
HAL Id: hal-00872473
https://hal.inria.fr/hal-00872473

Submitted on 13 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fair scheduling of bag-of-tasks applications using
distributed Lagrangian optimization

Rémi Bertin, Sascha Hunold, Arnaud Legrand, Corinne Touati

To cite this version:
Rémi Bertin, Sascha Hunold, Arnaud Legrand, Corinne Touati. Fair scheduling of bag-of-tasks appli-
cations using distributed Lagrangian optimization. Journal of Parallel and Distributed Computing,
Elsevier, 2013, �10.1016/j.jpdc.2013.08.011�. �hal-00872473�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49744969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00872473
https://hal.archives-ouvertes.fr

Fair Scheduling of Bag-of-Tasks Applications Using Distributed

Lagrangian Optimization
Rémi Bertina,c, Sascha Hunoldb,c, Arnaud Legrandb,c, Corinne Touatia,c

aINRIA
bCNRS

cUniversity of Grenoble. LIG laboratory (MESCAL project), Montbonnot, France

Abstract

Large scale distributed systems typically comprise hundreds to millions of entities (appli-
cations, users, companies, universities) that have only a partial view of resources (com-
puters, communication links). How to fairly and e�ciently share such resources between
entities in a distributed way has thus become a critical question.

Although not all applications are suitable for execution on large scale distributed
computing platform, ideal are the Bag-of-Tasks (BoT) applications. Hence a large frac-
tion of jobs in workloads imposed on Grids is made of sequential applications submitted
in the form of BoTs. Up until now, mainly simple mechanisms have been used to ensure
a fair sharing of resources among these applications. Although these mechanisms have
proved to be e�cient for CPU-bound applications, they are known to be ine�ective in
the presence of network-bound applications.

A possible answer resorts to Lagrangian optimization and distributed gradient de-
scent. Under certain conditions, the resource sharing problem can be formulated as a
global optimization problem, which can be solved by a distributed self-stabilizing supply
and demand algorithm. In the last decade, this technique has been applied to design
network protocols (variants of TCP, multi-path network protocols, wireless network pro-
tocols) and even distributed algorithms for smart grids.

In this article, we explain how to use this technique for fairly scheduling concurrent
BoT applications with arbitrary communication-to-computation ratio on a Grid. Yet,
application heterogeneity raises severe convergence and stability issues that did not ap-
pear in previous contexts and need to be addressed by non-trivial modi�cations. The
e�ectiveness of our proposal is assessed through an extensive set of complex and realistic
simulations.

Keywords: Lagrangian optimization, steady-state scheduling, distributed scheduling,
grid computing.

1. Introduction

Large scale distributed computing infrastructures are now a reality. Production Grids
like EGEE comprise hundreds of sites and several dozens of thousands of processing units.

Email addresses: sascha.hunold@imag.fr (Sascha Hunold), arnaud.legrand@imag.fr (Arnaud
Legrand), corinne.touati@imag.fr (Corinne Touati)

Preprint submitted to Elsevier June 10, 2013

Volunteer computing infrastructures such as BOINC comprise over 580,000 hosts that
deliver over 2,300 TeraFLOP per day. In such systems, entities have only a partial view
of the system, which makes fair and e�cient sharing of resources (CPU, network links,
storage, . . .) among entities (network �ows, users, applications, . . .) particularly chal-
lenging since centralized algorithms do not scale well and distributed algorithms can only
rely on local information. A possible approach resorts to the combined use of Lagrangian
optimization and distributed gradient descent, which leads to distributed self-stabilizing
supply and demand algorithms. In the last decade, this technique, which we call DLO
(Distributed Lagrangian Optimization) for short in the sequel, has been applied to de-
sign network protocols (variants of TCP [1], multi-path network protocols [2], wireless
network protocols [3]) and even distributed algorithms for smart grids [4]. DLO is very
appealing as it allows the choice of a wide variety of fairness criteria and achieves both
optimal path selection and �ow control.

A very large number of applications that are currently deployed on large scale dis-
tributed systems such as grids or volunteer computing systems are Bag-of-Tasks (BoT)
applications. Up until now, mainly simple mechanisms have been used to ensure a fair
sharing of resources among these applications. Although these mechanisms have proved
to be e�cient for CPU-bound applications, they are known to be ine�ective in the pres-
ence of network-bound applications. The similitude between the grid context and the
multi-path network context indicates Lagrangian-based algorithms as natural candidates
for fairly and e�ciently scheduling BoT applications.

We �rst review in Section 3 the context of BoT scheduling and the limitations of
existing approaches. Then, we introduce in Section 3 network protocol engineering tech-
niques based on DLO. DLO has been widely used in the networking community and in
particular to propose �ow control mechanisms in multi-path networks, although to the
best of our knowledge their e�ciency has been evaluated only in very limited settings.

We explain in Section 4 the similarities between the �ow control problem and the
problem of fairly sharing communication and computation resources between multiple
BoT applications in a grid environment. We show in Section 5 how DLO can be used
to design a hierarchical and distributed algorithm. This algorithm only requires local
information at each worker process and at each bu�er of the network links.

We demonstrate in Section 6 through a carefully designed set of simulations that
applying simply DLO to the grid context is e�ective if and only if all applications are
identical: application heterogeneity raises very complex practical convergence issues.
Surprisingly, this issue had been completely overlooked in previous works that rather
focused on the lack of strict convexity of the global objective function (, which complicates
the proof of the convergence but never appeared as a practical issue in our experiments.)

To address application heterogeneity, we detail in Section 7 a set of non-trivial adap-
tations that are required to ensure convergence. In Section 8, we prove their e�ectiveness
in a fully heterogeneous setting through an extensive set of simulations. We brie�y il-
lustrate in Section 9 the ability of the algorithm to adapt to the departure of critical
nodes. We believe that our thorough analysis enables the reader to deeply understand
the potential bene�ts as well as the limitations of DLO in the context of grid computing.

The contributions of this article can be summarized as follows:

• A robust, fair and optimal distributed scheduling algorithm for concurrent BoT appli-

cations with arbitrary communication-to-computation ratio on Grids. Popular existing

2

infrastructures do not o�er support for applications with such characteristics. The
e�ectiveness of this algorithm is assessed in a wide variety of complex scenarios.

• Our algorithm is based on DLO but requires a set of non-trivial adaptations com-
pared to more classical approaches that can be found in network protocol engineering
literature. We provide an experimental proof that although a naive adaptation of
DLO is e�ective when all applications are identical, it is bound to fail when applica-
tions have di�erent characteristics. Hence, heterogeneity makes BoT scheduling on
grid computing platforms signi�cantly more complex than �ow control in multi-path
networks.

• We provide an in-depth understanding of our algorithm and of the convergence issues
raised in our context by presenting a general introduction to DLO and a comprehen-
sive survey on how it has been used to design network protocols.

2. Scheduling Bag-of-Tasks on Grid Platforms

Not all applications are suitable for execution on large scale distributed computing
platforms but ideal are the Bag-of-Tasks (BoT) applications. Hence a large fraction of
jobs in workloads imposed on Grids is made of sequential applications submitted in the
form of BoT. Despite their suitability for such platforms, scheduling such applications
is complexi�ed by several theoretical and practical aspects among which are platform
heterogeneity, management of both data and computations, the presence of several users
(and even sometimes virtual organizations), fault tolerance, the di�culty to predict work-
load characteristics as well as their evolution over time and across users. This has lead
to a signi�cant amount of e�orts on workload characterization, on the design of BoT
management infrastructures and on scheduling theory.

In this article, we seek to design a fair and optimal hierarchical scheduling algorithm

for applications with arbitrary communication-to-computation ratio. The key charac-
teristic of our work is the consideration of mixtures of CPU-bound and network-bound
applications in a multi-user context where a fair sharing of resources needs to be en-
sured. The Large Hadron Collider Computing Grid (LCG) [5] is a system with such
needs. The Large Hadron Collider (LHC) produces roughly 15 Petabytes of data annu-
ally that are accessed and analyzed by thousands of scientists around the world. The
resulting computation tasks have a much larger communication-to-computation ratio
than typical distributed computing applications and their e�cient management is still
an open problem.

2.1. BoT Scheduling Infrastructures

The most well-known systems speci�cally tailored for BoT in the Grid context are
APST [6], Nimrod/G [7], Condor [8], MyGrid [9], Cigri [10] and Glite Workload Man-
agement System [11]. All these infrastructures work on a best-e�ort basis, with no
performance guarantees. At a di�erent scale, BOINC [12] is a centralized scheduler
that distributes tasks for participating applications, such as SETI@home, ClimatePre-
diction.NET, World Community Grid or Einstein@Home. Most of the existing systems
are client-server oriented and have proved to be e�cient for applications with a very
small communication-to-computation ratio (CCR). This is a key simplifying hypothesis
as it enables to serve clients regardless of their connectivity and avoids server overload.

3

It also enables to rely on very simple sharing mechanisms. For example the BOINC
sharing policy fairly shares on each client the CPU resource among projects to which
the volunteer subscribed [12]. Yet, it has been proved [13] that such a simplistic and
local approach leads to resource waste whenever communication links become critical
resources.

Most existing workload studies [14, 15, 16] ignore communications as such information
can generally not be traced at the batch scheduler level. In most currently deployed
infrastructures, the �le manager and the batch scheduler work in a best e�ort mode,
trying to prefetch data or to schedule computations near data whenever possible. The
interaction between e�cient data management and scheduling is still not well understood,
especially at large scale and under fairness constraints. Hence, simple and pragmatic
strategies are used in practice although this lack of understanding motivates a lot of
research work in scheduling theory.

2.2. Scheduling Theory

The classical approach for BoT scheduling is to minimize completion time of a single
batch while the main issue is to select resources and manage data. Such problems are
generally solved with list scheduling heuristics like min-min, su�erage, or similar varia-
tions [17, 18, 19]. Many of these heuristics assume a complete knowledge of computation
time. Unfortunately, it is generally impossible to assume that nodes are reliable and
deliver constant computing power. Such uncertainties are at the heart of pragmatic se-
lection mechanisms and replication is thus often used to avoid waiting for the last tasks
of a BoT [20]. This variability issue can also be circumvented by learning characteristics
through sampling when BoTs are su�ciently large. This is for example the approach
used in [21] and based on the observation [16] that intra-BoT distribution of execution
times often follows a normal distribution, which eases parameter estimation.

Introducing notions of fairness in such large scale distributed platforms is di�cult and
is still the focus of recent research [22]. Some projects like the OurGrid infrastructure use
tit-for-tat mechanisms inspired by the BitTorrent bandwidth sharing mechanisms [9], but
most systems rely on some form of fair sharing or try to achieve it. In practice, fairness
is generally a secondary goal and is managed in rather simplistic ways compared to the
diversity of approaches that can be found in the game theory literature [23].

Makespan minimization is an intrinsically di�cult problem even in a simple setting.
In a practical context with communication management, information uncertainty, and
fairness constraints, it becomes intractable. That is why relaxations have been proposed,
among which are divisible load scheduling [24] and steady-state scheduling [25, 26, 27].
Steady-state has been introduced to model situations when each application has a very
large or an unlimited supply of tasks. In such situations, applications should aim at
maximizing their average number of tasks processed per time-unit (the throughput).
Such objective is both more meaningful and easier to optimize than classical makespan
optimization. Furthermore, optimizing the steady-state throughput enables to derive
periodic asymptotically optimal schedules for the makespan [28].

To the best of our knowledge, most previous work on steady-state scheduling resort
to solving a large linear program in a centralized way. Such approach requires to gather
information about the global state of the platform and the applications and then to
broadcast the solution of the linear program to participants, which makes it sensitive
to faults and workload variations, hence hindering practical implementation. The main

4

exception we are aware of is the work of [29] that proposes a solution based on �ow max-
imization and inspired by push-relabeling algorithm. However this solution is designed
for the case of a single user and does not enable to handle fairness among applications
with di�erent characteristics. A distributed solution in the case of several applications
was proposed in [30], but for a slightly di�erent communication model (the single-port
model) and a particular type of fairness (max-min fairness), which complicates the design
of distributed solutions. As a consequence, the distributed heuristics proposed in [30]
produce schedules whose quality in term of fairness or e�ciency cannot be guaranteed.
In this article, we explain how to use distributed Lagrangian optimization to circumvent
such issues and propose a fully distributed solution to the fair and steady-state scheduling
of multiple BoT applications problem.

3. Related Work on Distributed Lagrangian Optimization

3.1. Fairness and Network Protocol Design

In the last decade, the network community has used Lagrangian optimization and
distributed gradient techniques to both analyze and design network protocols like TCP
(see for example [31, 32]). This technique has also recently been applied to devise supply
and demand algorithms for smart grids [4].

Assume we are given a network made of a set of links L whose capacity Bl for l ∈ L
is to be shared among a set of �ows F . Let us denote by %f the bandwidth allotted
to �ow f ∈ F . Fairly and e�ciently sharing resources among applications has been
widely handled in economics through the notion of utility, which is a measure of relative
satisfaction of users (or �ows here). If we denote by Uf (%f) the utility associated to �ow
f when it is allotted a throughput %f , it is common to aim at maximizing

∑
f∈F Uf (%f).

It has been shown that di�erent choices of Uf lead to di�erent kinds of fairness [1].
Common choices are Uf (%f) = log(%f) (proportional fairness [32]) or Uf (%f) = %αf /(1−α)
(α-fairness [1], which covers in particular the cases of proportional fairness for α → 1,
max-min fairness [33] when α → ∞, social welfare for α = 0). Many other fairness
de�nitions have been proposed and some have even been evaluated in the context of
cluster management (e.g., [34]). In this article, we focus solely on fair sharing that can
be de�ned as the optimization of the total utility since such kind of objective is �exible
and can account for a wide range of situations.

Let us assume that the network operator has decided to share bandwidth according
to some fairness criteria expressed through utility functions Uf . The bandwidth sharing
can be written as follows:

Maximize
∑
f∈F Uf (%f)

s.t.

∀l ∈ L,
∑

f going through l

%f 6 Bl

∀f ∈ F , %f > 0

(1)

Solving such an optimization problem in a centralized way would be impracticable. De-
veloping a distributed algorithm has thus received a lot of attention. The main issue is
that checking that all constraints are satis�ed requires a global coordination, which is
very hard to implement. Fortunately, Lagrangian optimization enables us to put the pre-
vious problem in a form more amenable to distribution. This is achieved by introducing

5

a dual variable for each constraint and hence for each resource, which we will denote by
λl. The variables %f of the initial problem are called primal variables. The Lagrangian
function is then de�ned as:

L(%, λ) =
∑
f∈F

Uf (%f)︸ ︷︷ ︸
objective function

+
∑
l∈L

λl ·

Bl − ∑
f through l

%f

︸ ︷︷ ︸

constraints

(2)

The original problem (1) can be safely rewritten (primal problem):

max
%>0

min
λ>0

L(%, λ).

Indeed, if an allocation % is unfeasible, then one of the constraints is violated and the
inner minimization problem (the minimization over λ) is thus solved by setting the corre-
sponding λl to +∞. Conversely, if % is a feasible allocation, then the inner minimization
problem is solved by setting the corresponding λl to either 0 when the constraints are
not tight or to any positive value when the constraint is tight. The objective value is
then equal to the original objective function and this formulation of the primal problem
is thus strictly equivalent to our original problem. Under very mild assumptions it can
be proven that there is no duality gap [35], i.e., that

max
%>0

min
λ>0

L(%, λ)︸ ︷︷ ︸
Primal problem

= min
λ>0

max
%>0

L(%, λ)︸ ︷︷ ︸
Dual problem

def

= min
λ>0

d(λ)

In most cases Uf is chosen to be continuous, increasing and strictly concave and the dual
function d is thus a convex function. Solving the original problem is then equivalent
to �nd the saddle point of L. The main advantage of such reformulation is that now
constraints are very simple (% > 0 and λ > 0) and do not require any global coordina-
tion. Since both concave maximization and convex minimization problems can be solved
through gradient descent (see for example [35, Chapter 3], on the convergence analysis
of descent algorithms), the saddle point is generally obtained by applying a gradient de-
scent simultaneously for both inner and outer optimization problems. A simple constant
step-size (γ%) ascent on the primal variables simultaneous to a constant step-size (γλ)
descent on the dual variables leads the following update equations

%f (t+ 1) = %f (t) + γ% ·
∂L

∂%f
(%(t), λ(t))

λl(t+ 1) = λl(t)− γλ ·
∂L

∂λl
(%(t), λ(t))

(3)

Expanding the partial di�erentiates, the previous update equations are rewritten:
%f (t) = %f (t) + γ% ·

(
U ′f (%f (t))−

∑
l used by f

λl(t)
)

λl(t) = λl(t)− γλ ·
(
Bl −

∑
f through l

%f

) (4)

λl is generally called shadow price for link l and the previous equations lead to a surpris-
ingly simple algorithm that can be interpreted as follows (see Figure 1):

6

N
et
w
or
k
lin
ks

Fl
ow
s

%1

%2

λ2

λ1

λ3
λ4
λ5

λ7
λ6

%

λ

Figure 1: Distributed sharing algorithm based on Lagrangian optimization and gradient descent. Flows
adapt their rate % based on prices λ advertised by the network links they use and conversely.

• Every �ow f evaluates the �total price� of the resources it uses (i.e., the sum of the
λl(t)) and adapts its emission rate to account for both its utility and the virtual
price it should pay. Whenever the price gets �too expensive� compared to the utility
increase U ′f (%f), the �ow decrease its emission rate and conversely.

• Every resource l evaluates whether it is saturated or not and adapts its price accord-
ingly. Whenever a resource is saturated, it will increase its price so that the �ows
going through it decrease their usage and whenever a resource is underused, it will
lower its price so that the �ows going through it can increase their rate.

This �supply and demand� inspired algorithm is a simultaneous gradient descent on both
primal and dual variables that will converge to the saddle point, which is the optimal
solution of the original problem. By adapting the step-size, or the utility functions, one
gets a di�erent protocol. Such techniques have for example been used either to design
protocols achieving a given fairness criteria or to reverse-engineer existing protocols. For
example, by making an analogy between the window adjusting protocols and the primal
update equations, Low et al. proved [31] that, under some stability assumptions, TCP
Vegas achieves some form of proportional fairness, while �rst versions of TCP Reno
behaved as if arctan based utility functions were optimized.

To summarize, the general approach of distributed Lagrangian optimization is based
on the following three steps:

1. Modeling. Model the problem as a concave non-linear maximization problem;
2. Partial derivatives. Convert this problem into two coupled optimization problems

using Lagrangian multipliers and di�erentiate the Lagrangian function L with respect
to each primal and dual variables;

3. Algorithm design. From the structure of these partial derivatives, devise a dis-
tributed algorithm implementing coupled gradient descent (on dual variables) and
ascent (on primal variables). This algorithm can be interpreted as a bargaining of
applications over resources.

The key ingredients to turn the partial derivatives into a distributed algorithms (i.e.,
move from step 2 to step 3) are (1) the separability of objective functions (it is a sum
over the �ows of quantities that depend only on each �ow) and (2) the structure of the
constraints (each constraint corresponds to a resource).

7

3.2. Flow Control in Multi-path Networks

A similar approach relying on these three steps has been used in the context of network
�ows that may choose among a predetermined set of routes [2]. In such a context, each
�ow f is subdivided into sub-�ows f1,. . . ,fk and the optimal �ow control is written as:

Maximize
∑
f∈F Uf (

∑
k %f,k)

s.t.

∀l ∈ L,
∑

fk going through l

%f,k 6 Bl

∀fk ∈ F , %f,k > 0

(5)

Wang et al. [2] speci�cally addressed this problem with the additional constraint that

each �ow has minimum and maximum requirements: ∀f,mf 6 %f
def

=
∑
k %f,k 6Mf . As

this kind of constraints is not relevant in our context, for the sake of clarity, we only
present in the following, simpli�ed versions of the equations and algorithms proposed
in [2].

Now that the �rst modeling step is achieved, we can move on to the partial derivatives
step. Using the same technique as before, a constant step-size gradient algorithm leads
to the following updates:

%f,k(t+ 1) = %f,k(t) + γ% ·
(
U ′f (%f (t))−

∑
l used by fk

λl(t)
)

λl(t+ 1) = λl(t)− γλ ·
(
Bl −

∑
fk through l

%f,k

) (6)

We can now move on to the algorithm design step. The main di�erence with the previous
setting is that each sub-�ow fk has its own rate and requires the aggregate throughput
of �ow f to be updated. More concretely, each �ow f evaluates the price of each sub-
�ow fk and updates the sub-�ow rates accordingly, slowly moving toward the cheapest
alternatives.

Unfortunately, a technical issue prevents the previous equations to be used directly.
Since the original objective function is not strictly convex (it is strictly convex in any of
the %k, but not with respect to the %f,k), the dual function d is not twice di�erentiable
and so, a gradient descent algorithm based on this approach may oscillate and exhibit
convergence instabilities. This problem can be circumvented by adding a quadratic term,
which makes the primal cost function strictly convex1. This technique is called proximal

optimization (see for example [35, Chapter 3]) and is used in [2] where two alternative
algorithms are proposed to solve the �ow control problem in multi-path networks.

Consider the new modi�ed optimization problem:

max
%̃>0

max
%>0

∑
f

Uf

(∑
k

%f,k

)
−
∑
k

∑
f

c

2
(%f,k − %̃f,k)2, (7)

where %̃f,k is an auxiliary variable and c a constant (set to 1 in [2]).

1Han et al. [36] propose to add a term ε
∑
k,f log(%f,k)) and letting ε → 0. Although this approach

is interesting, it may not be well-suited to a system that needs to operate continuously and where
applications and machines regularly join and leave the system.

8

At the optimum, %̃f,k = %f,k and hence the solution of (7) is the same as the one of
(5). This optimization problem is strictly concave in each variable %̃f,k and %f,k, and is
equivalent to

max
%̃>0

max
%>0

min
λ>0

L(%̃, %, λ), (8)

where any of the minimization and maximization problems is a convex or concave opti-
mization problem of a twice di�erentiable function. A classical �xed step-size gradient
descent algorithm can be used for each level. Such three-level resolution would however
be extremely ine�cient in practice as it would require to detect several times the con-
vergence (in a distributed way) of the inner problems before further proceeding on the
outer problems. This is why Wang et al. [2] propose to update all variables %, %̃ and
λ simultaneously, hence breaking the very constraining three-level hierarchical structure
of the proximal optimization problem from Eq. (8). In essence, this leads to the same
equations and algorithm as (6), except that the %̃ acts as a smoothing term for the %
variables to dampen oscillations.

Note that Wang et al. do not provide a proof of the convergence of this algorithm.
This was studied in a more recent work of Lin and Schro� [37], in a similar setting, where
the structure of the two outermost optimization problems is broken. In particular, they
prove su�cient conditions on the step-sizes for the algorithm to converge and also study
the e�ect of measurement noise.

More precisely, let us denote by Ef,k the routing vector for sub-�ow fk. This means
that Elf,k is equal to 1 if route f goes through link l and 0 otherwise. One of the main
results of [37] is that the algorithm converges if the step-size γλ satis�es

γλ <
c

2 · S ·M
, where

{
M = maxf,k

∑
lE

l
f,k and

S = maxl
∑
k

∑
f E

l
f,k

(9)

More concretely, M is the length of the longest path and S is the largest number of
sub-�ows going through a link.

Although this multi-path �ow control problem has been extensively studied on a
theoretical point of view, it is interesting to note that, to the best of our knowledge,
experimental validation of the resulting algorithms is rather limited. The only tested sit-
uations reported in [2, 37, 36] involve at most 8 nodes and 3 pairs of sources/destinations.
In all theses studies, the proposed step-sizes for each setting lead to a satisfactory conver-
gence within a few dozens to a few hundreds of iterations. Yet, it is di�cult to know how
sensitive the algorithms are to these step-sizes, as well as how dependent good step-sizes
are on the platform shape and size.

Finally, it should be mentioned that beside convexity issues, one of the main problems
addressed in most of the previous work is the fact that in network protocols such as TCP
or MP-TCP (Multi-Path TCP) [38], the price is interpreted as a measure of congestion
and is thus implicitly measured. Such value is hence neither precise nor up-to-date, which
creates instabilities. A large part of the existing related work is devoted to solving this
problem (see for example [39]). However, as it will be explained in the next sections,
such issue does not arise in our context nor in the experiments we performed, as we
can develop an application-level protocol where price estimation can follow perfectly the
dynamic induced by Lagrangian optimization.

9

A
pp
lic
at
io
n
1

R
es
ou
rc
es

A
pp
lic
at
io
n
2

...

...

(w1, b1)

m(1)

Wi

Wj

(w2, b2)

m(2)

Bi,j

Figure 2: A resource graph labeled with node (computation) and edge (communication) weights. Two
application deployments with di�erent sources (respectively m(1) and m(2)) and task characteristics.

4. Steady-State Scheduling of BoT Applications

4.1. Platform Model

Throughout this article, we represent the target computing and communication re-
sources by a platform graph, i.e., a node-weighted edge-weighted graph G = (N,E,W,B),
as illustrated in Figure 2. Each node Pn ∈ N represents a computing resource that can
deliver Wn �oating-point operations per second. Each edge ei,j : (Pi → Pj) ∈ E is la-
beled by a value Bi,j which represents the bandwidth between Pi and Pj

2. We assume a
linear-cost communication and computation model. Hence, it takes X/Bi,j time units to
send a message of size X from Pi to Pj . For the sake of clarity, we ignore processor-task
a�nities; instead, we assume that only the number of �oating-point operations per sec-
ond (Wn for processor Pn) determines the application execution speed. However, taking
such a�nities into account does not change any of the results presented in this article.

We assume that all Wi are non-negative rational numbers. If Wi = 0, Pi has no
computing power but can however forward data to other processors. Similarly, we assume
that all Bi,j are positive rational numbers (or equal to 0 if there is no link between Pi
and Pj).

The operation mode of the processors is the full overlap, multi-port model for both
incoming and outgoing communications. In this model, a processor node can simultane-
ously receive data from all its neighbors, perform some (independent) computation, and
send data to all its neighbors at arbitrary rate while respecting the resource constraints
(i.e., the bandwidth and processing speed bounds). Note that this framework also com-
prises the bounded multi-port extension [29] where each node has an additional speci�c
bandwidth bound. This extension would simply amount to change slightly the graph.
However, no speci�c assumption is made on the interconnection graph, which may well
include cycles and multiple paths.

2Such modeling allows to easily account for asymmetrical connections.

10

4.2. Application Model

We consider K applications, Ak, 1 6 k 6 K. Each application originates from a
master node Pm(k) that initially holds all the input data necessary for each application
Ak (see Figure 2). Each application is composed of a very large set of independent, equal-
sized tasks. We can think of each Ak as a BoT, where the tasks are �les that require
some processing. A task of application Ak is called a task of type k and is described by
a computational cost wk (a number �oating point operations) and a communication cost
bk (in bytes) for the associated �les.

In the sequel to simplify the presentation, we assume that the only communication
required is outwards from the master nodes, i.e., that the amount of data returned by the
worker is negligible. Considering inward data would incur only minor modi�cations to
the remaining equations and algorithms. We further assume that each application Ak is
deployed on the platform as a tree. This assumption is reasonable as this kind of hierar-
chical deployment is used by many grid services [40]. Therefore, if an application k uses
node Pn, all its data will use a single path from Pm(k) to Pn denoted by (Pm(k) ; Pn).
If there is no such path or if application k cannot access node n (e.g., for administrative
reasons), then (Pm(k) ; Pn) is empty. We do not assume that there is only a single
way from a location to another (which generally does not hold true in a grid environ-
ment). We rather assume that if several ways exist, only one is actually used. Given the
proximity between our problem and the multi-path �ow control problem, it would not
be di�cult to consider several possible routes whenever needed as long as this number of
alternatives remains limited. However, it would uselessly complexify the equations and
algorithms presented thereafter.

4.3. Steady-State Scheduling and Fairness

As each application comprises an unlimited supply of tasks, it should aim at max-
imizing its average number of tasks processed per time-unit (the throughput). In this
article, we denote by %n,k the average number of tasks of type k executed by Pn per
time unit. It has been shown in [30] that feasible steady-state rates (i.e., feasible %n,k's)
could be used to derive e�cient autonomous and dynamic schedules. That is why in this
article, we only focus on determining such rates in a fully decentralized way. Note that
the steady-state assumption prevents to account for possible �le sharing between tasks,
which may be an important aspect but is too irregular to be incorporated in the steady-
state scheduling model. When �le sharing is a dominant factor and cannot be neglected,
other kinds of modeling and techniques should be used (see for example [17, 41, 42]) but
to the best of our knowledge, the fairness aspect was never formally considered in such
works.

We denote by %k the throughput of application k at the steady state: %k =
∑
n∈N %n,k.

In this context, social welfare optimization (i.e.,
∑
k %k) should be avoided as it may

lead to starvation of some application. Instead, in this article we choose to focus on
proportional fairness (i.e., Uk = log), which is a scale-free3 measure and ensures that no

3It is insensitive to the units in which throughput is expressed. If an application were to group into
tasks twice as big, the same resource share would result in a twice smaller throughput. Such scale-free
property is highly desirable in our context since throughput is expressed in tasks of application k per
time-unit.

11

starvation can occur. Yet, the algorithms we present can be straightforwardly adapted
to α-fairness, which accounts for other types of fairness. Therefore, we aim at �nding
(%n,k)16k6K,16n6N that solve

Maximize
∑
k Uk(%k)

s.t.

(10a) %k =
∑
n

%n,k

(10b) ∀n,
∑
k

%n,kwk 6Wn

(10c) ∀(Pi → Pj),
∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kbk 6 Bi,j

(10d) ∀n, ∀k, %n,k > 0

(10)

The �rst equation (10a) is only introduced for ease of notations. Constraint (10b)
states that the computation capacity of processor n cannot be exceeded. Similarly,
constraint (10c) states that the network capacity of link (Pi → Pj) cannot be exceeded.
If both inward (bink) and outward data (boutk)had to be considered, constraint (10c) would
be simply replaced by the following constraint:

∀(Pi → Pj),
∑
k

(∑
n such that

(Pi→Pj)∈(Pm(k);Pn)

%n,kb
in
k +

∑
n such that

(Pi→Pj)∈(Pn;Pm(k))

%n,kb
out
k

)
6 Bi,j

This framework is very general as it neither relies on the assumption that all ap-
plications originate from the same location nor that all processors are available to all
applications (such restrictions can seamlessly be incorporated in the previous equations).

5. Decentralized Scheduling of BoT Applications

The optimal BoT application scheduling on grids, as described in Section 4 is very
similar to the optimal �ow control problem in multi-path routing presented in Section 3.2.
Hence, we can apply the same Lagrangian based technique.

5.1. Computing Partial Derivatives

Applying the Lagrangian methodology to this context leads to the introduction of
dual variables for both computation resources (λi for Pi) and communication resources
(µi,j for (Pi → Pj)). Again, the resulting algorithm will be governed by the following
dynamic:

%n,k(t+ 1) = %n,k(t) + γ% ·
∂L

∂%n,k
(%(t), %̃(t), λ(t), µ(t))

%̃n,k(t+ 1) = %̃n,k(t) + γ%̃ ·
∂L

∂%̃n,k
(%(t), %̃(t), λ(t), µ(t))

λi(t+ 1) = λi(t)− γλ ·
∂L

∂λi
(%(t), %̃(t), λ(t), µ(t))

µi,j(t+ 1) = µi,j − γµ ·
∂L

∂µi,j
(%(t), %̃(t), λ(t), µ(t))

(11)

12

Expanding the partial derivatives for %n,k, we get:

∂L

∂%n,k
= U ′k(%k(t))−

(
bk ·

∑
(Pi → Pj) from

m(k) to Pn

µi,j(t) + wk · λn(t)

︸ ︷︷ ︸
pnk (t): aggregate price to use Pn

)
(12)

As expected, the aggregate price to use Pn accounts for both communication link usage
(the µi,j) and CPU usage (the λn). Furthermore, this usage is weighted by communica-
tion (bk) and computation (wk) requirements of application k. Note that if both inward
and outward data had to be considered, pnk (t) would simply comprise an additional term
boutk ·
∑

(Pi→Pj)∈(Pn;Pm(k))
µi,j(t). Again, updating %n,k requires the knowledge of %k, which

is the aggregate throughput of application k.

5.2. Distributed Algorithm Design

In grids, the master-worker pairs are analogous to routes in the �ow control problem,
and applications are analogous to connections. Compared to the �ow control problem,
there is thus a huge number of �routes� and a very few �sources,� which may have some
important impact on the convergence rate.

Last, a subsequent di�erence lies in the decision points. While in networking context,
sources adapt and choose their transmission rate, whereas in grids, we would like the
intermediate nodes (between a master and each of its workers) to adjust the rates, so
as to prevent overloading the master with information management and decision tak-
ing. Hence, we propose to use a �source� algorithm4, which is based on a distributed
aggregation of various quantities5:

σnk (t) =
∑

n′ such that n∈(Pm(k);Pn′)

%n′,k(t) (13)

ηnk (t) =
∑

(Pi→Pj)∈(Pm(k);Pn)

µi,j(t) (14)

σnk is the aggregate throughput of application k at node n. Hence, it re�ects how much
data will need to �ow through node n for application k. ηnk is the price per byte to pay
for sending data from the master m(k) to node n. The price pnk can be computed from
ηnk as follows:

pnk (t) = bk · ηnk (t) + wk · λn(t) (15)

4This approach was initially proposed in [43] but the update equations showed severe limitations that
we explain how to overcome in this article.

5Aggregate quantities are noted xnk instead of xk,n

13

Expanding the partial derivatives for other variables than %n,k, we get:

∂L

∂%̃n,k
= %n,k(t)− %̃n,k(t) (16)

∂L

∂λi
= Wi −

∑
k

wk · %i,k(t) (17)

∂L

∂µi,j
= Bi,j −

∑
k

bk · σjk(t) (18)

Note that in Eq. (18), one should use either σjk or σ
i
k depending on whether i or j is met

�rst in the deployment of application k.
Using this particular structure, we propose to implement this dynamic using classical

traversal algorithms [44] initiated by the master of each application.

Prerequisites Each node Pn is responsible for computing primal variables %n,k and
%̃n,k, while the master nodes are responsible for the aggregation %k of the %n,k. Each
resource (CPU or link) is responsible for its dual variable (λn or µi,j). All these
variables are initialized with random non-negative values.

Loop Master, workers and resources interact through the following two steps along the
application deployment trees in an in�nite loop.

• Step 1: Propagation phase Each master propagates its aggregate throughput
%k along the tree to the workers. During the propagation, the aggregate price
ηnk for sending data from the master is computed based on the price µ of the
communication resources encountered along the path down to node n. Therefore,
upon reception, each node has all required information to compute pnk and update
its contribution %n,k to application k using Eq. (12).

• Step 2: Aggregation phase Upon reception of %k and aggregate communication
price, the leaves of the tree send back their new %n,k value up-tree, which are in
turn aggregated in σnk up to the master.
During the aggregation phase, every communication (resp. computation) resource
has access to the load bk · σjk (resp. wk · %n,k) incurred by application k and can
thus update its price µi,j (resp. λn).

Such interaction ensures a permanent improvement of resource sharing and a seamless
adaptation to variations of Wi of Bi,j and to the arrival or departure of new nodes and
applications.

Similarly to the original algorithm of [2], there is no need for any global infor-
mation, such as the number or the kind of nodes that are in the grid. Nodes only
need to communicate with their neighbors and to update the variables they are re-
sponsible for. The wave algorithms seamlessly aggregate all required quantities with
no direct interaction among the di�erent applications. Furthermore, the resulting al-
gorithm only requires very simple computations and few message exchanges. A video
illustrating the behavior of the algorithm in a simple scenario is available at http:
//mescal.imag.fr/membres/arnaud.legrand/distla_2012/.

14

5.3. Convergence Issues

Such kinds of algorithm converge to the optimal solution when provided with an
adequate choice of the step-sizes γλ, γµ, γ%, and γ%̃, a recurrent problem in gradient based
algorithms. Even though the results by Lin and Schro� [37] do not provide any insight on
the convergence speed, condition (9) implies that the step-size should be much smaller in
the steady-state scheduling context than in the multi-path �ow-control problem. Indeed,
in the �ow-control problem, the vector E of [37] is a 0− 1 vector whereas in our context,
its values are the wk and the bk, that are much larger. The step-sizes should be at least
inversely proportional to M · L, where

L = maxk
(
bk.
(
maxn |(Pm(k) ; Pn)|

)
+ wk

)
and

M=max

(∑
k wk, max

(Pi→Pj)

∑
k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)
bk

)
.

Now, although M and L have a less obvious interpretation, one sees that they account
for bk and wk and that step-sizes should thus be signi�cantly small, which may impact
convergence speed.

As we previously mentioned, although very promising, experimental studies of these
algorithms reported in the literature are rather limited. Our initial evaluation [43],
although limited revealed that even in very simple settings, �nding satisfactory step-
sizes seemed sometimes impossible and that non-trivial adaptation of Eq. (18) were
required. This is why we devote the rest of this article to demonstrate that application
heterogeneity is the source of the di�culty, to explain how step-sizes should be tuned
and how updates should be performed to be e�ective in a wide variety of scenarios.

6. Performance Evaluation of the �Naive� Algorithm

In this section, we evaluate the algorithm proposed in Section 5 when using exactly
Eq. (11). We call such algorithm the �naive algorithm� as it is a straightforward appli-
cation of the distributed Lagrangian optimization proposed in [2] to our context. The
only di�erence lies in the structure of the algorithm. We evaluate our algorithm using
the SimGrid simulation toolkit [45] and implementing the whole wave algorithm and
synchronization between resources. All our codes, scripts and experiment results are
available at http://mescal.imag.fr/membres/arnaud.legrand/distla_2012/.

6.1. Platform Generation

The platforms used for the experiments are random trees described by two parameters:
the number of nodes n and the maximum degree of each node dmax. The interconnection
network topologies are generated using a breadth-�rst algorithm to generate wider (rather
than deep and narrow) trees. Figure 3 shows a sample platform with 20 nodes and a
maximum node degree of 5. Computational speeds are uniformly chosen in the range
2GFLOP/s � 10GFLOP/s, while link capacity is chosen in the range 110MB/s � 7MB/s.

15

Nodes

Links

Figure 3: Sample platform with N = 20 nodes and maximum degree dmax = 5. The area of squares
(resp. diamonds) is proportional to the capacity of the nodes (resp. links).

6.2. Applications

As we have previously explained in Section 2.1, existing workload characterization
studies [14, 15, 16] do not provide any information on communications since such infor-
mation can generally not be traced at the batch scheduler level. BOINC [12] is clearly
a steady-state oriented platform and could be used as a source of inspiration to instan-
tiate our simulations. Yet, applications from BOINC exhibit a particularly low CCR
that is not representative of our target use case. Existing studies that try to model BoT
characteristics in data grids (e.g., [15, 16]) rely on batch scheduler traces that do not
comprise �le system information. As stated above, we carefully designed the algorithm
to cope with network-bound applications. Thus, it is important to de�ne application
types that exhibit di�erent CCRs. Three types of applications have been used for the
experiments: a CPU-bound application, where each task performs a multiplication of two
square matrices of size 3500, hence b1 = 196 MB and w1 = 42,875 MFLOP; a network-
bound application, where the tasks of that application implement the addition of two
square matrices of size 3500, hence b2 = 196 MB and w2 = 12.25 MFLOP; an interme-
diate application, where each task sorts a vector of one million double elements, hence
b3 = 8 MB and w3 = 13.81 MFLOP.

Note that the CCR of such applications is much larger than for those which are
typically encountered in BOINC projects. They are therefore more di�cult to schedule.
For the experiments, the master of each application is chosen randomly, but no two
applications are emitted from the same host. The previous estimation of b and w may
seem naive or arti�cial but they enable to span a rather di�cult set of scenarios. Indeed,
in practice, the number of applications running in concurrence is rather limited (e.g., the
BOINC platform currently comprises around 50 projects for more than 500,000 machines,
the LCG runs a dozen of applications on 200,000 processing units). Hence, since the
platform sizes we investigate remains rather small, we do not experiment with situations
comprising a large number of applications. We also do not investigate how the number
of applications in�uences convergence of the algorithm and instead focus on the platform
size and on the nature of applications.

16

6.3. Validating Results

Determining convergence of iterative algorithms is generally not easy. Fortunately,
it has been shown that the problem of �nding a fair allocation of resources subject to
linear constraints can be expressed in an SDP (Semi-De�nite Programming) program [46].
Therefore, in the experiments, we test the convergence of our algorithm by comparing
the computed objective value to the response of the DSDP solver [47]. Since the SDP
program can be solved in polynomial time, it provides a quick and reliable, yet centralized,
validation of our numerical results.

6.4. Convergence

The algorithms presented in this article are iterative algorithms whose convergence
is only asymptotic. As a consequence, for such algorithms, one always estimates con-
vergence within an arbitrarily �xed precision. In the following, we consider convergence
in terms of value of the objective function, as it represents the fairness and e�ciency of
the solution. Suppose that at time epoch t, the objective value is at 95% of the optimal.
Then, this means that the allocation is relatively e�cient (one should not be able to
increase the throughput of an application without having to decrease another one), and
fair (as values of the throughput are relatively close to each others, in accordance with
the measure of the objective function).

Since our objective function is a sum of logarithms, we consider the solution to have
converged with a precision of 0 < x 6 1 if the objective value lies within the interval
[objopt + log(x), objopt − log(x)], where objopt is the optimal solution obtained by SDP.
However, while performing the gradient descent, oscillations may occur. So, the objective
value may lie within the correct interval in iteration v but not in iteration v + 1. For
that reason, we run the algorithm for a maximum number of iterations vmax and check if
the objective value of our algorithm is within the computed bounds around the optimal
SDP value for the last vcheck iterations. For all the experiments, we use a precision of
x = 0.85 (85%) and we consider the algorithm to have converged if the objective value
remains within bounds for the last vcheck = 100 iterations. Considering tighter thresholds
would probably not be really meaningful since real systems experience noise and their
characteristics evolve over time.

6.5. Results for Homogeneous Applications

To assess the convergence of our algorithm, we start with experiments using a homo-
geneous (in terms of CCR) set of three applications (three intermediate applications, i.e.,
w = 13.81 GFLOP and b = 8 MB). For each experiment, we randomly select the master
node of each application on a given platform.

6.5.1. Small Platforms

For this �rst experiment, we use three di�erent platform sizes: 5 nodes, 10 nodes,
and 20 nodes. Since the shape of the platform depends on the degree of each node,
we vary the degree for these platforms and generate 9 random platforms: three with
N = 5 nodes and maximum degree dmax = 3; three with N = 10 with dmax ∈ {3, 5, 7};
and three with N = 20 with dmax ∈ {5, 10, 20}. Through an extensive search, we �nd
a set of parameters (step-sizes) for which our distributed algorithm converges for the
given homogeneous applications on all experimental platforms. These parameters are:

17

γ% = 0.01, γ%̃ = 0.1, γλ = 1 × 10−14, γµ = 1 × 10−14. For this set of parameters our
algorithm converges within the �rst 200 iterations, i.e., the objective value enters the
tube centered around the SDP value after at most 200 iterations and remains in this
tube until iteration 1,500 where we stop the simulation.

These results con�rm that the algorithm converges for homogeneous applications,
similar to the simulations conducted by Wang et al. [2]. Nonetheless, we have observed
in this experiment that the convergence is rather sensitive to the chosen parameters.
Exhaustive search is tedious and is not likely to work when exploring larger sets of
platforms. Furthermore, such an approach does not give any statistical information about
the sensibility to platform con�guration or algorithm parameters. For that reason, we
rely on factorial designs for the experiments on bigger platforms [48].

6.5.2. Coe�cient of Variation

Considering only the �nal convergence as metric for the experiments leads to only one
categorical variable of binary value �converged� or �not converged.� Statistical analysis
of the results, e.g., by using an analysis of variance (ANOVA) can be misleading for
categorical data [49]. Furthermore, such information is rather poor as it does not convey
any information on the reason why the algorithm does not converge. Intuitively, it could
be either the case that step-sizes are too large and that the system is unstable or that
step-sizes are too small and that the system is evolving very slowly and remains far away
from the optimal solution. To gain insights on how well the gradient descent works,
we use the coe�cient of variation cv (cv = SD(z)/MEAN(z), where z is the vector of
objective values of the last v iterations) to assess whether the objective value is oscillating
or not.

It is important to note that a small value of cv does not mean that the algorithm has
already reached the optimal value. It may be far from the optimal solution but converges
very slowly. Generally speaking, small values of cv and a non-optimal solution re�ects
that step-sizes are too small to let the algorithm converge within the de�ned maximum
number of iterations.

6.5.3. Large Platforms

Since we already have a set of parameters that works for small platforms, we base the
initial range of values for our factorial design on these values. Figure 4 summarizes the
results of the factorial experiment using 30 platforms with N = 20 nodes and dmax = 5.

This summary becomes very useful when seeking a good set of parameters for a given
platform size. The ANOVA is computed using a linear combination of all factors while
the coe�cient of variation cv is used as response variable. The term �factor %� (resp.
%̃, λ, µ) is used instead of �factor γ%� (resp. γ%̃, γλ, γµ) when there is no ambiguity. The
ANOVA table reveals which factor has a real e�ect on the response. In Figure 4, the
factor % is the most in�uential factor with a high signi�cance (p value is smaller than
0.0001). This e�ect can also be seen in Figure 4(b) as the average cv value is much lower
if % is set to its low value (−1). This information can be used to select good step-sizes
for each variable. Yet, one must be careful about the signi�cance results for each factor
as well as about possible interactions between parameters. In the present experiment,
one could try to reduce further the step-size of % since it is the most signi�cant factor.
It may however negatively a�ect the convergence rate. λ and µ have limited impact and
can thus a priori be arbitrarily chosen in the range [1 × 10−13, 1 × 10−15]. Note that

18

γ% γ%̃ γµ γλ
low (-1) 0.001 0.001 1.00e-15 1.00e-15
high (1) 0.1 0.1 1.00e-13 1.00e-13

(a) Parameters for factorial design

Df Sum Sq Mean Sq F value Pr(>F)

% 1 634854.4356 634854.4356 75.1771 0.0000 ***
%̃ 1 79293.1822 79293.1822 9.3896 0.0023 **
λ 1 39882.0712 39882.0712 4.7227 0.0303 *
µ 1 32497.4344 32497.4344 3.8482 0.0504 .
platform 29 470172.3060 16212.8381 1.9199 0.0032 **
% : %̃ 1 67441.2012 67441.2012 7.9861 0.0049 **
% : λ 1 27584.2533 27584.2533 3.2664 0.0714 .
%̃ : λ 1 330.0890 330.0890 0.0391 0.8434
% : µ 1 38450.8702 38450.8702 4.5532 0.0334 *
%̃ : µ 1 31651.5862 31651.5862 3.7481 0.0535 .
λ : µ 1 14136.1931 14136.1931 1.6740 0.1964
% : %̃ : λ 1 1489.7248 1489.7248 0.1764 0.6747
% : %̃ : µ 1 35856.2101 35856.2101 4.2460 0.0399 *
% : λ : µ 1 16345.9826 16345.9826 1.9356 0.1649
%̃ : λ : µ 1 16.1140 16.1140 0.0019 0.9652
% : %̃ : λ : µ 1 158.4895 158.4895 0.0188 0.8911
Residuals 435 3673480.0717 8444.7818

(c) ANOVA results: * means that parameter is
signi�cant

0
2
0

4
0

6
0

γ%

c v

-1 1

0
2
0

4
0

6
0

γ%̃

c v

-1 1

0
2
0

4
0

6
0

γµ

c v

-1 1

0
2
0

4
0

6
0

γλ

c v

-1 1

(b) Main e�ects plot

400 600 800 1000 1200 1400

(d) Box plot of number of iterations
until convergence for best parameter

set

Figure 4: Experimental results for homogeneous applications with platforms of N = 20 and dmax = 5.

Table 1: Overview of factor levels for factorial experiments with the homogeneous applications.

N dmax γ% γ%̃ γµ γλ
nodes degree low high low high low high low high nb converged

20 5 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-151E-13 28 / 30
20 15 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-151E-13 29 / 30
40 5 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-151E-13 27 / 30
100 5 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-151E-13 24 / 30
500 15 0.001 0.1 0.001 0.1 1E-15 1E-13 1E-151E-13 20 / 30

it can be very hard to draw such conclusions in presence of strong interactions between
variables and that further investigations would be required.

By using the parameter set γ% = 0.001, γ%̃ = 0.001, γλ = 1×10−13, γµ = 1×10−15, the
algorithm converges on 28 platforms out of 30 and the corresponding convergence time
distribution is given in Figure 4(d). When investigating the remaining two platforms,
we observe that 1,500 iterations are simply not enough and the algorithm requires a few
extra hundreds of iterations to converge. Further tuning of step-sizes could be done using
such technique but our goal here is mainly to illustrate how factorial design and ANOVA
can help to quickly get some sound analysis of the e�ects of our algorithm's parameters
on convergence. It is important to recall that this approach is not about �nding the best
possible step-sizes for a particular platform but rather to �nd step-sizes that are e�ective
in a wide range of settings.

Table 1 shows an overview of values that have been used for conducting the factorial
experiments, where each row speci�es the factor levels for a particular platform size. The
best combination of factor levels we obtained for each platform size is marked in bold,
while the last column holds the number of experiments that have converged in less than

19

1500 iterations for these best factor levels.
In summary, the factorial design of the experiments can help us to �nd the correct

step-sizes that enable the algorithm to converge. The levels of each factor, reported in
Table 1, did not have to be modi�ed throughout the experiments for di�erent platform
sizes even though the best levels for a platform size have changed. Interestingly, in
our experiments, setting γ%̃ to a very small value was better although this parameter
had generally little in�uence. Correctly setting the other step-sizes was however crucial
to obtain a robust con�guration. Note that one should not believe that convergence
is particularly harder to achieve when platform size increases. The fact that only 20
platform out 30 converged within desired time bound for very large platforms is simply
the consequence that the step-size values used in this set of experiments are slightly more
suited to small platforms than to large ones.

6.6. Results for Heterogeneous Applications

Since the naive algorithm has proved to be e�ective in the case of homogeneous
applications for a wide range of platforms, we now evaluate the case of heterogeneous
applications. In this experiment, three di�erent applications (one instance from each
of the three application types that have been de�ned in Section 6.2) emit tasks to the
distributed platform. Again, we use a factorial design for the experiment and start with
30 platforms of 20 nodes and a maximum degree of 5.

For lack of space, we omit the summary of the experimental results but all details can
be found in an extended version published as a research report [50]. In this experiment,
we use the parameters that worked well in the homogeneous case. However, in contrast
to the homogeneous case, the algorithm fails to converge in any of the 480 experiments.
All factors and combinations of factors (but %) are signi�cant and it is thus very hard
to conclude anything from the ANOVA. Additionally, no factor combination can reduce
the cv to a value of less than 7, which was found to be a rather large value for allowing
convergence in the homogeneous case.

Therefore, we decrease the levels of %̃, µ and λ and rerun the factorial analysis. The
values for % remain identical as this factor was insigni�cant in the previous ANOVA. As
expected, the results of the successive factorial experiments are disappointing. Again,
our distributed algorithm fails to converge in any of the 480 experiments. Worse, the
average coe�cient of variation increases for each factor level. In addition, all factors
(except µ) and basically all interactions showed a signi�cant di�erence in variance in the
corresponding ANOVA table. The following conclusions can be drawn from these results:

1. The naive version of the distributed algorithm fails to converge for a heterogeneous
set of applications. More precisely, despite our e�orts, we cannot �nd a set of pa-
rameters that enables the algorithm to converge for several platforms as seen in the
homogeneous case.

2. There might be a set of parameters for which the algorithm converges for a given
platform, but this set seems very hard to determine. Hence, for very simple platforms,
we tried several extensive searches but always failed to �nd satisfactory step-sizes.
Either the algorithm is highly unstable or it is so slow that it fails getting close to the
optimal. More precisely, in several cases, the objective value is very low, increases
very slowly and suddenly moves very far away, hence taking a very long time before
stabilizing again. The system behaves just as if there was a huge instability zone
around the optimal value, which prevents any convergence.

20

To overcome this problem, we show in the next section how the algorithm can be adapted
to enable convergence for heterogeneous sets of applications.

7. Recipes for Convergence

As demonstrated in the previous section, an algorithm using naive update equa-
tions (11) is ine�ective in a heterogeneous application setting. This issue was already
identi�ed on a very speci�c example in [43], but application heterogeneity had not been
identi�ed as the explanatory factor. Through a detailed analysis of several particular
cases, we have been able to identify several sources of instability or slow convergence.
In this section, we detail and justify several modi�cations of equations (11) to eliminate
these issues. Our experience indicates that the combination of all these modi�cations
is required to obtain an e�cient algorithm but we have not evaluated their respective
impact. Such a study would be interesting but is beyond the scope of this article.

7.1. Avoiding Division by Zero

As explained in Section 4.3, a reasonable choice for Uk is the logarithm function. Yet,
when substituting this into the update equations for %n,k, we get a term 1

%k
:

%n,k(t+ 1)← %n,k(t) + γ%

(
1

%k(t)
− pnk (t)

)
,

where pnk (t) is the aggregate cost that application k should �pay� for using resource n (see
Eq. (18)). Unfortunately, although in the optimal solution %k > 0, during convergence,
one of the %k may drop to zero or to very small values. A small value of % leads to
huge updates and thus to severe oscillations. As mentioned in [2], it is perfectly valid to
normalize this update as follows:

%n,k(t+ 1)← %n,k(t) + γ% (1− %k(t) · pnk (t)). (19)

Such rescaling is very classical and already implemented in the naive algorithm. It is
thus completely ine�ective in a fully heterogeneous context.

7.2. Fast Convergence of the Primal

As we have previously seen, constant step-size gradient descent on a convex function
F is done by repeating the following updates: x(t + 1) ← x(t) − γ∇F (x(t)). It is
well known that Newton's algorithm has much faster convergence than simple gradient
projection algorithm. In Newton's algorithm, the updates are as follows: x(t + 1) ←
x(t) − γ

(
∇2F (x(t))

)−1 · ∇F (x(t)). Inverting the Hessian matrix ∇2F (x(t)) is however
very time consuming, which is why approximate Newton methods are often used [35].
In such methods, the ∇2F (x(t)) matrix is often replaced by a simpler matrix (like its
diagonal), whose inversion is straightforward and still has the right order of magnitude.
Computing the Hessian matrix for our particular problem leads to a non-invertible matrix
because of the non-strict convexity of our initial objective function. Considering only
diagonal elements, we get a new scaling that replaces Eq. (19):

%n,k(t+ 1)← %n,k(t) + γ% (1− %k(t) · pnk (t)) %k(t). (20)

Unfortunately, again, even with very small step-sizes to prevent oscillations, this tech-
nique (alone) revealed ine�ective to improve convergence in our experiments.

21

7.3. Stability Condition Around the Equilibrium

Our experiments in [43] and in Section 6.6 showed that this inability to converge was
due to a strong instability nearby the equilibrium. Every time the objective function goes
nearby the optimal value, it instantaneously bounces away. Such instability is caused by
the fact that updating % has an impact on the prices λ and µ, which in turn impact on
the %'s update. The second update of % should have the same order of magnitude (or be
smaller) as the �rst one to avoid numerical instabilities that prevent convergence of the
algorithm6.

Let us assume that we have reached the equilibrium for both primal and dual vari-
ables. Further assume that the price λn of Pn is increased by ∆λn. From Equation (20),
we derive that such an increase incurs a variation ∆%n,k of %n,k when %n,k > 0:

∆%n,k = −γ%wk%2k ·∆λn.

In turn, from Equation (17), we see that such a variation incurs a variation of λn:

∑
k s.t. %n,k > 0

γλwk ·∆%n,k = −

(∑
k

γλγ%w
2
k%

2
k

)
·∆λn.

Although the new variation is in reverse direction, the solution of our dynamic will be
stable only if the new variation has a smaller amplitude than the initial one, i.e., if for
every node n we have: ∑

k s.t. %n,k > 0

γλγ%w
2
k%

2
k < 1.

Likewise, we get that the solution of our gradient descent is stable only if for every
(Pi → Pj) we have: ∑

n such that
(Pi→Pj)∈(Pm(k);Pn)

and %n,k>0

γµγ%b
2
k%

2
k < 1.

Therefore, the updates of λ and µ should be done accordingly:

λi(t+ 1)← λi(t) + γλ

∑
k wk%n,k(t)−Wi∑
k s.t. %n,k>0 w

2
k%

2
k(t)

(21)

µi,j(t+ 1)← µi,j(t) + γµ

∑
k bkσ

n
k (t)−Bi,j∑

k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)
and %n,k>0

b2k%
2
k(t)

(22)

Note that this scaling does not require any additional aggregation as all processors already
receive %k to perform the update of % (Eq. (19)). When a node does not participate in
any computation or when a link does not convey any data, the denominator is equal to
zero and the previous updates are thus not well-de�ned. We need an update for the case
where this situation occurs.

22

2

6

10

14

18

22

number of iterations

0 200 400 600 800 1000

o
b
je
ct
iv
e
va
lu
e

Algorithm output
Optimal value

(a) Setting the prices to zero if a division
by zero occurs

2

6

10

14

18

22

number of iterations

0 200 400 600 800 1000

o
b
je
ct
iv
e
va
lu
e

Algorithm output
Optimal value

(b) Damping with geometrical update

Figure 5: Stabilization using geometric update.

7.4. Avoid Division by Very Small Values and Discontinuities

An important point on which we have not insisted yet is that every variable needs
to remain non-negative (hence, the need in the previous updates of primal variables to
only consider variables %n,k that are positive). Hence, in any such distributed gradient
algorithm, if any update step leads to a negative value, the variable is set to 0. This kind
of projection is done with the operator [x(t) + u]+ = max(0, x(t) + u) and is applied to
every variable (both primal and dual). It is typical for such methods but raises several
issues in our context. Indeed, it may be the case from an iteration to another that a
denominator experiences a very important variation, which may cause a large negative
step. Whenever many dual (resp. primal) variables suddenly drop to 0, it generally
causes a large increase of the primal (resp. dual) variables. This is why these projections
need to be smoothed. We used the following smooth projection operator, which revealed
extremely e�cient:

[x(t) + u]
α+

= max(α · x(t), x(t) + u),with 0 < α < 1

With such updates, variables never suddenly drop to 0. Instead, variables geometrically
decrease to zero, until the corresponding resource is used again. In our experiments, we
set α to 1/2. As illustrated in Figure 5, this technique proves very e�cient for removing
oscillations.

During our investigations, we observed that Newton method on the primal, stability
condition on the dual and geometric updates all improved convergence without com-
pletely solving the issue. Removing any of these ingredients leads to a dynamic that gen-
erally exhibits severe convergence issues, which makes it hard to evaluate their respective
in�uence. Our new adaptive algorithm is thus governed by the following equations:

6Such issue had been already reported in [43] but the proposed solution did not take the previous
Newton updates on primal variables and were thus slightly di�erent and not as e�ective.

23

%n,k(t+ 1) ←
[
(1− γ%̃)%n,k(t) + γ%̃%̃n,k(t) + γ% (1− %k(t).pnk (t)) %k(t)

]α+
%̃n,k(t+ 1) ←

[
(1− γ%̃)%̃n,k(t) + γ%̃%n,k(t)

]α+
λi(t+ 1) ←

[
λi(t) + γλ

∑
k wk%i,k(t)−Wi∑

k s.t. %n,k>0 w
2
k%

2
k(t)

]α+

µi,j(t+ 1) ←

µi,j(t) + γµ

∑
k bkσ

j
k(t)−Bi,j∑

k

∑
n such that

(Pi→Pj)∈(Pm(k);Pn)
and %n,k>0

b2k%
2
k(t)

α+

(23)

8. Performance Evaluation of the Adaptive Algorithm

In this section, we assess the convergence quality of our new iterative algorithm on a
wide variety of platforms.

8.1. Platforms and Applications

We select the same platforms as the ones we used for evaluating the homogeneous
case, i.e., platforms of size 20, 40, and 100. Additionally, we also include platforms with
500 nodes and a maximum degree of 15. We have tested the same heterogeneous set of
applications as for the experiments with the naive version of the algorithm. So, three
applications (CPU-bound, network-bound, intermediate) are randomly placed on a host
and emit their tasks from this host. We also ensure that application masters are not too
far away from each other and that they actually interfere even when the platform size
increases.

8.2. Results for Heterogeneous Applications

We started our evaluation with 30 platforms of 20 nodes and a maximum degree
dmax = 5. Since the update formulas di�er drastically from the ones used in the naive
version, we cannot use the same parameter ranges. Hence, we select one platform and
perform an initial scan over a wide range of parameters to �nd suitable values for each
factor. This scan suggests to conduct a factorial experiment with the following values:
% = (0.05, 0.15), %̃ = (0.05, 0.15), λ = (0.7, 1.3), µ = (0.7, 1.3). The �rst entry of the
vector denotes the smaller level of each factor. Performing an ANOVA on the results
enables to determine a set of parameters that lead our algorithm to converge on 24 out
of 30 platforms. The best values are shown in the �rst line of Table 2.

Unfortunately, when testing these factor levels on platforms with 40 nodes and dmax =
5, these values are found to be ine�ective (the algorithm converges in only 7 out of the
total 480 experiments). However, the ANOVA reveals that that % is the most signi�cant
factor and should be decreased. Thus, we adjust the values for % and run another
series of experiments with the following factor levels: % = (0.01, 0.05), %̃ = (0.05, 0.15),
λ = (0.7, 1.3), µ = (0.7, 1.3). The analysis shows that % is again the most signi�cant
factor to achieve a small coe�cient of variation (cv) and that the other parameters have
little in�uence. Indeed, when % is set to 0.01, the algorithm converges in 232 of 240 cases.

24

Table 2: Good step-sizes for di�erent platform characteristics for heterogeneous applications.

nodes degree % %̃ λ µ nb converged

20 5 0.05 0.05 1.3 0.7 24 / 30
20 15 0.01 0.15 0.7 1.3 30 / 30
40 5 0.01 0.05 1.3 0.7 28 / 30
100 5 0.01 0.05 0.7 0.7 27 / 30
500 15 0.002 0.05 0.7 0.7 29 / 30

γ% γ%̃ γµ γλ
low (-1) 0.001 0.01 0.1 0.1
high (1) 0.002 0.05 0.7 0.7

(a) Parameters for factorial design

Df Sum Sq Mean Sq F value Pr(>F)

% 1 0.1013 0.1013 2.0243 0.1555
%̃ 1 0.3640 0.3640 7.2711 0.0073 **
λ 1 4.6328 4.6328 92.5321 0.0000 ***
µ 1 2.6296 2.6296 52.5213 0.0000 ***
platform 29 28.8514 0.9949 19.8709 0.0000 ***
% : %̃ 1 0.0774 0.0774 1.5461 0.2144
% : λ 1 0.0796 0.0796 1.5904 0.2079
%̃ : λ 1 0.0410 0.0410 0.8197 0.3658
% : µ 1 0.0240 0.0240 0.4800 0.4888
%̃ : µ 1 0.0045 0.0045 0.0900 0.7643
λ : µ 1 2.3609 2.3609 47.1550 0.0000 ***
% : %̃ : λ 1 0.1230 0.1230 2.4560 0.1178
% : %̃ : µ 1 0.0009 0.0009 0.0182 0.8926
% : λ : µ 1 0.0140 0.0140 0.2798 0.5971
%̃ : λ : µ 1 0.0071 0.0071 0.1418 0.7067
% : %̃ : λ : µ 1 0.0020 0.0020 0.0390 0.8436
Residuals 434 21.7290 0.0501

(c) ANOVA results: * means that parameter is
signi�cant

0
.1
5

0
.2
5

0
.3
5

γ%

c v

-1 1

0
.1
5

0
.2
5

0
.3
5

γ%̃

c v

-1 1

0
.1
5

0
.2
5

0
.3
5

γµ

c v

-1 1

0
.1
5

0
.2
5

0
.3
5

γλ

c v

-1 1

(b) Main e�ects plot

600 800 1000 1200

(d) Box plot of number of iterations
until convergence for best parameter

set

Figure 6: Experimental results for heterogeneous applications and the adapted algorithm on platforms
of N = 500 nodes and dmax = 15.

We conduct further experiments with platforms that are composed of 100 nodes
(dmax = 5) and of 20 nodes (dmax = 15). We use the same adjusted factor levels that
have shown a good convergence quality for 40 nodes. For both experiments, the factor
% is the most signi�cant one and needs to be set to its lower value. The best step-sizes
are also shown in Table 2.

As �nal experiment, we assess the convergence quality of our algorithm for platforms
with 500 nodes and a maximum degree of 15. For these tests, we start again with the
factor levels that have been used for platforms of size 40�100, which are % = (0.01, 0.05),
%̃ = (0.05, 0.15), λ = (0.7, 1.3), µ = (0.7, 1.3). When running the experiments, we quickly
notice after 40 tests that our algorithm does not converge and that the coe�cient of
variation is very large. This suggests that our step-sizes are too big. Since we have not
recorded enough data to conduct an ANOVA, we simply check the distribution of cv
values for the di�erent values of % = (0.01, 0.05). By comparing the histograms, one can
see that the cv values are smaller on average for the smaller value of %. Hence, we decrease
the levels of % and conduct the experiments again with these levels: % = (0.001, 0.01),
%̃ = (0.05, 0.15), λ = (0.7, 1.3), µ = (0.7, 1.3). Again, we interactively evaluated the
experimental results and stopped the factorial experiment after roughly 170 experiments

25

Homogeneous Heterogeneous

●

●

●

●
●

●

●
●●

No convergence

●●●

0

250

500

750

1000

0

250

500

750

1000

N
aive

A
daptive

2040 100 500 2040 100 500
Platform Size

Ite
ra

tio
ns

Influence of setting and algorithm on convergence time

Figure 7: Convergence time distribution as a function of platform size

as many experiments failed to converge. On the data gathered we run an ANOVA and
discover that % is again the most signi�cant factor and should be further decreased.
Therefore, we lower the levels of % once again to (0.0001, 0.001) and rerun the factorial
experiment. Now, the algorithm produces very small values of cv but again, we never
converge within the maximum number of iterations (1500). So, as % was already to set to
a small and stable value, we increase the range of % and decrease the range for all other
parameters to avoid oscillation. We run a �nal factorial experiments with the following
factor levels: % = (0.001, 0.002), %̃ = (0.01, 0.05), λ = (0.1, 0.7), µ = (0.1, 0.7). The
experimental results are analyzed in Figure 6, which leads us to a set of parameters for
which the algorithm converges on 29 out of 30 platforms. Unsurprisingly, the factor %
was not signi�cant anymore for obtaining a small cv as both levels are very close to each
other.

8.3. Convergence Time Analysis

Although the previous procedure is very e�ective to obtain good step sizes, it turns
out that a more careful look at the number of iterations required to converge is highly
dependent on platform size. Figure 7 summarizes the evolution of convergence time
distribution depending on platform size, application setting (homogeneous vs. heteroge-
neous) and algorithm (naive vs. adaptive).

At �rst sight, it may look like convergence time of the naive algorithm in the ho-
mogeneous application setting (upper left part of Figure 7) is not really sensitive to
platform size. Yet, one should recall that this naive algorithms never converges in the
heterogeneous application setting and that only 20 con�gurations out of 30 converged in
the 500 nodes setting whereas 28 con�gurations out of 30 converged in the 20 nodes set-
ting. Convergence for the 500 node setting could probably be improved as only a crude
step-size tuning was done but not to the extent where convergence time dramatically
decreases. As we explained in Section 6.6 and as can be seen in the upper right part of
Figure 7, the naive algorithm simply never converges when heterogeneous applications
are deployed. On the other hand, the adaptive algorithm we proposed converges both
in the homogeneous and heterogeneous application setting and even within much better
time bounds than the naive algorithm for homogeneous applications.

26

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700

O
b
je

c
ti
v
e
 v

a
lu

e

Iteration

Distributed algorithm
Optimal value after removal

Optimal value before removal

Reconvergence

Node removal

(a) Worst node removal: all nodes contributing
to the computation are suddenly removed from
the network at the 140th iteration. The opti-
mum of the objective function decreases, and
the algorithm re-converges in a few dozen of it-
erations, without oscillations.

Jude

Barry

Steele

Jobin

Provost

Croteau

Adoncourt

Gratton
2 : 29.972

Hz

Sacramento

Wilfrid

KentMireille

Intel

Lamothe

SunOS
0 : 2.29589

Paul

Anne_Marie

Julien

Letarte

Amadeus

Pelletier

Tremblay

Gilles

Matlab

Bellevue

Jupiter

iRMXIII

Gentilly

Zawinski

Jean_Yves

Marielle
0 : 1.39657

Charron

Rubin

Julian
2 : 2.96254

Jacques

Lachapelle
2 : 29.9725

Yvan
2 : 22.4404

Kuenning
2 : 29.9715

Fourier
2 : 29.5817

Archibald
2 : 13.9464

<2>
Seattle

2 : 7103.19

Guy
2 : 1.38735

Joynes

Jean_Paul Alfred

OlivierFrameMaker

Re

Nagle

iRMXII

<1>
mW

1 : 3958.53

Ringuet Sherbrooke

St_Bruno

Papineau

Bellemarre
0 : 1.78033

METAFONT

Viger

Jacobsen

Cloutier

McGill

Lucie
Daniel

Internet

Greg

Leblanc

Laroche

Rioux

OHara

Poussart

Michel

Ricard
Minneapolis

Dodge

Sorel
0 : 4.00379

Disney

Drouin

Vancouver

Brian
0 : 2.66477

Thierry
0 : 2.2884

Jean
0 : 1.00394

Gregory

George

Bernard

Aubertin

Denis
0 : 1.48304

Freedman

Decelles
0 : 4.00388

AutoCAD

St_Paul

Shawinigan

Angie
Abbott

<0>
Longueuil

0 : 0.797469

Laugier

Ozias

Forget

Laval

Pierrefonds

Jude

Barry

Steele
0 : 0.141723

Jobin
0 : 0.141723

Provost
0 : 0.141723

Croteau
0 : 0.141542

Adoncourt

Gratton

Hz

Sacramento

Wilfrid

KentMireille

Intel

Lamothe

SunOS

Paul
0 : 0.135409

Anne_Marie
0 : 0.142151

Julien
0 : 0.142149

Letarte
0 : 0.142149

Amadeus
0 : 0.142149

Pelletier
0 : 0.142146

Tremblay

Gilles
0 : 0.135408

Matlab
0 : 0.13518

Bellevue
0 : 0.135408

Jupiter
0 : 0.135234

iRMXIII
0 : 0.135409

Gentilly
0 : 0.135408

Zawinski

Jean_Yves

Marielle

Charron
0 : 0.142594

Rubin

Julian

Jacques

Lachapelle
0 : 0.125147

Yvan

Kuenning

Fourier

Archibald

<2>
Seattle

2 : 7103.19

Guy

Joynes

Jean_Paul Alfred

OlivierFrameMaker

Re

Nagle

iRMXII

<1>
mW

1 : 3958.54

Ringuet Sherbrooke

St_Bruno
0 : 0.141856

Papineau
0 : 0.141857

Bellemarre

METAFONT

Viger

Jacobsen

Cloutier

McGill

Lucie
Daniel

Internet

Greg
0 : 0.141847

Leblanc
0 : 0.141855

Laroche

Rioux

OHara

Poussart
0 : 0.142407

Michel

Ricard
Minneapolis

Dodge
0 : 0.148373

Sorel
0 : 4.0114

Disney
0 : 0.14259

Drouin
0 : 0.142595

Vancouver

Brian

Thierry

Jean

Gregory

George
0 : 0.142591

Bernard
0 : 0.142588

Aubertin

Denis

Freedman

Decelles

AutoCAD

St_Paul

Shawinigan

Angie
Abbott

<0>
Longueuil

0 : 0.789934

Laugier

Ozias

Forget

Laval

Pierrefonds

(b) Platform usage before and after node removal.
Hexagons represent the masters and gray nodes par-
ticipate to the computations. After having removed
all nodes involved in computations, one application
was redeployed on another part of the network and
now interferes with another application.

Figure 8: Behavior of the algorithm when removing all participating nodes.

However, as can be observed on the lower part of Figure 7, platform size has a
tremendous impact on convergence time. For a 500 node platform, starting arbitrarily
far from the optimal solution, the 95% con�dence interval for the expected number of
steps is [373, 531]. A 500 node platform with dmax = 15 has a diameter of roughly 10
and thus the expected convergence time would be less than nine minutes (assuming a
50ms RTT between machines). It could certainly be further improved by a better tuning
of step-sizes and using asynchronous steps.

9. Illustration of Adaptability

As explained in Section 5, as resource shares and prices are constantly reevaluated,
such an algorithm is expected to seamlessly adapt to variations of Wi of Bi,j and to the
arrival or departure of new nodes and applications. Studying such ability is beyond the
scope of this article. Yet, we feel that illustrating this ability can help convincing the
readers of the interest of such approach. Hence, in this section, we examine the behavior
of our algorithm in the case where the system is subject to some perturbations. In
particular, we are interested in the removal of nodes, which illustrates the fault tolerance
capacity of such algorithm. To this end, we consider a platform of size 100 and show how
the system behaves and re-converges when removing all the nodes (beside the masters
and the nodes connecting them to the network) contributing to a the computations
(around 15% of the nodes in this example). Figure 8(a) depicts the evolution of the
objective function.

First, one may notice that the optimum of the objective function decreases. This is
due to the fact that, as the system is smaller (less nodes are available), the utility set is
also smaller. Hence, the objective function being de�ned on a smaller set has a smaller
maximum value than before.

27

Next, we can see that the objective function only needs around 50 iterations to reach
the new optimal equilibrium. As the system had converged to the former value, the
initial values (for λ and µ) are relatively close to the new equilibrium. The convergence
is thus much faster than when the algorithm is initialized with null values as it was the
case in all previous experiments. Note that, in this particular example, the sharing after
node removal may seem particularly unfair but it is simply the result of the inability of
the light gray application to spread out due to a too high CCR.

10. Conclusion

In this article, we have shown the links between network-bound BoT scheduling in
grid platforms and �ow control in multi-path networks. Lagrangian optimization and
distributed gradient have been extensively used in the latter context and are therefore a
very natural technique for the former. Surprisingly, it turns out that although both prob-
lems are very similar on a theoretical point of view, the heterogeneity of BoT applications
makes the BoT scheduling problem signi�cantly harder in practice. As contribution, we
have proposed a set of adaptations that lead to an e�ective fully distributed algorithm
for fairly sharing resources between BoT applications. Interestingly, most articles on
�ow-control for multi-path networks focus on the theoretical di�culty raised by the non-
strict convexity of the objective function that hinders the convergence of the resulting
algorithm. Yet, in all our experiments, this non-strict convexity has little importance
(the step-size of the smoothing factor had always to be set to a very small value and had
little in�uence on convergence) whereas the coupling between primal and dual variable
updates and a smooth projection operator are crucial.

All previous work relying on this technique had evaluated the e�ectiveness of their
proposal in very limited settings comprising at most a dozen of nodes and a few pairs of
sources/destinations. Instead, we evaluated our algorithms in a much more complex set-
ting with up to 500 node platforms. It is the �rst time such kind of algorithm is evaluated
at such scale and our study reveals issues that had been unnoticed until now. We have
evaluated the e�ectiveness of our algorithm through carefully designed experiments to
discriminate real trends from noise introduced by the randomness of the platform. The
algorithm is shown to converge in reasonable time even for very large and complex het-
erogeneous platforms. Although, it was not our initial goal, our proposal also improves
convergence in the case of homogeneous applications and should thus be e�ective in the
multi-path �ow-control setting.

To the best of our knowledge, this is the �rst guaranteed fully distributed algo-
rithm for steady-state and fair scheduling concurrent BoT applications with arbitrary
communication-to-computation ratio on Grids. Although using such algorithm in prac-
tice would require further investigation (such as how the number of concurrent appli-
cations a�ect convergence or a thorough study of reconvergence ability), we hope such
approach will provide a new perspective to this problem and provide interesting insights
on how to design such systems to improve their overall performance.

Although we use a (centralized) technique (designed experiments and ANOVA) for
�nding robust step-sizes, it turns out that they seem to be dependent on the order of
magnitude of the platform characteristics and size (some of them seem to be roughly
inversely proportional to platform size) as well as on the order of magnitude of the BoT
characteristics and number. The coe�cient of variation seems to be a good indicator of

28

convergence and stability and could thus be used to control step-sizes in a real imple-
mentation.

Some aspects were not explored in our performance evaluation and would deserve
further investigation. For example the number of applications and how far the sources
of these applications are from each others is likely to play a role in the convergence of
the algorithm. Another point that may play a role is inward data when non-symmetric
routes are employed as it may generate additional interferences between applications.

Regarding the fundamentals of the algorithm, although the similitude between �ow
control in multi-path networks and steady-state scheduling of BoT has motivated the
use of the augmented Lagrangian method, other methods could be used. As we have
seen in Section 7.4, one of the key ingredients for an e�ective implementation of such
method is the smooth projection operator that shares similarities with a barrier func-
tion. Lagrangian algorithms move toward the optimal solution by oscillating around the
constraints and constantly trying to overuse resources. Besides the resulting potentially
slow convergence, the solution may not always be feasible at a given time step. Interior
point methods do not su�er from such issues and have received a lots of attention lately.
Although they have been used in rather di�erent contexts so far [51], their promising
e�ciency is a good motivation for trying to adapt them to this setting.

Acknowledgments

The authors warmly thank the reviewers for their insightful comments that allowed
to improve this work. This work was supported by the ANR JCJC-07 DOCCA program
and by the ANR-08-SEGI-022 USS-SimGrid program of the french government.

[1] J. Mo, J. Walrand, Fair end-to-end window-based congestion control, IEEE/ACM Transactions on
Networking 8 (5) (2000) 556�567.

[2] W.-H. Wang, M. Palaniswami, S. Low, Optimal �ow control and routing in multi-path networks,
Performance Evaluation 52 (2003) 119�132.

[3] J. Jaramillo, R. Srikant, Optimal scheduling for fair resource allocation in ad hoc networks with
elastic and inelastic tra�c, IEEE/ACM Transaction on Networking 19 (4) (2011) 1125�1136.

[4] Q. Dong, L. Yu, W.-Z. Song, L. Tong, S. Tang, Distributed demand and response algorithm for
optimizing social-welfare in smart grid, in: Proceedings of the 26th IEEE International Parallel &
Distributed Processing Symposium (IPDPS'12), IEEE Computer Society, 2012, pp. 1228�1239.

[5] Large Hadron Collider computing grid, http://lcg.web.cern.ch/LCG/.
[6] H. Casanova, F. Berman, Parameter Sweeps on the Grid with APST, in: G. F. Fran Berman,

T. Hey (Eds.), Grid Computing: Making the Global Infrastructure a Reality, John Wiley & Sons,
2003, Ch. 33, pp. 773��787.

[7] D. Abramson, J. Giddy, L. Kotler, High performance parametric modeling with Nimrod/G: Killer
application for the global grid?, in: Proceedings of the 14th IEEE International Parallel & Dis-
tributed Processing Symposium (IPDPS 2000), 2000, pp. 520�528.

[8] M. Litzkow, M. Livny, M. Mutka, Condor: A hunter of idle workstations, in: Proceedings of the
8th International Conference on Distributed Computing Systems (ICDCS'88), 1988, pp. 104�111.

[9] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro, J. Sauvé, F. A. B. da Silva,
C. O. Barros, C. Silveira, Running bag-of-tasks applications on computational grids: The MyGrid
approach, in: Proceedings of the 32nd International Conference on Parallel Processing (ICPP 2003),
IEEE Computer Society, 2003, pp. 407�416.

[10] Y. Georgiou, N. Capit, O. Richard, Evaluations of the lightweight grid CIGRI upon the Grid5000
platform, in: Proceedings of the 3rd IEEE International Conference on e-Science and Grid Com-
puting (eScience2007), 2007, pp. 279 � 286.

[11] C. Marco, C. Fabio, D. Alvise, G. Antonia, G. Alessio, G. Francesco, M. Alessandro, M. Elisabetta,
M. Salvatore, P. Luca, The gLite workload management systems, Journal of Physics: Conference
Series 219 (6) (2010) 062039.

29

[12] D. P. Anderson, BOINC: A system for public-resource computing and storage, in: Proceedings of
the 5th IEEE/ACM Intl. Workshop on Grid Computing (GRID '04), IEEE Computer Society, 2004,
pp. 4�10.

[13] A. Legrand, C. Touati, Non-cooperative scheduling of multiple bag-of-task appplications, in: Pro-
ceedings of the 25th Conference on Computer Communications (INFOCOM'07), 2007, pp. 427�435.

[14] E. Medernach, Workload analysis of a cluster in a grid environment, in: Proceedings of the 11th In-
ternational Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP 2005), Springer,
2005, pp. 36�61.

[15] A. Iosup, M. Jan, O. Sonmez, D. Epema, The characteristics and performance of groups of jobs
in grids, in: Proceedings of the 13th International Euro-Par Conference (Euro-Par'07), Springer,
2007, pp. 382�393.

[16] A. Iosup, O. Sonmez, S. Anoep, D. Epema, The performance of bags-of-tasks in large-scale dis-
tributed systems, in: Proceedings of the 17th IEEE International Symposium on High Performance
Distributed Computing (HPDC-17 2008), ACM, 2008, pp. 97�108.

[17] H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Heuristics for scheduling parameter sweep
applications in grid environments, in: Proceedings of the 9th Heterogeneous Computing Workshop
(HCW'00), IEEE Computer Society, 2000, pp. 349�363.

[18] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson,
M. D. Theys, B. Yao, D. Hensgen, R. F. Freund, A comparison of eleven static heuristics for
mapping a class of independent tasks onto heterogeneous distributed computing systems, Journal
of Parallel and Distributed Computing 61 (6) (2001) 810�837.

[19] Y. C. Lee, A. Zomaya, Practical scheduling of bag-of-tasks applications on grids with dynamic
resilience, IEEE Transactions on Computers 56 (6) (2007) 815�825.

[20] D. Kondo, A. Chien, H. Casanova, Resource management for short-lived applications on enter-
prise desktop grids, in: Proceedings of the ACM/IEEE SC2004 Conference on High Performance
Networking and Computing, IEEE Computer Society, 2004, p. 17.

[21] A.-M. Oprescu, T. Kielmann, Bag-of-tasks scheduling under budget constraints, in: Proceedings
of the 2nd IEEE International Conference on Cloud Computing Technology and Science (Cloud-
Com'10), IEEE Computer Society, 2010, pp. 351�359.

[22] P.-F. Dutot, F. Pascual, K. Rzadca, D. Trystram, Approximation Algorithms for the Multi-
Organization Scheduling Problem, IEEE Transactions on Parallel and Distributed Systems 99 (11)
(2011) 1888�1895.

[23] R. B. Myerson, Game Theory: Analysis of Con�ict, Harvard University Press, 1997.
[24] B. Veeravalli, D. Ghose, T. G. Robertazzi, Divisible load theory: A new paradigm for load scheduling

in distributed systems, Cluster Computing 6 (1) (2003) 7�17.
[25] M. Gallet, L. Marchal, F. Vivien, E�cient scheduling of task graph collections on heterogeneous

resources, in: Proceedings of the 23rd IEEE International Symposium on Parallel and Distributed
Processing (IPDPS'2009), IEEE Computer Society, 2009, pp. 1�11.

[26] H. Casanova, M. Gallet, F. Vivien, Non-clairvoyant scheduling of multiple bag-of-tasks applications,
in: Proceedings of the 16th International Euro-Par Conference (Euro-Par'10), Vol. 6271 of LNCS,
Springer, 2010, pp. 168�179.

[27] A. Benoit, L. Marchal, J.-F. Pineau, Y. Robert, F. Vivien, Scheduling concurrent bag-of-tasks
applications on heterogeneous platforms, IEEE Transactions on Computers 59 (2) (2010) 202�217.

[28] O. Beaumont, A. Legrand, L. Marchal, Y. Robert, Steady-state scheduling on heterogeneous clus-
ters: Why and how?, in: Proceedings of the 6th Workshop on Advances in Parallel and Distributed
Computational Models (APDCM 2004), IEEE Computer Society, 2004.

[29] B. Hong, V. K. Prasanna, Adaptive allocation of independent tasks to maximize throughput, IEEE
Transactions on Parallel and Distributed Systems 18 (10) (2007) 1420�1435.

[30] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, Y. Robert, Centralized versus dis-
tributed schedulers multiple bag-of-tasks applications, IEEE Transactions on Parallel and Dis-
tributed Systems 19 (5) (2008) 698�709.

[31] S. Low, A duality model of TCP and queue management algorithms, IEEE/ACM Transactions on
Networking 11 (4) (2003) 525�536.

[32] F. Kelly, A. Maulloo, D. Tan, Rate control in communication networks: shadow prices, proportional
fairness and stability, Journal of the Operational Research Society 49 (1998) 237�252.

[33] D. P. Bertsekas, R. Gallager, Data Networks, Prentice-Hall, 1992.
[34] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, I. Stoica, Dominant resource

fairness: Fair allocation of multiple resource types, in: Proceedings of the 8th USENIX conference
on Networked systems design and implementation (NSDI'11), USENIX Association, 2011, p. 24.

30

[35] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,
Prentice-Hall, 1989.

[36] H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, D. Towsley, Multi-path TCP: a joint congestion
control and routing scheme to exploit path diversity in the internet, IEEE/ACM Transaction on
Networking 14 (6) (2006) 1260�1271.

[37] X. Lin, N. B. Shro�, Utility maximization for communication networks with multipath routing,
IEEE Transactions on Automatic Control 51 (5) (2006) 766�781.

[38] IETF, Multipath TCP working group, http://datatracker.ietf.org/wg/mptcp/charter/ (05 2013).
[39] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, J.-Y. Le Boudec, MPTCP is not pareto-optimal:

performance issues and a possible solution, in: Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies (CoNEXT '12), ACM, 2012, pp. 1�12.

[40] E. Caron, F. Desprez, DIET: A scalable toolbox to build network enabled servers on the grid,
International Journal of High Performance Computing Applications 20 (3) (2006) 335�352.

[41] E. Santos-Neto, W. Cirne, F. Brasileiro, A. Lima, Exploiting replication and data reuse to e�ciently
schedule data-intensive applications on grids, in: Proceedings of the 10th International Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP 2004), no. 3277 in LNCS, Springer,
2004, pp. 210�232.

[42] K. Kaya, C. Aykanat, Iterative-improvement-based heuristics for adaptive scheduling of tasks shar-
ing �les on heterogeneous master-slave environments, IEEE Transactions on Parallel Distributed
Systems 17 (8) (2006) 883�896.

[43] R. Bertin, A. Legrand, C. Touati, Toward a fully decentralized algorithm for multiple bag-of-tasks
application scheduling on grids, in: Proceedings of the 9th IEEE/ACM International Conference
on Grid Computing (Grid 2008), IEEE, 2008, pp. 118�125.

[44] G. Tel, Introduction to Distributed Algorithms, 2nd Edition, Cambridge University Press, New
York, NY, USA, 2001.

[45] A. Legrand, M. Quinson, K. Fujiwara, H. Casanova, The SimGrid project - simulation and deploy-
ment of distributed applications, in: Proceedings of the 15th IEEE International Symposium on
High Performance Distributed Computing (HPDC-15), IEEE, 2006, pp. 385�386.

[46] C. Touati, E. Altman, J. Galtier, Generalized Nash bargaining solution for bandwidth allocation,
Computer Networks 50 (17) (2006) 3242�3263.

[47] S. J. Benson, Y. Ye, Algorithm 875: DSDP5-software for semide�nite programming, ACM Trans-
actions on Mathematical Software 34 (3) (2008) 16:1�16:20.

[48] D. C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons, 2005.
[49] T. F. Jaeger, Categorical data analysis: Away from ANOVAs (transformation or not) and towards

Logit Mixed Models, Journal of Memory and Language 59 (4) (2008) 434�446.
[50] R. Bertin, S. Hunold, A. Legrand, C. Touati, From �ow control in multi-path networks to multiple

bag-of-tasks application scheduling on grids, Tech. Rep. 7745, INRIA, companion webpage: http:
//mescal.imag.fr/membres/arnaud.legrand/distla_2012/. (2011).

[51] P. Coucheney, C. Touati, B. Gaujal, Fair and e�cient user-network association algorithm for multi-
technology wireless networks, in: Proceedings of the 28th Conference on Computer Communications
(INFOCOM'2009), IEEE, 2009, pp. 2811�2815.

31

