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Introduction and study of fourth order theta schemes for linear wave equations

Juliette Chabassiera, Sébastien Imperialeb

aINRIA Rocquencourt, POems, domaine de Voluceau, 78153 Le Chesnay, FRANCE
bCEA, LIST, 91191 Gif-sur-Yvette CEDEX, FRANCE

Abstract

A new class of high order, implicit, three time step schemes for semi-discretized wave equations is introduced
and studied. These schemes are constructed using the modified equation approach, generalizing theθ-scheme. Their
stability properties are investigated via an energy analysis, which enables us to design super convergent schemes
and also optimal stable schemes in terms of consistency errors. Specific numerical algorithms for the fully discrete
problem are tested and discussed, showing the efficiency of our approach compared to second orderθ-schemes.
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1. Introduction

Linear wave equations play a great role in scientific modeling and are present in many fields of physics. For
instance, they arise in the Maxwell equations, the acousticequation and the elastodynamic equation. A discrete
approximation of their solutions can be found with numerical simulations. Spatial discretization of the above equations
using classical finite elements methods often leads to a semi-discretized problem of the form: finduh ∈ C2(t,RN) such
that

Mh
d2

dt2
uh + Khuh = 0, uh(0) = u0,h,

duh

dt
(0) = u1,h, (1)

whereuh(t) is a vector-unknown inRN, Mh a symmetric positive definite matrix andKh a symmetric positive semi-
definite matrix.

Several approaches can be adopted to tackle the time discretization of problem (1). The so called “conservative
methods” (as for instance the leap frog scheme) preserve a discrete energy which is consistent with the physical
energy. They can be shown to be stable as soon as some positivity properties of the discrete energy are satisfied,
which generally imposes a restriction, known as the CFL condition, on the time step depending on the matricesMh

and Kh. The leap frog scheme enters a more general class of three points time step, energy preserving, implicit
schemes calledθ-schemes, which are parametrized by a real numberθ. The over cost of these implicit schemes
compared to explicit ones is balanced by the fact that stability conditions allow for a bigger time step.

For simple configurations with simple finite elements methods (such asP1 triangular elements), explicit schemes
show good performances. However they have two major drawbacks in complex configurations that have not yet been
completely solved:

• If the mesh has different scales of elements, or if the equations involve variable coefficients with strong contracts,
the time step must be adapted to the worst situation (for instance the smallest element) because of the CFL
condition. A natural way to avoid this restriction is to use local time stepping techniques which divide into
two categories. The locally implicit technique, as developed in [1], [2], [3] and [4], is optimal in term of CFL
restriction but “only” second order accurate in time, and requires the inversion of interface matrices. The fully
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explicit local time stepping, as developed in [5], achieveshigher order time stepping but without (up to now) a
full control over the CFL condition.

• If the mass matrix is non diagonal or non block-diagonal, itsinversion (at least one time per iteration) can lead
to a dramatic over cost of the explicit schemes, whereas no over cost is observed with implicit schemes (see
remark 4.1).

The extension of conservative time discretization schemesto higher orders of accuracy is a natural question. A popular
way to design explicit high order three points schemes is themodified equation approach. In this article we extend
this approach to design new high order implicit schemes which are stable and present some optimal properties.

The paper is organized as follows. Section 2 recalls some well-known results concerning the leap frog andθ-schemes.
In a conclusive remark we present, in the very simple case of theθ-scheme, the non standard approach that we will
choose to follow in the rest of the paper. In section 3 we construct a family of energy preserving implicit fourth order
schemes, parametrized by two real numbers (θ, ϕ). In section 4 we discuss the existence of their discrete solution
and some practical aspects of computation which can reduce numerical cost. Section 5 is devoted to the study of the
stability of the newly introduced schemes via energy techniques. The search for “optimal” schemes is presented in
section 6, it is done by adjusting (θ, ϕ) to increase accuracy. Finally, numerical results comparetheses schemes to
classical schemes in section 7.

In the following we will consider the semi-discretized problem

d2

dt2
uh + Ahuh = 0, uh(0) = u0,h,

duh

dt
(0) = u1,h, (2)

with Ah a symmetric positive semi-definite matrix. With no loss of generality: the analysis done below is valid if
Ah = M−1

h Kh.

Extensive use will be made of the spectral radius of the matrix Ah, defined asρ(Ah) = sup‖v‖=1 Ah v · v and coinciding
with the greatest eigenvalue ofAh. Its exact expression can be given in simple cases, as for instance the 1D wave
equation with constant speedc, using finite differences on a regular mesh of sizeh, for whichρ(Ah) = 4c2/h2. In other
cases, the cost of its numerical evaluation (for example with the power iteration method) is negligible compared to the
numerical resolution of the equation.

2. Classical results

In this section we recall the definitions and some propertiesof the classical leap-frog andθ-schemes, which are
widely used for the time discretization of wave equations. In the following we denote∆t > 0 the time step of the
numerical method.

2.1. Preliminary notations

The centered second order approximation of the second orderderivative in time of any functiont 7→ f (t) will be
denoted

D2
∆t f (t) =

f (t + ∆t) − 2 f (t) + f (t − ∆t)
∆t2

. (3)

Assuming infinite smoothness onf , let us use a Taylor expansion to write the truncation error of the previous quantity:

D2
∆t f (t) =

d2

dt2
f (t) + 2

∞∑

m=1

∆t2m

(2m+ 2)!
d2m+2

dt2m+2
f (t). (4)

Classicalθ-schemes are based upon the use of a three points centered approximation of f (t) which, for θ ∈ R, is
defined by

{ f (t)}θ = θ f (t + ∆t) + (1− 2θ) f (t) + θ f (t − ∆t). (5)

2



Assuming again infinite smoothness onf , we can write the truncation error of this new quantity:

{ f (t)}θ = f (t) + 2θ
∞∑

m=1

∆t2m

(2m)!
d2m

dt2m
f (t). (6)

Both the leap frog scheme and theθ-scheme use finite differences to discretize time in order to compute an approxi-
mation of the semi discrete solutionuh of (2). Consequently, the unknowns of those schemes stand for the values of
uh at timetn = n∆t : un

h ≃ uh(tn). The discrete versions of (3) and (5), using the same symbols, are

D2
∆tu

n
h =

un+1
h − 2un

h + un−1
h

∆t2
, {un

h}θ = θ un+1
h + (1− 2θ)un

h + θ un−1
h . (7)

The following algebraic relations will be useful: for allθ ∈ R,

{un
h}θ =

θ

θ′
{un

h}θ′ +
θ′ − θ
θ′

un
h, ∀ θ′ , 0, (8)

{un
h}θ = un

h + θ∆t2D2
∆tu

n
h, (9)

{un
h}θ = (θ − 1

4
)∆t2D2

∆tu
n
h + {un

h}1/4. (10)

2.2. Classicalθ-schemes

The second order accurate leap-frog scheme reads

D2
∆tu

n
h + Ahun

h = 0, (11)

which is stable under a restriction on the time step called CFL condition. More precisely, it is possible to show using
energy techniques that stability requires the following inequality to hold:

∆t2 ≤ 4
ρ(Ah)

, (12)

whereρ(Ah) is the spectral radius of the matrixAh. This scheme enters a more general class of schemes called
θ-schemes (convergence proofs are given in [6] and some alternatives are studied in [7],[8] and [9]) :

D2
∆tu

n
h + Ah{un

h}θ = 0. (13)

The leap-frog scheme corresponds to the choiceθ = 0. Other choices lead to implicit schemes. Whenθ < 1/4, these
schemes are stable under the CFL condition

∆t2 ≤ 4
(1− 4θ)ρ(Ah)

. (14)

As long asθ ≥ 1/4 they are unconditionally stable.

Let uh(t) be solution of (2). The truncation error of schemes (13) up to fourth order can be written

D2
∆tuh(tn) + Ah{uh(tn)}θ = ∆t2

( 1
12

d2

dt2
+ θAh

) d2

dt2
uh(tn) + O(∆t4). (15)

Knowing thatuh(t) is solution of (2), we can replace the second order time derivative by the matrix−Ah, giving

D2
∆tuh(tn) + Ah{uh(tn)}θ = −∆t2

(
θ − 1

12

)
A2

h uh(tn) + O(∆t4). (16)

This expression shows that we obtain second order accuracy except forθ = 1/12, which cancels out the first consis-
tency error term, giving a fourth order scheme.
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In some situations, the time step∆t is related to the physics (for sampling reasons) and the spectral radiusρ(Ah) (via
the spatial discretization) is related to the geometry or the a priori knowledge of the solution (in the case of rapidly
varying coefficients or boundary layers). Therefore, they have to be considered as data for the numerical analyst. It
is then reasonable to choose a numerical scheme suited to these parameters instead of choosing discretization param-
eters suited to the problem. A good criterion to compare numerical schemes is the coefficient of the first term of the
consistency error, which is given, for the specific case of theθ-schemes, by (θ−1/12). As these schemes give a degree
of freedom, adaptingθ to the product∆t2ρ(Ah) makes it possible to decrease the consistency error while providing a
stable scheme. This “optimization” problem is straightforward here: two cases arise, either∆t2ρ(Ah) ≤ 6, in which
case the valueθ = 1/12 leads to a fourth order stable scheme (relation (14) holds), or if ∆t2ρ(Ah) > 6, the choice ofθ
that provides a stable scheme and minimizes the consistencyerror is

θ =
1
4
− 1
∆t2ρ(Ah)

. (17)

The non standard approach mentioned above will be adopted inthe discussion that follows: instead of choosing a time
step∆t that provides a good accuracy on a given mesh with a given numerical scheme, we will invert the reasoning
and choose the best numerical scheme for a given couple (∆t, ρ(Ah)).

3. Construction of a family of fourth order implicit schemes

3.1. Modified equation technique for the leap frog scheme

The “modified equation” technique, introduced in [10], enables to construct higher order schemes from the second
order leap frog scheme. More precisely, the order 2p scheme is obtained by adding to the leap frog schemes terms
that compensate the (p− 1) first terms of the truncation error. This error reads, foruh(t) solution of (2):

D2
∆tuh(tn) + Ahuh(tn) = 2

∞∑

m=1

∆t2m

(2m+ 2)!
d2m+2

dt2m+2
uh(t

n). (18)

Again, we can replace the second order time derivative by thematrix−Ah:

D2
∆tuh(tn) + Ahuh(tn) = 2

∞∑

m=1

(−1)p+1 ∆t2m

(2m+ 2)!
Am+1

h uh(tn). (19)

Truncating the series up to the first term, and approachinguh(tn) with un
h gives the fourth order scheme:

D2
∆tu

n
h + Ahun

h −
∆t2

12
A2

hun
h = 0. (20)

The stability condition is deduced from energy arguments and reads

∆t2 ≤ B00

ρ(Ah)
, (21)

whereB00 = 12.

Using an Hörner algorithm, this scheme is two times more expensive than the original scheme. This over cost can be
compensated by adding stabilization terms that allow to increase the time step as explained in [11] and [12].

3.2. Modified equation technique for theθ-scheme

We now use the ideas of the modified equation technique applied to theθ-scheme (instead of the leap frog scheme,
i.e θ = 0). Letuh(t) be solution of (2). The truncation error of theθ-scheme (13) is:

D2
∆tuh(t

n) + Ah{uh(tn)}θ =
∞∑

m=1

∆t2m
( 2
(2m+ 2)!

d2

dt2
+

2θ
(2m)!

Ah

) d2m

dt2m
uh(tn), (22)
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in which we replace the time derivatives by−Ah, as in (20):

D2
∆tuh(tn) + Ah{uh(tn)}θ +

∞∑

m=1

em(θ)∆t2m Am+1
h uh(tn) = 0, (23)

where the coefficientsem(θ) are defined by

em(θ) = (−1)m
( 2
(2m+ 2)!

− 2θ
(2m)!

)
. (24)

To obtain a fourth order scheme, the natural idea would be to follow the modified equation procedure by keeping the
first term of the series while replacinguh(tn) with un

h. This gives

D2
∆tu

n
h + Ah{un

h}θ + (θ − 1
12

)∆t2 A2
h un

h = 0. (25)

It is possible to study the stability of this scheme using energy techniques. As this will be a special case of the analysis
done below in section 6.1, we just give here the result : the time step restriction is given by

∆t2 ≤ B0(θ)
ρ(Ah)

, (26)

where

B0(θ) =



12
(1− 12θ)

if θ ≤
(2−

√
3

4
√

3

)
,

r(θ, 0) if θ >
(2−

√
3

4
√

3

)
,

(27)

wherer(θ, 0) will be introduced in the next sections and satisfiesr(θ, 0) . 10, for θ > −(2 +
√

3)/(4
√

3). These
restrictions turn out to be quite penalizing since, unlike with the classicalθ-scheme, there is no possible choice ofθ
that leads to an unconditionally stable scheme. Indeed, thecondition (26) implies that∆t2ρ(Ah) must bounded by

sup
θ∈R

B0(θ) = B0

(2−
√

3

4
√

3

)
=

6

2−
√

3
≃ 22.4. (28)

3.3. New fourth order implicit schemes

Trying to improve the previous time step restriction, we choose to introduce a new real numberϕ ∈ R and to
approximateuh(tn) in (23) by {un

h}ϕ. This will lead us to consider a class of schemes parametrized by (θ, ϕ) ∈ R
2,

which includes scheme (25) when choosingϕ = 0. We will call (θ, ϕ)-schemes the following schemes:

D2
∆tu

n
h + Ah{un

h}θ +
(
θ − 1

12
)
∆t2A2

h{un
h}ϕ = 0. (29)

Next sections are dedicated to studying the numerical, stability and consistency properties of this general class of two
parameters, at least fourth order, implicit schemes.

Remark 3.1. The valueθ = 1/12 cancels out the new added term, retrieving(13). Therefore the stability condition
has already been given by(14), which gives here:

∆t2 ≤ 6
ρ(Ah)

. (30)

In the following, we will considerθ , 1/12.
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4. Computation of the discrete solution

Scheme (29) does not seem easy to invert at first sight becauseit involves powers of the matrixAh which can
already be difficult to invert. Yet, the computation of the solution is not a secondary question to deal with when devel-
oping a numerical scheme devoted to be actually used. We propose in this preliminary section an enhancing algorithm
based on the complex factorization of a polynomial function. It will allow us at the same time to introduce notations
and mathematical objects that will be widely used hereafterduring convergence, energy and stability analysis.

The first step towards implementation is to rewrite the numerical scheme in a way that emphasizes its implicit nature.
Assuming thatϕ , 0, and multiplying (29) byϕ∆t2, we can use the algebraic relations (8) and (9) to obtain the
equivalent scheme

(
Ih + θ∆t2Ah + ϕ(θ − 1

12
)∆t4A2

h

)
{un

h}ϕ = un
h + [θ − ϕ]∆t2Ahun

h =: bn
h. (31)

The computational algorithm associated to the scheme (31) follows two stages:

• We retrieve{un
h}ϕ knowingun

h by inverting the matrix polynomial

P(∆t2Ah; θ, ϕ) = Ih + θ∆t2Ah + ϕ(θ − 1
12

)∆t4A2
h. (32)

The invertibility of the matrixP(∆t2Ah; θ, ϕ) is equivalent to the existence of a discrete solution.

• We then use the knowledge of{un
h}ϕ to computeun+1

h :

un+1
h =

{un
h}ϕ + (2ϕ − 1)un

h

ϕ
− un−1

h . (33)

The first stage of this algorithm is not straightforward because the matrix to invert involves powers of the matrix
Ah. Indeed, ifAh has a band structure (as in most classical finite elements methods), the bandwidth ofA2

h will be
even larger, which penalizes the use of direct solvers. In the same way, iterative methods may suffer from the bad
conditioning ofP(∆t2Ah; θ, ϕ) sinceρ(A2

h) = ρ(Ah)2 (see for instance remark 7.1). To overcome such difficulties, we
propose an algorithm based on the factorization ofP(λ, ; θ, ϕ). Different cases arise according to the nature of its roots
(r+, r−):

• The roots are real. In this case invertibility is not grantedand must be verified. IfP(∆t2Ah; θ, ϕ) is indeed
invertible,{un

h}ϕ can be obtained in two steps, solving the linear systems withan intermediary unknownvn
h:


vn

h = (r+Ih − ∆t2Ah)−1bn
h,

{un
h}ϕ = r+r−(r−Ih − ∆t2Ah)−1vn

h.
(34)

• The roots are conjugate complex numbers:r+ = r−. As above, we introducevn
h computed as:

vn
h = (r+Ih − ∆t2Ah)−1bn

h. (35)

As bn
h is a real vector, we know that the solution{un

h}ϕ will also be a real vector. Therefore we can identify the
imaginary parts of both sides in

1
|r+|2 (r+Ih − ∆t2Ah){un

h}ϕ = vn
h, (36)

to get, without any additional matrix inversion:

{un
h}ϕ = −

|r+|2
ℑm(r+)

ℑm(vn
h). (37)

This method only requires one matrix inversion which however happens in the complex domain. Adapted
techniques can be used to avoid over cost (see [13], [14]).
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Remark 4.1. Using the factorization of the polynomial matrix P(∆t2Ah; θ, ϕ), if Ah = M−1
h Kh one needs to compute

the solution of linear problems of the form

(r±Ih − ∆t2M−1
h Kh)xh = bh⇐⇒ (r±Mh − ∆t2Kh)xh = Mhbh. (38)

This shows that the mass matrix inversion is included in the regular matrix inversion needed by the implicit scheme.
This leads to nearly no over cost even if the mass matrix is non-diagonal.

Remark 4.2. To take into account the non-homogeneous version of(2), namely

d2

dt2
uh + Ahuh = fh, uh(0) = u0,h,

duh

dt
(0) = u1,h, (39)

where fh is a source term, the fully discrete(31) must be modified so that the fourth order accuracy is preserved.
Using the same arguments as those used to obtained(16) from (15), one can show that, whenϕ , 0, the correct
discrete scheme is

P(∆t2Ah; θ, ϕ){un
h}ϕ = bn

h + ϕ∆t2 fh(tn) + ϕ
∆t4

12
d2

dt2
fh(tn) + ϕ∆t4

(
θ − 1

12
)
Ah fh(tn).

5. Energy preservation and stability

Using relation (10), our (θ, ϕ)-schemes (29) are equivalent to:

[
Ih + (θ − 1

4
)∆t2Ah + (θ − 1

12
)(ϕ − 1

4
)∆t4A2

h

]
D2
∆tu

n
h +

[
Ah + (θ − 1

12
)∆t2A2

h

]
{un

h}1/4 = 0. (40)

This simplifies to the general form:
M̃hD2

∆tu
n
h + K̃h{un

h}1/4 = 0, (41)

whereM̃h andK̃h are symmetric matrices defined by

K̃h = Ah Q2(∆t2Ah; θ, ϕ), andM̃h =
Q1(∆t2Ah; θ, ϕ)

4
, (42)

with 

Q1(λ; θ, ϕ) = 4+ (4θ − 1)λ + (4ϕ − 1)(θ − 1
12

)λ2,

Q2(λ; θ, ϕ) = 1+ (θ − 1
12

)λ.
(43)

Taking the euclidian scalar product (·, ·) of equation (41) with (un+1
h − un−1

h )/2∆t gives the energy preservation

En+1/2 − En−1/2

∆t
= 0, (44)

where the discrete energyEn+1/2 is defined by

En+1/2 =
1
2

M̃h
un+1

h − un
h

∆t
,
un+1

h − un
h

∆t

 +
1
2

K̃h
un+1

h + un
h

2
,
un+1

h + un
h

2

 . (45)

One can prove that the positivity of the matrices̃Mh and K̃h leads to the stability of the scheme (41). Since those
matrices depend onAh through the polynomialsQ1 and Q2, a sufficient condition can be derived to ensure this
positivity:

Q1(λ; θ, ϕ) ≥ 0 andQ2(λ; θ, ϕ) ≥ 0, ∀λ ∈ [0,∆t2ρ(Ah)]. (46)

These conditions lead to an upper bound on∆t2 that depends on the values ofθ , 1/12 andϕ as stated in the following
theorem:
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Theorem 5.1 (CFL condition). The matrices Q1(∆t2Ah; θ, ϕ) and Q2(∆t2Ah; θ, ϕ) are positive matrices if

ρ(Ah)∆t2 ≤ B(θ, ϕ) = min
(
BQ1(θ), BQ2(θ, ϕ)

)
(47)

where

BQ2(θ) =



+∞ if θ >
1
12
,

12
1− 12θ

otherwise,
(48)

BQ1(θ, ϕ) =



+∞ if (θ, ϕ) ∈ DUS ,

4
1− 4θ

if (θ, ϕ) ∈ I1/4,

r(θ, ϕ) otherwise,

(49)

and ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I1/4 = (−∞, 1/4)∪ {1/4},

DUS = [1/4,+∞) × [1/4,+∞) ∪ S− ∪ S+,

S− =
{
ϕ ≤ 1

4
[1 +

(4θ − 1)2

16(θ − 1/12)
], θ < 1/12

}
,

S+ =
{
ϕ ≥ 1

4
[1 +

(4θ − 1)2

16(θ − 1/12)
], θ > 1/12

}
,

∆(θ, ϕ) = (4θ − 1)2 − 16 (4ϕ − 1)(θ − 1/12),

r(θ, ϕ) =
1− 4θ −

√
∆(θ, ϕ)

2(4ϕ − 1)(θ − 1/12)
.

(50)

Proof. The proof of this statement will be given in annex.

Figure 1: Graphical representation of the CFL conditionB(θ, ϕ). The dotted line represents the demarcation ofS+. The white areas stand for an
infinite upper bound (unconditionally stable schemes) whereas the colored scale stands for values ofB (the darker being the lower).
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Remark 5.1. The coefficients B0 of (26) and B00 of (21) can be seen as restrictions of B on specific areas of theR
2

plane:
B0(θ) = B(θ, 0), B00 = B(0, 0). (51)

The following result states that respecting the CFL condition almost always leads to a well-posed discrete problem:

Theorem 5.2 (Existence of the discrete solution). If Q1(∆t2Ah; θ, ϕ) and Q2(∆t2Ah; θ, ϕ) are positive matrices, then
P(∆t2Ah; θ, ϕ) is invertible if

(θ, ϕ) ,
( 1
12
− 1
∆t2ρ(Ah)

,
1
12

)
. (52)

Proof. We write the polynomialP(λ; θ, ϕ) as a sum of two positive terms:

P(λ; θ, ϕ) =
Q1(λ; θ, ϕ) + λQ2(λ; θ, ϕ)

4
. (53)

Forλ ∈ [0,∆t2ρ(Ah)], it vanishes if and only if both terms vanish at the same point. It can only happen ifλ = ∆t2ρ(Ah)
and if (θ, ϕ) =

(
1/12− (∆t2ρ(Ah))−1, 1/12

)
.

6. Peculiar (θ, ϕ)-schemes

6.1. A class of optimal(θ, ϕ)-schemes

In the following, we are going to find the “best possible” stable (θ, ϕ)-schemes, which means to find the optimal
values ofθ andϕ in theR2 plane that minimize the consistency error of the scheme, under the constraints of scheme
stability. Indeed, we know (by construction) that these schemes are fourth order accurate in time, and the consistency
errors of order six and eight depend on the values ofθ andϕ. The consistency error of scheme (29) is obtained, first
by evaluating the approximation (6) in the solutionuh(tn) of (2):

{uh(tn)}ϕ = uh(tn) −
∞∑

m=1

cm(ϕ)∆t2mAm
h uh(tn), (54)

where the coefficientscm(ϕ) are defined by

cm(ϕ) = (−1)m+1 2ϕ
(2m)!

. (55)

Then, the choice to approximateuh(tn) in (23) by{un
h}ϕ leads to

D2
∆tuh(tn) + Ah{uh(tn)}θ + e1(θ)∆t2A2

h

[
{uh(tn)}ϕ +

∞∑

m=1

cm(ϕ)∆t2mAm
h uh(tn)

]

+ e2(θ)∆t4A3
huh(tn) + e3(θ)∆t6A4

huh(tn) = O(∆t8), (56)

which gives

D2
∆tuh(t

n) + Ah{uh(tn)}θ + e1(θ)∆t2A2
h{uh(tn)}ϕ = −ε3(θ, ϕ)∆t4A3

huh(tn) − ε4(θ, ϕ)∆t6A4
huh(t

n) + O(∆t8), (57)

where the first terms of the consistency error are



ε3(θ, ϕ) = e2(θ) + e1(θ) c1(ϕ) =
1

360
− θ

12
− ϕ

12
+ θ ϕ, (58a)

ε4(θ, ϕ) = e3(θ) + e1(θ) c2(ϕ) =
−1

20160
+

θ

360
+

ϕ

144
− θ ϕ

12
. (58b)
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Regarding the stability conditions, we will see that they provide nonlinear constraints on (θ, ϕ) which depend on
∆t2ρ(Ah). This is why we tackle this issue using a non standard point of view : we assume∆t2ρ(Ah) to be known and
we solve the corresponding optimization problem:

min
(θ,ϕ)∈R2

|ε3(θ, ϕ)|,


Q1(λ; θ, ϕ) ≥ 0,

Q2(λ; θ, ϕ) ≥ 0,
∀λ ∈ [0,∆t2ρ(Ah)]. (59)

If it is possible to find values of (θ, ϕ) that makeε3 vanish in the stability region, then the optimal choices within these
values are the one that minimize the absolute value ofε4.

In section 6.1.1, we will try to mimic the super-convergencephenomenon that we find in the classicalθ-scheme when
θ = 1/12. Indeed, this second order scheme appears to be fourth order accurate for the peculiar choice ofθ = 1/12.
In our case, we will see that it will be possible to obtain stable sixth order schemes by restraining the choice of the
couple (θ, ϕ) to a curve in theR2 plane corresponding to the zeros of (58a), and even stable eighth order schemes by
choosing a special couple on this curve that correspond to a zero of (58b). The major drawback of this powerful result
is that it can only happen for small values of∆t2 ρ(Ah).

When this approach is not possible (for∆t2 ρ(Ah) greater than a certain value), section 6.1.2 investigateswhich couple
(θ, ϕ) in the R

2 plane leads to the stable numerical scheme that minimizes the absolute value of the consistency
error (58a).

Finally in section 6.1.3, we construct “optimal” unconditionally stable schemes by assuming in the optimization
process that∆t2 ρ(Ah) = +∞. This will lead to (θ, ϕ)-schemes, whereθ andϕ depend on a small parameterδ, and that
minimize the absolute value of (58a) whenδ tends to 0.

Remark 6.1. It is possible to obtain higher orderθ-schemes parametrized by more real numbers. For instance, if we
extend the previous approach to the next order of approximation, we can introduce(θ, ϕ, ψ, ψ̃) ∈ R4 and the obtained
schemes read:

D2
∆tu

n
h + Ah{un

h}θ + e1(θ)∆t2A2
h{un

h}ϕ + ∆t4A3
h

[
e2(θ){un

h}ψ + e1(θ)c1(ϕ){un
h}ψ̃

]
= 0. (60)

The consistency error of these schemes is given by

−∆t6A4
h

[
e3(θ) + e1(θ)c1(ϕ)c1(ψ̃) + e1(θ)c2(ϕ) + e2(θ)c1(ψ)

]
uh(tn) + O(∆t8), (61)

showing that these schemes are at least sixth order accurate.

6.1.1. Sixth and eighth order stable schemes.
We look for stable (θ, ϕ)-schemes such thatε3 vanishes and such that|ε4| is minimized. This restricts the choice

of θ andϕ to a curve inR2 described by

ϕ⋆ = (12 θ⋆ − 1)−1(θ⋆ − 1
30

). (62)

All the values on this curve lead to a sixth order scheme. The stability conditions require that for allλ ∈ [0,∆t2ρ(Ah)]
we must have 

Q1(λ; θ⋆, ϕ⋆) = (4θ⋆ − 1)λ + (−2
3
θ⋆ +

13
180

)λ2 + 4 ≥ 0,

Q2(λ; θ⋆, ϕ⋆) = 1+ (θ⋆ − 1
12

)λ ≥ 0,

(63)

whereϕ has been eliminated using (62). The second inequality is constraining only ifθ⋆ < 1/12, in which case

∆t2ρ(Ah) ≤ 12
1− 12θ⋆

:= p(θ⋆). (64)
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The first inequality is respected if and only if the polynomial Q1(λ; θ⋆, ϕ⋆) has no root of multiplicity one in the
interval [0,∆t2ρ(Ah)]. Let ∆(θ⋆) be the discriminant ofQ1(λ; θ⋆, ϕ⋆):

∆(θ⋆) = 16 (θ⋆)2 +
8
3
θ⋆ − 7

45
. (65)

Different cases arise according to the convexity ofQ1:

• Concave whenθ⋆ > 13
120. In this case, there are two simple roots of opposite signs. The positive root must be

greater than∆t2ρ(Ah), that is:

∆t2ρ(Ah) ≤ r(θ⋆) :=
1− 4θ⋆ −

√
∆(θ⋆)

2 (13/180− 2θ⋆/3)
. (66)

• Linear whenθ⋆0 =
13
120. In this case,Q1 is a decreasing linear function, which is positive on [0, 120

17 ] to which
∆t2ρ(Ah) must belong. This condition extends by continuity relation (66) to its singular point.

• Convex whenθ⋆ < 13
120. In this case, we haveQ′1(0;θ⋆, ϕ⋆) < 0 and two different cases according to the sign of

∆(θ⋆) must be considered:

◦ ∆(θ⋆) > 0⇔ θ⋆ < [− 1
12 −

√
15

30 ,−
1
12 +

√
15

30 ] : Two simple roots. Therefore the lower root must be greater
than∆t2ρ(Ah). This condition turns out to be the same as (66).

◦ ∆(θ⋆) ≤ 0⇔ θ⋆ ∈ [− 1
12 −

√
15

30 ,− 1
12 +

√
15

30 ] : No simple root. Therefore the first condition is automatically
fulfilled.

Figure 2: Bounds on∆t2ρ(Ah) for any θ⋆: the scheme is stable if the couple (∆t2ρ(Ah), θ⋆) lies in both hatched areas. In continuous line, we
representedp(θ⋆) while in dotted line we representedr(θ⋆) when∆(θ⋆) > 0.

To sum up, the upper bound on∆t2ρ(Ah) is :


min(p(θ⋆), r(θ⋆)) if θ⋆ < − 1
12
−
√

15
30

,

p(θ⋆) if − 1
12
−
√

15
30
≤ θ⋆ ≤ − 1

12
+

√
15

30
,

min(p(θ⋆), r(θ⋆)) if − 1
12
+

√
15

30
< θ⋆ <

1
12
,

r(θ⋆) if
1
12

< θ⋆.

(67)
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In this variety of sixth order schemes, the choice ofθ⋆ is guided by the minimization of the absolute value ofε4, which
reads

ε4(θ⋆, ϕ⋆) =
−θ⋆
240
+

11
60480

. (68)

It is a linear decreasing function ofθ⋆, vanishing for the value

θ⋆⋆ =
11
252

⇒ ϕ⋆⋆ = − 13
600

(69)

• For∆t2 ρ ∈ [0, 126
5 ], the couple (∆t2ρ(Ah), θ⋆⋆) provides an eighth order accurate stable scheme.

• For∆t2 ρ ∈ [ 126
5 ,

30
5−
√

15
], the couple (∆t2ρ(Ah), θ⋆⋆) violates the constraints (67). We can prove that minimizing

|ε4(θ⋆)| while satisfying (67) leads to the choice :

θ⋆ =
1
12
− 1
∆t2ρ(Ah)

. (70)

• For ∆t2ρ > 30
5−
√

15
, it is not possible to construct sixth order stable schemes anymore. Indeed, all the upper

bounds of (67) are lower than30
5−
√

15
.

6.1.2. Fourth order optimal stable scheme
We consider now the values of∆t2ρ(Ah) which could not satisfy the stability conditions of previous section, more

precisely we assume that∆t2ρ(Ah) > 30/(5−
√

15). As seen before it is not possible to makeε3 vanish in this case,
thus we will construct a stable scheme for a given∆t2ρ(Ah) that minimizes its absolute value by solving (59).

The second inequality of the constraints in (59) leads to

θ ≥ 1
12
− 1
∆t2ρ(Ah)

. (71)

For the first inequality, different situations arise according to the convexity and the slope at the origin ofQ1(λ; θ, ϕ).
It divides theR2 plane into six areas delimited by the values 1/12 and 1/4 for θ and 1/4 for ϕ.

Let us first consider the area 1/12− 1/(∆t2 ρ(Ah)) ≤ θ < 1/12, ϕ < 1/4. Q1 is then a convex parabola with a negative
slope at the origin.

• The parabola crosses the y-axis when∆(Q1) > 0. In this case, the interesting interval [0,∆t2 ρ(Ah)] must
be before the first root, or in other terms, we must haveQ1(∆t2 ρ(Ah)) ≥ 0 andQ′1(∆t2 ρ(Ah)) ≤ 0. But the
calculation shows that these two conditions are incompatible because we made the assumption on∆t2ρ(Ah) > 8.

• The parabola never crosses the y-axis when∆(Q1) ≤ 0 which leads to the condition:

ϕ ≤ 1
4

[
1+

(4θ − 1)2

16 (θ − 1/12)

]
. (72)

In this part of the plane, the sixth order consistency error is a decreasing function ofϕ, for anyθ:

ε3(θ, ϕ) =
1

360
− θ

12
+ ϕ (θ − 1

12
) (73)

and stays positive when (72) is respected. Hence, ifθ is fixed, the value ofϕ that minimizes the absolute value ofε3

is the greatest value possible. As a consequence, we want to minimize |ε3| on the curve

(
θ, ϕ =

1
4

[
1+

(4θ − 1)2

16 (θ − 1/12)

])
, (74)
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which leads to the 1D minimization of:

ε3

(
θ,

1
4

[
1+

(4θ − 1)2

16(θ − 1/12)

])
=
θ2

4
+

θ

24
− 7

2880
(75)

This objective function is positive and increasing on the interval [1/12− 1/∆t2 ρ(Ah), 1/12] as soon as∆t2 ρ(Ah) ≥ 4.
Therefore, the optimal values ofθ andϕ in this area ofR2 are given by:

θ♯ =
1
12
− 1
∆t2 ρ(Ah)

, ϕ♯ =
1
4
− ∆t2 ρ(Ah)

64
(2
3
+

4
∆t2 ρ(Ah)

)2
. (76)

It turns out that in the other areas, either it is not possibleto construct stable schemes, or stable schemes give a greater
consistency error. We provide in annex a proof of this statement. Notice that if the product∆t2 ρ(Ah) gets very large,
the optimal values (θ♯, ϕ♯) tend to (1/12,−∞).

6.1.3. Fourth order unconditionally stable scheme.
When the spectral radius of the operator is not known, we assume it is infinite, which means that the positivity

of Q1 andQ2 must be ensured on the wholeR+ interval. Unfortunately it is not possible to pass to the limit in the
formulae (θ♯, ϕ♯). We first notice that it is necessary to have

θ >
1
12
, ϕ >

1
4
, (77)

otherwiseQ2 is a decreasing affine function andQ1 a concave parabola. Again, we have to distinguish several cases
depending on the slope at the origin ofQ1.

• Eitherθ ≥ 1/4 and stability is acquired without any other condition.

• Either 1/12< θ < 1/4 and the parabolaQ1 must not cross the y-axis : its discriminant must be negative, leading
to

ϕ ≥ 1
4

[
1+

(4θ − 1)2

16 (θ − 1/12)

]
. (78)

It both cases,ε3 is a positive decreasing function ofϕ, therefore the lowest possible value ofϕ must be chosen. Again,
we tackle a 1D optimization problem. Let us introduceδ > 0 such that

θδ =
1
12
+ δ⇒ ϕδ =

(−2/3+ 4δ)2

64δ
+

1
4
. (79)

The consistency error parametrized byδ is given by

ε3(θδ, ϕδ) =
δ2

4
+

δ

12
+

1
360

. (80)

Thereforeδ must be chosen as low as possible, even if the lower bound 0 is not achievable. To sum up, we have
constructed a family of unconditionally stable (θ, ϕ)-schemes parametrized byδ > 0 that minimize the consistency
error “at the limit”.

6.1.4. Conclusions
The results of previous sections are summarized in table 6.1.4. With these choices of (θ, ϕ)-scheme, the polynomial

P(∆t2 ρ(Ah); θ, ϕ) defined by (32) has complex roots as soon as

∆t2ρ(Ah) ≥
60
7
+

24
7

√
15≃ 21.8502, (81)

otherwise the roots are negative. In both cases, the invertibility of the matrixP(∆t2Ah, θ, ϕ) is guaranteed.
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Table 1: Optimal values ofθ andϕ for a given positiveρ := ∆t2ρ(Ah) and for a positive small parameterδ.

6.2. “Multiple roots” fourth order schemes

The schemes developed in section 6.1 lead to a complex factorization of the polynomial (32) as soon as∆t2ρ(Ah) is
big enough. In this section we build unconditionally stableschemes for which the polynomialP(λ; θ, ϕ) has a double
negative rootr:

P(∆t2Ah; θ, ϕ) = r−2(rIh − ∆t2Ah)2. (82)

Therefore, the inversion ofP(∆t2Ah; θ, ϕ) can be done by inverting the same matrix (rIh−∆t2Ah) twice, which reduces
cost when direct solvers are used. This happens when the discriminant of P(λ; θ, ϕ) vanishes, giving the following
relation betweenθ andϕ:

ϕ =
3θ2

12θ − 1
. (83)

For this choice ofϕ, the stability conditions read


1+ (θ − 1/12)λ ≥ 0,

4+ (4θ − 1)λ + (θ2 − θ + 1
12

)λ2 ≥ 0,
∀λ ≥ 0. (84)

The first condition implies thatθ > 1/12. The second condition cannot be respected unless the leading coefficient
is positive, which leads toθ < [1/2 − 1/

√
6, 1/2 + 1/

√
6]. Since 1/12 lies in this interval,θ must be greater than

1/2+1/
√

6, implying that the negative multiple root ofP(λ; θ, ϕ) is given byr = −2/θ. To sum up, the (θ, ϕ)-schemes
satisfying (83) and

θ ≥ 1
2
+

1√
6
≃ 0.91 (85)

are unconditionally stable and we get the factorization

P(∆t2Ah; θ, ϕ) = (Ih +
θ∆t2

2
Ah)2. (86)

For these choices of (θ, ϕ) the absolute value of the consistency error|ε3| is a positive and increasing function ofθ, so
the valueθ = 1/2+ 1/

√
6 (which corresponds toϕ = 1/4) is optimal.

7. Numerical results

7.1. 1D convergence test cases

In this section we present an academical test case for which we know the exact solution, allowing us to compute
exactly numerical errors. We consider the 1D scalar wave equation with velocity 1 in a domain of length 1 with
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periodic boundary conditions:

∂2

∂t2
u(x, t) − ∂2

∂x2
u(x, t) = 0, x ∈ [0, 1], u(0, t) = u(1, t),

∂

∂x
u(0, t) =

∂

∂x
u(1, t). (87)

The initial condition is a gaussian pulse centered in the domain. The initial velocity is such that the analytical solution
is this gaussian pulse traveling from left to right. More precisely, the initial conditions are

u(x, 0) = u0(x) =

{
e(ε−1/2)−2 ln(ε) (x−1/2)2 if |x− 1/2| ≤ 1/2− ε
ε if |x− 1/2| > 1/2− ε ,

∂

∂t
u(x, 0) = − ∂

∂x
u0(x),

whereε is a small parameter (in practice we chooseε = 10−20). The analytic solution is given by

u(x, t) = u0(x− t + n) wheren ∈ N such thatx− t + n ∈ [0, 1].

In order to solve numerically this wave equation, the natural idea is to use the second order centered finite difference
scheme. It is even known to provide the exact solution on regular meshes if the time step is chosen equal to its maxi-
mal value allowed by the CFL condition. In this context (regular mesh) it is obvious that our implicit schemes would
not compare well. They were originally designed to overcomespecific difficulties as distorted meshes or rapidly vary-
ing coefficients. In order to pedagogically represent these kinds of difficulties, we propose to introduce a very small
element in the mesh. It can seem artificial in this simple 1D example, but is numerically representative of what can
happen in 2D or 3D when realistic domains are involved.

Standard explicit andθ-schemes are compared with some of the new (θ, ϕ)-schemes introduced above, and with the
exact solution. The errore is computed as the sup. over time of the relative discreteL2 error. The estimated cost
corresponds to the total number of matrix-vector products with Ah required for the simulation. Non-preconditioned
iterative methods (Conjugate Gradient and Minimal Residual, see [14]) have been used to solve the implicit schemes
in factorized form as presented in 4.

The mesh is composed of 12 identical elements surrounding a small element of sizeτ = 10−4, which leads to a
spectral radiusρ(Ah) = 5.62× 109 when sixth order spectral finite elements with mass lumping are used to tackle
spatial discretization (see [15]). For the explicit scheme, the time step is restricted to 2.7×10−5 by the CFL condition,
whereas for the implicit schemes, we impose∆t = 0.016 or∆t = 0.004. The simulation runs untilT = 10. Table 2
summarizes the performances of the chosen schemes and figure3 shows the obtained snapshots at final time.

Scheme ∆t Error Cost
Explicit 2.7× 10−5 2.4× 10−5 374 957
θ = 1/4 1.6× 10−2 2.3× 10−1 37 158

(θ, ϕ) = (1/4, 1/4) 1.6× 10−2 2.8× 10−2 67 526
(θ, ϕ) = (θ♯, ϕ♯) 1.6× 10−2 4.1× 10−3 47 004
(θ, ϕ) = (θ♯, ϕ♯) 4.0× 10−3 3.1× 10−5 73 214

Table 2: Comparison between several schemes: leap-frog explicit (θ = 0), θ-scheme withθ = 1/4, naive (θ, ϕ)-scheme with (θ, ϕ) = (1/4, 1/4) and
optimal (θ, ϕ)-scheme adapted to the product∆t2 ρ(Ah) (given by equation (76)).

As expected, the small element clearly penalizes the explicit scheme: a small step step must be chosen, which in-
creases the cost of the method but also increases its accuracy. This is why the final snapshot is very close to the
analytical solution, and the error is very low, for a very expensive cost. For the three following implicit schemes, we
choose a time step of 1.6×10−2. Theθ-scheme withθ = 1/4 is very cheap but behaves very poorly, as illustrated by the
snapshot and the relative error of about 0.2. The naive (θ, ϕ)-scheme with (θ, ϕ) = (1/4, 1/4) gives a much better error
and a nicer snapshot, even if numerical dispersion is still visible. The optimal (θ, ϕ)-scheme clearly overcomes the
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Figure 3: Snapshots of the numerical solutions at final time.Figure (a) corresponds to the explicit scheme, (b) to theθ-scheme, (c) to the naive
(θ, ϕ)-scheme and (d) to the optimal (θ, ϕ)-scheme. All implicit schemes use the time step∆t = 1.6× 10−2.

naive (θ, ϕ)-scheme, by being more accurate and cheaper. The first observation was to be expected since the criterion
of optimality was indeed accuracy, but the second one had notbeen foreseen and is linked to the correlation between
the condition number of the matrixP(∆t2Ah; θ, ϕ) and the consistency errorε3. Finally, by choosing an appropriate
time step of 4.0× 10−3, we recover with the optimal (θ, ϕ)-scheme the accuracy of the explicit scheme, while staying
about five times cheaper.

Remark 7.1. To highlight the interest of factorizing the polynom P in this specific 1D case, let us focus on the
(θ, ϕ)-scheme with(θ, ϕ) = (1/4, 1/4). On the one hand, the natural approach would be to invert the matrix

P(∆t2Ah; 1/4, 1/4)= Ih +
∆t2

4
Ah +

∆t4

24
A2

h.

Its condition number is given by P(∆t2 ρ(Ah); 1/4, 1/4) = 8.62× 1010. On the other hand, we can use the factorized
form introduced in section 4. The complex roots of the polynomial P read r± = −3± i

√
15, hence the matrix to invert

is (−3+ i
√

15)Ih − ∆t2Ah and its condition number is equal to|r+ − ∆t2 ρ(Ah)|/|r+| = 2.94× 105. This last matrix is
far easier to invert both in terms of computational cost (iterative methods) and numerical precision.

A convergence study has been lead on a regular mesh with sixthorder finite elements (or seventh order to obtain an
eighth order convergence curve) in space for different (θ, ϕ)-schemes. The error is computed as the sup norm in time
(hereT = 8) of the discreteL2 norm (induced by the mass matrix) of difference with the analytical solution. The
results are given in figure 4.
We obtain the expected rates of convergence for the different (θ, ϕ)-schemes. All the simulations and matrix inversions
have been done with an iterative method without preconditioning. This is clearly non-optimal in term of computational
cost but also in term of accuracy since it induced a numericallocking that prevented us to reach better accuracy with
the eighth order scheme.

7.2. Propagation of acoustic waves in a strongly heterogeneous 2D domain

To conclude the numerical results, we present a more complexconfiguration. We are interested in the propagation
of acoustic pressurep(x, t) in a square domainΩ = [−1, 1] × [−1, 1] in which we assume that the propagation is
governed by the non-homogeneous equations

∂2

∂t2
p(x, t) − div c(x)∇p(x, t) = f (x, t), x ∈ Ω, ∇p · n = 0, x ∈ ∂Ω, ∂

∂t
p(x, 0) = p(x, 0)= 0,

wheren is the outward normal,c(x) the material properties of the domain of propagation andf (x, t) := g(x) h(t) a
source term. The parametersc(x) andh(t) are represented in figure 5 whereasg(x) is a 2D gaussian pulse centered
aroundx = 0. The explicit expressions of these coefficients are

c(x) = 1+ 104e−800 (|x|2−0.35)2 , h(t) =
(
2π2(16 (t − 0.1)− 1)2 − 1

)
e−π

2 (16 (t−0.1)−1)2 , g(x) = e−800|x|2.
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Figure 4: Log of the error w.r.t the log of the mesh size for different (θ, ϕ)-schemes and discretization parameters.+ : optimal “multiple roots”
scheme with∆t2ρ = 120,◦ : optimal (θ, ϕ)-scheme with∆t2ρ = 120,� : optimal (θ, ϕ)-scheme with∆t2ρ = 60,× : optimal (θ, ϕ)-scheme with
∆t2ρ = 26,• : optimal (θ, ϕ)-scheme with∆t2ρ = 22.

Figure 5: Representation of the coefficientsc(x) andh(t).
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Explicit computation of the discrete solution of this problem may not be adapted if one wants to minimize the com-
putational cost while reaching a target, but not necessarily very small, accuracy. Indeed, the upper bound for the
time step in explicit methods is proportional to 1/

√
maxx c(x) = 10−2. This is a typical situation where implicit and

unconditionally stables schemes are often used, since in this case the time step is no longer related toc(x) and can be
tuned to reach the desired accuracy and obtain a reasonable computational cost.

We choose to compare three different types of discretization in time to a precomputed refined reference solution:

• Schemes A & B Two standard leap frog schemes, of second and fourth order, which are explicit. Hence they
must be used with a very small time step. They should yield a very good accuracy yet being more costly than
the implicit schemes. Note that the fourth order leap frog scheme corresponds to the choice (θ, ϕ) = (0, 0) also
called modified equation scheme.

• Scheme C The second orderθ-scheme withθ = 1/4. It is the most classical scheme that can be used to tackle
the implicit discretization of our problem.

• Scheme D Our fourth order discretization (θ, ϕ)-scheme with (θ, ϕ) = (1/2+ 1/
√

6, 1/4) as computed in sub-
section 6.2. This is the most easily implantable alternative that we presented and it should outperform the
second-orderθ-scheme.

The same space discretization is chosen for all the numerical computations since we are only interested in comparing
the time discretization of a semi-discrete problem similarto equation (39). The spatial mesh is a fine enough uniform
grid of sizeh = 0.025 (1600 squared elements) and we use fifth order spectral finite elements with mass lumping (see
[15]) (160801 degrees of freedom andρ(Ah) ≃ 1.2× 1010 ). Note also that the source term is handled as indicated in
remark 4.2 to avoid any accuracy loss.

The explicit schemes A and B must respect their stability condition, leading to a maximal time step allowed of respec-
tively ∆t ≈ 1.8× 10−5 and∆t ≈

√
3× 1.8× 10−5. The last two schemes C and D are unconditionally stable. Thetime

step is chosen to be∆t = 1.8× 10−3, which is close to the maximal time step allowed by the explicit scheme if the
coefficientc(x) was constant (equal to 1) over all of the domain. These schemes require one (respectively two) inver-
sions of a real matrix at each time step. The choice of the peculiar fourth order scheme D described in subsection 6.2
has been motivated by the fact that the same (symmetric positive definite) matrix must be inverted twice at each time
step, which implies that in practice only oneLU factorization is performed before the iterations start. Some snapshots
of the solution are presented in figure 6 and the results of thenumerical experiments are summed-up in table 3.

Type Scheme ∆t
RelativeL2 error at

T = 1.0
Relative cost

B (ref) Explicit Order 4: (θ, ϕ) = (0, 0) 3.11× 10−6 Reference −
A Explicit Order 2 1.8× 10−5 2.33× 10−6 100
B Explicit Order 4: (θ, ϕ) = (0, 0) 3.11× 10−5 1.94× 10−8 112.7
C θ = 1/4 1.25× 10−3 8.90× 10−2 3.2+ 11.2
D (θ, ϕ) = (1/2+ 1/

√
6, 1/4) 2.5× 10−3 4.05× 10−2 2.8+ 8.0

C θ = 1/4 2.5× 10−3 2.24× 10−2 3.4+ 20.7
D (θ, ϕ) = (1/2+ 1/

√
6, 1/4) 5× 10−3 2.87× 10−3 3.0+ 15.8

Table 3: Comparison between several schemes:L2 norm relative error atT = 1.0. The cost corresponds to the duration of simulation divided by
the amount of time needed to run the explicit scheme A (the cost of LU factorization is the first term in the sum for the implicit schemes).

The reference solution is computed with the fourth order classicalθ-scheme B, with a time step of∆t = 3.11× 10−6,
which is ten times less than the maximum value allowed. Sincethe time steps taken for the explicit schemes A and
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Figure 6: From left to right, top to bottom: snapshots of the pressure field computed with the explicit scheme A, forT = 0.105,T = 0.3, T = 0.5
andT = 0.7, T = 0.9, T = 1.1. The dashed circle is parametrized by|x|2 = 0.35 and represents the region wherec(x) reaches his maximum value.

B are very low, we see that as expected, they give a very accurate solution for a higher computational cost. More
importantly we see that the implicitθ−schemes C give a solution accurate from around 9% to 2% for a cost around 7
to 4 time less, however for nearly the same computational cost (θ, ϕ)−schemes D give solutions accurate from around
4% to 0.3%, outperforming the classicalθ-scheme.

8. Conclusions and prospects

We have introduced a new family of fourth order accurate in time, implicit, energy preserving schemes, denoted
as the (θ, ϕ)-schemes, that generalize the famous second order accurate θ-schemes. Their stability properties have
been investigated via an energy analysis, leading to a general CFL condition. We have also provided in this family
schemes that minimize the consistency error. We have found schemes with super-convergence properties that can be
used if∆t2 ρ(Ah) is small enough, or optimal schemes if∆t2 ρ(Ah) is large. We have also provided unconditionally
stable schemes and finally schemes that require the same numerical treatment as the usualθ-scheme but are fourth
order accurate. Numerical results show the interest of suchschemes as well as their convergence behavior.

However, we have sometimes noted the need to use preconditioning strategies when a direct factorization of the finite
elements matrices was not possible. Several authors have already suggested solutions to deal with the inversion of
the complex linear system occurring with the optimal (θ, ϕ)-scheme ([13],[14],[16]). These approaches still need to
be tested and adapted to the (θ, ϕ)-scheme. A natural extension of this work would be to consider and analyze the
sixth order accurate schemes (see remark 6.1), which offer even more parameters and are therefore expected to give
a very low consistency error after the optimization process. Finally, significant extension of this work will be to
take into account dissipative terms and non trivial boundary conditions in the equations, which will be the subject of
forthcoming work.

Appendix A. Proof of theorem (5.1)

The positivity of the energy is granted as soon asQ1(λ; θ, ϕ) andQ2(λ; θ, ϕ) are positive for anyλ ∈ [0,∆t2ρ(Ah)]:



Q1(λ; θ, ϕ) = 4+ (4θ − 1)λ + (4ϕ − 1)(θ − 1
12

)λ2 ≥ 0, (A.1a)

Q2(λ; θ, ϕ) = 1+ (θ − 1
12

)λ ≥ 0. (A.1b)
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The positivity of each polynomial leads to upper bounds on∆t2ρ(Ah), therefore the positivity of the energy is fulfilled
if ∆t2ρ(Ah) is lower than the minimum of both bounds.

Positivity of Q2. This polynomial is an affine function, being 1 at the origin. If its leading coefficient is positive (if
θ > 1/12), then (A.1b) holds. In the opposite case, (A.1b) holds ifand only ifQ2(∆t2ρ(Ah); θ, ϕ) ≥ 0. These results
lead to the first upper bound (48).

Positivity of Q1. This polynomial is an affine function ifϕ = 1/4. In this case, eitherθ > 1/12 and (A.1a) is always
true, eitherθ < 1/12 and (A.1a) holds if and only ifQ1(∆t2ρ(Ah); θ, ϕ) ≥ 0, which leads to the upper bound 4/(1−4θ).
Assume now thatϕ , 1/4. The polynomialQ1 being 4 at the origin, several possible situations arise according to the
sign of the leading coefficient and the sign of the slope at the origin:

ϕ ∈ (−∞, 1/4) ϕ ∈ (1/4,+∞)
θ ∈ (1/4,+∞) concave, slope≥ 0 convex, slope≥ 0
θ ∈ (1/12, 1/4) concave, slope≤ 0 convex, slope≤ 0
θ ∈ (−∞, 1/4) convex, slope≤ 0 concave, slope≤ 0

The three concave situations lead to the following upper bound:∆t2ρ(Ah) must be lower than the positive root ofQ1.
The formula for this positive rootr(θ, ϕ) is given by (50). In the case convex with positive slope,Q1 is then positive
at the origin and increasing, thus the condition (A.1a) is automatically fulfilled, therefore we set the upper bound to
+∞. Finally, the two convex with negative slope situations area little more complicated. Two cases arise according to
the sign of the discriminant∆(θ, ϕ) defined in (50). Either there are no distinct roots when∆(θ, ϕ) ≤ 0 (if (θ, ϕ) ∈ S+
or (θ, ϕ) ∈ S−), thus (A.1a) is fulfilled and we set the upper bound to+∞. Or there are two positive roots when
∆(θ, ϕ) > 0, therefore the condition (A.1a) is fulfilled if∆t2ρ(Ah) is lower than the first root ofQ1, which is stillr(θ, ϕ)
since the sign of the leading coefficient has changed.

Appendix B. Optimal order 4 stable scheme

In this appendix, we complete the proof given in 6.1.2 which states that the optimal value of|ε3(θ, ϕ|) when
∆t2ρ(Ah) > 30/(5−

√
15) is obtained in the quadrant{θ < 1/12, ϕ < 1/4} for



θ♯ =
1
12
− 1
∆t2 ρ(Ah)

,

ϕ♯ =
1
4
− ∆t2 ρ(Ah)

64
(2
3
+

4
∆t2 ρ(Ah)

)2
.

(B.1)

It is shown in 6.1.2 that in this quadrant, this choice gives the optimal value of|ε3|:

ε3(θ♯, ϕ♯) =
1

360
− 1
∆t2 ρ(Ah)

+
1

4(∆t2 ρ(Ah))2
, (B.2)

which is lower than 1/360 because∆t2 ρ(Ah) > 30/(5−
√

15). We will see that in the other regions of the (θ, ϕ)-plane,
either the schemes cannot be stable, either the stable schemes give a greater consistency error.

The quadrant{θ < 1/12, ϕ ≥ 1/4}. The positivity of Q2 on the interval [0,∆t2 ρ(Ah)] imposes thatθ > 1/12−
1/∆t2 ρ(Ah). Moreover, the positivity of the concave polynomialQ1 on the same interval is respected ifQ1(∆t2 ρ(Ah), θ, ϕ) ≥
0. These two conditions are incompatible because∆t2 ρ(Ah) > 30/(5−

√
15). Therefore, there are no stable schemes

in this quadrant.
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The half space{θ > 1/12}. The positivity ofQ2 is granted in this area. As forQ1, we divide the space into three
zones:

• ϕ < 1/4: in this area,Q1(λ; θ, ϕ) is a concave parabola whose positivity on the interval [0,∆t2 ρ(Ah)] is acquired
if and only if Q1(∆t2 ρ(Ah); θ, ϕ) ≥ 0, which gives the following inequality:

ϕ ≥ 1
4

[
1− 4+ (4θ − 1)∆t2 ρ(Ah)

(θ − 1/12)(∆t2 ρ(Ah))2

]
, (B.3)

which can be respected only ifθ > 1/4− 1/∆t2 ρ(Ah).

• ϕ ≥ 1/4 andθ ≥ 1/4: in this area,Q1(λ; θ, ϕ) is a convex parabola with a positive slope at the origin, being 4 at
the origin. It is then positive for anyλ ≥ 0. All schemes are stable in this region.

• ϕ ≥ 1/4 and 1/12 < θ < 1/4: in this area,Q1(λ; θ, ϕ) is a convex parabola with a negative slope at the origin.
Its positivity on [0,∆t2 ρ(Ah)] can be acquired either if there are no distinct roots (∆(θ, ϕ) ≤ 0) or if the first root
r(θ, ϕ) is greater than∆t2 ρ(Ah). The second condition can be written in a way that avoids theinversion of the
relationr(θ, ϕ): Q1(∆t2 ρ(Ah); θ, ϕ) ≥ 0 andQ′1(∆t2 ρ(Ah); θ, ϕ) ≤ 0. Introducing



ϕ∆(λ, θ) =
1
4

[
1+

(4θ − 1)2

16(θ − 1/12)

]
,

ϕQ1(λ, θ) =
1
4

[
1− 4+ (4θ − 1)λ

(θ − 1/12)λ2

]
,

ϕQ′1(λ, θ) =
1
4

[
1− 4θ − 1

2(θ − 1/12)λ

]
,

(B.4)

the positivity ofQ1(λ; θ, ϕ) on [0,∆t2 ρ(Ah)] is equivalent to

ϕ ≥ ϕ∆(∆t2 ρ(Ah), θ
)

or


ϕ ≥ ϕQ1

(
∆t2 ρ(Ah), θ

)
,

ϕ ≤ ϕQ′1
(
∆t2 ρ(Ah), θ

)
.

(B.5)

It is easy to show that

ϕQ1
(
∆t2 ρ(Ah), θ

) ≤ ϕ∆(∆t2 ρ(Ah), θ
)
, ∀ θ >

1
12
, (B.6)

ϕQ1
(
∆t2 ρ(Ah), θ

) ≤ ϕQ′1
(
∆t2 ρ(Ah), θ

) ⇔ θ ≥ 1
4
− 2
∆t2 ρ(Ah)

, (B.7)

ϕ∆
(
∆t2 ρ(Ah), θ

) ≤ ϕQ′1
(
∆t2 ρ(Ah), θ

) ⇔ θ ∈ [
1
4
− 2
∆t2 ρ(Ah)

,
1
4

]. (B.8)

Therefore, the lower bound onϕ will be ϕ∆
(
∆t2 ρ(Ah), θ

)
if θ ∈ (1/12, 1/4− 2/∆t2 ρ(Ah)) andϕQ1

(
∆t2 ρ(Ah), θ

)

if θ ∈ [1/4− 2/∆t2 ρ(Ah), 1/4].

To sum up, the stable schemes of the half planeθ > 1/12 are obtained in the region


ϕ ≥ ϕ∆(∆t2 ρ(Ah), θ
)
, if

1
12

< θ ≤ 1
4
− 2
∆t2 ρ(Ah)

,

ϕ ≥ ϕQ1
(
∆t2 ρ(Ah), θ

)
, if θ ≥ 1

4
− 2
∆t2 ρ(Ah)

.
(B.9)

Since the zero level set ofε3(θ, ϕ) is outside this stability zone, the minimum value is achieved on the boundary of the
zone, which leads to the following optimization problem:

min
θ>1/12



θ2

4
+

θ

24
− 7

2880
when

1
12

< θ ≤ 1
4
− 2
∆t2 ρ(Ah)

,

θ
(1
6
− 1
∆t2 ρ(Ah)

) − 13
720
+

1
4∆t2 ρ(Ah)

− 1
(∆t2 ρ(Ah))2

whenθ ≥ 1
4
− 2
∆t2 ρ(Ah)

.

(B.10)
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This function is continuous and increasing and can be extended by continuity up toθ = 1/12 : the limit value is 1/360,
which is always greater than the optimal value found in the other quadrant. This concludes our proof.
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