
HAL Id: hal-00873794
https://hal.archives-ouvertes.fr/hal-00873794

Submitted on 16 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Travelling Waves for the Nonlinear Schrödinger
Equation with General Nonlinearity in Dimension Two

David Chiron, Claire Scheid

To cite this version:
David Chiron, Claire Scheid. Travelling Waves for the Nonlinear Schrödinger Equation with General
Nonlinearity in Dimension Two. Journal of Nonlinear Science, Springer Verlag, 2016, �10.1007/s00332-
015-9273-6�. �hal-00873794�

https://hal.archives-ouvertes.fr/hal-00873794
https://hal.archives-ouvertes.fr


Travelling waves for the Nonlinear Schrödinger Equation with

general nonlinearity in dimension two

David CHIRON∗ & Claire SCHEID†

Abstract

We investigate numerically the two dimensional travelling waves of the Nonlinear Schrödinger
Equation for a general nonlinearity and with nonzero condition at infinity. In particular, we are
interested in the energy-momentum diagrams. We propose a numerical strategy based on the
variational structure of the equation. The key point is to characterize the saddle points of the
action as minimizers of another functional, that allows us to use a gradient flow. We combine
this approach with a continuation method in speed in order to obtain the full range of velocities.

Through various examples, we show that even though the nonlinearity has the same be-
haviour as the well-known Gross-Pitaevskii nonlinearity, the qualitative properties of the trav-
elling waves may be extremely different. For instance, we observe cusps, a modified (KP-I)
asymptotic in the transonic limit, various multiplicity results and “one dimensional spreading”
phenomena.

Keywords: Nonlinear Schrödinger Equation; Travelling wave; Kadomtsev-Petviashvili Equation;
Constrained minimization; Gradient flow; Continuation method.

MSC (2010): 35B38; 35C07; 35J20; 35J61; 35Q40; 35Q55; 35J60.

1 The (NLS) equation with nonzero condition at infinity

In this paper, we consider the Nonlinear Schrödinger Equation in two dimensions

i
∂Ψ

∂t
+ ∆Ψ + Ψf(|Ψ|2) = 0, (NLS)

which is a fundamental model in condensed matter physics. The (NLS) equation is used as a
model for Bose-Einstein condensation or superfluidity (cf. [50], [1]) and a standard case is the
Gross-Pitaevskii equation (GP) for which f(%) = % − 1. However, for Bose condensates, other
models may be used (see [40]), such as the quintic (NLS) (f(%) = %2) in one space dimension and
f(%) = d

d%(%2/ ln(a%)) in two space dimension. The so-called cubic-quintic (NLS) is another relevant
model (cf. [4]), for which

f(%) = α1 − α3%+ α5%
2,
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where α1, α3 and α5 are positive constants such that f has two positive roots. The cubic-quintic
(NLS) also appears as a model for elongated Bose-Einstein condensates, see [34], [51]. For superfluid
helium II, the nonlinearity

f(%) = α%− β%3.8

with α and β positive, is used to produce a quantitatively correct equation of state (cf. [24]). In
Nonlinear Optics, the nonlinearity f represents the response of the medium to the intensity |E|2 of
the electric field, and Kerr media correspond to f linear (f(%) = α%). For non Kerr media, several
nonlinearities may then be found (see [37]):

f(%) = µ+ α%ν − β%2ν , f(%) = −α%
(

1 + γ tanh
(%2 − %2

0

σ2

))
where all the parameters are positive, or (see [2]),

f(%) = −α ln(%), f(%) = µ+ α%+ β%2 − γ%3,

and when we take into account saturation effects, one may encounter (see [37], [35]):

f(%) = α
( 1

(1 + %
%0

)ν
− 1

(1 + 1
%0

)ν

)
, f(%) = exp

(1− %
%0

)
− 1 (1)

for some parameters ν > 0, %0 > 0. For these two nonlinearities, f has a finite limit for large %.
As a model for Bose-Einstein condensates, the natural condition at infinity is ([50])

|Ψ|2 → r2
0 as |x| → +∞, (2)

where r0 > 0 is such that f(r2
0) = 0. In Nonlinear Optics, this condition is also relevant for dark

solitons (see [37]), but one may also impose the more classical condition Ψ→ 0 at spatial infinity.
In the paper, we shall then assume the nonlinearity f quite general and work with the condition
(2). Without loss of generality, we normalize r0 to 1.

For solutions Ψ of (NLS) which do not vanish, we may use the Madelung transform

Ψ = a exp(iφ)

and rewrite (NLS) as an hydrodynamical system close to the Euler system for compressible fluids
with an additional quantum pressure

∂ta+ 2∇φ · ∇a+ a∆φ = 0

∂tφ+ |∇φ|2 − f(a2)− ∆a

a
= 0,

or


∂tρ+ 2∇ · (ρu) = 0

∂tu+ 2(u · ∇)u−∇(f(a2))−∇
(∆a

a

)
= 0

with (ρ, u)
def
= (a2,∇φ). When neglecting the quantum pressure and linearizing this Euler type

system around the particular trivial solution Ψ = r0 = 1 (or (a, u) = (1, 0)), we obtain the free
wave equation 

∂tā+∇ · ū = 0

∂tū− 2f ′(1)∇ā = 0
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with associated speed of sound

cs
def
=
√
−2f ′(1) > 0

provided f ′(1) < 0 (that is the Euler system is hyperbolic in the region ρ ' 1), which we will assume
throughout the paper. The speed of sound enters in a crucial way in the existence of travelling
waves for (NLS).

The Nonlinear Schrödinger equation formally preserves the energy, which is the (formal) Hamil-
tonian, involving a kinetic term and a potential term

E(Ψ)
def
=

∫
R2

|∇Ψ|2 + V (|Ψ|2) dx = Ekin(Ψ) + Epot(Ψ),

where V (%)
def
= −

∫ %

1
f(R) dR, and the momentum, associated with the invariance of (NLS) under

space translation. In [33], the expression for the momentum ~P is

~P (Ψ)
def
=

∫
R2

〈i(Ψ− 1),∇Ψ〉 dx,

where 〈·, ·〉 denotes the real scalar product in C. This expression has a meaning as an improper
integral if Ψ converges to 1 at infinity with a suitable decay. For a definition of the momentum
when Ψ is just in the energy space, see [44], [23].

1.1 The travelling waves

For (NLS) with nonzero condition at infinity, the travelling waves play a fundamental role in the
dynamics. These are particular solutions of the form

Ψ(t, x) = u(x1 − ct, x2)

where c is the speed of propagation, and u is a solution to the elliptic equation

∆u+ uf(|u|2) = ic∂x1u (TWc)

with the condition at infinity |u(x)| → 1 as |x| → ∞. We may assume c ≥ 0, since conjugation of
(TWc) changes the sign of c. The existence and qualitative properties of the travelling waves of
the Gross-Pitaevskii equation (f(%) = 1− %), that is

i
∂Ψ

∂t
+ ∆Ψ + Ψ(1− |Ψ|2) = 0, (GP)

have been studied by C. Jones and P. Roberts in [33] (see also [32] and [11]) in dimensions two
and three. The study relies on numerical simulation and formal asymptotic expansion. For this

particular nonlinearity, cs =
√

2 ' 1.4142 and the function V is the parabola V (%) =
1

2
(% − 1)2.

They represented the solutions in the (E,P ) diagram in figure 1, where P
def
= ~P1 is the momentum

in the direction x1 of propagation. The blue curve is the curve [0, cs] 7→ (P (c), E(c)), where P (c)
and E(c) are the momentum and energy of the travelling wave of speed c. In space dimension
two, as c → 0, the solution possesses two vortices of degree +1 and −1 at distance ' 2/c, and
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Figure 1: The (E,P ) diagram (from [33]) for (GP) in dimensions (a) left: two; (b) right: three (the
straight line is E = csP )

Figure 2: Graphs of (a) left: two vortices (c ≈ 0) and (b) right: a rarefaction pulse (c ≈ cs)
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Figure 3: Profile of the function a for the (GP) equation (f(%) = 1− %)

for c → cs =
√

2, the solution is a rarefaction pulse described by the (KP-I) ground state: its
modulus is close to one everywhere and it spreads out in the space variable, but much more in
the x2 direction than in the x1 direction. We have represented in figure 2 the modulus |u| of
the travelling waves corresponding to these two extreme cases. The numerical method they used
was to start for small speeds with the ansatz of two vortices, and then to increase the speed step
by step and solve the equation (TWc) by Newton algorithm. In dimension three, the solutions
are supposed axisymmetric around the x1-axis. The vortex is then now a vortex ring (a circle).
When c → cs =

√
2, the solution looks qualitatively similar to figure 2 (b) with x2 replaced by

|(x2, x3)|. For the travelling waves of the Gross-Pitaevskii nonlinearity, C. Jones and P. Roberts
([33]) conjectured (through formal expansions at spatial infinity) an explicit algebraic decay. The
paper [30] provides a rigorous proof that finite energy travelling waves satisfy (up to a phase factor)
the decay conjectured in [33]. Thanks to this decay, the momentum ~P is well-defined. The proof
of [30] certainly extends to more general nonlinearities.

1.2 Vortex solutions

Let us recall that the vortices of degree d ∈ Z for (NLS) are special solutions of (TWc) which are
stationary (hence c = 0) and of the form

U(x) = a(r)eidθ,

where we use polar coordinates. The function a is real-valued, verifies a(0) = 0 and a(+∞) = 1, is
increasing and solves the ODE

a′′ +
a′

r
− d2

r2
a + af(a2) = 0 (3)

in R+. We are interested only in degree ±1 vortices, and thus we shall restrict ourselves to the
case d = 1, the case d = −1 being deduced by complex conjugation. The profile of the degree one
vortex may be found by a shooting method, see figure 3. We have obtained a′(0) ≈ 0.583 189 495
for the (GP) equation, which is slightly different from the value 0.582 781 187 8 given in [9]. The
travelling vortex solutions with small speed c as shown in figure 2 (a) consist in two vortices of
degrees 1 and −1 at large distance from each other. A good approximation of this solution is given
by the expression

a(|(x1, x2 − c−1)|)x1 + i(x2 − c−1)

|(x1, x2 − c−1)|
× a(|(x1, x2 + c−1)|)x1 − i(x2 + c−1)

|(x1, x2 + c−1)|
. (4)
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Here, × stands for complex multiplication. For mathematical justifications concerning these trav-
elling vortex solutions for the Gross-Pitaevskii equation, see [15] (in space dimension two) and
[14], [19] for higher dimensions. These results may be generalized to any nonlinearity f such that
V (%) = −

∫ ρ
1 f is positive for % 6= 1. The fact that, as c→ 0, the distance between the two vortices

is ∼ 2/c could be deduced from the arguments in [15].

1.3 The transonic limit

We focus on the transonic limit c ' cs but c < cs, and thus define, for 0 < ε < cs small,

c(ε)
def
=
√

c2s − ε2 ∈ (0, cs).

The formal convergence to the Kadomtsev-Petviashvili-I (KP-I) solitary wave in dimensions d = 2
or d = 3 is given in [33] for the Gross-Pitaevskii equation, i.e. (NLS) with f(%) = 1− %, where the
speed of sound is cs =

√
2. We refer to [37], [38] for the occurence of the two-dimensional (KP-I) in

Nonlinear Optics, and to [53] and [35] for the one dimensional case (where (KP-I) reduces to the
Korteweg-de Vries (KdV) equation). The argument is as follows (see [20] for the one dimensional
case). We insert the ansatz

u(x) = (1 + ε2Aε(z)) exp(iεϕε(z)) z1 = εx1, z2 = ε2x2 (5)

in (TWc(ε)), cancel the phase factor and separate real and imaginary parts to obtain the hydrody-
namical system 

−c(ε)∂z1Aε + 2ε2∂z1ϕε∂z1Aε + 2ε4∂z2ϕε∂z2Aε

+(1 + ε2Aε)
(
∂2
z1ϕε + ε2∂2

z2ϕε

)
= 0

−c(ε)∂z1ϕε + ε2(∂z1ϕε)
2 + ε4(∂z2ϕε)

2 − 1

ε2
f
(

(1 + ε2Aε)
2
)

−ε2∂
2
z1Aε + ε2∂2

z2Aε

1 + ε2Aε
= 0.

(6)

On the formal level, if Aε and ϕε are of order ε0, we obtain −cs∂z1Aε + ∂2
z1ϕε = O(ε2) for the first

equation of (6). Moreover, since f(1) = 0 and c2s = −2f ′(1), using the Taylor expansion

f
(

(1 + ε2Aε)
2
)

= f(1)− c2sε
2Aε +O(ε4),

for the second equation implies −cs∂z1ϕε + c2sAε = O(ε2). In both cases, we obtain the single
constraint

csAε = ∂z1ϕε +O(ε2). (7)

We now add c(ε)/c2s times the first equation of (6) and ∂z1/c
2
s times the second one. Using the

Taylor expansion

f
(

(1 + α)2
)

= −c2sα−
(c2s

2
− 2f ′′(1)

)
α2 + f3(α),
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with f3(α) = O(α3) as α→ 0, this gives

c2s − c2(ε)

ε2c2s
∂z1Aε −

1

c2s
∂z1

(∂2
z1Aε + ε2∂2

z2Aε

1 + ε2Aε

)
+
c(ε)

c2s
(1 + ε2Aε)∆z⊥ϕε

+
{

2
c(ε)

c2s
∂z1ϕε∂z1Aε +

c(ε)

c2s
Aε∂

2
z1ϕε +

1

c2s
∂z1 [(∂z1ϕε)

2] +
[1

2
− 2

f ′′(1)

c2s

]
∂z1(A2

ε)
}

= −2ε2 c(ε)

c2s
∂z2ϕε∂z2Aε −

ε2

c2s
∂z1 [ (∂z2ϕε)

2]− 1

c2sε
4
∂z1 [f3(ε2Aε)]. (8)

It then follows that if Aε → A and ϕε → ϕ as ε→ 0 in a suitable sense, we can infer from (7) that

csA = ∂z1ϕ, (9)

and since c2s − c2(ε) = ε2, (8) gives the solitary waves equation for the (KP-I) equation

1

c2s
∂z1A−

1

c2s
∂3
z1A+ ΓA∂z1A+ ∂2

z2∂
−1
z1 A = 0. (SW)

Here, the coefficient Γ depends on f through the formula

Γ
def
= 6− 4

c2s
f ′′(1).

This is this type of solution that we have in figure 2 (b). Note that the modulus is O(ε2) close to
1, and that the variations in x1 and in x2 are at the scale ε−1 and ε−2 respectively, which can be
checked on the figure.

For rigorous mathematical results justifying the transonic limit and the convergence to a (KP-I)
ground state, see [12] (in two space dimensions for the Gross-Pitaevskii nonlinearity), [22] (in two
and three space dimensions for a general nonlinearity) and [20] (in one space dimension, where the
(KP-I) equation is replaced by the (KdV) equation). This supposes Γ 6= 0, and this is the case for
instance for the Gross-Pitaevskii nonlinearity (Γ = 6).

As in [20], the case where Γ vanishes is also of interest, and gives rise to a modified (KP-I)
equation (mKP-I) with cubic nonlinearity. For the nonlinearities we have mentioned, the case
Γ = 0 occurs for instance for the saturated nonlinearities (1) under the condition ν + 1 = 3(%0 + 1)
and %0 = 1/3 respectively. More generally, this may happen for nonlinearities which are polynomials
of degree three. Note that when Γ = 0, (SW) becomes linear and thus has no nontrivial solitary
wave. When Γ = 0, which occurs only in the particular case 2f ′′(1) = 3c2s, we may then insert the
ansatz

u(x) = (1 + εAε(z)) exp(iϕε(z)) z1 = εx1, z2 = ε2x2, (10)

for which, compared to (5), we have increased the size of the amplitude A and the phase ϕ in order
to see nonlinear terms. Plugging this in (TWc(ε)), we obtain similarly the system

−c(ε)∂z1Aε + 2ε∂z1ϕε∂z1Aε + 2ε3∂z2ϕε∂z2Aε + (1 + εAε)
(
∂2
z1ϕε + ε2∂2

z2ϕε

)
= 0

−c(ε)∂z1ϕε + ε(∂z1ϕε)
2 + ε3(∂z2ϕε)

2 − 1

ε
f
(

(1 + εAε)
2
)
− ε2∂

2
z1Aε + ε2∂2

z2Aε

1 + εAε
= 0.

(11)
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Here again, as ε → 0 we infer for both equations csAε = ∂z1ϕε + O(ε). However, we shall need a
higher order expansion. We thus Taylor expand f to next order

f
(

(1 + α)2
)

= −c2sα−
(c2s

2
− 2f ′′(1)

)
α2 +

(
2f ′′(1) +

4

3
f ′′′(1)

)
α3 +Oα→0(α4).

To the order O(ε2), the system (11) is (recalling c2(ε) = c2s − ε2)
∂2
z1ϕε − c(ε)∂z1Aε + 2ε∂z1ϕε∂z1Aε + εAε∂

2
z1ϕε = O(ε2)

c2(ε)Aε − c(ε)∂z1ϕε + ε(∂z1ϕε)
2 + ε

(c2s
2
− 2f ′′(1)

)
A2
ε = O(ε2).

Taking into account csAε = ∂z1ϕε +O(ε) and since Γ = 0 implies 2f ′′(1) = 3c2s, we infer for both
equations in the above system

∂z1ϕε − csAε = −3ε

2
csA

2
ε +O(ε2). (12)

Adding c(ε)/c2s times the first equation of (11) and ∂z1/c
2
s times the second one and dividing by ε2,

we get

1

c2s
∂z1Aε −

1

c2s
∂z1

(∂2
z1Aε + ε2∂2

z2Aε

1 + εAε

)
+
c(ε)

c2s
(1 + ε2Aε)∂

2
z2ϕε −

1

c2s

(
6f ′′(1) + 4f ′′′(1)

)
A2
ε∂z1Aε

+
1

ε

{
2
c(ε)

c2s
∂z1ϕε∂z1Aε +

c(ε)

c2s
Aε∂

2
z1ϕε +

1

c2s
∂z1 [(∂z1ϕε)

2] +
[1

2
− 2f ′′(1)

c2s

]
∂z1(A2

ε)
}

= −2ε
c(ε)

c2s
∂z2ϕε∂z2Aε −

ε

c2s
∂z1 [ (∂z2ϕε)

2]− 1

c2sε
3
∂z1 [((εAε)

4)]. (13)

When Γ = 0, we have 2f ′′(1) = 3c2s and, using (12) and c2(ε) = c2s − ε2, the second line in (13)
seems singular in view of the factor ε−1 but is actually equal to

1

ε

{ 2

cs
∂z1Aε

(
csAε−

3ε

2
csA

2
ε

)
+

1

cs
Aε∂z1

(
csAε −

3ε

2
csA

2
ε

)
+

1

c2s
∂z1 [(csAε −

3ε

2
csA

2
ε)

2]− 5Aε∂z1Aε

}
+O(ε) = −15A2

ε∂z1Aε +O(ε),

since the quadratic terms cancel out. As a consequence, passing to the (formal) limit ε→ 0 in (13)
yields

1

c2s
∂z1A−

1

c2s
∂3
z1A+ Γ′A2∂z1A+ ∂2

z2∂
−1
z1 A = 0, (SW’)

where we have set

Γ′
def
= −4f ′′′(1)

c2s
− 24,

which is the solitary waves equation for (mKP-I) with cubic nonlinearity. The solitary wave equa-
tion (SW’) does have nontrivial solutions if and only if Γ′ < 0, which is the focusing case, see [26].
We may observe that equation (SW’) is odd in A, hence the solutions arise by pairs (A,−A).
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Let us point out that in two space dimension, a function u given by the ansatz (5) with A a
nontrivial solution of (SW) and ϕ given by (9) is such that E(u) ∼ csP (u) ≈ ε and E(u)−csP (u) ≈
ε3. On the other hand, for a function u given by the ansatz (10) where A is a nontrivial solution
of (SW’) and ϕε given by (see (12))

∂z1ϕε = csA−
3ε

2
csA

2

and not only (9), we have E(u) ∼ csP (u) ≈ ε−1 and E(u)− csP (u) ≈ ε. This means that if Γ 6= 0,
both E and P are small as c→ cs and the straight line E = csP is the tangent to the curve at the
origin in the (E,P ) diagram (see figure 1 (a)), but when Γ = 0 > Γ′, we expect travelling wave
solutions with high energy and momentum. Morever, the straight line E = csP is an asymptote
in the (E,P ) diagram: we have then a situation rather close to the transonic limit of the Gross-
Pitaevskii equation in three dimension (see figure 1 (b)). In the one dimensional case, we refer to
[20] for the convergence of the travelling waves in the transonic limit to the (mKdV) solitary wave
(when Γ = 0 > Γ′), with indeed the existence of two branches of travelling wave solutions for c near
cs. In [45], the authors follow the approach in [33] to compute numerically the travelling waves
to a Landau-Lifshitz model (see section 3.1). It turns out that the transonic limit is also formally
governed by the (mKP-I) solitary wave equation, and that the travelling waves look close to “the”
(mKP-I) ground state as c→ cs.

In [20], we have studied the travelling waves in dimension one for a general nonlinearity, in
particular some f ’s for which Γ vanishes. We have put forward some behaviours that are rather
different from what is obtained for the standard Gross-Pitaevskii nonlinearity, despite the fact that
the nonlinearity f and the potential V have qualitatively the same shape. The purpose of this
paper is to study the travelling waves for (NLS) with the nonlinearities considered in [20].

1.4 Variational properties

The PDE (TWc) has a variational structure: the solutions are the critical points of the action
functional

Fc(u)
def
= E(u)− cP (u)

on a suitable energy space X that we shall not define here (see [44], [23]). It is well-known that
the solution to an elliptic PDE such as (TWc) (satisfying some decay properties at infinity) verifies
virial (or Pohozaev) identities. These are obtained by taking the (real) scalar product of (TWc) by
x1∂x1u and x2∂x2u and performing various integration by parts (see [43]). In dimension 2, these
identities are 

E(u)− cP (u) = 2

∫
R2

|∂x2u|2 dx

E(u) = 2

∫
R2

|∂x1u|2 dx,

and we can combine them to give

cP (u) = 2

∫
R2

V (|u|2) dx =

∫
R2

|∂x1u|2 − |∂x2u|2 dx. (14)

9



We shall check (as in [33] and [45]) that the numerical solutions we obtain verify these two identities
up to a reasonable error.

From the computations in [33], it is natural to believe that the travelling wave is a smooth
function of the speed c, although no mathematical proof of this fact has been given. Furthermore,
the travelling waves are known to verify the standard Hamilton group relation (see e.g. [33])

c∗ =
∂E

∂P |c=c∗
,

where the derivative is taken along this (local) branch or, more precisely,

dE

dc |c=c∗
= c∗

dP

dc |c=c∗
. (15)

Given a smooth family of travelling waves c 7→ Uc, this relation is formally shown by taking the

(real) scalar product of (TWc) with
dUc
dc

and integrating by parts, assuming good decay properties

at infinity. On the (E,P ) diagrams in figure 1, this means that the speed c is the slope of the curve
P 7→ E. In dimension one, the smooth dependence of Uc on c is easy to show and the Hamilton
group relation (15) holds true (see [20]), provided we suitably define the momentum. Indeed, in
one space dimension, the travelling waves have different phases at +∞ and −∞ and the phase shift
enters in the definition of the momentum (see for instance [39]).

The dynamical stability of the travelling waves of (NLS) is related to the sign of
dP

dc
, computed

on the local branch. Here is a precise statement in one space dimension.

Theorem 1 ([41], [21]) Let us consider the (NLS) equation in dimension one and 0 < c∗ < cs.
If uc∗ is a finite energy travelling wave with speed c∗, then uc∗ belongs to a (unique) local branch of
travelling waves c 7→ uc for c near c∗.

(i) If
dP (uc)

dc |c=c∗
< 0, then uc∗ is orbitally stable in the energy space. Moreover, uc∗ is a local

minimizer of the energy E at fixed momentum P .

(ii) If
dP (uc)

dc |c=c∗
> 0, then uc∗ is linearly and nonlinearly unstable in the energy space. Moreover,

uc∗ does not minimizes (locally) the energy E at fixed momentum P .

In view of the Hamilton group relation (15) (which holds true in dimension one), we have

d2E

dP 2 |c=c∗
=

dc

dP |c=c∗
,

so that the stability criterion
dP

dc
< 0 precisely means that the (local) function P 7→ E is concave,

and that we have instability when the (local) function P 7→ E is convex. This type of stabil-
ity criterion appears also in [52] in the study of positive bound state solutions to a Nonlinear
Schrödinger equation (see also [3] for related results). A general mathematical framework, which
is not restricted to the one dimensional case, for the analysis of stability has been given within
the Grillakis-Shatah-Strauss theory [31], and relies on suitable spectral assumptions. Part of the
argument in [41] (see also [21]) is to verify the spectral assumptions required in [31].
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In the three dimensional setting, a similar statement to Theorem 1 holds true in a space1 slightly
smaller than the energy space and provided that we have a C1 curve of solutions c 7→ uc and the
following spectral assumption

(A) the spectrum of the hessian of the action Fc is of the form {λ} ∪ {0} ∪ I+,
where λ < 0 is simple, 0 has multiplicity three (the space dimension), and
I+ is closed and ⊂ (0,+∞)

is verified. This statement follows from a direct application of [31] combined with the study of the
Cauchy problem in [15] (Appendix A). We are not aware of any rigorous verification of the spectral
assumption (A) in dimension different from one.

Concerning the two dimensional situation, in addition to the verification of the spectral as-
sumption (A), there is another obstacle that prevents us from using so directly the result in [31].
The mathematical difficulty is to find a suitable space2 containing the travelling waves and where
the Cauchy problem is locally well-posed. This is due to the slow decay of the travelling waves∫
R2 |u− 1|2 dx = +∞ (see the algebraic decay in [33] and the rigorous justification in [30]).

Nevertheless, we shall adopt the sign of
dP

dc
as a good criterion for stability, even though it

does not rely on a rigorous mathematical proof. Consequently, in view of the diagrams in figure
1, for the Gross-Pitaevskii nonlinearity (f(%) = 1− %), we expect all the travelling wave solutions
to be stable in dimension two and, in dimension three, to be stable only for speeds 0 < c < ccusp

corresponding to the cusp, that is for the lower part of the diagram. In dimension three (cf. figure
1 (b)), the upper part of the curve is not expected to be such a local minimum, and not expected
to be stable (see [11], [8]).

Another natural way to obtain at least some of the solutions is to minimize the energy under
the constraint that the momentum is fixed, that is to consider, for p > 0,

Emin(p)
def
= inf

{
E(u), u ∈ X , P (u) = p

}
.

Since both E and P are invariant by the Schrödinger flow, it is natural to think that any minimizer
for this problem is orbitally stable. This idea originates in the work of J. Boussinesq [16] and was
rigorously justified by T. Benjamin [5] for the stability of the (KdV) solitary wave. For a general
approach in this direction, see [18]. This result does not rely on spectral assumptions as in [31] but
is suitable for stability only. The link between the two approaches is the minimization property of

E at fixed P , locally or globally. Since we expect that when
d2E

dP 2 |c=c∗
=

dc

dP |c=c∗
< 0, the travelling

wave is a local minimizer of E for fixed P , it is natural to hope that on the one hand, the solution
to this constraint minimization (if they exist) are orbitally stable, and that on the other hand,
the function Emin is concave. The properties of the function Emin are summarized in the following
proposition, where (16) has to be related with the Hamilton group relation (15).

Proposition 1 ([13], [23]) We assume that the potential function V is nonnegative.
(i) The function Emin is concave and increasing. In particular, Emin has a derivative for all p except
possibly for an at most countable set.

1which is actually 1 + H1(R3,C)
2like 1 + H1(R2,C)

11



(ii) If p∗ > 0 is such that Emin has a derivative at p∗ and Emin(p∗) has a minimizer u∗, then u∗
solves (TWc∗) where the speed c∗ is the Lagrange multiplier given by

c∗ =
dEmin

dp
(p∗). (16)

Existence of at least one minimizer to the problem Emin(p), and thus of a solution to (TWc),
have been proved for the (GP) nonlinearity (see [13]) for any p > 0 in space dimension two. In the
case of a general nonlinearity such that the potential function is nonnegative (i.e. V ≥ 0), we have
shown in [23] that Emin(p) is indeed acheived for any p > 0 if Γ 6= 0 but if Γ = 0, there exists p0 > 0
such that Emin(p) is acheived only for p ≥ p0 (the space dimension is still equal to two). For the
two dimensional (GP) equation, we expect to obtain all the travelling waves in the (E,P ) diagram
(figure 1 (a)) through the constraint minimization Emin(p) for p ∈ (0,+∞). However, in dimension
three (figure 1 (b)), this is no longer the case since Emin(p) is not acheived for small p. Therefore,
if Γ = 0, we are in a situation somehow similar to the three dimensional case for (GP), the value
p0 being the abscissa of the intersection of the blue curve with the straight line E = csP (see [13],
[23]). In [23], we have shown that the solutions we obtain from the constraint minimization Emin(p)
are indeed orbitally stable. In particular, the constraint minimization Emin(p) does not provide
the orbitally unstable travelling waves corresponding to the convex part of the (E,P ) diagram in

figure 1 (b), since then
dP

dc
> 0. The travelling waves associated with the concave part of the

(E,P ) diagram in figure 1 (b) but located above the straight line E = csP (that is when
dP

dc
< 0

but p < p0) are orbitally stable but are not (cf. [13], [23]) global minimizers for Emin(p): they are
instead local minimizers.

We are also interested in considering cases where the potentiel V achieves negative values, as it
is the case for the cubic-quintic nonlinearity. This situation has been considered in [23], and another
minimization problem has been proposed, namely to impose the constraint that the kinetic energy
Ekin(u) =

∫
R2 |∇u|2 dx is fixed and perform the minimization of E(u) − c0P (u), or equivalently

Gc0(u)
def
= Epot(u)− c0P (u). More precisely, for k ∈ R+, we consider

Gc0
min(k)

def
= inf

{
Gc0(u) = Epot(u)− c0P (u), u ∈ X , Ekin(u) = k

}
.

Similarly to Proposition 1, we have the following properties of the function Gc0
min, which do not

require the potential to be nonnegative. Statement (iii) below shows that the minimization problem
Gc0

min contains the minimization problem Emin.

Proposition 2 ([23]) (i) The function Gc0
min is concave, negative and decreasing. In particular,

Gc0
min has a derivative for all k except possibly for an at most countable set.

(ii) If k∗ > 0 is such that Gc0
min has a derivative at k∗ and Gc0

min(k∗) has a minimizer u∗, then the

rescaled function ũ∗
def
= u∗(

c0
c∗
·) solves (TWc∗) where the speed c∗ > 0 is given by

dGc0
min

dk
(k∗) = −c

2
0

c2
∗
. (17)

(iii) Let p∗ > 0 be given and assume that the potential function V is nonnegative. If u∗ is a
minimizer for Emin(p∗) and if Emin has a derivative at p∗, then û∗ = u∗(

c∗
c0
·) is a minimizer for

Gc0
min(Ekin(u∗)), where c∗

def
=

dEmin

dp
(p∗).
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Remark 1 At first glance, the parameter c0 seems to introduce an additional indeterminacy in
the problem. However, by a simple scaling argument, the minimization properties of Gc0 are easily
derived from those of G1. The latter, G1, is the functional studied in [23]. The freedom in choosing
c0 6= 1 reveals its interest during numerical simulations: we will choose c0 as close as possible to c∗
so that the afore mentioned scaling parameter c0/c∗ is close to one.

1.5 Relaxed functionals

We were motivated by finding a numerical strategy for computing the travelling waves that preserves
the variational strucure of the problem (TWc). We thus looked for methods based on minimization
arguments.

In the (E,P ) diagrams given in figure 1, some of the solutions are minimizers, or even local
minimizers, for the problem Emin(p). Therefore, it is natural to believe that these solutions are
saddle points of the action functional Fc. However, finding numerically a saddle point of a functional
is not so easy. In [45] and [3], respectively, the functionals

LPS(u, µ)
def
= E(u) +

1

2

(
µ− P (u)

)2
,

where µ ∈ R is some parameter, and

LB(u, U∗)
def
= E(u) +

M

2

(
P (u)− P (U∗)

)2
,

where U∗ is a travelling wave and M > 0 is given, have been introduced. In [45], this was for
finding travelling waves to a two dimensional Landau-Lifshitz equation, whereas in [3], this was for
the stability analysis of one dimensional travelling wave in the cubic-quintic (NLS), and in both
cases “P” is the momentum. This type of functional can be seen as a kind of relaxation of Fc, the
parameter µ for the functional LPS being here to have some control on the momentum P . The
interest for these functionals is that in some cases, a saddle point U∗ for Fc is translated to a local
minimizer for LB(·, µ), for some particular µ = µ(U∗), or for LB(·, U∗). This allows to use heat
flow techniques in order to capture numerically these local minima. The condition for the saddle
point U∗ to become a local minimum for LB(·, U∗) has been given in [3]: it suffices to assume

dP

dc
< 0 and M > − 1

dP
dc

. (18)

This means that only orbitally stable travelling waves can be obtained in this way. In dimension
one (or more generally under spectral assumptions similar to those in [31]), a rigorous proof to the
fact that a travelling wave U∗ is a local minimizer of LB(·, U∗), provided (18) is satisfied, is given
in [21] in a general framework. Actually, the functional LB(·, U∗) becomes a Lyapounov functional
for proving orbital stability (see [21]). In [45], no such sufficient condition has been given to ensure
that the functional LPS does have a local minimum. Moreover, we see from (18) that the constant
M plays a role in the functional LB whereas it has been fixed to 1 for LPS , so that we do not expect

to capture with LPS travelling waves with
dP

dc
> −1. Since U∗ is clearly not known, functionals of

the type of LPS seem more adapted to our problem. Therefore, we have chosen to define, for some
parameters µ ∈ R, P0 ∈ R and E0 ∈ R, the following functional:

L(u, µ)
def
= E(u) +

E0

2P 2
0

(µ− P (u))2 .
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The constant
E0

P 2
0

plays the same role as M for the functional LB; we have written it under this

form in order to emphasize on its homogeneity.
Let us then consider the minimization problem

Lmin(µ)
def
= inf

{
L(u, µ), u ∈ X

}
.

We may also consider the problem of finding not a global minimizer but a local minimizer, with an
obvious meaning. The properties of the functional Lmin are given in the following proposition (see
section 4.1 for the proof), where we stress the link between the problems Emin(p) and Lmin(µ).

Proposition 3 Let E0, P0, µ∗ and p∗ be four positive constants.
(i) If u∗ ∈ X is a minimizer for the problem Lmin(µ∗), then u∗ is a solution of (TWc∗) with

c∗ = c∗(u∗, µ∗)
def
=

E0

P0

(
µ∗ −

P (u∗)

P0

)
. Moreover, u∗ is a minimizer for the problem Emin(P (u∗)).

(ii) Assume that Emin has a second order derivative at p∗. If u∗ ∈ X is a minimizer for the problem

Emin(p∗), then u∗ is a solution of (TWc∗) with c∗ =
dEmin

dp
(p∗). Furthermore, if the constant

E0

P 2
0

verifies
E0

P 2
0

> −d
2Emin

dp2
(p∗)

then u∗ is a local minimizer for the problem Lmin(µ∗) with µ∗ = p∗ + c∗
P 2

0

E0
.

Remark 2 A similar statement holds for local minimizers instead of global minimizers.

The advantage of working with the relaxed functionals is to transform the minimization under
constraint into a minimization without constraint, which is of great interest numerically. In partic-
ular, heat flow techniques (as in [45]) can be applied. However, we do not have a direct control on
the quantities of interest: energy, momentum, speed, but only on the parameter µ. Let us remark
that minimizing Lmin(µ∗) (or even locally minimizing) captures only minima (or local minima) of
the energy under the constraint of fixed momentum, which is a strong indication of stability for the
Schrödinger flow. In three dimensions (cf. figure 1 (b)), the upper part of the curve is not expected
to be such a local minimum, and not expected to be stable (see [11], [8]).

Concerning the other constraint minimization, namely Gc0
min, we may also propose a relaxation

by considering

I(u, κ)
def
= Epot(u)− c0P (u) +

1

2E0

(
Ekin(u)− κ

)2

and finally consider the minimization problem

Imin(κ)
def
= inf

{
I(u, κ), u ∈ X

}
.

Similarly to Proposition 3, the function Imin enjoys the following properties (the proof is given
in section 4.2).
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Proposition 4 Let E0, c0, κ∗ and K∗ be four positive constants.
(i) If u∗ ∈ X is a minimizer for the problem Imin(κ∗), then u∗ is a minimizer for the problem

Gc0
min(Ekin(u∗)). Moreover, ũ∗ = u∗(

c0
c∗
·) is a solution of (TWc∗) with c∗

def
= c0

√
E0

κ∗−Ekin(u∗)
.

(ii) Assume that Gc0
min has a second order derivative at K∗. If u∗ ∈ X is a minimizer for the

problem Gc0
min(K∗), then the rescaled function ũ∗

def
= u∗(

c0
c∗
·) solves (TWc∗) with c∗ =

√√√√− c2
0

dGc0
min
dk (K∗)

.

Furthermore, if the constant E0 verifies

d2Gc0
min

dk2
(K∗) +

1

E0
> 0.

then u∗ is a local minimizer for the problem Imin(κ∗) with κ∗ = K∗ −
c2

0

c2
∗
E0.

Remark 3 Here again, a similar statement holds for local minimizers instead of global minimizers.

Stability and function Gc0
min. In [23], we have shown that every minimizer for Emin is also a minimizer

for Gc0
min(k) (see Proposition 2 (iii)). Moreover, we also know from [23] that every minimizer for

Emin is also an orbitally stable solution to (NLS). Therefore, it is natural to try to give a criterion

relative to the function Gc0
min for the orbital stability of the solution, that is the sign of

dP

dc
. The

proof of the following Proposition is provided in section 4.3.

Proposition 5 We make the assumptions of Proposition 4. Assume moreover that Gc0
min has a

second order derivative at K∗. If u∗ ∈ X is a minimizer for the problem Gc0
min(K∗), then

sgn
(dP
dc

(ũ∗)
)

= sgn

(
Gc0

min(K∗)
d2Gc0

min

dk2
(K∗)− 2

(
dGc0

min

dk
(K∗)

)2
)
. (19)

where ũ∗ = u∗(
c0
c∗
·).

We recall (cf. Proposition 2) that the function Gc0
min is concave, negative and decreasing, hence

dP

dc
(ũ∗) changes sign when

d2Gc0
min

dk2
(K∗) = 2

(
dGc0

min

dk
(K∗)

)2

Gc0
min(K∗)

,

which is a negative value. This means that Gc0
min remains strictly concave when

dP

dc
(ũ∗) changes

sign, and this is in agreement with the fact that the minimization problem Gc0
min contains the

minimization problem Emin.

2 Numerical methods

We have worked combining two approaches: finding (local) minimizers to functionals associated
with the variational structure of the problem and continuation with respect to the speed c.
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2.1 Discretization framework

Symmetries. Following [33], [45], we look for solutions that respect two symmetries of the problem:
u is thus assumed to satisfy

u(x) = u(x1, x2) = u(x1,−x2) = ū(−x1, x2). (20)

This allows us to work on the domain R+ × R+ instead of R2. Domain mapping. We then map
this domain onto the square (x̂1, x̂2) ∈ [0, π/2]2 using the stretched variables

R1x1 = tan(x̂1), R2x2 = tan(x̂2),

where R1 and R2 > 0 are adapted to the lengthscales of the solution we are interested in. This
mapping avoids to work on a bounded computational domain and thus to consider artificial type
of boundary conditions. But this comes at the price of two arbitrary constants, R1 and R2, that
have to be fixed along the computation.

The continuous problem is then expressed and solved numerically in this set of streched variables.
Indeed, we write (TWc) in these variables using the formulas for h(x) = ĥ(x̂), x̂ = arctan(Rx), for
R > 0, and

∂h

∂x
= R cos2(x̂)

∂ĥ

∂x̂
and

∂2h

∂x2
= R2

(
cos4(x̂)

∂2ĥ

∂x̂2
− 2 sin(x̂) cos3(x̂)

∂ĥ

∂x̂

)
.

Discretization. We discretize the computational domain, the square [0, π/2]2, by a cartesian grid,
with Nx̂1 points in the direction x̂1 and Nx̂2 points in the direction x̂2. We choose to work here
with a uniform dicretization with N := Nx̂1 = Nx̂2 . The size of the mesh is denoted by h; here

h =
π

2N
.

We choose to work in the Finite Difference framework, using central approximations of derivatives.
These approximations are of order 2.
Numerical computation of energies and momentum. We are interested in the energy-momentum
diagrams. These quantities are integral quantities that have to be approximated. They will be
computed numerically simply using a trapezoidal rule for the integral.

2.2 Minimization of the relaxed functionals

2.2.1 Heat flow technique

We would like to solve the minimization problems like Lmin(µ) for µ > 0 given. Solving this problem
leads to solve the equation

∆u+ uf(|u|2)− i(µ− P (u))∂x1u = 0.

Due to the variational structure of this equation and since we look for a (local) minimizer, we
choose to use heat flow techniques. In other words, we start with an initial condition and let it
evolve along the heat flow

∂u

∂t
= ∆u+ uf(|u|2)− i(µ− P (u))∂x1u.
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As already described, this equation is recast in the streched variables setting. Then the spatial part
is discretized using second-order Finite Difference scheme. The Ordinary Differential Equation in
time resulting from this spatial discretization is solved by a classical explicit Euler scheme, with
time step δt. Due to the explicit nature of the scheme, we have to face a CFL type condition that
ensures the stability of the scheme. In the sequel, we will choose the time step small enough in
order to be numerically stable.

Remark 4 To enhance the reading, we choose to present equations here in the real variables,
instead of the streched ones; the exact expressions of discrete equations and discrete operators will
thus not be detailed here. We will rather implicitely assume that the change of variable has been
performed before discretizing and present the result in the real variables.

The scheme writes

un+1
h = unh + δt

(
∆hunh + unhf(|unh|2)− i(µ∗ − Ph(unh))∂hx1u

n
h

)
, n ∈ N∗ (21)

u0 = u0
h (22)

with ∆h and ∂hx1 respectively the discrete finite difference operators associated to ∆ and ∂x1 . Same
notation holds for Ph, approximate moment for P . unh stands for the approximation at fictive
time tn := nδt. The choice of the initialization (22) will be detailed in next paragraph and next
subsection. The numerical scheme is stopped when the convergence criterion

η :=

∣∣∣∣∣∣∆unh + unhf(|unh|2)− i(µ∗ − Ph(unh))∂hx1u
n
h

∣∣∣∣∣∣
L∞(R2)∣∣∣∣(µ∗ − Ph(unh))∂x1u

n
h

∣∣∣∣
L∞(R2)

≤ tol

is verified.

Remark 5 In what follows tol = 4.10−4 will in general be sufficient to have an accurate solution.
This tolerance can be made smaller to adapt to each situation if necessary.

Numerical strategy. We compute numerically continuous branches of solutions proceeding as follows
(see Fig. 4).
For c ' 0 for instance, say c = 0.2, we expect vortices for the travelling waves: we can get an
approximate solution u0 by using Padé approximants for a single vortex (see subsection 2.3.1 below);

the momentum is then large and we expect Emin ≈ 4π ln p (cf. [33], [15]), hence
d2Emin

dp2
≈ −4π

p
,

which allows us to choose the constant
E0

P 2
0

in order to have
E0

P 2
0

> −d
2Emin

dp2
≈ 4π

p
(see Proposition

3); we then fix the value of µ as µ = P (u0) + c
P 2

0

E0
(see Proposition 3) (with c = 0.2); we then

use the iterations (21) until numerical convergence. We then iterate in µ (µ ← µ + δµ) and start
the iterations (21) from the previously computed solution. The same procedure can be employed
starting from c ' cs, provided we have a good approximation of the (KP-I) or (mKP-I) solitary
wave. The way we obtain Padé approximants or a numerical approximation of the (KP-I) solitary
wave is given in subsections 2.3.1 and 2.3.2.

The accuracy of the scheme is also tested by evaluating the Pohozaev or virial identities, as in
[33], [45]. For the solutions we have obtained, the relations (14) are verified up to 2%.
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Figure 4: Description of the iterative procedure to compute a minimum of the relaxed functional

2.3 Choices for the initialization

To initiate our algorithm, we may choose to begin either from c ≈ 0 or from c ≈ cs (or both),
depending on the nonlinearity and the theoretical knowledge we have for these two respective
asymptotic behaviours.

2.3.1 Padé approximants for the vortices

We determine a Padé approximant of the profile a of the vortex following the strategy of [9]. We
look for an approximate solution aPadé of (3) with d = 1 under the form

aPadé(r)
def
= r

√
α1 + α2r2

1 + β1r2 + β2r4
,

for some coefficients α1, α2, α3, β1, β2 to be determined, and where we choose β2 = α2 in order to
have aPadé(+∞) = 1. The coefficients α1, α2, α3, β1 are determined as in [9]: we plug this form of
aPadé into (3), perform a Taylor expansion near the origin of the left hand side of (3) up to O(r7)
(the expansion is odd). By cancelling the coefficients of r, r3 and r5, we may eliminate α2, then
β1, and finally solve numerically the remaining equation on α1. It turns out that there may exist
several solutions, but we find one and only one which provides a function increasing from 0 to 1.
The corresponding Padé approximant is given for each nonlinearity we study. In view of (4), we
may use this Padé approximant of a single vortex to construct the approximate solution

aPadé(|(x1, x2 − c−1)|)x1 + i(x2 − c−1)

|(x1, x2 − c−1)|
× aPadé(|(x1, x2 + c−1)|)x1 − i(x2 + c−1)

|(x1, x2 + c−1)|
.

We obtain in this way a good numerical error for speeds c typically ≤ 0.2, and this approximate
solution is a good initial point for starting heat flows.
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2.3.2 Ground state solutions for the (KP-I) and (mKP-I) equations

As already seen, the travelling waves for (NLS) are expected to be close, after rescaling, to a
travelling wave of the (KP-I) equation, and more precisely a ground state. For the standard
quadratic (KP-I) equation, the ground state is expected to be the well-known lump solitary wave
(see [42])

W(z)
def
= −24

3− z2
1 + z2

2

(3 + z2
1 + z2

2)2
= −24∂z1

( z1

3 + z2
1 + z2

2

)
= ∂z1φ,

which solves the adimensionalized version of (SW)

∂z1W − ∂3
z1W +W∂z1W + ∂2

z2∂
−1
z1 W = 0.

To our knowledge, no mathematical proof of the fact that W is indeed a (or the) ground state of
(KP-I) has been given. Using the scaling properties of the (KP-I) equation, we then see that

A(z)
def
=

1

c2sΓ
W
(
z1,

z2

cs

)
solves (SW):

1

c2s
∂z1A−

1

c2s
∂3
z1A+ ΓA∂z1A+ ∂2

z2∂
−1
z1 A = 0.

The (mKP-I) equation is however presumably not completely integrable, and hence no explicit
solution is known. An efficient way to compute numerically “the” ground state of the focusing
(mKP-I) is given by the Petviashvili iteration algorithm [47]. On the adimensionalized version of
(SW’) (where the constants have been set to 1 for simplicity)

∂z1W ′ − ∂3
z1W

′ − (W ′)2∂z1W ′ + ∂2
z2∂
−1
z1 W

′ = 0,

this consists in performing the iterations

W ′n+1 =
√

3
[∫

R2 (W ′n)2 + (∂z1W ′n)2 + (∂z2∂
−1
z1 W

′
n)2 dz∫

R2 (W ′n)4 dz

]3/2(
1− ∂2

z1 + ∂2
z2∂
−2
z1

)−1
(W ′n

3
).

It turns out that, numerically, taking as starting point the lump of the quadratic (KP-I)

W ′0(z) =W(z) = −24
3− z2

1 + z2
2

(3 + z2
1 + z2

2)2
,

we obtain convergence. For a justification of convergence when one starts close to the ground state
of the (mKP-I), see [46]. A natural way to implement this algorithm is to work in Fourier space
and use the FFT algorithm. However, for our problem, we shall use this numerical solution in a
finite differences scheme. Moreover, we have imposed the symmetry (20), which is not completely
satisfied when using the FFT algorithm. Finally, we shall need to compute ∂−1

z1 W
′, which needs an

extra computation requiring the exact cancelation of some Fourier coefficients of W ′n. Therefore,

we have implemented the Petviashvili iterations directly in terms of φ′
def
= ∂−1

z1 W
′, that is

φ′n+1 =
√

3
[∫

R2(∂z1φ
′
n)2 + (∂2

z1φ
′
n)2 + (∂z2φ

′
n)2 dz∫

R2(∂z1φ
′
n)4 dz

]3/2(
∂2
z1 − ∂

4
z1 + ∂2

z2

)−1
∂z1

(
(∂z1φ

′
n)3
)
,
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starting here again with the lump

φ′0(z) = φ(z) = − 24z1

3 + z2
1 + z2

2

.

We do not use Fourier transform, but compute the inverse of the negative definite matrix associated
to the discretization of the operator ∂2

z1−∂
4
z1 +∂2

z2 . When Γ′ < 0, we may obtain an approximation
of the ground state of (SW’) through the following scalings

A(z)
def
= ± 1√

−c2sΓ′
W ′
(
z1,

z2

cs

)
.

If Γ′ > 0, the (KP-I) equation is defocusing and has no (nontrivial) solitary wave (see [27]). The
typical graph of a rarefaction pulse is given in figure 2 (b).

2.4 Continuation with respect to the speed c

The variational method based on relaxed functionnal is very efficient and systematic. However, as
discussed before, they suffer from not being able to capture the whole range of speed c ∈ [0, cs].
Indeed, the gradient flow method converges (see Propositions 3 and 4) only in the regions where

• for the functional L,
d2E

dP 2
< 0, or

dP

dc
< 0, i.e. when the curve P 7→ E is concave.

• for the functional I,
dEkin

dc
< 0.

Thus, we are compelled to find another way to compute solutions in the remaining range of speeds.
Inspired by [28], we choose to work with a continuation method for the speed c; we compute a
solution for speed c then use it to compute the solution at speed c + δc. Principle. The equation
(TWc) writes:

∆u(c) + u(c)f(|u(c)|2) = ic∂x1u(c), (23)

where we emphasize the dependency on c of the solution u = u(c). When differentiating with
respect to c, this formally gives:

Υc

(
∂u

∂c
(c)

)
= i∂x1u(c) (24)

where
Υc(v)

def
= ∆v + 2u(c)〈u(c), v〉f ′(|u(c)|2) + f(|u(c)|2)v − ic∂x1v (25)

is the linearized operator. We view this as an ODE in c, provided we may invert Υc. It should be
noticed that the travelling wave we compute are presumably non degenerate, that is the kernel of
Υc is spanned only by ∂x1u(c) and ∂x2u(c). Since the problem (TWc) is invariant by translation,
it follows that ∂x1u(c) and ∂x2u(c) belong to the kernel of Υc, and assuming non degeneracy of
u(c) precisely means that we have no other element in ker(Υc). On the other hand, we impose the
symmetries (20) and may observe that if u(c) verifies (20), then ∂x2u(c) is odd in x2 and ∂x1u(c)
verifies ∂x1u(c)(x1, x2) = −∂x1 ū(c)(−x1, x2). Therefore, it is natural to believe that Υc becomes
invertible when imposing the symmetries (20).
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Discretization. Using finite differences setting, one can write the associated discrete operator Υh

using centered approximations. In the iterative procedure, we initiate the algorithm with an ini-
tialization: an approximate solution at speed c0. From a solution at speed ck, uh(ck), a solution at
speed ck+1, uh(ck+1), is computed in the following way:

(a) Computation of ∂hcku with ∂hcku = Υ−1
h

(
i∂hx1uh(ck)

)
. Computing Υ−1

h in the finite differences
framework amounts to solve a linear system. We choose to use a qmr (quasi minimal residual)
method to solve it. This step is, of course, the most expensive in computational time.

(b) Then update uh(ck+1) with equation (24) by using a classical ordinary differential equation
scheme (e.g. Euler scheme, Centered scheme). In the case of Euler scheme, this leads to
compute uh(ck+1) with the iteration scheme:

uh(ck+1) = uh(ck) + δc ∂hcku, with δc > 0 the chosen step size. (26)

Remark 6 In the variational approach, we decide to stop the simulation for a given criterion
η < tol. In the continuation method, solution at speed c is directly given by the numerical resolution
of (24). We can not impose the value of η a priori, but we expect the usual error estimate for
approximations of ODE depending on the method. Furthermore at each step, one has to solve a
linear system (but only once), that in the transonic limit can be hard to solve (see the discussion
in section 2.5).

Remark 7 We could also have chosen to use Newton’s method that has the advantage to be very
efficient (when it converges) with a control on the residual of the equation. However, Newton’s
method can require several iterations to converge (which in turn implies to solve the linear system
several times) and can also fail to compute a solution especially in the transonic limit. Thus, even
if we do not impose η directly with the continuation method, it allows, with a good initial residual
(i.e. at the begining of the iteration procedure), to compute an accurate solution everywhere and
especially in regions where Newton’s method may fail to give one.

Discussion on the choice of R1, R2. Although the change of variable induced by the choice of
R1 and R2 has virtually no influence on the continuous setting, the precision of the numerical
computations can be however influenced by this choice. Indeed a uniform grid in the mapped

domain (here [0,
π

2
]× [0,

π

2
]) is transformed in a non-uniform one in the real domain (here R+×R+).

The mesh is dilated as we approach infinity, leading to bigger cells at infinity. If the solution does
not present a significant variation at infinity (recall that ψ → 1 as ‖(x1, x2)‖ → ∞), this has not a
big influence on the computation. This is the case for vortex solutions for example, where we can
take typically R1 = R2 = 0.2. However, if this is not the case, one has to take a special care in
the choice of R1 and R2 in order to keep a good accuracy. For instance, in some of the transonic
limits that we consider in the sequel, we know the asymptotic behaviour ((KP-I) or (mKP-I))
and the space variations should be considered in the scaling (εx1, ε2x2), with ε =

√
c2s − c2, see

section 1.3: the solution tends to spread out (more in the transverse direction x2 than in the
direction of propagation x1). Choosing R1 and R2 respectively close to ε and ε2 seems to be
appropriate in these contexts. In practice, some typical values we had for the transonic limit are
(R1 = 0.1, R2 = 0.1), (R1 = 0.2, R2 = 0.015). These values are rather different from the values
for vortex solutions. More generally, R−1

1 and R−1
2 are typical lengthscales of variations for the

travelling wave of interest, hence may vary with c. Thus we will have to adapt R1 and R2 along
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the computations. Doing so with the variationnal strategy is not a problem, since one iterates the
procedure until a convergence criterion is reached. However, if one brutally changes the values of
R1 and R2 in the continuation procedure, this may result in a degradation of the residual. To solve
this problem, we have chosen to extend the continuation strategy: one can similarly construct a
continuation algorithm, by considering that R1 and R2 are themselves regularly depending on the
speed c. The resulting equations are derived in the same manner than the simple continuation
(they will not be detailed here) and the numerical resolution follows naturally the same ideas. In
[33] and [45], the values of R1 and R2 are kept fixed during all the computations.

2.5 Discussion on the transonic limit

The transonic limit turns out to be quite difficult to capture numerically, and we shall give some
explanations of this fact. We recall that the small parameter ε is defined through the relation
c(ε) =

√
c2s − ε2 or c2s = c2 + ε2.

The first observation is that when c → cs, using the long wave (KP-I) ansatz given by (5), we
have, by straightforward computations

ic∂x1u = eiεφ
(
− ε2cs∂z1φ

)
+O(ε2)

and

∆u+ uf(|u|2)− ic∂x1u = eiεφ
(
− ε2cs∂z1φ+ f((1 + ε2A)2)

)
+ iε3eiεφ

(
∂2
z1φ− cs∂z1A

)
+O(ε4)

= ε2eiεφ
(
− cs∂z1φ+ c2sA

)
+ iε3eiεφ

(
∂2
z1φ− cs∂z1A

)
+O(ε4).

Therefore, as soon as (A, φ) verifies the constraint (9), that is csA = ∂z1φ, we have a good approx-
imate solution: ∣∣∣∣∆u+ uf(|u|2)− ic∂x1u

∣∣∣∣
L∞∣∣∣∣ic∂x1u∣∣∣∣L∞ ≈ O(ε4)

ε2
= O(ε2).

Clearly, this prevents us from computing a precise solution numerically, since the information
leading to (SW) is hidden in the higher order terms. The same computations can be carried out
with the ansatz (10) and, this time, the preparedness assumption (12) (and not only (7)).

On the other hand, for the continuation in speed c (see section 2.4), one needs to inverse the
operator Υc(ε). As we shall see, this operator has a rather bad behaviour as ε→ 0. Since we know
that the asymptotic behaviour of the solutions to (TWc(ε)) as ε → 0 is approximated (through
suitable rescalings) by the solitary waves to (KP-I) (or (mKP-I)), we may expect to infer a bound
on the linearized operator Υc(ε) as ε → 0 if we have some information on the spectrum of the
linearization of (SW).

Proposition 6 We assume that Γ 6= 0 and that a family of travelling waves uc(ε) of (NLS) converge

to a solitary wave A of (KP-I) through the scaling (5), that is uc(ε)(x) = (1 + ε2Aε(z))e
iεϕε(z) with

(z1, z2) = (εx1, ε
2x2) and Aε → A, ∂z1ϕε → csA as ε → 0. Then, the linearization of (TWc(ε))

around uc(ε) admits a negative eigenvalue ∼ ε4λKP as ε→ 0, where λKP is the negative eigenvalue
of the linearization of (SW) around A.

Remark 8 In [11], a similar computation is made to relate the plausible unstable eigenvalue σKP ∈
R∗+ of the linearized (KP-I) equation (for the time dependent problem) in three space dimension
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to an unstable eigenvalue of the linearized (NLS) equation. This led the authors to the conjecture
that this last unstable eigenvalue should behave like ε3σKP for ε small. Note however that, to our
knowledge, no rigorous proof has been given that the ground state of the three dimensional (KP-I)
equation is linearly unstable.

We could envisage using Newton’s method to compute the travelling waves solutions in the
transonic limit. However, due to the rather bad behaviour of the linearized operator Υc(ε), Newton’s
algorithm does not converge in practice in this region if we start from the (KP-I) ansatz. Indeed,
either ε is very small so that the linear system is very difficult to solve and the iterates diverge;
either ε is not very small and then we are too far from the solution for Newton’s algorithm to
converge. Another difficulty is that we have two travelling wave solutions which are close: u = 1
that is always a trivial solution and the rarefaction pulse given by the (KP-I) ansatz that tends
to 1 in L∞ as c → cs. This is a further argument in favor of the use of both the variational and
the continuation method. Indeed, contrary to Newton’s method, the variational approach is able
to compute solutions even if we start far from the solution and the continuation method is able to
deal with the computation of the travelling waves close to the speed of sound. Let us point out that
the continuation increases the residual (but it is kept at a reasonable value) as we approach the
speed of sound: this no surprise in view of Proposition 6. Furthermore, the use of Newton’s method
fails to capture the mKP solutions (see example 1, section 3.1). Thus, if we had used Newton’s
method only, we would have missed some intervals of velocities for several of the examples that
follow (sections 3.1 to 3.5).

3 Study of some model cases

For each one of the examples below, we have computed numerically some branches of solutions to
(TWc), with scilab software. For the first three examples, the smooth nonlinearity f has a quali-
tative behaviour similar to the Gross-Pitaevskii nonlinearity f(%) = 1− %, namely f is decreasing,
vanishes for % = r2

0 = 1 and tends to −∞ for %� 1, which means that the potential function V (%)
is convex and tends to +∞ for large %. We then study a nonlinearity with saturation effect and
finally the cubic-quintic nonlinearity. For a study of the travelling waves in dimension one for these
nonlinearities, we refer to [20], where we may also find the graphs of the functions f and V . In
order to see more clearly the behaviour of the solutions as the velocity varies, we have plotted only
the modulus |u| and only on the half-plane {x2 ≥ 0} (recall the symmetries (20)). Furthermore,
for a better visualization, we plotted only one mesh point over three.

3.1 Example 1: a cubic-quintic-septic nonlinearity (i)

We consider the nonlinearity

f1(%)
def
= −3(%− 1) +

9

2
(%− 1)2 − 5

2
(%− 1)3.

Then, we compute

V1(%) =
3

2
(%− 1)2 − 3

2
(%− 1)3 +

5

8
(%− 1)4

23



Figure 5: Energy momentum diagram for f1 with lower and upper branches of solutions

so that c2s = 6, Γ = 0 and Γ′ = −14 < 0. The Padé approximant for the amplitude of the degree
one vortex solution is found to be

aPadé(r)
def
= r

√
2.389314101 + 5.111713038r2

1 + 4.639406046r2 + 5.111713038r4
.

A peculiarity of this nonlinearity is that Γ = 0 < Γ′. Therefore, from the computations of section
1.3, we expect a transonic limit given by the focusing (mKP-I) equation and not the usual (KP-I)
equation. The (E,P ) diagram we have obtained is given in figure 5 and consists in two distinct
branches of solutions we have singled out in figures 6.

The lower branch (figure 6 (a)) has been obtained as follows. We start with the approximation
with the two vortices that we expect as c ≈ 0. We then use the variational method to obtain the
concave part of the diagram up the cusp which has parameters (c = 1.995, P = 6.69, E = 17.45), and
for this, both minimizations based on Emin or on Gmin work. The former permits to compute only
solutions that are orbitally stable (as explained previously), so that only Gmin is able to compute
the solutions (slightly) after the cusp and to reach the values (c = 2.159, P = 6.89, E = 17.87).
The variational approach has the advantage of being able to capture a solution in the middle of
the curve, like the solution for (c = 0.556, P = 25.752, E = 33.384) that we have obtained from the
vortex ansatz with c = 1 and imposing µ = 25 despite the fact that we were not so close to the
solution we wanted (whereas the Newton algorithm requires to start close to the solution we look
for). The variational technique based on Gmin does not cover, however, the whole range of speeds

until the speed of sound. Indeed, we only compute numerical solutions that verify
dEkin

dc
< 0. To

complete the branch we have used the continuation method as described in section 2.4.
On the qualitative level, we observe in figure 7 that, as the speed increases, the two vortices

get closer, then merge for the parameters (c = 1.998, P = 6.69, E = 17.45) (which is almost the
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Figure 6: Energy momentum diagram for f1: (a) left: lower branch; (b) right: upper branch

value of the cusp), and for c > 1.998, the solution no longer vanishes. As we approach the speed of
sound cs =

√
6 ≈ 2.449, both energy and momentum increase (upper part of the (E,P ) diagram in

figure 6 (a), and we expect from the computations in section 1.3 an approximation by the (mKP-I)
solitary wave (we have already seen that in this case E and P diverge like ε−1 ≈ (cs − c)−1/2). In
figure 7 (e) and (f), we have plotted the numerical solutions for c = 2.38 and c = 2.422 (that is
ε =
√

6− 2.4222 ≈ 0.3725). It should be pointed out that scales on both vertical and horizontal
axes are different. We may compare figure 7 (f) with figure 8 where we have plotted the modulus
of (5) which is the function

1 + εW ′(εx1, ε
2x2), (27)

with the same value of ε = 0.3725 and Aε = W ′ the solution to (SW’). This last solution may
be computed with the help of Petviashvili algorithm (see section 2.3.2). Though not perfect, this
approximation is convincing. Note that the convergence rate of Aε to W ′ should be O(ε), and that
ε = 0.3725 is not so small (in comparison, for the usual (KP-I) limit, we expect a convergence rate
O(ε2)).

We now turn to the upper branch (figure 6). As in the one dimensional case (see [20], Example
1), these solutions should have a modulus essentially ≥ 1 (contrary to those on the lower branch).
One could be tempted to start from speeds c close to cs and use the (mKP-I) solitary wave −W ′,
but this is difficult for the following reasons. In the transonic limit c ↗ cs, E and P increase up
to infinity, thus the curve P 7→ E has to be convex in view of the Hamilton group relation. As a
consequence, we can not capture these travelling waves (if they exist) by the variational methods
we have discussed. Therefore, we may choose the continuation method, but then one needs to start
with ε very small in order to have an accurate solution, which causes some numerical challenge.
Furthermore, we have seen that the transonic limit has some numerical intrinsic difficulties (see
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Figure 7: Travelling wave for the nonlinearity f1 (lower branch) with speed, from left to right and
top to bottom: (a) c = 0.2188; (b) c = 0.696; (c) c = 1.91; (d) c = 2.09; (e) c = 2.38; (f) c = 2.42
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Figure 8: Approximate solution given by the (mKP-I) ansatz (27) for c = 2.42 with the help of
Petviashvili algorithm.

section 2.5). Finally, since we do not have any theoretical result concerning the (mKP-I) limit for
the travelling waves, it should be better to start from solutions rather far from those ones. Instead
of starting from c ≈ cs, it is more convenient to start from the other (diverging) part of the curve.
For that purpose, we look for an initial guess given by a Padé function of the form

UPadé(x) = 1 +
a0 + a1x

2
1 + a2x

2
2 + ix1(b0 + b1x

2
1 + b2x

2
2)

1 + c1x2
1 + c2x2

2 + c3x4
1 + c4x2

1x
2
2 + c5x4

2

as in [9] and follow the strategy in [9], section 5, by fixing c = 2.3. We thus impose a2 = cb1(1 −
c2/c2s), b2 = b1(1 − c2/c2s), c4 = 2c3(1 − c2/c2s) and c5 = c3(1 − c2/c2s) (these choices are rather
arbitrary since we shall not obtain a very accurate initial guess), and optimizing the remaining
coefficients as described in [9], section 5. We impose a0 > 0 since we want U to have a modulus
≥ 1 as much as possible and want to avoid the solution on the lower branch, for which a0 < 0 (we
also impose the posivity of the coefficients cj). In this way, we obtain

UPadé(x) = 1 +
0.2152 + 0.1320x2

1 + 0.0606x2
2 + ix1(0.2702 + 0.2225x2

1 + 0.0263x2
2)

1 + 0.4222x2
1 + 0.001x2

2 + 0.0206x4
1 + 0.0049x2

1x
2
2 + 0.0003x4

2

and start the heat flow with this initial datum. The advantage is that the solutions in the concave
part are capturable by the variational methods and that we start sufficiently far from the transonic
limit to trust our numerics. Once we have obtained numerical convergence to a (local) minimizer,
which gives a point in the middle of the concave part of the diagram in figure 6, we can pursue with
variational methods and continuation. This is a big advantage of the heat flow on the functionals
we consider since even we start not so close to the local minimum we are looking for, we may reach
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Figure 9: Travelling wave for the nonlinearity f1 (upper branch) with speed: (a) left c = 2.32; (b)
right c = 2.40

Figure 10: (a) left: travelling wave for the nonlinearity f1 (upper branch) with speed c = 2.44;
(b) right: approximate solution given by the (mKP-I) ansatz (27) for c = 2.44 with the help of
Petviashvili algorithm.

it. At the opposite, the Newton algorithm requires to start not too far from the desired solution,
and the continuation procedure needs to start from a sufficiently accurate solution.

Actually, in [20], this is not exactly the nonlinearity f1 which was considered, but a similar
one, say f̃1. In example 1 in [20], the nonlinearity f̃1 was such that c̃s =

√
2 ≈ 1.414 2 and as

c → c̃0
def
=
√

484
243 ≈ 1.411 3, the modulus of the travelling wave of the upper branch tends (locally

uniformly) to ≈ 1.106. It turns out that c̃0 is extremely close to c̃s, hence we have chosen to modify
slightly the nonlinearity in [20] in order to have the same qualitative behaviour but with c̃0 less
close to c̃s. With the nonlinearity f1, we have now cs =

√
6 ≈ 2.449 and for the travelling waves

in dimension one, as c→ c0
def
=
√

5 ≈ 2.236, the modulus of the solution of the upper branch tends
(locally uniformly) to ≈ 1.390.

For our simulation, as c decreases down to c∗
def
= 2.318, we have the right part of the green

curve in figure 6. In figure 9, we have plotted the solution for c = 2.32. It is remarkable that
for x2 = 0 and x1 ∈ [−8,+8], we observe a plateau where the modulus of the solution is equal to
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≈ 1.40 which is precisely the critical amplitude in dimension one. However, the speed c∗ = 2.318
is different from c0 =

√
5 ≈ 2.236. As c increases, the momentum, energy and the maximum of

the modulus decrease along the green (concave) part of the (E,P ) diagram. We reach the cusp
for the parameters (c = 2.427, P = 15.952, E = 38.320), and c is already very close to the speed of
sound cs =

√
6 ≈ 2.4494897. For c↗ cs, P and E increase and this is the convex part (blue stars)

in figure 6. Due to the Hamilton relation (15), one would expect this last part of the curve to be
above the staight line E = csP . However, this point is not easy to check due to numerical precision.
The solution for c = 2.44 in figure 10 is here again quite close to the approximate solution given
by the (mKP-I) ansatz (27) for c = 2.44 with the other solution −W of (SW’).

In this example, Newton’s algorithm converges neither with the (mKP-I) ansatz (10) nor starting
from the initial guess UPadé. This method alone does not allow to capture the upper branch of the
(E,P ) diagram, or to start the lower branch from its upper part.
Comments. Similarly to what we had observed in dimension one in [20], for this nonlinearity f1,
the transonic limit is governed by a focusing (mKP-I) equation and we indeed see two branches
of solutions for c close to cs. This is, to our knowledge, the first multiplicity result of this type in
space dimension two. Let us quote that in [45], the travelling wave solutions to the Landau-Lifshitz
equation with an easy plane anisotropy, that is

∂m

∂t
= m× (∆m−m3~e3), ~e3

def
= (0, 0, 1). (LL)

are simulated. For (LL), the transonic limit is also given by a focusing (mKP-I) equation (see [45]).
Therefore, one may also expect two branches of solutions in the transonic limit. However, the model
(LL) possesses a discrete symmetry: if m solves (LL), then so does m̃(t, x) = (m1,m2,−m3)(−t,−x).
Since this symmetry is inherited by the travelling waves, they appear by pairs, with the same energy
and momentum. Thus in the (E,P ) diagrams for (LL), each curve is actually the superposition of
two curves, and this is in particular the case in the transonic limit. Our problem does not possess
any discrete symmetry.

The other remarkable fact is the phenomenon of “one dimensional spreading” of the modulus
as c approaches c∗ = 2.318 which, as far as we know, has not been observed before. It is not very
easy to propose an ansatz for the travelling wave solution that could give some explanations of
this phenomenon. Indeed, in the two dimensional (or higher) case, the travelling wave tends to 1
at infinity (see [30]) at some algebraic rate, but in dimension one, this is no longer the case: the
travelling wave has two different phases at +∞ and −∞ and this phase shift has to be included in
the definition of the momentum. Therefore, it is not completely clear that we could embed the one
dimensional travelling waves in two space dimension. It is probably this phase problem at infinity
that implies that the critical speed c∗ = 2.318 is slightly different from the one dimensional critical
speed c0 = 2.236.

3.2 Example 2: a cubic-quintic-septic nonlinearity (ii)

Here, we consider

f2(%)
def
= −4(%− 1)− 36(%− 1)3,

for which we compute
V2(%) = 2(%− 1)2 + 9(%− 1)4,
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Figure 11: Energy momentum diagram for f2 with the two branches of solutions (I) and (II)

thus c2s = 8, Γ = 6. For this nonlinearity, the Padé approximant for the profile of the degree one
vortex is found to be

aPadé(r)
def
= r

√
7.459294023 + 33.13690937r2

1 + 14.44236536r2 + 33.13690937r4
.

The energy momentum diagram has two branches of solutions. The first one corresponding to speed
from 0 to cs ≈ 2.8284 (blue branch (I) on figure 11 and figure 12 (a)). We start our computation
by the approximation of the vortices that we expect as c ≈ 0. We use the variational approach
to compute the concave branch of solutions. The cusp occurs at c = 2.276 (P = 5.45, E = 19.28).
The branch is then completed by using the continuation algorithm. Qualitatively, as in the first
example, as the speed increases, the vortices come closer and merge (see figure 13). The loss of
vorticity occurs for c = 2.756 (P = 28.91, E = 83.43), which is rather close to the speed of sound.
As the speed approaches the speed of sound, energy and momentum become large. As c → cs,
the modulus of the solution exhibits a particularly remarkable behaviour: we observe a plateau
at a value of ≈ 0.93 in the x2-direction (see figure 14). It corresponds to the value of the critical
amplitude in 1D (≈ 0.9269), see [20]. To compute this convex part of the blue branch (I), we
could have indifferently used Newton’s method for the computation of the upper part of branch (I).
Concerning the adaptation of the parameters R1 and R2, we start from R1 = R2 = 0.2 and need
to take for the last solution R1 = 0.156, R2 = 0.073. Thus we have to modify their values along
the computations.

30



0

100

200

300

400

500

600

700

0 50 100 150 200 250

Energy vs momentum

momentum

en
er

g
y

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

Energy vs momentum

momentum

en
er

g
y

Figure 12: Energy momentum diagram for f2 with branches of solutions: (a) left (I); (b) right (II)

Turning to the other branch (green branch (II) on figure 11 and figure 12 (b)), we initiate the
computation for c ≈ cs ≈ 2.8284 with the (KP-I) ansatz (5) with the ε =

√
c2s − c2-scaling as

described in section 2.3.2. We computed solution from c ≈ cs down to the value c∗ ≈ 2.77. This
speed appears to be the limit speed we were able to reach numerically. Qualitatively we observe
a spreading in the x2 direction as the speed decreases leading to a sharp plateau at the modulus
≈ 0.90 associated here again to the critical amplitude in 1D; see the evolution from figure 15 to 16,
and the zoom in figure 17. Here again, simply using Newton’s method, we would miss the green
branch (II).
Comments. Concerning the blue branch (I), as for the nonlinearity f1, we observe the phenomenon
of ”one dimensional spreading” as c → c∗ ≈ 2.77 (see figures 16 and 17), with a plateau in the x2

variable associated with a one dimensional critical amplitude of ≈ 0.9. The green branch (II) does
not possess the same type of ”one dimensional spreading” in view of the presence of a small region of
relatively small modulus close to the origin. However, the remarkable value of the plateau is still the
one dimensional value ≈ 0.9. Another noticeable fact is that we computed two numerical solutions
for the whole interval of speeds [c∗, cs]. The two branches that we have computed both represent
solutions with modulus essentially less than one whereas for f1 one branch corresponds to solution
with modulus essentially greater than one. Finally, these two branches cross at (E ≈ 9.2, p∗ ≈ 25.3)
for the speeds c ≈ 2.80 and c ≈ 1.19 corresponding (almost) to figures 16 (a), 13 (b), respectively.
The same phenomenon occurs also in 1D, see [20], example 2. As a consequence, this nonlinearity
f2 has the remarkable property that the function Emin is not differentiable at p∗ > 0 and there
exist two minimizers for the constrained minimization problem Emin(p∗). We didn’t find such
configurations in the existing literature.

3.3 Example 3: a cubic-quintic-septic nonlinearity (iii)

We consider here

f3(%)
def
= −1

2
(%− 1) +

3

4
(%− 1)2 − 2(%− 1)3,
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Figure 13: Travelling wave for the nonlinearity f2 (blue branch (I)) with speed, from left to right
and top to bottom: (a) c = 0.18; (b) c = 1.26; (c) c = 2.26; (d) c = 2.37; (e) c = 2.70; (f) c = 2.75
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Figure 14: Travelling wave for the nonlinearity f2 (blue branch (I)) with speed: (a) left c = 2.78;
(b) right c = 2.81
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Figure 16: Travelling wave for the nonlinearity f2 (green branch (II)) with speed: (a) left c = 2.80;
(b) right c = 2.77

|u|

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

- 10
- 8

- 6
- 4

- 2
0x2

2
4 10986 7658 43 x12110 0

Solut ion for speed c= 2.80 (E= 25.43,P= 9.35)

|u|

0.90

0.92

0.94

0.96

0.98

1.00

1.02

- 10
- 8

- 6
- 4

- 2
0x2

2
4 10986 7658 43 x12110 0

Solut ion for speed c= 2.77 (E= 296.59,P= 107.26)

Figure 17: Travelling wave for the nonlinearity f2 (green branch (II)) with speed: (a) left c = 2.80,
zoom; (b) right c = 2.77, zoom
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for which

V3(%) =
1

4
(%− 1)2 − 1

4
(%− 1)3 +

1

2
(%− 1)4,

thus c2s = 1, Γ = 0, Γ′ = 24 > 0. The peculiarity of f3 is that we have Γ = 0, hence we do not
have a (KP-I) transonic limit, and the coefficient Γ′ is positive which means that the associated
(mKP-I) is defocusing (without nontrivial solitary wave), thus we do not have a (mKP-I) transonic
limit. Here we find the Padé approximant for the profile a

aPadé(r)
def
= r

√
0.6689784247 + 0.2838394656r2

1 + 1.236787922r2 + 0.2838394656r4
.

The energy-momentum diagram we have obtained is given in figure 18.

Figure 18: (E,P ) diagram for the nonlinearity f3

We start from c close to zero and let c increase using the minimization based on the functional
I. The qualitative behaviour of the solution for c ≤ 0.8 is rather similar to what we observe on
the (GP) equation or for the nonlinearity f1. For c small, the solution looks like the solution with
two vortices as in figure 2 (a) and as c increases, the vortices get closer until we reach the values
(c = 0.795, P = 15.591, E = 18.671), which is the solution in figure 19. These solutions correspond
to the concave part of the (E,P ) diagram in figure 18, but we are actually slightly before the cusp.
We have then used the continuation method to obtain the cusp and the upper (convex) part of the
(E,P ) diagram. The parameters associated with the cusp are (c = 0.822, P = 15.526, E = 18.613).
On the convex part, the solution becomes vortexless for the parameters (c = 0.944, P = 18.163, E =
20.965). As c↗ cs, both energy and momentum increase.
Comments. In one space dimension, we know from [20] that there exists a solution of finite energy
and momentum for speed c = cs which has a modulus with minimum value equal to 1/

√
2 ≈ 0.707.

Looking at the way the solution evolves close to the speed of sound, it is natural to wonder whether
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Figure 19: Travelling wave for the nonlinearity f3 with c = 0.79

Figure 20: Travelling wave for the nonlinearity f3 with: (a) left c = 0.95; (b) right c = 0.996
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there exists a nontrivial solution to (TWcs). Indeed, between figures 20 (a) and (c), the speed has
increased from c = 0.95 to c = 0.996 (recall cs = 1) the minimum of the modulus has increased,
but does not seem to tend to 1 (or even to 0.707). It turns out that if v is a sonic travelling wave
of finite energy, then the identity∫

R2

|∇v|2 dx =

∫
R2

|v|2f(|v|2) +
c2s
2

(|v|2 − 1) dx

must hold true: see Theorem 3.1 in [43]. For the solution with speed c = 0.996, we have computed
a kinetic energy ≈ 18.09 and the right-hand side is equal to ≈ 12.18. Since these two values are
rather different, we believe that if the travelling wave uc converges as c → cs to a nontrivial sonic
travelling wave, then the latter must be of infinite energy. In this case, the energy and momentum
should diverge to infinity as c→ cs. Note that the diagram is similar to the one computed in [33]
in 3D for the (GP) nonlinearity, see figure 1 (b). In particular there does not exist travelling waves
solutions with small energy, see [23] for a mathematical result. We furthermore point out that the
transonic limit is not governed by a (KP)-type equation.

We have not performed the numerical simulation for ”example 4” in [20]. The point is that
this case is very degenerate (we obtain in the transonic limit the sextic (gKdV)), which means that
we need to achieve extremely small values of ε2 = c2s − c2 to see something in the transonic limit.
Furthermore, the sextic (gKP-I) does not have nontrivial solitary waves (see [27]). This has led us
to think that the (E,P ) diagram should probably not be very different from what we have obtained
for the nonlinearity f3. We then pursue with “example 5” in order to keep the notations of [20].

3.4 Example 5: a saturated nonlinearity

In this example, we take, for some %0 > 0,

f5(%)
def
= exp

(1− %
%0

)
− 1.

This type of nonlinearity saturates when % is large and can be found, for instance, in [35]. For this
nonlinearity, we have

V5(%) = %0

{
exp

(1− %
%0

)
− 1− 1− %

%0

}
,

thus c2s = 2/%0, Γ = 6− 2

%0
. Therefore, the coefficient Γ changes sign for %0 = 1/3. We shall focus

(as in [20]) on the case %0 = 0.4 ∈ (1/3, 1/2), for which cs =
√

5 ≈ 2.236, Γ = 1 and the Padé
approximant is

aPadé(r)
def
= r

√
2.298837694 + 5.902032693r2

1 + 5.363022096r2 + 5.902032693r4
.

Starting with the approximation of the vortices as c ≈ 0, we compute the solutions using the
variational approach: the qualitative behaviour remains similar to other nonlinearities (see e.g.
nonlinearity f2 and figure 13). The solution becomes vortexless at speed c = 1.83. To complete the
computations, we use the continuation method. The diagram is given in figure 21.

The (E,P ) diagram has two cusps. The first one at speed ccusp 1 = 1.63 (E = 18.64, P = 7.84)
(see figure 22, (a) left) it corresponds to a minimum of E and P . The second one occurs after
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Figure 21: (E,P) diagram for the nonlinearity f5.

the loss of vorticity at speed ccusp 2 = 2.208 (E = 36.28, P = 16.27) (see figure 22, (c) left); it
corresponds to a maximum of E and P . After this second cusp, energy and momentum decrease
down to (E = 0, P = 0), with a (KP-I) transonic limit as c→ cs ≈ 2.236, see figures 22 (d) and (e).
Indeed, for this nonlinearity, the results in [22] may be applied and provide a rigourous convergence
result to the (KP-I) limit, and this is why we have inserted the blue crosses in figure 21.

We compared the results obtained with the continuation method to the one obtained with
Newton’s method. The latter allows for larger speed step sizes but fail to converge in the transonic
limit. The continuation method, on the contrary, enables us to pursue the computation if one starts
with a solution with a very good residual at the end of the variational computation process. Since
we begin to use the continuation method when the variational approach fails, the starting solution
for initiating the continuation process can be computed with the desired value of the residual.
Comments.The diagram (E,P ) exhibits two cusps, reflecting two transitions between stable (con-
cave) branches and unstable (convex) branches. In particular, contrary to the instability cases for
the nonlinearities f1, f2 and f3, the instability region is precisely the interval [ccusp 1, ccusp 2] ⊂]0, cs[.
Furthermore, the two concave regions self-intersect. The two travelling waves at the intersection
point belong to the same continuum of solutions corresponding to the interval of velocities ]0, cs[. In
comparison, for the nonlinearity f2, this happens for two distinct continua. Therefore we find two
solutions that have same momentum p∗ and energy but with two distinct speeds and qualitative
behaviours: vortices on the one hand and a rarefaction pulse on the other hand (like in figure 22
(b) and (e)). It is noticeable that for P ∈ [9, 16], some rarefaction pulses have higher energy than
the vortex solutions. In addition, the differentiability properties of Emin at p∗ are deeply linked
to the question of uniqueness of the minimizer for the constraint minimization problem Emin(p∗).
Our nonlinearity, as well as f2, shows that we have two minimizers for Emin(p∗) and Emin is not
differentiable at p∗.
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Figure 23: Graphs of (a) left: f6, (b) right: V6

In [2], section IV G, a diagram similar to the (E,P ) in figure 21 can be found; the corresponding
analysis was different and concerned the study of bound states in the 1D Nonlinear Schrödinger
equation (with zero condition at infinity) with the focusing non monotonic nonlinearity f(%) =
%5/2 − %5 + 1

2%
15/2. On the contrary, our framework deals with 2D travelling waves with nonzero

condition at infinity with a defocusing monotonic nonlinearity. To our knowledge, this is the first
occurrence of such a diagram in this last context. This study has led us to try to construct a
nonlinearity in 1D with the same qualitative properties: see A.1 and figure 28 (b).

The (E,P ) diagram in 1D with the nonlinearity f5 does not have any cusp (cf. [20]). However,
another type of saturated nonlinearity given by

f(%) = α

 1

(1 +
%

%0
)ν
− 1

(1 +
1

%0
)ν


does have one for some particular values of %0, ν, α. Actually, it corresponds to a local maximum
of both P and E. This nonlinearity has already been studied in [36], where they put forward for
the first time unstable kinks. Nevertheless their (E,P ) diagram should exhibit a cusp as shown in
A.2 figure 30 instead of figure 1 in [36].

3.5 Example 6: a cubic-quintic nonlinearity

We consider finally the cubic-quintic nonlinearity

f6(%)
def
= −(%− 1)− 3(%− 1)2,

for which

V6(%) =
1

2
(%− 1)2 + (%− 1)3,

thus c2s = 2, Γ = 24 and the graphs of f6 and V6 are given in figure 23. It is important to note that,
near the origin, f6 is increasing and V6 is negative. This nonlinearity is well-studied in the physical
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Figure 24: The profile g of the ground state solution for the cubic-quintic nonlinearity f6

literature: see [4] and other papers by I. Barashenkov and co-authors. However, these studies are
in dimension one, and we have not been able to find any study in higher dimensions. In dimension
two and three, the paper [10] provides the energy-momentum diagrams in the case of cubic-quintic
type nonlinearities but when the potential function V is everywhere nonnegative (hence there exist
vortex solutions).

When the potential function V6 is negative near the origin, there does not exist vortex solutions
and we do not expect vortices for small speeds. Actually, for this type of nonlinearity where
inf V < 0, there exists a stationary bubble, that is a real-valued solution v to

∆v + vf6(v2) = 0,

which is a radially symmetric function v(x) = g(|x|) = g(r), where g is increasing and tends to
1 at infinity. Concerning the existence of such solutions, we may refer to [6] or to the proof of
Theorem 3.1 p. 106 in [17] by variational methods. One may also use a shooting argument as in
[28] relying on the mathematical justification given in [7]. For our cubic-quintic nonlinearity f6, we
have obtained by the shooting method the profile g given in figure 24, and the minimum value of
g is g(0) ≈ 0.528 621 847 110. This solution is known to be unstable for the corresponding (NLS),
see [25]. The (E,P ) diagram for f6 is given in figure 25.

We have started from the transonic limit c ≈ cs and used the minimization of the functional
I (that is Gc0

min) starting from ε not too small and the (KP-I) ansatz with the lump solution.
The corresponding travelling wave looks like the rarefaction pulse in figure 2 (b). We may notice
that we do not reach the value (P = 0, E = 0) in view of the problems associated with the
transonic limit (see section 2.5). Here again the results on the transonic limit in [22] may be
applied to this nonlinearity (see the blue crosses in figure 25). Then, we increase the kinetic so
that E and P increase (concave part of the diagram) until we reach the point with parameters
(c = 0.785, P = 0.721, E = 0.921) which corresponds to the cusp. This time, it is associated with
a (local) maximum of both E and P whereas those for the nonlinearities f1, f2 and f3 were for a
(local) minimum. We pursue the simulation after the cusp: E and P decrease up to ≈ 0.712 and
0 respectively. For c ≈ 0, we significatively observe numerical convergence towards the bubble as
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Figure 25: (E,P ) diagram for the cubic-quintic nonlinearity f6

shown in figure 26 (c). In particular, the minimum of the modulus is indeed ≈ 0.529 (see figure
26 (c)), which is the minimum of the ground state solution (g(0) ≈ 0.528). As c goes to zero, the
minimization of Gc0

min is actually more and more difficult in view of the fact that the derivative
dGc0

min

dk
= −c0

c2
(by (17)) tends to −∞ but Gc0

min has a finite limit. This implies that we spend a lot

of time to acheive a (local) minimum. For this reason, we have used the minimization of Gc0
min up

to the solution with parameters (c = 0.42, P = 0.53, E = 0.81) and the rest of the curve is obtained
using the continuation method. See the evolution in figure 26.
Comments. The cubic-quintic is a common model, but to the best of our knowledge, the study
of the travelling waves for this equation has not been done in dimension two. The specificity of
this nonlinearity is that the potential V achieves negative values, which implies the existence of
a particular stationary solution: the ground state. The (E,P ) diagram is then similar to the one
dimensional case, with a cusp corresponding to a maximum for both E and P (see [4]).

4 Proofs

4.1 Proof of Proposition 3

Proof of (i). Since u∗ is a minimizer for Lmin(µ∗), u∗ solves

∆u∗ + u∗f(|u∗|2)− iE0

P 2
0

(µ∗ − P (u∗)) ∂x1u∗ = 0

42



Figure 26: Travelling wave for the cubic-quintic nonlinearity f6 for speed: (a) top left c = 1.27; (b)
top right c = 0.8182; (c) bottom c = 0.05
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in R2, that is (TWc∗) with c∗ =
E0

P 2
0

(µ∗ − P (u∗)). Furthermore, for all w ∈ X such that P (w) =

P (u∗), we have by minimality of u∗

E(u∗) +
E0

2P 2
0

(µ∗ − P (u∗))
2 = L(u∗, µ∗) ≤ L(w, µ∗) = E(w) +

E0

2P 2
0

(µ∗ − P (u∗))
2 ,

hence E(u∗) ≤ E(w) as wished.
Proof of (ii). One writes ∀v ∈ X ,

L(v, µ∗)− L(u∗, µ∗) = E(v)− E(u∗) +
E0

2P 2
0

(µ∗ − P (v))2 − E0

2P 2
0

(µ∗ − P (u∗))
2

= E(v)− E(u∗) +
E0

2P 2
0

[2µ∗ − P (u∗) + P (v)] [P (u∗)− P (v)] .

Since µ∗ =
p∗
P0

+ c∗
P0

E0
and P (u∗) = p∗, we deduce

L(v, µ∗)− L(u∗, µ∗) = E(v)− E(u∗) +
E0

2P 2
0

(P (u∗)− P (v))2 − c∗ (P (v)− P (u∗)) .

Since we choose v in the vicinity of u∗ and u∗ is a minimizer for Emin(P (u∗)),

L(v, µ∗)− L(u∗, µ∗) ≥ Emin(P (v))− Emin(P (u∗)) +
E0

2P 2
0

(P (u∗)− P (v))2 − c∗ (P (v)− P (u∗))

≥ dEmin

dp
(P (v)− P (u∗)) +

1

2

d2Emin

dp2
(P (u∗)− P (v))2

+
E0

2P 2
0

(P (u∗)− P (v))2 − c∗(P (v)− P (u∗)) + o((P (u∗)− P (v))2),

where we have used the second order Taylor expansion of Emin. Furthermore, the speed c∗ satisfies
the Hamilton group relation (see (16))

dEmin

dp
(P (u∗)) = c∗,

since Emin has a derivative at P (u∗), thus

L(v, µ∗)− L(u∗, µ∗) ≥
1

2

(d2Emin

dp2
+
E0

P 2
0

+ o(1)
)

(P (u∗)− P (v))2

and the right hand side is nonnegative under the condition
d2Emin

dp2
+
E0

P 2
0

> 0 provided v is sufficiently

close to u∗. This concludes the proof. �

4.2 Proof of proposition 4

Proof of (i). Assume that κ∗ ∈ R+ and u∗ is a minimizer of the problem Imin(κ∗). Then for all
v ∈ X , such that Ekin(v) = Ekin(u∗),

Epot(u∗)− c0P (u∗) +
1

E0
(Ekin(u∗)− κ∗)2 ≤ Epot(v)− c0P (v) +

1

E0
(Ekin(v)− κ∗)2,
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which implies

Epot(u∗)− c0P (u∗) ≤ Epot(v)− c0P (v), ∀v ∈ X such that Ekin(v) = Ekin(u∗).

Thus Gc0
min(Ekin(u∗)) = Gc0(u∗). Furthermore since u∗ is a solution of problem Imin(κ∗), u∗ solves

1

E0
(Ekin(u∗)− κ∗)∆u∗ + u∗f(|u∗|2)− ic0∂x1u∗ = 0

in R2. From Proposition 2 (ii), we deduce that

1

E0
(Ekin(u∗)− κ∗) =

(
c0

c∗

)2

> 0,

with c∗ defined as in (17). Thus if we set σ =

√
E0

Ekin(u∗)− κ∗
=
c∗
c0

, the function ũ∗
def
= u∗(

·
σ ) is a

solution of
∆ũ∗ + ũ∗f(|ũ∗|2)− ic∗∂x1 ũ∗ = 0,

that is (TWc∗).

Proof of (ii). The first part of the statement is a direct application of Proposition 2. Let then u∗
be a minimizer of the problem Gc0

min(K∗). One writes ∀v ∈ X and κ∗ > 0,

I(v, κ∗)− I(u∗, κ∗) = Epot(v)− c0P (v) +
1

2E0
(Ekin(v)− κ∗)2

−Epot(u∗) + c0P (u∗)−
1

2E0
(Ekin(u∗)− κ∗)2

= [(Epot − c0P )(v)− (Epot − c0P )(u∗)]

+
1

2E0

[
(Ekin(v)− κ∗)2 − (Ekin(u∗)− κ∗)2

]
.

By choosing κ∗ = Ekin(u∗)−
c20
c2∗
E0 = K∗ −

c20
c2∗
E0, one finds

I(v, κ∗)− I(u∗, κ∗) = [(Epot − c0P )(v)− (Epot − c0P )(u∗)]

+
1

2E0
[Ekin(v)− Ekin(u∗)]

2 +
c2

0

c2
∗

[Ekin(v)− Ekin(u∗)]

≥Gc0
min(Ekin(v))−Gc0

min(Ekin(u∗))

+
1

2E0
[Ekin(v)− Ekin(u∗)]

2 +
c2

0

c2
∗

[Ekin(v)− Ekin(u∗)] .

If we choose v in the vicinity of u∗,

I(v, κ∗)− I(u∗, κ∗) ≥
dGc0

min

dk
(Ekin(u∗))(Ekin(v)− Ekin(u∗))

+
1

2

d2Gc0
min

dk2
(Ekin(u∗))(Ekin(v)− Ekin(u∗))

2 +
1

2E0
[Ekin(v)− Ekin(u∗)]

2

+
c2

0

c2
∗

[Ekin(v)− Ekin(u∗)] + o((Ekin(v)− Ekin(u∗))
2).
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By (17), we then infer

I(v, κ∗)− I(u∗, κ∗) ≥
1

2

[
d2Gc0

min

dk2
(Ekin(u∗)) +

1

E0
+ o(1)

]
(Ekin(v)− Ekin(u∗))

2.

This yields the conclusion under the condition:
d2Gc0

min

dk2
(Ekin(u∗)) +

1

E0
> 0, provided v is suffi-

ciently close to u∗. This finishes the proof. �

4.3 Proof of Proposition 5

In the sequel, we shall make a little abuse of notation by using the same notation P for the momen-

tum considered as a function of ũ∗, c or k. Since P (ũ∗) =
c∗
c0
P (u∗) and Epot(ũ∗) =

(
c∗
c0

)2

Epot(u∗)

by scaling, it follows that

Gc0
min(K∗) =

(
c0

c∗

)2

Epot(ũ∗)−
c2

0

c∗
P (ũ∗) = − c2

0

2c∗
P (ũ∗), (28)

where we have used the Pohozahev identity 2Epot(ũ∗) = c∗P (ũ∗). Furthermore, c∗ is defined by

c∗ =

√√√√√− c2
0

dGc0
min

dk
(K∗)

. (29)

This implies that
dc

dk
(K∗) < 0 since, by assumption, Gc0

min has a second order derivative at K∗ and

is concave. This gives sgn(dPdc ) = −sgn(dPdk ).
Moreover, combining (28) and (29),

dP

dk
=

d

dk

− 2

c2
0

Gc0
min

√√√√√− c2
0

dGc0
min

dk

 = − 1

c0

−2

(
dGc0

min

dk

)2

+ Gc0
min

d2Gc0
min

dk2(
−
dGc0

min

dk

) 3
2

,

which gives that −dP
dk

and Gc0
min

d2Gc0
min

dk2
− 2

(
dGc0

min

dk

)2

have the same sign, as wished. �

4.4 Proof of Proposition 6

Let us consider a ground state A for (KP-I) (recall Γ 6= 0), that is expected (but not proved) to be
the lump solitary wave. Then, A minimizes the energy∫

R2

1

c2s
(∂z1ζ)2 + (∂z2∂

−1
z1 ζ)2 +

Γ

3
ζ3 dz

among all functions satisfying
∫
R2 ζ

2 dz =
∫
R2 A

2 dz (see [26] for precise functional spaces). As a
consequence, the hessian of the action around A is associated with the self-adjoint operator

Λ
def
=

1

cs
− 1

c2s
∂2
z1 + ∂2

z2∂
−2
z1 + ΓA
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has at most one negative eigenvalue (see [48]). Its essential spectrum is [c−1
s ,+∞). On the other

hand, the scaling properties of (SW) show that for any λ > 0, the function Aλ(z) = λ2A(λz1, λ
2z2)

solves
λ2

c2s
∂z1Aλ −

1

c2s
∂3
z1Aλ + ΓAλ∂z1Aλ + ∂2

z2∂
−1
z1 Aλ = 0.

Differentiating at λ = 1 provides Λ
(∂Aλ
∂λ |λ=1

)
= − 2

c2s
A1 = − 2

c2s
A, hence, by scaling for the third

equality,〈
Λ
(∂Aλ
∂λ |λ=1

)
,
∂Aλ
∂λ |λ=1

〉
L2(R2)

=− 2

c2s

〈
A1,

∂Aλ
∂λ |λ=1

〉
L2(R2)

= − 1

c2s

d

dλ

(
‖Aλ‖2L2(R2)

)
|λ=1

=− 1

c2s

d

dλ

(
λ‖A‖2L2(R2)

)
|λ=1

= − 1

c2s
‖A‖2L2(R2) < 0. (30)

Consequently, the operator Λ has exactly one negative eigenvalue, denoted λKP, and let Ã∗ =
c−1
s ∂−1

z1 ϕ̃∗ be a corresponding eigenvector, so that

1

cs
Ã∗ −

1

c2s
∂2
z1Ã∗ + ∂2

z2∂
−2
z1 Ã∗ + ΓAÃ∗ = λKPÃ∗.

Starting from this eigenpair, we shall construct an approximate eigenvector ũ for the linearized
operator Υc (defined in (25)) when c = c(ε) → cs. Recall that the travelling wave uc(ε)(x) is

searched as (1 + ε2Aε(z))e
iεϕε(z) with z1 = εx1 and z2 = ε2x2. Therefore, it is natural to look for

ũ under the form
ũ(x) = iε(1 + ε2Aε(z))e

iεϕε(z)ϕ̃(z) + ε2Ã(z)eiεϕε(z), (31)

corresponding to a linearization in (A,ϕ).
We have already seen that for uc(ε) given by (5), there holds[

∆uc(ε) + uc(ε)f(|uc(ε)|2)− ic(ε)∂x1uc(ε)
]
(x)

= eiϕε
[
−ε2(1 + ε2Aε)Θ1(Aε, ϕε) + iε3Θ2(Aε, ϕε)

]
(z), (32)

where

Θ2(Aε, ϕε)
def
= −c(ε)∂z1Aε + 2ε2∂z1ϕε∂z1Aε + 2ε4∂z2ϕε∂z2Aε + (1 + ε2Aε)(∂

2
z1ϕε + ε2∂2

z2ϕε)

and

Θ1(Aε, ϕε)
def
= −c(ε)∂z1ϕε + ε2(∂z1ϕε)

2 + ε4(∂z2ϕε)
2 − 1

ε2
f((1 + ε2Aε)

2)− ε2∂
2
z1Aε + ε2∂2

z2Aε

1 + ε2Aε
.

The linearization of (32) (with (5)) gives:

Υc(ε)(ũ) = eiεϕε

[
−ε2(1 + ε2Aε)DΘ1(Aε, ϕε).(Ã, ϕ̃) + iε3DΘ2(Aε, ϕε).(Ã, ϕ̃)− ε4ÃΘ1(Aε, ϕε)

]
+ ϕ̃eiεϕε

[
−ε2(1 + ε2Aε)Θ1(Aε, ϕε) + iε3Θ2(Aε, ϕε)

]
= eiεϕε

[
−ε2(1 + ε2Aε)DΘ1(Aε, ϕε).(Ã, ϕ̃) + iε3DΘ2(Aε, ϕε).(Ã, ϕ̃)

]
,
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since uc(ε) solves (TWc(ε)). We now consider, for some λ to be determined later (we shall find
λ ∼ ε4λKP), the expression

Υc(ε)(ũ)− λũ = eiεϕε

[
−ε2(1 + ε2Aε)DΘ1(Aε, ϕε).(Ã, ϕ̃) + iε3DΘ2(Aε, ϕε).(Ã, ϕ̃)

−λ
(
iε(1 + ε2Aε)ϕ̃+ ε2Ã

)]
.

Moreover, in view of (7), it is natural to choose (B̃, ϕ̃, Ã) all of order ε0, but depending on ε, such

that csÃ+ ε2csB̃ = ∂z1ϕ̃ = csÃ+O(ε2). We now use that c(ε) =
√
c2s − ε2 = cs−

ε2

2cs
+O(ε4), the

definition of ϕ̃ and the convergence of Aε =
∂z1ϕ

cs
→ A, to obtain the expansion

DΘ2(Aε, ϕε).(Ã, ϕ̃) =− c(ε)∂z1Ã+ ∂2
z1ϕ̃+ ε2

(
2∂z1ϕ̃∂z1Aε + 2∂z1ϕε∂z1Ã+ Ã∂2

z1ϕε +Aε∂
2
z1ϕ̃+ ∂2

z2ϕ̃
)

+O(ε4)

=csε
2
(
∂z1B̃ +

1

2c2s
∂z1Ã+ 3∂z1(AÃ) + ∂2

z2∂
−1
z1 Ã

)
+ o(ε2).

Similarly, we obtain

DΘ1(Aε, ϕε).(Ã, ϕ̃) = csε
2
(
B̃ +

1

2c2s
Ã+ (Γ− 3)(AÃ)− ∂2

z1Ã
)

+ o(ε2),

thus

Υc(ε)(ũ)− λũ =− csε
4eiεϕε

{
B̃ +

1

2c2s
Ã+ (Γ− 3)(AÃ)− ∂2

z1Ã−
λ

csε2
Ã+ o(1)

}
+ icsε

5eiεϕε

{
∂z1B̃ +

1

2c2s
∂z1Ã+ 3∂z1(AÃ) + ∂2

z2∂
−1
z1 Ã−

λ

csε4
(1 + ε2A)ϕ̃+ o(1)

}
.

In view of this expansion, we fix

λ
def
= ε4λKP and B̃

def
= − 1

2c2s
Ã− (Γ− 3)(AÃ) + ∂2

z1Ã+
ε2λKP

cs
Ã+ o(1).

We then infer

Υc(ε)(ũ)− λũ = icsε
5eiεϕε

{
∂2
z1Ã+ Γ∂z1(AÃ) + ∂2

z2∂
−1
z1 Ã− λKP∂

−1
z1 Ã

}
+ o(ε5).

and choose Ã
def
= Ã∗ the negative eigenvector as defined previously, so that the term in brackets

cancels out. As a consequence, ∣∣∣∣Υc(ε)(ũ)− ε4λKPũ
∣∣∣∣
L2∣∣∣∣ũ∣∣∣∣

L2

= o(ε5).

We conclude with the help of the following classical result (see, e.g., [49]).

Theorem 4.1 Let T be a self-adjoint operator on a Hilbert space H. Assume that there exists
(v, λ, δ) ∈ H × R × R∗+ such that v 6= 0 and ||Tv − λv|| ≤ δ||v||. Then, σ(T ) ∩ [λ − δ, λ + δ] is not
empty.
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Indeed, since the essential spectrum of Υc is included in R+, we deduce the existence of some
negative eigenvalue for Υc(ε) which is ∼ ε4λKP as ε→ 0.

Remark 9 The operator Υc(ε) has the same bad behaviour when Γ = 0 > Γ′ provided one can
prove that there exists a negative eigenvalue for the linearization of (SW’). This is probably true,
but the argument (30) is no longer sufficient in the cubic case.

5 Conclusions

We have investigated numerically the two dimensional travelling waves of the Nonlinear Schrödinger
Equation for a general nonlinearity and with nonzero condition at infinity. These travelling waves
are saddle points of the action. In order to compute these solutions, we first exhibit, for a certain
range of speeds, a functional for which they are local minimizers (Lyapounov functional) so that we
can use a gradient flow. We have combined this approach with a continuation method in speed in
order to obtain the full range of velocities. Contrary to a Newton’s algorithm, our strategy permits
to capture the transonic limit of (KP)-type and to compute solutions even without a very accurate
initial guess. The consequence is that Newton’s method would miss some branches. The variational
method was proved to be essential in particular because it can capture solutions lying on a branch
which is not connected to the vortex branch (c → 0), which is impossible using only Newton’s or
the continuation methods.

We have performed simulations for several nonlinearities having the same behaviour as the well-
known Gross-Pitaevskii nonlinearity. We obtained a great variety of (E,P ) diagrams and qualitative
behaviours. We have observed cusps; a modified (KP-I) asymptotic in the transonic limit with two
branches of solutions; various multiplicity results: non uniqueness for some interval of speeds, self-
intersection of one continuous branch, intersection of two distinct branches, non uniqueness for
some constraint minimization problems; some phenomena of “one dimensional spreading” where
the modulus has a plateau corresponding to special values associated with the 1D problem.

Acknowledgements: D.C. gratefully acknowledges the support of the ANR ArDyPitEq. The
authors would like to thank L. Di Menza for having suggested to use the continuation method.

A About two diagrams in dimension one

In this appendix, we consider the (NLS) equation in space dimension one as studied in [20]. We
wish to give two more (E,P ) diagrams showing the variety of possible qualitative behaviours.

A.1 A quasi-degenerate case

We investigate here the quasi-degenerate case

fqd(%)
def
= −2(%− 1) + (3− 10−3)(%− 1)2 − 4(%− 1)3 + 5(%− 1)4 − 6(%− 1)5,

which is a perturbation of the degenerate case

fdege(%)
def
= −2(%− 1) + 3(%− 1)2 − 4(%− 1)3 + 5(%− 1)4 − 6(%− 1)5
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Figure 27: Graphs of (a) left: fqd, (b) center: Vqd and (c) right: Vqd

studied in [20] (example 4 “a degenerate case” there). For the nonlinearity fdege, we have Γ = Γ′ = 0
(and also other coefficients of the same type) so that the transonic limit is governed by the sextic
(gKdV) solitary wave equation

1

c2s
∂zA−

1

c2s
∂3
zA+ Γ(6)A5∂zA = 0,

which is supercritical. For the nonlinearity fdege, as c→ cs, the travelling waves have high energy
and momentum (and are unstable, see [20], [21]). For the nonlinearity fqd we are now considering,
the coefficient Γ becomes small, but nonzero. Actually, we have

Vqd(%) = (%− 1)2 − 3− 10−3

3
(%− 1)3 + (%− 1)4 − (%− 1)5 + (%− 1)6

and

Vqd(ξ) = − 1

750
ξ3 − 1

750
ξ4 − 4ξ7,

thus r0 = 1, c2s = 4, Γ = 1
500 and the graphs of fqd, Vqd and Vqd are given in figure 27.

Since Γ is nonzero, the transonic limit for the nonlinearity fqd is governed by the usual (KdV)
solitary wave, and in particular the energy and momentum tend to zero as c → cs. However, in
some sense, fqd is close to fdege, and we hope that for c close, but not too close, to cs, part of the
behaviour observed for fdege will be seen for fqd. In particular, we hope to have, for the nonlinearity
fqd, some “large” energy and momentum for c close, but not too close, to cs, and then for c very
close to cs, small energy and momentum.

The numerical computations of the energy and momentum as in [20] provide the diagrams of
c 7→ E and c 7→ P given in figure 28 (a). Since the variations are rather fast, we have used

logarithmic scale: the abscissa is not c but −log

(
cs − c
cs

)
= − log(1 − 0.5c). Therefore, the

corresponding (E,P ) diagram is, qualitatively, as in figure 28 (b). Note that we have indeed some
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Figure 28: (a) left: Energy (*) and momentum (+) vs. speed in logarithmic scale; (b) right:
qualitative (E,P ) diagram for nonlinearity fqd

“large” energy and momentum for speeds c with − log(1 − 0.5c) ' 10 (for which the dominant
behaviour is the one of fdege), and finally energy and momentum go to zero since Γ 6= 0. We have
been interested in this nonlinearity since the (E,P ) diagram (in dimension one) is qualitatively
similar to the one obtained in example 5 for the (exponentially) saturated nonlinearity (in dimension
two). As already mentioned, this type of (E,P ) diagram can also be found in [2], section IV G, for
the study of bound states in the Nonlinear Schrödinger equation (with zero condition at infinity)
with the focusing non monotonic nonlinearity f(%) = %5/2−%5+ 1

2%
15/2. We deal here with travelling

waves with a defocusing monotonic nonlinearity.

A.2 Another saturated (NLS) model

We investigate now another classical saturated (NLS) model, which is

fsat(%)
def
=

%0

2

( 1

(1 + %/%0)2
− 1

(1 + 1/%0)2

)
,

where %0 > 0 is some parameter. For this nonlinearity, there holds

Vsat(%) =
(%− 1)2

2
(

1 +
1

%0

)2(
1 +

%

%0

) and Vsat(ξ) = − 2ξ3(
1 +

1

%0

)3(
1 +

1 + ξ

%0

) .
This nonlinearity has been studied in [36] and is an example where the “kink”, that is the stationary
wave (c = 0), is unstable if %0 is small enough. This instability has also been theoretically and
numerically studied in [29], where the instability threshold was shown to be %0 ' 0.134. However,
we would like to point out that the (E,P ) diagram given in [36] for 0.08 = “I0” = %0 < 0.134
(figure 1 there) is probably not correct. Indeed, the slope of the curve P 7→ E must be equal to the
speed c in view of the Hamilton group relation (15) (which holds true in dimension one, see [20]).
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Figure 29: Graphs of (a) fsat, (b) Vsat and (c) Vsat
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Figure 30: (a) left: 40 × Energy (*) and momentum (+) vs. speed; (b) right: (E,P ) diagram for
nonlinearity fsat
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Hence, there should not exist a point on the curve c 7→ (E,P ) with vertical tangent as given in [36]
(figure 1). We have performed the corresponding simulation as in [20].

We shall take %0 = 0.08 < 0.134, thus r0 = 1, c2s = 2(1 + 1/%0)−3 ' 0.00081288, Γ = 6%0
%0+1 =

12
27 ' 0.4444.... The graphs of fsat, Vsat and Vsat are given in figure 29. We have computed E and
P as the speed c varies, see figure 30 (a), as well as the (E,P ) diagram, see figure 30 (b). As we
see, the curve possesses a cusp. We see with this example that the (E,P ) diagram may exhibit
a cusp with a (local) maximum of E and P even though the nonlinearity fsat is increasing. For
the cubic-quintic nonlinearity, we also have a cusp with a (local) maximum of E and P , but the
nonlinearity is increasing near 0.
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[43] M. Mariş. Nonexistence of supersonic traveling waves for nonlinear Schrödinger equations with
nonzero conditions at infinity. SIAM J. Math. Anal., 40(3):1076–1103, 2008.
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