection found and check next location

10: end if
11: end for
12: if intersect = false then
13: for each ejτ ∈ Eτ do
14: intersect← false
15: for each type ∈ ejτ do
16: for each ss ∈ Rtype do
17: Lss ← ss.path
18: if intersects(li, ti, Lss, rtype) then
19: intersect← true
20: break
21: else
22: intersect← false
23: end if
24: end for
25: end for
26: if intersect = true then
27: C ← C ∪ {li}
28: break
29: end if
30: end for
31: end if
32: end for
33: c← getCoveragePercentage(L,C, rτ )
34: if c < threshold then
35: decision← true
36: else
37: decision← false
38: end if

Complexity Analysis: The algorithm terminates when a decision is reached after the
end of the outermost loop. All the elements in the loops (both inner and outer) are finite
and therefore the loops are sure to terminate. In the worst case scenario, the algorithm
will check all registered services in R, all expansion sets in Eτ and expansion types in
each expansion set ejτ leading to a time complexity O

(
|L||R||Eτ ||ejτ |

)
. |Eτ |, |ejτ | and

|L| are constant and can be ignored, leaving the time complexity to be O (|R|). In the
best case scenario the algorithm will find intersections with the first registered service
with no expansions, the best case time complexity is therefore Θ(1). Since we do not
perform any preprocessing, and we do not use any complex data structures, the space
complexity of the deterministic registration algorithm is O (|L||R|); the set of covered
locations C will have |L| locations at most if all locations on the new device’s path will
be covered by registered devices.

Our registration approach can be regarded as a search problem since we are looking
for intersections between the paths of registered devices and that of the new device. In
traditional search solutions, a preprocessing step is preformed to optimize the search
process (e.g., sorting data prior to executing the search requests). In our algorithm
the data to sort is the locations of registered devices at the time at which a new de-
vice joins the network, which in the traditional case, would have a time complexity
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Algorithm 2 intersects: to compute whether or not a device crosses li at time ti
Input: li, ti, L

s, rτ
Output: intersect : true, false

1: for lsi ∈ L
s do

2: if tsj ≤ ti < tsj+1 then

3: lsi ← lsj + (lsj+1 − l
s
j ) ∗

ti−t
s
j

tj+1−ts
j

4: if (lsi .x− li.x)
2 + (lsi .y − li.y)

2 ≤ r2τ then
5: intersect← true
6: break
7: else
8: intersect← false
9: end if

10: end if
11: end for

Algorithm 3 getCoveragePercentage: To compute the percentage of coverage of
the device’s path
Input: L,C, rτ
Output: p

1: lold.x← l0.x, lold.y ← l0.y, xold ← 0, yold ← 0, td← 0, t← 0
2: for l ∈ L do
3: td← td+

√
(l.x− lold.x)2 + (l.y − lold.y)2

4: if l ∈ C then
5: if c = l0 then
6: d← d+ rτ
7: else if c = lfinal then
8: if

√
(l.x− xold)2 + (l.y − yold)2 ≥ 2rτ then

9: d← d+ rτ
10: else
11: d← d+

√
(l.x− xold)2 + (l.y − yold)2 − rτ

12: end if
13: else
14: if

√
(l.x− xold)2 + (l.y − yold)2 ≥ 2rτ then

15: d← d+ 2rτ
16: else
17: d← d+

√
(l.x− xold)2 + (l.y − yold)2

18: end if
19: end if
20: xold ← l.x
21: yold ← l.y
22: end if
23: lold.x← l.x
24: lold.y ← l.x
25: end for
26: p← d

td

O (|R| log(|R|)). However, devices are mobile and we do not know, a priori, the time
at which a new device will join the network. Therefore we cannot perform the sorting
before it actually joins, especially since time is a continuous variable and we cannot
simply sort the locations of all registered devices for all possible time values. As such,
we can not reuse preprocessed results from one device for the other in the general case.
The approach can also be regarded as a range query problem common in the Geograph-
ical Information Systems (GIS) [17] domain or mobile navigation domain. There are
two categories of range computations: based on Euclidean distance, or based on road
network distance. We are interested in the former. However, to the best of our knowl-
edge, existing solutions in this category assume static objects of interest (e.g., [18, 19]).
More attention has been paid to moving objects of interest in mobile object databases as
done in [20, 21], whose approaches are complementary to our work. For instance, the
work in [20] optimizes queries over moving objects by focusing on optimized process-
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ing of location updates sent periodically by the mobile objects. We require no location
updates from devices after they register but we can integrate this approach for a more
accurate selection of services to access later on. However, we have to further analyze
the tradeoffs between the increased accuracy of knowing the locations of devices and
the increasing communication costs the updates will incur. In [21], authors propose an
approach to optimize past queries over mobile objects. They do so by dividing each
trip into sub trips depending on the transportation mode, which is out of the scope of
our work. Nonetheless, their evaluations are of special interest to us as authors use a
tool to simulate human mobility for 200, 000 mobile objects, which we can use in our
future evaluations.

3. Probabilistic Registration Approach

As presented above, the deterministic registration approach provides a relatively
precise decision but its time complexity increases linearly with the number of regis-
tered devices. Given that we target a large number of devices (millions or more), the
approach can be very costly. To enhance its performance, we propose a probabilis-
tic optimization that operates faster and still satisfies coverage threshold requirements.
The optimization is built on using probabilistic mobility models to estimate the move-
ments of mobile devices in a large network, essentially speeding up the spatial search
phase of the algorithm. The resulting knowledge can then be exploited by an incoming
device to make a decision whether or not to register its services. The decision is based
on an estimate of the probability that any registered device with similar capabilities
will cross paths with it. For this purpose, we choose the Truncated Lévy Walk (TLW)
mobility model [12], which has been shown in recent work to well represent the mo-
bility of humans (pedestrian, vehicles, etc.). TLW assumes that entities have a constant
speed depending on the mobility category they belong to (pedestrians, vehicles, bicy-
cles, etc.) [11]. In this model, entities select a uniformly distributed direction and a
Lévy distributed length of displacement, after which they choose a Lévy distributed
pause period. For simplicity purposes, we only consider devices belonging to the same
mobility category.

3.1. Probabilistic Registration Approach Based on Direct Coverage
Detailed path information knowledge is now substituted by an estimation of the

path of registered devices using TLW. As such, each device can use its mobility knowl-
edge locally. We require the registry to provide the new device with basic informa-
tion on the density of already registered devices and their distribution in space. For
registered nodes, it is possible to estimate their spatial distribution along with its pa-
rameters, given their location, using curve fitting techniques (such as those provided
by Matlab’s ALLFITDIST method). As mentioned earlier, we need to compute the
probability that the path of a new device hosting a sensor of type τ is covered. For this
purpose, the approach should compute the probability that at least one device will be
at each of the locations of interest at the same time as the new device. In this section,
we focus on devices in Rτ . Let li be the location of the new device at time ti and
P (≥ 1 device is at(li, ti)) be the probability we are looking for at each location.

P (≥ 1 device is at (li, ti)) = 1− P (no device at (li, ti)) (1)
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Figure 2: The big circle Cli,dimax limits the range of devices that can reach l2 in time t2 while
the smaller circles show the approximate location where sensors should be to consider that the

location is covered

Note that we assume that the probabilities of different devices being at a location
are independent. Consequently, P (no device at (li, ti)) is as follows:

P (no device at (li, ti)) =
∏
κ∈R

(1− P (κ is at (li, ti))) (2)

The probability that device κ will be at location li at time ti is the probability of
device κ moving from its initial location to li. This refers to the total displacement δκi
of device κ until time ti from its initial location lκ0 at t = 0. The probability to compute
then becomes:

P (≥ 1 device is at (li, ti)) = 1−
∏
κ∈R

(1− (P (δκi ) = li − lκ0 )) (3)

Using [11], where authors use TLW to compute the displacement of mobile entities
for message routing purposes, we define the probability that device κ is in Cli,rτ (to
approximate li to an area covered by sensor of type τ instead of a point) at time ti
starting from a known location l0 = (Xκ

0 , Y
κ
0 ) as

f(li, rτ , l0, ti) = P (device κ is in Cli,rτ at time ti)

=
1

2πDti

∮
lκ∈Cli,rτ

e
(Xκ−Xκ0 )2+(Y κ−Y κ0 )2

2Dti dlκ (4)

Where lκ = (Xκ, Y κ), D is the diffusion factor in the Truncated Lévy Walk and it is

equal to
σ2
ξ

µt
[22], σ2

ξ is the variance of the displacement length and µt is the mean of
the complete displacement time distribution. We consider σ2

ξ and µt to be parameters
that depend on the real life scenario and the mobility category.

Since this approach does not use all locations of already registered devices, the
initial location lκ0 for device κ at time t0 can be anywhere in the deployment area
A. Going a step further, we can say that with respect to location li, we only care for
devices located within the circle Cli,dimax with center li and radius dimax (as shown in
Figure 2); dimax is the distance from li beyond which no device κ can start from l0κ at t0
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and reach location li at time ti. Taking into account all locations within circle Cli,dimax ,
the probability of device κ moving to Cli,rτ becomes:2

g(li, rτ , ti) =

∮
lκ0∈Cli,dimax

PDFXκ0 (Xκ) ∗ PDFY κ0 (Y κ)dlκ0

∗ 1

2πDti

∮
lκ∈Cli,rτ

(e
− (Xκ−Xκ0 )2+(Y κ−Y κ0 )2

2Dti dlκ) (5)

If we go back to the probability in Equation 3, we obtain by substitution:

P (≥ 1 device at (li, ti)) = 1−
∏
κ∈n

(1− g(li, rτ , ti)) (6)

Where n is the set of all devices in Cli,dimax . The probability of displacement from lκ0
into Cli,rτ is identical for all devices in n, therefore P (≥ 1 device at (li, ti)) becomes:

P (≥ 1 device at (li, ti)) = 1− ((1− g(li, rτ , ti))
|n|) (7)

Now that we have determined the probability of coverage at one location, we can
repeat the process to obtain the complete probability of coverage at all locations.

Pcov =
∏
li∈L

(1− (1− g(li, rτ , ti))
|n|) (8)

3.2. Probabilistic Registration Based On Coverage By Composition
If any location of interest on the device’s path is not covered by sensors of its type

τ , the device can check if its sensor can be substituted by a composition of other types
of sensors (referred to as expansion types) at that location. It is important to assure that
values are measured from substitution sensors at the same time instant and at the same
location, i.e., by selecting sensors that are at an acceptable distance from each other.
If we go back to our wind-chill example, we now need to compute the probability that
all locations li on the path of the new device will be covered by both sensor types τ1
and τ2, i.e., sensor types ∈ ejτ . In the following we show how we can compute the
probability that takes composition into account.

LetPSτcov be the probability of coverage by sensor type τ , andP e
j
τ
cov be the probability

of coverage by all types in one of the expansion sets ejτ :

P
ejτ
cov =

∏
S∈ejτ

PScov (9)

PScov is computed using the same equation as Pcov (Eq. 8), with a change in the type
of the sensor to evaluate. The complete probability of coverage, i.e., the probability
including both direct coverage and coverage with composition cases, is:

2We multiply the density functions of X0
κ and Y 0

κ by each other because we assume the location of the
device on the X-axis is independent from its location on the Y-axis.



3 PROBABILISTIC REGISTRATION APPROACH 12

Pcovered = Pcov( by Sτ or ejτ ) (10)

Pcovered is also equal to 1− (the probability of having no coverage by sensors of type
τ and the probability of having no coverage by sensors in ejτ ), i.e.,:

Pcovered = 1− ((1− PSτcov) ∗ (1− P e
j
τ
cov)) (11)

In a more general form, assuming there is a set Eτ of possible expansion sets, ejτ ,
the complete probability of coverage is as below:

Pcovered = 1− ((1− PSτcov) ∗
∏

ejτ∈Eτ

(1− P e
j
τ
cov)) (12)

Algorithm 4 Probabilistic Registration decision process for service of type t
Input: (l0, l1, ..., lL), rτ , Eτ , R
Output: decision ∈ {true, false}

1: compute Pcovered using Eq. 8
2: if (Pcovered) ≤ threshold then
3: for each ejτ ∈ Eτ do
4: for each type ∈ ejτ do
5: compute Pcov using Eq. 8
6: end for
7: compute P e

j
τ
cov using Eq. 9

8: end for
9: p← compute Pcovered using Eq. 12

10: end if
// NT is the new threshold generated after computing the coverage probability

11: NT ← 1− (1−threshold)
(1−p)

12: if uniformRand(0, 1) < NT then
13: decision← true
14: else
15: decision← false
16: end if

We show in Algorithm 4 the method to generate the final registration decision based
on the computed Pcovered.

Complexity Analysis: The Probabilistic Registration algorithm terminates either if
direct coverage is enough or when the end of the outermost loop is reached. The
loop depends on the size |Eτ |. There is one inner loop that depends on the size |ejτ |,
which is the number of expansion types in each set, also a finite number. Unlike the
deterministic registration algorithm, which has to check the actual paths of registered
nodes, the current algorithm is not dependent on those values. It depends on the size
of the expansion set and expansion types which are constant and thus can be ignored.
Computing Pcovered depends on |L|, which is a constant, and the areas ACli,dimax for
Cli,dimax and ACli,rτ for Cli,rτ , which can also be ignored. As such, our algorithm

has a time complexity O
(
|Eτ ||ejτ ||L|ACli,dimaxACli,rτ

)
which reduces to Θ(1) since

all values can be ignored. Note that steps 5, 7, and 9 incur additional time and space
costs but those depend on the parameters of the numerical methods employed and are
independent of the problem size. Further, the algorithm stores values in three sets. The
first set is an array a passed when computing Eq. 8, containing the size of Rτ and the
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type of their distribution in space. The second and third sets are Eτ and ejτ used when
computing Eq. 12. Thus, the algorithm has a space complexity O

(
|Eτ ||ejτ ||a|

)
which

reduces to Θ(1) since all three sets have fixed sizes and can be ignored.

4. MobIoT: Architecture and Implementation

To support different categories of participatory sensing applications and provide
a scalable solution, we have designed and implemented MobIoT, a service-oriented
middleware that incorporates the probabilistic registration approach discussed above.
MobIoT further integrates semantic knowledge about the real world, including possi-
ble attributes to measure, their sensing units, mathematical relations among different
attributes, etc. Consequently, developing a participatory sensing application no longer
requires developers to be experts in the sensing domain and a user request can simply
be specified in a query of the form:

new Query(new Selector(new Concept(“temperature"), new
Concept(“windspeed")), new Constraint(new Where(“temperat-
ure.unit= Celsius, windspeed.unit= m/s, temperature.accur-
acy = 0.8”)), new Location("Jardin des Tuileries"));

where Concept refers to the physical attribute to measure, Selector is used to
specify the concept(s) of interest, Constraint is used to set the concept’s unit and
additional constraints such as the accuracy of a measurement, and finally Location
allows the consumer to specify the location at which measurements should take place.

Discovery

device ontology

estimation ontology

domain ontology

Knowledge Base

Composition
& Estimation

MobIoT

service consumer

Registry

service provider

Access

query

sensor measurement

Figure 3: Architecture of MobIoT

4.1. MobIoT Architecture

The middleware is composed of the following five main components (Figure 3):

Knowledge Base. All knowledge required by our middleware for internal computa-
tions or by developers of sensing applications is defined in a set of ontologies, de-
tailed in [16]. We build our ontologies on top of a set of NASA’s SWEET ontolo-
gies (http://sweet.jpl.nasa.gov/ontology/) to model real world infor-
mation, mathematics and physics, and so on. Our ontologies comprise:
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• The domain ontology, describing physical concepts, measurement units, differ-
ent possible relations among concepts (composition specification), etc. Com-
position specifications are defined as mathematical formulas that take measure-
ments of several physical concepts as inputs, and return an estimation of the
value of the physical concept of interest. For instance, the “wind chill” concept
can be computed as a function of “temperature” and “wind speed”.

• The estimation ontology, holding information needed for estimation techniques
(such as linear interpolation, Kalman filter, naïve Bayesian learning), the equa-
tions that drive them, and the services that implement them.

• The device ontology, containing metadata about actual hardware devices, such
as manufacturers, models, etc. This ontology allows us to determine what types
of devices are needed to answer a user query.

Discovery. Discovery wraps service Registration and Look-up functionalities:
• The Registration functionality, detailed in Section 3, generates the final decision

to allow or prevent a new mobile device from registering its hosted sensing ser-
vices based on an estimate of whether or not registered mobile devices can cover
a percentage of the new device’s path. If the decision is positive, the service
metadata is sent to the Registry for the latter to store it.

• The Look-up functionality returns a set of services that can provide the requested
measurements at the location of interest.

Registry. In addition to holding the metadata and descriptions of registered sensing
services, the registry executes the look-up, as it holds the information on the locations
of devices when they register. The registry can thus estimate their location at the time
of the query and know which of them best provides the required measurement.

Composition & Estimation. Expansions are specified as mathematical formulas in the
domain ontology. The component then identifies the types of sensors that can measure
the expansion concepts and discovers the addresses of devices hosting the identified
types using the look-up functionality. Services are then accessed and their individual
measurements are returned. All measurements over the same concept are aggregated
based on an appropriate fusion function defined in the domain ontology. Finally, Ag-
gregated results are passed as parameters to the expansion formula and the result is
returned to the user.

Access. The access component allows local access to sensors hosted on mobile de-
vices. It provides a unified interface for accessing any type of embedded sensor through
one of the following options:
• Instantaneous sensing is a synchronous request that returns an immediate reply

after querying a sensor for its latest sensing value.
• Periodic sensing is an asynchronous request that returns a reply at a constant rate

(until canceled).
• Event-based sensing is an asynchronous request that returns a reply only when

triggered by some event of interest (until canceled).
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Figure 4: Middleware implementation.

4.2. Implementation

We implemented MobIoT using Java 1.6 in two parts as illustrated in Figure 4:
Mobile MobIoT, a part of the middleware deployed on mobile devices (Android phones
and personal computers), and a RESTFul MobIoT service, a part of the middleware
deployed as a RESTful J2EE Web service on a Tomcat servlet container. Both parts
host a portion of the knowledge base locally. We model the ontologies using RDF
(http://www.w3.org/RDF) and we access them using Jena (http://jena.
apache.org) The code is part of CHOReOS, a European project on choreographies
for the Future Internet (http://www.choreos.eu) [23] and is also used by several
partners in their use case developments [24, 25]. Our code has been released as open
source and links to the different components can be found at http://choreos.
eu/bin/Documentation/IoTS_Middleware (in progress). We highlight in
the following the main classes we created and the tools we used in our implementation.
We present the methods, attributes and relations among the classes in UML in Figure 5.

4.2.1. Mobile MobIoT
Mobile MobIoT provides two main functionalities: probabilistic registration of

sensors as services, and access to sensors (referring to the actual access to embedded
sensors to acquire their measurements).

Firstly, the probabilistic registration functionality is provided through the coopera-
tion of four Java classes:
• The ExpansionSetGenerator class identifies all possible expansion con-

cepts based on the information defined in the local knowledge base. Expansion
concepts are extracted from the local knowledge base using SPARQL, a powerful
and expressive RDF query language.

• The ProbabilityEstimator class computes Pcovered as represented in Al-
gorithm 4.
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• The RegistrationEstimator class generates the actual registration deci-
sion based on Pcovered after receiving a registration request from a sensor service
(step 1 in Figure 4).

Secondly, the access functionality is provided through the cooperation of three Java
classes (step 6):
• The SensorMediator class is in charge of starting/accessing a Sensor Dae-

mon, performing local discovery of sensors and calling sensing actions, etc.
• The SensorDaemon class is in charge of communicating with the sensors

through Sensor Drivers.
• The SensorDriver class is an OS-specific piece of software that defines a

small set of low-level methods for extracting sensor metadata and sampling a
sensor.

4.2.2. RESTful MobIoT Service
The RESTful MobIoT service provides three main functionalities: storage (where

sensing services’ metadata is stored upon registration), look-up (where addresses of
services that can answer a query are selected), and composition & estimation (where
user queries are sent from a sensing application, compositions are identified and a final
answer is returned).

Firstly, for the storage, we chose the Apache DERBY JDBC database as a backing
store. We created a Storage Java class to save services, remove services, find number
of registered services, etc.

Secondly, for the look-up, we created a LookupManager Java class that queries
the backing store for the addresses of services that provide the required measurements
at the location of interest (step 4).

Last but not least, the composition & estimation functionality is provided through
the cooperation of four Java classes:
• The QueryManager class receives user queries from a sensing application and

returns the final answer to the application (step 2). The query language is a union
of SQL queries and TinyDB queries. It allows users to express sensing queries
at locations of interest in a common language that handles sensing specific ex-
pressions such as sampling rate and sampling period.

• The CompositionManager class generates expansion concepts and executes
expansion formulas.

• The SPARQLManager class handles the actual querying of the knowledge based
to extract the expansion formulas, etc., using SPARQL query language (step 3).
When expansion formulas are extracted from the ontologies, they are extracted as
strings; to convert them to actual mathematical formulas we use Expr4j (Expr4j:
http://expr4j.sourceforge.net/), an expression calculation engine for Java.

• The AccessGenerator class handles the remote access to sensing services
hosted on mobile devices (step 5). We consider sensing services to be imple-
mented as REST services with a unique address each. It is after calling the
access method in this class, that the local access to sensors abstracted by the
sensing services (in mobile MobIoT) is executed.

• The DataFusionGenerator class computes fusion/aggregation functions to
combine measurements provided by different services.
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Figure 5: Class Diagram of MobIoT.

5. Evaluation

We present below the evaluation of our solution based on real mobility traces. We
aim to show the validity of our probabilistic registration approach through the resulting
coverage of the selected subset that matches the required coverage thresholds. We also
evaluate the performance of both the deterministic and probabilistic approaches and
compare the TLW-based computations to Random-Walk (RW)-based computations.

5.1. Experimental Setup

For a large scale realistic evaluation, we use a dataset that provides real mobility
traces —in the form of (taxi id, date time, longitude, latitude)— for 10, 000 GPS-
equipped taxis in Beijing [26]. We assume that a device that registers provides sensing
services until the end of the evaluation. We set the length of the area A to 1136.2 km
and breadth to 3002.4 km based on the area covered by the mobility traces. We com-
puted the average velocity of those devices (8 km/hr) and set their sensing range to be
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10 m.3 We used this value of velocity to compute the value of the appropriate diffusion
constant by simulating a Lévy Walk with a scale factor of 10 and 1 for the step-size
and pause-duration respectively [11]. We chose the maximum allowed pause time to
be τp = 1 hr and the maximum allowed displacement length τξ = 5 km. The result-
ing diffusion value was found to be 44. The evaluation revolves around the following
concepts:
• Maximum Possible Coverage (MPC): Percentage of the area of interest A that

is sensed/covered assuming all devices register their services as they show up.
• Actual Coverage Percentage (ACP): Percentage of the MPC of A covered by

the subset of devices that register their services.
• Required Coverage Threshold: The desired percentage of the area to sense

(cover) by each device throughout its path.

5.2. Results

We evaluate the validity and performance of our registration approach in terms of
three criteria: 1) How coverage varies as we shift from full registration (when all de-
vices register their services) to probabilistic registration; 2) The time needed to generate
a registration decision as the number of registered devices increases; 3) The appropri-
ateness of the Truncated Lévy Walk model.
Coverage Quality: First, to evaluate how coverage varies as we shift from full to prob-
abilistic registration with decreasing coverage requirements, we computed the MPC
while the 10, 000 devices (the taxis in the trace) show up sequentially according to a
poisson arrival process. The MPC when all 10, 000 devices register their services is
0.003% of the total area, which is very low, but we were unable to find larger datasets
to evaluate our approach. Consequently, ACP values were also very low for the 0.8
and 0.6 thresholds. Given the sparsity of the devices, a large fraction will keep reg-
istering their services. The information is presented in Figure 6(a), which shows the
ACP for 0.8 and 0.6 required thresholds, along with the registration curves for each of
the thresholds as devices show up. The reason for the continuing registration is that
the network has a low density and not all devices cross paths to substitute one another.
We remind readers that ACP is a percentage of the MPC and not A, explaining why
the MPC is presented as a 100% reference line in Figure 6(a). This is also the reason
why, at the beginning of the evaluation, ACP curves start high and then decrease until
they stabilize. More precisely, when the first device shows up, it will register, regard-
less of the threshold value, leading to: ACP = MPC for a subset size of 1. Similar
results will occur for the second device and so on until the thresholds start to effect the
registration decisions as the sensing areas of devices start to overlap.

To better show the benefits of our approach, which are most relevant in highly
dense networks, it is important to reach a MPC of 100% before all 10, 000 devices
register. However, instead of adding phantom traces to increase the MPC of the set
of devices, we decided to restrict the area of focus and increase the sensing range (we
omit the details due to space constraints. More information can be found in [9]). The

3The sensing range was scaled to 10 m from the average sensing range of microphones in mobile phones
(5 m, a value that we estimated empirically) carried by pedestrians who walk at an average speed of 4.5 km/h.
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Figure 6: The resulting coverage and registration percentages as the required coverage
threshold decreases from 1 to 0.6 a) for a radius of 10 m b) for a radius of 10 km.

chosen range is now 10 km. We are aware that the selected range is not practical
for phone-based sensors but we used it to create a denser network that should lead
to more overlapping sensed areas. The resulting MPC is shown in Figure 6(b). The
figure illustrates how our approach successfully prevents devices from registering (the
number of devices that register for a threshold of 0.8 is less than 2000) while still
meeting the coverage requirements.
Computation Time: Second, to evaluate the time needed for a service to register as
the number of registered devices increases, we deployed a process that iteratively com-
putes registration decisions on a Linux machine with an Intel Xeon X5650 processor.
We also deployed the Registry on a Linux Web Server with Apache Tomcat 6. We
divide the registration time into two phases: the first, local registration, represents the
time needed for the registration decision to be computed. The second phase, web reg-
istration, represents the time needed to actually register the service. We registered all
the 10, 000 devices sequentially, which gives us the upper limit for registration time.
The results (Figure 7) show us that registration times, for the probabilistic registration,
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Figure 7: The time needed by the probabilistic registration approach for 10,000 devices to
register with threshold = 1. Local represents the time needed to generate the registration

decision and web represents the time needed to register services in the Registry.

remain between 2 and 4 ms and between 25 and 30 ms for first and second phases
respectively. We also evaluated the time needed for the registration decision to be com-
puted on mobile devices. We chose the Android Samsung Galaxy S3 with 1GB RAM.
Results show that it takes, on average, 155 ms for the local process to be computed and
93 ms for the web process. It should be noted that the time taken in both local and web
processes is independent of the subset size, which is a good sign of scalability.

We compared our probabilistic registration approach to the deterministic registra-
tion approach (with a similar setup as above) to verify, based on real mobility traces,
that our probabilistic approach requires less computation efforts while satisfying the
coverage threshold. Our claim is supported by the results, which show that it takes up
to 2000 ms for a decision to register to be taken (Figure 8(a)). In most cases, it takes
up to 400 ms (Figure 8(b)) for a decision to not register to be taken since the process
stops as soon as the location on the new device’s path are covered.
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Figure 8: Time needed, by the deterministic registration approach with a threshold = 0.8, to
decide to a) register b) not register.

TLW evaluation: Third, to evaluate the correctness of the Levy Walk Model, we
compared the TLW-based results to Random-Walk (RW) based results, by substituting
our probability computations with RW-based computations. Note that RW is also a
commonly adopted model for estimating displacements of mobile entities. The results
show that both models decrease the registration of devices while satisfying coverage
requirements. However TLW outperforms RW as it leads to fewer devices participating
(Figure 9). The figure shows the ACP of TLW- and RW-based registrations. As can be
seen from the curves, the former leads to 760 devices registering while the latter leads
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to 840 for a required threshold of 0.8 and 499 devices versus 639 for a threshold of
0.6. This means we have at least 10% fewer devices registering. Given the large scale
we target, this is an important gain. It can also be seen that TLW-based registration
reaches the required coverage threshold faster.
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Figure 9: A comparison of the coverage/Registration percentage obtained by a TLW-based
registration and a RW based registration for thresholds 0.8 and 0.6.

In conclusion, as the number of registered devices increases, our approach allows
devices to register if need be (Figure 6(a)) and prevents them from doing so otherwise
(Figure 6(b)) while not compromising the required coverage.

6. Related Work

The paper builds on the work presented in [9] where we first described the proba-
bilistic registration solution. It extends the work by providing a deterministic solution
that decreases the participation of mobile devices based on a more detailed knowledge
of their future mobility. In addition to presenting both solutions, this paper compares
their respective complexities and performances showing their benefits and drawbacks.
We aim with our approach to limit the participation of mobile devices in participatory
sensing tasks, in a manner that does not jeopardize the quality of the measurements.
Existing works in the sensing domain have already applied this idea through duty cy-
cling techniques, or device selection techniques where only some devices provide their
sensing services while others sleep [14, 27]. However, duty cycling techniques are
actually complementary to our work as they apply more to the look-up phase since
devices are already known to the network.

Our work is similar in spirit to the solution in [28] where a recruitment framework
is presented to select a subset of sensing devices based on their locations and cover-
age. However, there are major differences between the two approaches. In [28], the
selection process depends on the willingness of users to participate, the coverage they
provide and their reputation. The latter depends on the likelihood of users in provid-
ing the needed information when it is available and their timeliness in doing so, which
can be complementary to our solution. Further, the approach requires a training pe-
riod where participants’ mobility information is collected, for a week, to know their
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common routes, analyze their data and determine whether or not they are suitable to
participate. This can be considered as an alternate approach to our required mobil-
ity knowledge. However, the selection of participants does not fit with our vision of
a highly dynamic network as authors consider their participants to remain registered
for longer periods of time. Finally, scale is not a main criteria as illustrated by the
evaluation based on a panel of 30 users.

Further, most efforts in the participatory sensing domain have been restricted to the
application level. More precisely, existing solutions are mostly domain-specific: envi-
ronment monitoring (e.g., [29]), or traffic monitoring (e.g., [30, 31]), etc. Moreover, the
sensing tasks, whether instantaneous, continuous or periodic, are usually not triggered
by the query itself but programmed to wake up at some periods or after some event. Al-
though there are several optimization techniques that can be applied such as historical
data analytics to manage tradeoffs between data freshness and sampling frequencies,
this approach may still produce large volumes of out-dated information. For instance,
the work in [29] falls in the category of environment monitoring as the main objective
is to model noise pollution in an area of interest as a noise map. The information is
measured by smart mobile phones and then analyzed by a server to create a noise map
that can be checked by users whenever needed. In [30], authors present a solution that
falls in the category of traffic monitoring with an approach to estimate bus arrival times
based on human input to localize the bus and allow the system to estimate its arrival
time. Authors assume that there is at least one person in the bus or at a bus stop that
updates the bus location information. Similarly, authors in [31] provide a solution to
estimate bus arrival times; however they rely on a more passive approach where the bus
is localized based on the nearest cell tower. All processing is done in a backend server.
As a worst case scenario, the driver is equipped with a mobile phone that can provide
data in case no other user wishes to contribute. The assumption used in both works —
that it suffices to have one or two users provide their measurements— proves that in
many cases, not all capable devices are needed to provide "good" information and in
some cases even one device is enough.

We note that there are existing solutions that take the scale issue into account. Pre-
cisely, the scale issue is addressed from two perspectives: User scale when a large
number of smart phone carrying users are involved in the participatory sensing pro-
cess [32, 33]; and data scale when the sensing process generates large amounts of data
that should be categorized, filtered out or condensed [34, 33]. Yet, in both cases, ad-
dressing the scale issue is always mostly performed at the data level, not the device
level. For instance, authors in [34] present a scalable participatory sensing data de-
livery scheme through a location-based publish/subscribe framework. The framework
is built on top of a location-based DHT overlay. The solution is geographically scal-
able but it was not evaluated with an increasing number of subscribers and publishers
and therefore it is not clear how the scalability at the device level (i.e., regarding the
number of devices) would be supported. In [35], scalability to allow the system to han-
dle a large number (hundreds of thousands) of nodes is addressed by distributing the
sensing tasks where, similarly to our work, participating nodes register their services
to the server. The latter determines which tasks should be forwarded to which sensing
device. However it is not clear how they deal with the resulting load on the server and
they evaluate their work with simulated traces.
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7. Conclusion and Future Work

We have presented in this paper a service-oriented middleware for large scale mo-
bile participatory sensing. We focus in our work on query-based on-demand sensing
that involves only a set of sensors that can best answer a query. To that end, we pro-
vide a novel registration approach that addresses the large scale and unknown network
topology issues of mobile participatory sensing. The solution relies on the fact that
mobile devices in dense networks are bound to cross paths and as such can substitute
one another based on the (sensing) services they host. This approach requires knowl-
edge of the mobility of registered devices and intersection computations are costly.
To enhance the approach’s performance, we replace the need to know the mobility of
registered devices by a probabilistic mobility model to estimate the displacement of
those devices. We evaluated the performance of both approaches. Results show that
our probabilistic approach outperforms the deterministic approach as it successfully
decreases the number of participating devices without decreasing the sensing coverage
beyond an acceptable limit, while requiring less computation efforts.

Continuing our work, we plan on computing the coverage over the road network
only instead of the whole area of Beijing thus ignoring the large spaces where taxis
cannot drive, resulting in more accurate coverage results. We are also developing a
probabilistic look-up approach that addresses the large number of mobile devices by
selecting only a subset of registered devices based on the accuracy of the measure-
ments they provide and the resources they have. The approach should also perform
load balancing to prevent quick power depletion. Additionally, we are investigating
alternatives for larger mobility traces for our evaluation work as we consider the size
of the current trace (10, 000 taxis) to be relatively small as compared to the millions
of devices that can actually be part of participatory sensing tasks. Finally, we plan
on integrating QoS criteria with our middleware for better service discovery, service
composition and access.
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