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Abstract. In this paper we consider the model built in [3] for short term dynamics of dunes in

tidal area. We construct a Two-Scale Numerical Method based on the fact that the solution of

the equation which has oscillations Two-Scale converges to the solution of a well-posed problem.
This numerical method uses on Fourier series.

1. Introduction. This paper deals with numerical simulations of sand transport problems. Its goal is to build a

Two-Scale Numerical Method to simulate dynamics of dunes in tidal area.
This paper enters a work program concerning the development of Two-Scale Numerical Methods to solve PDEs with

oscillatory singular perturbations linked with physical phenomena. In Ailliot, Frénod and Monbet [2], such a method

is used to manage the tide oscillation for long term drift forecast of objects in coastal ocean waters. Frénod, Mouton
and Sonnendrücker [5] made simulations of the 1D Euler equation using a Two-Scale Numerical Method. In Frénod,

Salvarani and Sonnendrücker [6], such a method is used to simulate a charged particle beam in a periodic focusing
channel. Mouton [9, 10] developped a Two-Scale Semi Lagrangian Method for beam and plasma applications.

We consider the following model, valid for short-term dynamics of dunes, built and studied in [3]:
∂zε

∂t
−

1

ε
∇ · (Aε∇zε) =

1

ε
∇ · Cε,

zε|t=0 = z0,
(1.1)

2000 Mathematics Subject Classification. Primary: 35K65, 35B25, 35B10 ; Secondary: 92F05, 86A60 .
Key words and phrases. Homogenization, Asymptotic Analysis, Asymptotic Expansion, Long Time Behavior,

Dune and Megaripple Morphodynamics, Modeling Coastal Zone Phenomena, Numerical Simulation.
1This work is supported by NLAGA(Non Linear Analysis, Geometry and Application Project).

1
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where zε = zε(t, x) is the dimensionless seabed altitude. For a given T, t ∈ (0, T ) stands for the dimensionless time
and x ∈ T2, T2 being the two dimensional torus R2/Z2, stands for the dimensionless position and Aε, Cε are given

by

Aε(t, x) = Ãε(t, x) + εÃε1(t, x), (1.2)

and

Cε(t, x) = C̃ε(t, x) + εC̃ε1(t, x), (1.3)

where, for three positive constants a, b and c,

Ãε(t, x) = Ã(t,
t

ε
, x) = a ga(|U(t,

t

ε
, x)|), (1.4)

C̃ε(t, x) = C̃(t,
t

ε
, x) = c gc(|U(t,

t

ε
, x)|)

U(t, t
ε
, x)

|U(t, t
ε
, x)|

, (1.5)

and

Ãε1(t, x) = Ã1(t,
t

ε
, x), C̃ε1(t, x) = C̃1(t,

t

ε
, x), (1.6)

with

Ã1(t, θ, x) = −abM(t, θ, x) ga(|U(t, θ, x)|) and C̃1(t, θ, x) = −cbM(t, θ, x) gc(|U(t, θ, x)|)
U(t, θ, x)

|U(t, θ, x)|
. (1.7)

U and M are the dimensionless water velocity and height.

The small parameter ε involved in the model is the ratio between the main tide period 1
ω̄

= 13 hours and an observation

time which is about three months i.e. ε = 1
t̄ω̄

= 1
200

.

The following hypotheses on ga, gc, U and M given in (1.8) and (1.9) are technical assumptions and are needed to

prove Theorem 1.1. Functions ga and gc are regular functions on R+ and satisfy

ga ≥ gc ≥ 0, gc(0) = g′c(0) = 0,

∃ d ≥ 0, supu∈R+ |ga(u)|+ supu∈R+ |g′a(u)| ≤ d,

supu∈R+ |gc(u)|+ supu∈R+ |g′c(u)| ≤ d,

∃Uthr ≥ 0, ∃Gthr > 0, such that u ≥ Uthr =⇒ ga(u) ≥ Gthr.

(1.8)

Functions U and M are regular and satisfy:

θ 7−→ (U ,M) is periodic of period 1,

|U|, |
∂U
∂t
|, |

∂U
∂θ
|, |∇U|,

|M|, |
∂M
∂t
|, |

∂M
∂θ
|, |∇M| are bounded by d,

∀ (t, θ, x) ∈ R+ × R× T2, |U(t, θ, x)| ≤ Uthr =⇒(∂U
∂t

(t, θ, x) = 0, ∇U(t, θ, x) = 0,

∂M
∂t

(t, θ, x) = 0, and ∇M(t, θ, x) = 0
)
,

∃ θα < θω ∈ [0, 1] such that ∀ θ ∈ [θα, θω ] =⇒ |U(t, θ, x)| ≥ Uthr.

(1.9)

To develop the Two-Scale Numerical Method, we use that in [3] we proved that under assumptions (1.8) and (1.9) the
solution zε of (1.1) exists, is unique and moreover asymptotically behaves, as ε → 0, the way given by the following
theorem.

Theorem 1.1. Under assumptions (1.8) and (1.9), for any T, not depending on ε, the sequence (zε) of solutions

to (1.1), with coefficients given by (1.2) coupled with (1.4) and (1.3), (1.5) and (1.6), Two-Scale converges to the
profile Z ∈ L∞([0, T ], L∞# (R, L2(T2))) solution to

∂Z

∂θ
−∇ · (Ã∇Z) = ∇ · C̃, (1.10)

where Ã and C̃ are given by

Ã(t, θ, x) = a ga(|U(t, θ, x)|) and C̃(t, θ, x) = c gc(|U(t, θ, x)|)
U(t, θ, x)

|U(t, θ, x)|
. (1.11)
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Futhermore, if the supplementary assumption

Uthr = 0, (1.12)

is done, we have

Ã(t, θ, x) ≥ G̃thr for any t, θ, x ∈ [0, T ]× R× T2, (1.13)

and, defining Zε = Zε(t, x) = Z(t, t
ε
, x), the following estimate holds for zε − Zε∥∥∥ zε − Zε

ε

∥∥∥
L∞([0,T ),L2(T2))

≤ α, (1.14)

where α is a constant not depending on ε.

Because of assumptions (1.8) and (1.9),

Ã, C̃, Ã1, C̃1, Ãε, Ãε1, C̃ε, and C̃ε1 are regular and bounded. (1.15)

2. Two-Scale Numerical Method Building. In this section, we develop the Two-Scale Numerical Method in

order to approach the solution zε of (1.1). The idea is to get a good approximation of zε(t, x) seeing Theorem 1.1
content as zε(t, x) ∼ Z(t, t

ε
, x).

The strategy is to consider a Fourier expansion of Z solution to (1.10). In this equation, t is only a parameter.
The Fourier expansion of Z is given as follows:

Z(t, θ, x) =
∑
l,m,n

Zl,m,n(t) e2iπ(lθ+mx1+nx2), (2.1)

where Zl,m,n(t), l = 0, 1, 2, . . ., m = 0, 1, 2, . . ., n = 0, 1, 2, . . . , are the unknown complex coefficients of the Fourier

expansion of Z. Using (2.1), the Fourier expansion of ∂Z
∂θ

is given by

∂Z

∂θ
(t, θ, x) =

∑
l,m,n

2iπ l Zl,m,n(t) e2iπ(lθ+mx1+nx2). (2.2)

To obtain the system satisfied by the Fourier expansion (2.1) of Z, it is necessary to compute the Fourier expansions

of ∇ · (Ã∇Z) and ∇ · C̃. As ∇ · (Ã∇Z) = ∇Ã · ∇Z + Ã ·∆Z, let∑
l,m,n

Ãl,m,n(t) e2iπ(lθ+mx1+nx2), (2.3)

and ∑
l,m,n

Ãgradl,m,n(t) e2iπ(lθ+mx1+nx2), (2.4)

be respectively the Fourier expansions of Ã and ∇Ã, where Ãgradl,m,n(t) = 2iπÃl,m,n
(

m

n

)
and then the Fourier

expansions of ∇Z and ∆Z are respectively given by∑
l,m,n

2iπ

(
m
n

)
Zl,m,n(t) e2iπ(lθ+mx1+nx2), (2.5)

and

−
∑
l,m,n

4π2(m2 + n2)Zl,m,n(t) e2iπ(lθ+mx1+nx2). (2.6)

In the same way the Fourier expansion of ∇ · C̃ is given by∑
l,m,n

C̃l,m,ne2iπ(lθ+mx1+nx2). (2.7)

Using (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) and (2.7), equation (1.10) becomes∑
l,m,n

2iπ l Zl,m,n(t) e2iπ(lθ+mx1+nx2)

−
( ∑
l,m,n

Ãgradl,m,n(t) e2iπ(lθ+mx1+nx2)
)
·
( ∑
l,m,n

2iπ

(
m
n

)
Zl,m,n(t) e2iπ(lθ+mx1+nx2)

)
+
( ∑
l,m,n

Ãl,m,n(t) e2iπ(lθ+mx1+nx2)
)( ∑

l,m,n

4π2(m2 + n2)Zl,m,n(t) e2iπ(lθ+mx1+nx2)
)

=

∑
l,m,n

C̃l,m,n(t) e2iπ(lθ+mx1+nx2), (2.8)
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which gives after identification, the following algebraic system for (Zl,m,n):

2iπ l Zl,m,n(t)−
∑
i,j,k

2iπÃgradi,j,k (t) ·
(

m− j
n− k

)
Zl−i,m−j,n−k(t)

+4π2
∑
i,j,k

Ãi,j,k(t)((m− j)2 + (n− k)2)Zl−i,m−j,n−k(t) = C̃l,m,n(t). (2.9)

In formula (2.1), the integers m,n and l vary from −∞ to +∞. But in practice, we will consider the truncated Fourier
series of order P ∈ N defined by

ZP (t, θ, x) =
∑

0≤l≤P,0≤m≤P,0≤n≤P
Zl,m,n(t) e2iπ(lθ+mx1+nx2). (2.10)

Using (2.10), formula (2.9) becomes:

2iπ l Zl,m,n(t)−
∑

0≤i≤P, 1≤j≤P, 0≤k≤P
2iπÃgradi,j,k (t) ·

(
m− j
n− k

)
Zl−i,m−j,n−k(t)

+4π2
∑

0≤i≤P, 0≤j≤P, 0≤k≤P
Ãi,j,k(t)((m− j)2 + (n− k)2)Zl−i,m−j,n−k(t) = C̃l,m,n(t). (2.11)

3. Convergence result.

Proof. of Theorem 1.1. For self-containedness, we recall the proof of Theorem 1.1. Firstly, we obtain an estimate

leading to that zε is bounded in L∞((0, T );L2(T2)). Secondly, defining test function ψε(t, x) = ψ(t, t
ε
, x) for any

ψ(t, θ, x), regular with a compact support over [0, T )×T2 and 1-periodic in θ, multiplying (1.1) by ψε and integrating

over [0, T )× T2 gives∫
T2

∫ T

0

∂zε

∂t
ψεdtdx−

1

ε

∫
T2

∫ T

0
∇ · (Aε∇zε)ψεdtdx =

1

ε

∫
T2

∫ T

0
∇ · Cεψεdtdx. (3.1)

Then integrating by parts in the first integral over [0, T ) and using the Green formula in T2 in the second integral we

have

−
∫
T2
z0(x)ψ(0, 0, x)dx−

∫
T2

∫ T

0

∂ψε

∂t
zεdtdx

+
1

ε

∫
T2

∫ T

0
Aε∇zε∇ψεdtdx =

1

ε

∫
T2

∫ T

0
∇ · Cεψεdtdx. (3.2)

Again using the Green formula in the third integral we obtain

−
∫
T2
z0(x)ψ(0, 0, x) dx−

∫
T2

∫ T

0

∂ψε

∂t
zεdtdx

−
1

ε

∫
T2

∫ T

0
zε∇ · (Aε∇ψε) dtdx =

1

ε

∫
T2

∫ T

0
∇ · Cεψεdtdx. (3.3)

But
∂ψε

∂t
=

(
∂ψ

∂t

)ε
+

1

ε

(
∂ψ

∂θ

)ε
, (3.4)

where (
∂ψ

∂t

)ε
(t, x) =

∂ψ

∂t
(t,

t

ε
, x) and

(
∂ψ

∂θ

)ε
(t, x) =

∂ψ

∂θ
(t,

t

ε
, x), (3.5)

then we have ∫
T2

∫ T

0
zε
((

∂ψ

∂t

)ε
+

1

ε

(
∂ψ

∂θ

)ε
+

1

ε
∇ · (Aε∇ψε)

)
dxdt

+
1

ε

∫
T2

∫ T

0
∇ · Cεψεdtdx = −

∫
T2
z0(x)ψ(0, 0, x) dx. (3.6)

Using the Two-Scale convergence due to Nguetseng [11] and Allaire [1] (see also Frénod Raviart and Sonnendrücker

[7]), since zε is bounded in L∞([0, T ), L2(T2)), there exists a profile Z(t, θ, x), periodic of period 1 with respect to θ,

such that for all ψ(t, θ, x), regular with a compact support with respect to (t, x) and 1-periodic with respect to θ, we
have ∫

T2

∫ T

0
zεψεdtdx −→

∫
T2

∫ T

0

∫ 1

0
Zψ dθdtdx, as ε tends to zero, (3.7)
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for a subsequence extracted from (zε).
Multiplying (3.6) by ε, passing to the limit as ε→ 0 and using (3.7) we have∫

T2

∫ T

0

∫ 1

0
Z
∂ψ

∂θ
dθdtdx+ lim

ε→0

∫
T2

∫ T

0
zε∇ · (Aε∇ψε) dtdx = lim

ε→0

∫
T2

∫ T

0
Cε · ∇ψεdtdx, (3.8)

for an extracted subsequence. As Aε and Cε are bounded and ψε is a regular function, Aε∇ψε and ∇ψε can be

considered as test functions. Using (3.7) we have∫
T2

∫ T

0
zε∇ · (Aε∇ψε)dtdx −→

∫
T2

∫ T

0

∫ 1

0
Z∇ · (Ã∇ψ) dθdtdx, (3.9)

and ∫
T2

∫ T

0
Cε · ∇ψεdtdx Two-Scale converges to

∫
T2

∫ T

0

∫ 1

0
C̃ · ∇ψ dθdtdx. (3.10)

Passing to the limit as ε→ 0 we obtain from (3.8) a weak formulation of the equation (1.10) satisfied by Z.

Using (1.2) and (1.3) equation (1.1) becomes

∂zε

∂t
−

1

ε
∇ · (Ãε∇zε) =

1

ε
∇ · C̃ε +∇ · (Ãε1∇zε) +∇ · C̃ε1. (3.11)

For Zε, we have

∂Zε

∂t
=

(
∂Z

∂t

)ε
+

1

ε

(
∂Z

∂θ

)ε
, (3.12)

where (
∂Z

∂t

)ε
(t, x) =

∂Z

∂t
(t,

t

ε
, x) and

(
∂Z

∂θ

)ε
(t, x) =

∂Z

∂θ
(t,

t

ε
, x). (3.13)

Using (1.10), Zε is solution to

∂Zε

∂t
−

1

ε
∇ ·
(
Ãε∇Zε

)
=

1

ε
∇ · C̃ε +

(
∂Z

∂t

)ε
. (3.14)

Formulas (3.11) and (3.14) give

∂(zε − Zε)
∂t

−
1

ε
∇ ·
(
Ãε∇(zε − Zε)

)
= ∇ · C̃ε1 +

(
∂Z

∂t

)ε
+∇ · (Ãε1∇zε). (3.15)

Multiplying equation (3.15) by 1
ε

and using the fact that zε = zε − Zε + Zε in the right hand side of equation

(3.15), z
ε−Zε

ε
is solution to:

∂
( zε − Zε

ε

)
∂t

−
1

ε
∇ ·
(

(Ãε + εÃε1)∇(
zε − Zε

ε
)
)

=
1

ε

(
∇ · C̃ε1 + (

∂Z

∂t
)ε +∇ · (Ãε1∇Zε)

)
. (3.16)

Our aim here is to prove that zε−Zε

ε
is bounded by a constant α not depending on ε. For this let us use that

Ãε, Ãε1, C̃ε and C̃ε1 are regular and bounded coefficients (see (1.15)) and that Ãε ≥ Gthr (see (1.13)). Hence, ∇ · C̃ε1
is bounded, ∇ · (Ãε1∇Zε) is also bounded. Since Zε is solution to (3.14), ∂Z

∂t
satisfies the following equation

∂

(
∂Z

∂t

)
∂θ

−∇ ·
(
Ã∇

∂Z

∂t

)
=
∂∇ · C̃
∂t

+∇ ·
(
∂Ã
∂t
∇Z
)
. (3.17)

Equation (3.17) is linear with regular and bounded coefficients. Using a result of Ladyzenskaja, Solonnikov and

Ural’Ceva [8], ∂Z
∂t

is regular and bounded and so the coefficients of equations (3.16) are regular and bounded. Then,

using the same arguments as in the proof of Theorem 1.1 in [3] we obtain that
(
zε−Zε

ε

)
is bounded.

To determine the value of the constant α, we proceed in the same way as in the proof of Theorem 3.16 of [3]. Since

the coefficients
(
Ãε, Ãε1, C̃ε and C̃ε1, ∇ · C̃ε1, ∇ · (Ãε1∇Zε), and ∂Z

∂t

)
are bounded by constants, let β denotes the

maximum between all these constants. Then we use the same argument as in the proof of Theorems 1.1 and 3.16 and
we get: ∥∥∥ zε − Zε

ε

∥∥∥
L∞([0,T ),L2(T2))

≤ ‖z0(·)− Z(0, 0, ·)‖2

√√√√ β + β3√
G̃thr

+ 2β T. (3.18)
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Theorem 3.1. Let ε be a positive real, zε be the solution to (1.1), ZP be the truncated Fourier series (defined by
(2.10)) of Z solution to (1.10) and ZεP defined by ZεP (t, x) = ZP (t, t

ε
, x). Then, under assumptions (1.8), (1.9) and

(1.12), zε − ZεP satisfies the following estimate:

‖zε − ZεP ‖L∞([0,T ),L2(T2)) ≤ ε‖z0(·)− Z(0, 0, ·)‖2

√√√√ β + β3√
G̃thr

+ 2β T + f(P ), (3.19)

where f is a non-negative function of P not depending on ε and satisfying limP→+∞ f(P ) = 0.

Proof. We can write :

‖zε − ZεP ‖L∞([0,T ),L2(T2)) = ‖zε − Zε + Zε − Zεp‖L∞([0,T ),L2(T2))

≤ ‖zε − Zε‖L∞([0,T ),L2(T2)) + ‖Zε − Zεp‖L∞([0,T ),L2(T2)). (3.20)

Using (3.18), the first term in the right hand side of (3.20) is bounded by

‖zε − Zε‖L∞([0,T ),L2(T2)) ≤ ε‖z0(·)− Z(0, 0, ·)‖2

√√√√ β + β3√
G̃thr

+ 2βT. (3.21)

For the second term of (3.20), using classical results of Fourier series theory, since Z − ZP is nothing but the rest

of the Fourier series of order P of Z and since Z is regular (because it is the solution of (1.10) which has regular
coefficients), the non-negative function f satisfying limP→+∞ f(P ) = 0 such that

‖Z − Zp‖L∞([0,T ],L∞
#

(R,L2(T2))) ≤ f(P ), (3.22)

exists. From this last inequality,

‖Zε − Zεp‖L∞([0,T ),L2(T2)) ≤ f(P ), (3.23)

follows and coupling this with (3.21) and (3.20) gives inequality (3.19).

4. Numerical illustration of Theorem3.1.

4.1. Reference solution. Having Fourier coefficients of Z on hand, we will do the same for function zε(t, x) solution

to (1.1) in order to compare it to the profile Z for a given ε, in a fixed time. The Fourier expansion of zε is given by

zε(t, x1, x2) =
∑
m,n

zm,n(t) e2πi(mx1+nx2), (4.1)

where m = 0, 1, 2, . . . and n = 0, 1, 2, . . . , then the Fourier expansion of ∂z
ε

∂t
is

∂zε

∂t
=
∑
m,n

żm,n(t) e2πi(mx1+nx2). (4.2)

Using the same idea as in the Fourier expansion of Z, we obtain the following infinite system of Ordinary Differential
Equations

∂zm,n

∂t
(t)−

1

ε

∑
i,j

2iπAgradi,j (t) ·
(

m− i
n− j

)
zm−i,n−j(t)

+
1

ε
4π2

∑
i,j

Ai,j(t)((m− i)2 + (n− j)2)zm−i,n−j(t) =
1

ε
Cm,n(t), (4.3)

where Agradi,j (t), Ai,j(t) and Cm,n(t) are respectively the Fourier coefficients of ∇Aε, Aε and ∇ · Cε.
In the same way, the truncated Fourier series of order P ∈ N of zε is given by

zεP (t, x1, x2) =

P∑
m,n=0

zm,n(t) e2πi(mx1+nx2), (4.4)

which gives from (4.3) the following system Ordinary Differential Equations

∂zm,n

∂t
(t)−

1

ε

P∑
i,j=0

2iπAgradi,j (t) ·
(

m− i
n− j

)
zm−i,n−j(t)

+
1

ε
4π2

P∑
i,j=0

Ai,j(t)((m− i)2 + (n− j)2)zm−i,n−j(t) =
1

ε
Cm,n(t). (4.5)

In (4.5), we will use an initial condition zm,n(0, x). To solve (4.5) we use, for the discretization in time, a Runge-Kutta

method (ode45).
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4.2. Comparison Two-Scale Numerical Solution and reference solution. In this paragraph, we consider the
truncated solution zεP (t, x1, x2) and ZP (t, t

ε
, x1, x2). The objective here is to compare for a fixed ε and a given time,

the quantity |zεP (t, x1, x2)− ZP (t, t
ε
, x1, x2)| when the water velocity U is given.

4.2.1. Comparisons of zεP (t, x) and ZP (t, t
ε
, x) with U given by (4.6). For the numerical simulations, concerning zε,

we take z0(x1, x2) = cos 2πx1 + cos 4πx1 and z0(x1, x2) = Z(0, 0, x1, x2). In what concerns the water velocity field,

we consider the function
U(t, θ, x1, x2) = sinπx1 sin 2πθ e1, (4.6)

where e1 and e2 are respectively the first and the second vector of the canonical basis of R2 and x1, x2 are the first

and the second components of x.

In Figure 1 , we can see the space distribution of the first component of the velocity U for a given time t = 1 and for

various values of θ: 0.3, 0.55, and 0.7. In Figure 2, we see, for a fixed point x = (x1, x2), how the water velocity Ũ(θ)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.4

−0.3

−0.2

−0.1

0

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

Figure 1. Space distribution of the first component of U(1, 0.3, (x1, x2)),
U(1, 0.55, (x1, x2)) and U(1, 0.7, (x1, x2)) when U is given by (4.6).

evolves with respect to θ. In Figure 3, the θ-evolution of Ã(θ) is also given in various points (x1, x2) ∈ R2.
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Figure 2. θ-evolution of Ũ(θ, (1/2, 0)) and Ũ(θ, (1/4, 0)) when U is given by (4.6)
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Figure 3. θ-evolution of Ã(θ, (1/2, 0)) and Ã(θ, (1/4, 0)) when U is given by (4.6)

In this paragraph, we present numerical simulations in order to validate the Two-Scale convergence presented in
Theorem 1.1. For a given ε, we compare ZP (t, t

ε
, x), where ZP is the Fourier expansion of order P of the solution

to (1.10) and zεP (t, x) the Fourier expansion of order P of the solution to the reference problem. The simulations
presented are given for P = 4. The calculation of zεP (t, x) implies knowledge of z0(x). For an initial condition z0(x)
well prepared and equal to Z(0, 0, x), we obtain the results of Figure 4 and we remark that the results obtained are

the same for zεP (t, x) and ZP (t, t
ε
, x).
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Figure 4. Comparison of zεP (t, ·) and ZP (t, tε , ·), P = 4, at time t = 1, ε =
0.001, when U is given by (4.6) and when z0(·) = Z(0, 0, ·). On the left zεP (t, ·),
on the right ZP (t, tε , ·).

In practice, the solution ZP , P ∈ N evolves according to P. For the simulations, we made the value of the integer P

vary and we saw that this variation is very low from P ≥ 6.
To better show that ZP (t, t

ε
, x1, x2) is close to the reference solution zεP (t, x1, x2), we plot and compare ZP (t, t

ε
, x1, 0)

and zεP (t, x1, 0), at different times t. In these comparisons the initial condition z0(x1, x2) = cos 2πx1 + cos 4πx1 is
different from Z(0, 0, x1, x2). The results are shown in Figure 5 and Figure 6. We see in these figures that the solution

zεP (t, x) get closer and closer to ZP (t, t
ε
, x) with time of order ε.
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Figure 5. Comparison of zεP (t, x1, 0) and ZP (t, tε , x1, 0)), P = 4. On the left t = 0,
in the middle t = ε and t = 2ε on the right, ε = 0.001.
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Figure 6. Comparison of zεP (t, x1, 0) and ZP (t, tε , x1, 0)). On the left t = 0, in the
middle t = ε and t = 2ε on the right, ε = 0.01.

So we can see from these figures that the solution Z of the Two-Scale limit problem is such that Z(t, t
ε
, ·, ·) is close

to the solution zε(t, ·, ·) of the reference problem. In the presently considered case where the initial condition for zε

is not Z(0, 0, ·, ·), we saw in Figure 5 and Figure 6 that zεP tends to reach a steady state. This steady state is an

oscillatory one in the sense that for large t, zεP (t, ·, ·) behaves like ZP (t, t
ε
, ·, ·). This is illustrated by Figure 7 where

zεP (t, x1, 0) and ZP (t, t
ε
, x1, 0) are given for various value of t in a period of lenght ε.

More precisely, in this figure we see that within a period of time of lenght ε, zεP (t, ·, ·) and ZP (t, t
ε
, ·, ·) do not

glue together completly. Nevertheless, despite this phenomenon which is linked with the fact that the Two-Scale

approximation of zε(t, ·, ·) by Z(t, t
ε
, ·, ·) is only of order 1 in ε, the two solutions re-glue well together at the end of

the period.
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Figure 7. Evolution of ZP (t, tε , x1, 0) in the top and zεP (t, x1, 0) in the bottom,
t = 1 + nε

4 , n = 0, 1, 2, 3.
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4.2.2. Comparisons of zε(t, x) and Z(t, t
ε
, x) with U is given by (4.7). In this subsection, we do the same as in the

precedent one, but when the velocity fields U given by (4.7). The results are all identical to the precedent one i.e.

the Two-Scale limit ZP (t, t
ε
, x1, x2) is very close to the solution zεP (t, x1, x2) to the reference problem when P = 4.

The initial condition z0(x1, x2) 6= Z(0, 0, x1, x2) and is the same as in the subsection 4.2.1. The results are given for

ε = 0.1 and ε = 0.005 and for various time t. We notice that zε comes very close to Z(t, t
ε
, x1, x2) when ε is very

small. We begin by giving the space distribution of U at various time and the θ−evolution of U and Ã. The second
velocity fields is given by

U(t, θ, x1, x2) = U(t, θ, x) =



0 in [0, θ1],

θ−θ1
θ2−θ1

Uthre2 in [θ1, θ2],

Uthre2 + φ( θ−θ2
θ3−θ2

)ψ(t, x) in [θ2, θ3],

θ−θ3
θ4−θ3

Uthre2 in [θ3, θ4],

0 in [θ4, θ5],

θ−θ5
θ6−θ5

Uthre2 in [θ5, θ6],

−Uthre2 − φ( θ−θ6
θ7−θ6

)ψ(t, x) in [θ6, θ7],

− θ−θ7
θ8−θ7

Uthre2 in [θ7, θ8],

0 in [θ8, 1],

(4.7)

where Uthr > 0, φ is a regular positive function satisfying φ(s) = s(1 − s) and ψ(t, x1) = (1 + sin π
30
t)(Uthre2 +

1
10

(1 + sin 2πx1)e1), θi = i+1
10
, i = 1, . . . , 8.

The θ-evolution of U , given by (4.7), is given in Figure 9 for various position in [0, 1]2.

Function ga(u) = gc(u) = |u|3, a = c = 1 and M(t, θ, x) = 0 which yields a θ-evolution of Ã(θ) which is drawn for

various positions in Figure 10.
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Figure 8. Space distribution of the first component of U(1, 0.25, (x1, x2)),
U(1, 0.275, (x1, x2)) and U(1, 0.75, (x1, x2)) when U is given by (4.7).

Using this, we compute ZP (t, t
ε
, x1, x2) and zεP (t, x) for P = 4. To compute zεP (t, x) we take z0(x1, x2) = cos 2πx1 +

cos 4πx1 which is not Z(0, 0, x1, x2). First we study the errors ZP (t, t
ε
, x1, x2) − zεP (t, x) at t = 1. This quantity

decreases when ε decreases as illustrated in the following tabular.

value of ε norm L1 norm L2 norm L∞

0.01 0.012212 0.00048013 0.003376
0.03 0.019082 0.0005753 0.0017347
0.05 0.030769 0.01348 0.0069818

0.07 0.045123 0.029055 0.009
0.09 0.17067 0.10562 0.038790
0.1 0.3053 0.10562 0.04878

Table: Errors norm ZP (t, t
ε
, x1, x2)− zε

P̃
(t, x1, x2), P̃ = (4, 4), P = (4, 4, 4), t = 1.

The results given in this table show that, at time t = 1, zε(t, x) is closer to Z(t, t
ε
, x) when ε is very small. These

results validate the results obtained in Theorem 1.1.
In Figures 11 and 12, we present simulations at times t = 0.75 and t = 0.775. We see that ZP (t, t

ε
, x1, x2) is close to

zεP (t, x1, x2). The numerical results shown in these figures are made with ε = 0.1.
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Figure 9. θ-evolution of U(1, θ, (1, 0)), U(1, θ, (4, 0)) and U(1, θ, (1/3, 1/3)) when
U is given by (4.7).

In Figure 13 and 14, we do the same but for ε = 0.005. The numerical results show that zεP (t, x) is also very close to

ZP (t, t
ε
, x1, x2).
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Figure 10. θ-evolution of Ã(1, θ, (1, 0)), Ã(1, θ, (4, 0)) and Ã(1, θ, (1/3, 1/3)) when
U is given by (4.7).

We remark that for ε = 0.1 and ε = 0.005, the solution zεP (t, x) is very close to ZP (t, t
ε
, x). But the approximation

zεP (t, x) ∼ ZP (t, t
ε
, x) is very good when ε is very small.

To show that zεP is very close to ZP , we construct the same figures as previously but in dimension 2 with ε = 0.005

i.e. we construct zεP (t, x1, 0) and ZP (t, t
ε
, x1, 0) for ε = 0.005 at time t = 0.775. This is given in Figure 15.
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Figure 11. Comparison of zεP (t, x1, x2) and ZP (t, tε , x1, x2), P = 4; t = 0.75,

ε = 0.1, z0(x1, x2) = cos 2πx1 + cos 4πx1. On the left ZP (t, tε , x1, x2), on the right
zεP (t, x1, x2).

Figure 12. Comparison of zεP (t, x1, x2) and ZP (t, tε , x1, x2), P = 4; t = 0.775,

ε = 0.1, z0(x1, x2) = cos 2πx1 + cos 4πx1. On the left ZP (t, tε , x1, x2), on the right
zεP (t, x1, x2).
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Figure 13. Comparison of zεP (t, x1, x2) and ZP (t, tε , x1, x2), P = 4; t = 0.75,

ε = 0.005, z0(x1, x2) = cos 2πx1 +cos 4πx1. On the left ZP (t, tε , x1, x2), on the right
zεP (t, x1, x2).

Figure 14. Comparison of zεP (t, x1, x2) and Z(t, tε , x1, x2), P = 4; t = 0.775,

ε = 0.005, z0(x1, x2) = cos 2πx1 +cos 4πx1. On the left ZP (t, tε , x1, x2), on the right
zεP (t, x1, x2).
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Figure 15. Comparison of zεP (t, x1, 0) and ZP (t, tε , x1, 0), t = 0.775, ε = 0.005.

On the left ZP (t, tε , x1, 0), on the right zεP (t, x1, 0).

The results in Figure 16 show that ZP and zεP have the same behavior in the same period and ZP is very close to

zεP . We also notice that, despite the small shifts that occur during a period, the two solutions glue together.
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Figure 16. Evolution of ZP (t, tε , x1, 0)(top) and zεP (t, x1, 0)(bottom), t = 1 +
nε/4, n = 0, 1, 2, 3.
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