
HAL Id: hal-00874867
https://hal.inria.fr/hal-00874867

Submitted on 28 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Breathing Ontological Knowledge Into Feature Model
Management

Guillaume Bécan, Mathieu Acher, Benoit Baudry, Sana Ben Nasr

To cite this version:
Guillaume Bécan, Mathieu Acher, Benoit Baudry, Sana Ben Nasr. Breathing Ontological Knowledge
Into Feature Model Management. [Technical Report] RT-0441, 2013, pp.15. �hal-00874867�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49742863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00874867
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-0

80
3

IS
R

N
IN

R
IA

/R
T-

-4
41

--
FR

+E
N

G

TECHNICAL
REPORT
N° 441
September 2013

Project-Team Triskell

Breathing Ontological
Knowledge
Into Feature Model
Management
Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr



RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Breathing Ontological Knowledge
Into Feature Model Management

Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben
Nasr

Project-Team Triskell

Technical Report n° 441 — September 2013 — 16 pages

Abstract: Feature Models (FMs) are a popular formalism for modeling and reasoning about the configurations of
a software product line. As the manual construction or management of an FM is time-consuming and error-prone for
large software projects, recent works have focused on automated operations for reverse engineering or refactoring FMs
from a set of configurations/dependencies. Without prior knowledge, meaningless ontological relations (as defined by
the feature hierarchy and groups) are likely to be synthesized and cause severe difficulties when reading, maintaining
or exploiting the resulting FM. In this paper we define a generic, ontological-aware synthesis procedure that guides
users when identifying the likely siblings or parent candidates for a given feature. We develop and evaluate a series
of heuristics for clustering/weighting the logical, syntactic and semantic relationships between features. Empirical
experiments on hundreds of FMs, coming from the SPLOT repository and Wikipedia, show that an hybrid approach
mixing logical and ontological techniques outperforms state-of-the-art solutions and offers the best support for reducing
the number of features a user has to consider during the interactive selection of a hierarchy.

Key-words: reverse engineering, product lines, configuration, feature model, model management, slicing



2 Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr

Breathing Ontological Knowledge
Into Feature Model Management

Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr
Inria / IRISA, University of Rennes 1, France

firstname.lastname@inria.fr

1. INTRODUCTION
Real world success stories of Software Product Lines (SPLs)

show that the effective management of a large set of products is pos-
sible [1, 2]. The factorization and exploitation of common features
of the products as well as the handling of their variability [3–6]
is an essential step for these stories. Large scale open source or
industrial SPLs contain thousands of features and many logical de-
pendencies among them [7, 8]. This complexity poses a challenge
for both developers and users of SPLs.

Feature Models (FMs) are by far the most popular notation for
modeling and reasoning about an SPL [8, 9]. FMs offer a sim-
ple yet expressive way to define a set of legal configurations (i.e.,
combinations of features) each corresponding to a product of an
SPL [10–16]. Another important and dual aspect of an FM is the
way features are conceptually related. A tree-like hierarchy and
feature groups are notably used to organize features into multiple
levels of increasing detail and define the ontological semantics [17]
of an FM.

A manual elaboration of an FM is not realistic for large projects
or for legacy systems. Many procedures propose to reverse engi-
neer dependencies and features’ sets from existing software arte-
facts – being source code, configuration files, spreadsheets or re-
quirements [18–28] (see Figure 1, left). From these logical de-
pendencies (typically formalized and encoded as a propositional
formula in conjunctive or disjunctive normal form), numerous FMs
can represent the exact same set of configurations, out of which
numerous candidates are obviously not maintainable since the re-
tained hierarchy is not adequate [20, 29]. An example of such FM
is given in Figure 2a.

Both configuration and ontological aspects are important when
managing FMs. First, the proper handling of configuration seman-
tics is unquestionable. Otherwise the FM may expose to customers
configurations that actually do not correspond to any existing prod-
uct [30–34]. Second, a doubtful feature hierarchy may pose severe
problems for a further exploitation by automated transformation
tools or by stakeholders (humans) that need to understand, main-
tain and exploit an FM – as it is the case in many FM-based ap-
proaches [4, 9, 25, 30, 32, 35–37]. Figure 2b depicts a highly ques-
tionable user interface of a configurator that could have been gen-
erated from the FM of Figure 2a and illustrates the consequence of
an inappropriate treatment of the ontological semantics.

The problem addressed in this paper can be formulated as fol-
lows: How to automate the synthesis of an FM from a set of de-
pendencies while both addressing the configuration and ontological
semantics? Is it feasible to fully synthesize an FM? Can we reduce
the user effort when reviewing and selecting the likely siblings or
parent candidates for a given feature? Given a set of dependencies,
we challenge synthesis techniques to assist users in selecting a fea-

Ontologic-aware
Feature Model Synthesis

Slicing!s

Diff
!1d

!2d

Merging 

!1

!2
...

!m

Source code 

Configuration 
files

Textual 
Requirements

Spreadsheets

Reverse 
Engineering

FM1

FMg

FMn

...

Refactoring 

!

Figure 1: A key issue for automated operations: numerous FMs conformant
to JφK exist but are likely to have an inappropriate ontological semantics

ture hierarchy as close as possible to a ground truth – without an a
priori knowledge of the ground truth.

Several synthesis techniques for FMs have been proposed, mostly
in the context of reverse engineering FMs, but they neglected ei-
ther configuration or ontological aspects of an FM [11, 23–26, 38–
43]. Other works proposed some support but users have to man-
ually choose a relevant hierarchy among the thousands of possi-
bilities [29, 39]. It is time-consuming and non realistic for large
projects with hundreds or thousands of features. A notable excep-
tion is She et al. [20] who proposed a procedure to rank the correct
parent features in order to reduce the task of a user. However they
assume the existence of textual artefacts describing features, only
consider possible parent-child relationships, and the experimented
heuristics are specific to the operating system domain.

In this paper, we describe a generic ontologic-aware FM syn-
thesis procedure and propose an hybrid solution combining both
ontological and logical techniques. The heuristics rely on general
ontologies (e.g., from Wordnet or Wikipedia), are sound and appli-
cable without prior knowledge or artefacts, and can be used either
to fully synthesize an FM or guide the users during an interactive
process. We perform an empirical evaluation on 123 sets of de-
pendencies/configurations for which we have a ground truth FM.
We use two data sets: (1) the SPLOT repository [44] and (2) large
FMs extracted from product comparison matrices (PCMs) found in
Wikipedia [45]. FMs come from different domains and their com-
plexity vary. In average, there are 18 features per FM of SPLOT, 72
features per FM of PCMs, and less than 8 parent features per fea-
tures to consider. The experiments show that an hybrid approach
provides the best support for decreasing the number of choices a
user has to perform when interactively selecting a feature hierar-
chy. Specifically, we make the following contributions:

• We develop a series of heuristics for clustering and ranking
the syntactic/semantic relationships between features. We

Inria



Breathing Ontological Knowledge Into Feature Model Management 3

Java

Wiki

Storage License

PHP

Local
Proprietary 

License

Hosting

Postgre
SQL

Programming 
Language

Hosted 
Service MySQL Open Source

EQ = { MySQL <=> Open Source, PostgreSQL <=> Proprietary License }
RE = { Java => Programming Language, PHP => Programming Language }
EX = { PostgreSQL => !Open Source, Local => !Hosted Service }

Or

Xor

Mandatory

Optional

Mutex
0...1

0...1

Domain
0...1

0...1

Local v Hosted ServiceΨ = 
(a) f mu (b) Configurator UI

Figure 2: Each configuration of f mu corresponds to a product listed in Figure 3a. In the right, a non intuitive user interface of a configurator that could have
been generated from f mu due to its doubtful ontological semantics

also develop logical heuristics that can be applied before "breath-
ing ontological knowledge";

• The hybrid approach can retrieve, in average, 36.7% of parent-
child relationships of the SPLOT FMs (45.5% for the PCM
dataset) in one step and without any user intervention. Al-
though the hybrid approach constitutes the state-of-the-art
heuristic, the results shows that a fully automated synthesis
is likely to produce FMs far from the ground truths. We pro-
vide evidence that the role of the user remains crucial and we
highlight the interactive nature of the synthesis process;

• In terms of user support, the hybrid approach ranks the cor-
rect parent among the 2 first results for 49.1% of the features
(for the SPLOT dataset) and 56.3% of the features (for the
PCM dataset). The clusters retrieved by the hybrid approach
are correct in more than half of the time while the number
of clusters to review remains rather low (4.1 for the SPLOT
dataset, 17.6 for the PCM dataset);

• We empirically compare our method with an existing tech-
nique [43] and logical-based heuristics we develop. In par-
ticular, we analyze the strengths, weaknesses and possible
synergies between logical and ontological-based techniques,
leading to the design of an hybrid approach.

The contributions not only advance the state-of-the-art of reverse
engineering FMs. Important management operations of FMs (slic-
ing, merging, diff, refactoring) also benefit from ontological capa-
bilities since all are based on the synthesis procedure (see Fig. 1).
Our procedures open avenues for practical reverse engineering or
maintenance of configurable systems more and more reported in
the industry or observed in the open source community.

2. BACKGROUND
Feature Models (FMs) aim at characterizing the valid combina-

tions of features (a.k.a. configurations) of a system under study. A
feature hierarchy (a tree) is used to facilitate the organization and
understanding of a potentially large number of concepts (features).

2.1 Syntax of Feature Models
Different syntactic constructions are offered to attach variabil-

ity information to features organized in the hierarchy (see Defini-

tion 1). As an example, the FM of Figure 3b describes a fam-
ily of Wiki engines. The FM states that Wiki has three manda-
tory features, Storage, Hosting and License and one optional fea-
ture Programming Language. There are two alternatives for Host-
ing: Hosted Service and Local features form an Xor-group (i.e.,
at least and at most one feature must be selected). Similarly, the
features Open Source and Proprietary License form an Xor-group
of License. Cross-tree constraints over features can be specified
to restrict their valid combinations. Any kinds of constraints ex-
pressed in Boolean logic, including predefined forms of Boolean
constraints (equals, requires, excludes), can be used. For instance,
the feature PostgreSQL is logically related to Proprietary License
and Domain. A similar abstract syntax is used in [11, 20, 41] while
other dialects slightly differ [46].

Definition 1 (Feature Model) A feature diagram is a 8-tuple
〈G,EM ,GMT X ,GXOR,GOR,EQ,RE,EX〉: G = (F ,E) is a rooted
tree where F is a finite set of features, E ⊆ F ×F is a set of
directed child-parent edges ; EM ⊆ E is a set of edges that define
mandatory features with their parents ; GMT X ,GXOR,GOR ⊆ 2F

are non-overlapping sets of edges participating in feature groups.
EQ (resp. RE, EX) is a set of equals (resp. requires, excludes)
constraints whose form is A⇔ B (resp. A⇒ B, A⇒ ¬B) with
A ∈F and B ∈F . The following well-formedness rule holds: a
feature can have only one parent and can belong to only one feature
group. A feature model is a pair 〈FD,ψ〉 where FD is a feature
diagram, and ψ is a Boolean formula over F .

2.2 Configuration and Ontological Semantics
The essence of an FM is its configuration semantics (see Defini-

tion 2). The syntactical constructs are used to restrict the combina-
tions of features authorised by an FM, e.g., at most one feature can
be selected in a Mutex-group. The cardinality of a feature group
is a pair (i, j) (with i ≤ j) and denotes that at least i and at most
j of its k arguments are true. GMT X (resp. GXOR, GOR) are sets
of Mutex-groups (resp. Xor-groups, Or-groups) whose cardinality
is (0,1) (resp. (1,1), (1,m) : m being the number of features in
the Or-group). The configuration semantics can be specified via
translation to Boolean logic [11]. As an example, the formula φg
(right of Figure 3b) defines the legal configurations of f mg. In par-
ticular, the configuration semantics states that a feature cannot be
selected without its parent, i.e., all features, except the root, logi-
cally imply their parent. As a consequence, the feature hierarchy

RT n° 441



4 Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr

PostgreSQL MySQL License Domain Proprietary
License

Local Programming
Language

Java Storage PHP Open
Source

Wiki Hosting Hosted
Service

P1 3 5 3 3 3 5 5 5 3 5 5 3 3 3

P2 5 3 3 5 5 5 3 3 3 5 3 3 3 3

P3 5 3 3 5 5 3 5 5 3 5 3 3 3 5

P4 5 3 3 5 5 5 5 5 3 5 3 3 3 3

P5 5 3 3 5 5 3 3 5 3 3 3 3 3 5

P6 5 3 3 3 5 5 3 3 3 5 3 3 3 3

P7 5 3 3 5 5 5 3 5 3 3 3 3 3 3

P8 5 3 3 3 5 5 3 5 3 3 3 3 3 3

P9 5 3 3 3 5 5 5 5 3 5 3 3 3 3

P10 5 3 3 5 5 3 3 3 3 5 3 3 3 5

(a) Product comparison matrix (3 feature is in the product ; 5 feature is not in the product)

Java

Wiki

Programming Language Storage License

PHP Open 
Source

Proprietary 
License

Hosting

Local Hosted 
Service

MySQL PostgreSQL

Domain

EQ = { PostgreSQL ⬄ Proprietary License }
RE = { PostgreSQL => Domain }
EX = { Proprietary License => !Programming Language,
Local => !Proprietary License }

 // root and mandatory relationships
 Wiki ∧ (Wiki ⬄  Storage) ∧ (Wiki ⬄  License) ∧ (Wiki ⬄  Hosting) 
 // parent-child relationships
 ∧ (Programming Language ⇒ Wiki) ∧ (Java ⇒ Programming 
Language) 
 ∧ (PHP ⇒ Programming Language) 
 ∧ (MySQL ⇒ Storage) ∧ … ∧ (Domain ⇒ Hosted Service) 
 // mutual exclusions: at least 1 and at most 1 (Xor-groups)
 ∧ (Java ⇒ !PHP) ∧ (Programming Language ⇒ (Java ∨ PHP)) 
 ∧ … ∧  (Local ⇒ !Hosted Service) ∧ (Hosting ⇒ (Local ∨ Hosted 
Service)) 
 // cross-tree constraints (EQ, RE, EX) 
 ∧ (PostgreSQL ⬄ Proprietary License) ∧ ... ∧ 
 (Local => !Proprietary License) 

!g#=

Ѱ = {∅}

(b) In the left f mg ; in the right the corresponding formula φg

Figure 3: Another FM with same configuration semantics than f mu (J f mgK= J f muK) and the product comparison matrix of Fig. 3a but with a more appropriate
ontological semantics

also contributes to the definition of the configuration semantics.

Definition 2 (Configuration Semantics) A configuration of a fea-
ture model g is defined as a set of selected features. JgK denotes the
set of valid configurations of g.

Another crucial and dual aspect of an FM is its ontological se-
mantics (see Definition 3). It defines the way features are con-
ceptually related. Obviously, the feature hierarchy is part of the
ontological definition. The parent-child relationships are typically
used to decompose a concept into sub-concepts or to specialize a
concept. There are also other kinds of implicit semantics of the
parent-child relationships, e.g., to denote that a feature is "imple-
mented by" another feature [10]. Looking at Fig. 3b, the concept
of Wiki is composed of different properties like Hosting, License,
or Programming Language ; License can be either specialized as
an Open source or a Proprietary License, etc. Feature groups are
part of the ontological semantics (see Definition 3) since there ex-
ists FMs with the same configuration semantics, the same hierarchy
but having different groups [20, 29].

Definition 3 (Ontological Semantics) The hierarchy G = (F ,E)
and feature groups (GMT X ,GXOR, GOR) of a feature model define
the semantics of features’ relationships including their structural
relationships and conceptual proximity.

3. ONTOLOGIC-AWARE SYNTHESIS
We now explain the impact of ontological semantics w.r.t. to the

FM synthesis, a problem at the heart of many reverse engineering
and FM management procedures (see Fig. 1).

3.1 The Importance of Ontological Semantics
Let us consider the following re-engineering scenario (see [47]

for more details). After having reverse engineered an FM, a practi-

tioner aims to generate a graphical interface (like in Fig. 2b) for as-
sisting users in customizing the product that best fits his/her needs.
Unfortunately, the ontological semantics of the FM is highly ques-
tionable (see Fig. 2a) and poses two kinds of problems.

Automated exploitation. Transformation tools that operate over
the FM will naturally exploit its ontological semantics. Fig. 2 gives
an example of a possible transformation from an FM to a user in-
terface (UI). The generated UI (see Fig. 2a) is as unintuitive as the
ontological semantics is: features PHP and Java are below MySQL,
instead of being below Programming Language ; Programming Lan-
guage itself is badly located below Hosting ; Open Source is below
Storage whereas the intended meanings was to state that a Wiki en-
gine has different alternatives of a License. All in all, the series of
questions and the organization of the elements in the UI are clearly
non exploitable for a customer willing to choose a Wiki.

Human exploitation. One could argue that an automated trans-
formation is not adequate and a developer is more likely to write or
tune the transformation. In this case, the developer faces different
problems. First, there are evident readability issues when the devel-
oper has to understand and operate over the model. Second, when
writing the transformation, the ontological semantics cannot be ex-
ploited as such and she has to get around the issue, complicating
her task. A solution could be to refactor the FM, but the operation
is an instance of the synthesis problem (see below). Third, default
transformation rules that could reduce her effort are likely to cause
problems since based on the ontological semantics.

This scenario illustrates the importance of having FMs with an
appropriate ontological semantics for a further exploitation in a for-
ward engineering process. This need is also observed in other FM-
based activities such as understanding a domain or a system [25,
48], communicating with other stakeholders [37], composing or
slicing FMs [9, 15, 49], relating FMs to other artefacts (e.g., mod-
els) [30,32,33,35], or simply generating other artefacts from FMs [36].

Inria



Breathing Ontological Knowledge Into Feature Model Management 5

3.2 Ontologic-aware FM Synthesis Problem
The development of an ontologic-aware FM synthesis procedure

raises new challenges that have been overlooked so far.

FM synthesis problem. Given a set of features’ names and boolean
dependencies among features, the problem is to synthesize a max-
imal and sound FM conforming to the configuration semantics.
Formally, let φ be a propositional formula in conjunctive or dis-
junctive normal form. A synthesis function takes as input φ and
computes an FM such that F is equal to the boolean variables of φ

and JFMK ≡ JφK. There are cases in which the diagrammatic part
of an FM is not sufficient to express JφK (i.e., JFDK ⊂ JφK). It is
thus required that the diagrammatic part is maximal. Intuitively, as
much logical information as possible is represented in the diagram
itself, without resorting to the constraints. (A comprehensive for-
malization is given in [41]).

Ontologic-aware FM synthesis. The problem tackled in this paper
is a generalization of the FM synthesis problem. Numerous FMs,
yet maximal, can actually represent the exact same set of configura-
tions, out of which numerous present a naive hierarchical or group-
ing organization that mislead the ontological semantics of features
and their relationships (e.g., see Fig. 2a versus Fig. 3b). We seek to
develop an automated procedure that computes a well-formed FM
both i) conformant to the configuration semantics (as expressed by
the logical dependencies of a formula φ ) and ii) exhibiting an ap-
propriate ontological semantics.

The ontologic-aware synthesis problem not only arises when re-
verse engineering FMs. It is also apparent when refactoring an
FM, i.e., producing an FM with the same configuration semantics
but with a different ontological semantics. For example, the FM of
Fig. 2a could be refactored to enhance its quality and make it ex-
ploitable. The operation of slicing an FM has numerous practical
applications (decomposition of a configuration process in multi-
steps, reduction of the variability space to test an SPL, reconcilia-
tion of variability views, etc.) [15]. Despite some basic heuristics,
we observed that the retained hierarchy and feature groups can be
inappropriate [29] (the same observation applies for the merge and
diff operators). All these automated operations are instances of the
FM synthesis problem (see Fig. 1) and impacted by the problem.

In [29], we empirically showed that once the feature hierarchy is
defined, the variability information of the FM can be fully synthe-
sized in the vast majority of cases. We thus focus on the challenge
of selecting a hierarchy in the remainder.

4. AUTOMATED TECHNIQUES FOR FEA-
TURE HIERARCHY SELECTION

Overview. Our ontologic-aware FM synthesis procedure essen-
tially relies on a series of heuristics to rank parent-child relation-
ships (see Section 4.2) and compute clusters of conceptually simi-
lar features (see Section 4.3). These two types of information can
be interactively reviewed and exploited by a user, and if needs be,
an optimum branching algorithm can synthesize a complete FM
(see Fig. 4). The ontological heuristics do not assume any artefacts
documenting features and can be combined with logical heuristics
(see Section 4.5).

4.1 Selecting a Hierarchy
Sound selection. We recall that the feature hierarchy of an FM

defines how features are ontologically related and also participates
to the configuration semantics, since each feature logically implies
its parent: ∀( f1, f2) ∈ E, f1 ⇒ f2. As a result, the candidate hier-

archies, whose parent-child relationships violate the original con-
straints expressed by φ , can be eliminated upfront. For example,
the feature Local cannot be a child feature of PostgreSQL since no
configuration expressed in Fig. 3a authorizes such an implication.
We rely on the Binary Implication Graph (BIG) of a formula (see
Definition 4) to guide the selection of legal hierarchies. The BIG
represents every implication between two variables (resp. features)
of a formula (resp. FM), thus representing every possible parent-
child relationships a legal hierarchy can have. Selecting a hierarchy
now consists in selecting a set of the BIG’s edges forming a rooted
tree that contains all its vertices. Such a tree represents a branch-
ing of the graph (the counterpart of a spanning tree for undirected
graphs). The selection over the BIG is sound and complete since
every branching of the BIG is a possible hierarchy of the FM and
every hierarchy is a branching of the BIG.

Definition 4 (Binary Implication Graph (BIG)) A binary impli-
cation graph of a Boolean formula φ over F is a directed graph
(Vimp,Eimp) where Vimp = F and Eimp = {( fi, f j) | φ ∧ fi⇒ f j}.

Now that we have a convenient data structure, which captures
every possible hierarchy, the whole challenge consists in selecting
the most meaningful one.

A first natural strategy is to add a weight on every edge ( f1, f2)
of the BIG, defining the probability of f2 to be the parent of f1.
The weights are computed by heuristics that directly evaluate the
probability of a relationship between a feature and a parent can-
didate. From a user perspective, the ranking list can be consulted
and exploited to select or ignore a parent. In addition, we per-
form hierarchical clustering based on the similarity of the features
to compute groups of features. The intuitive idea is that clusters
can be exploited to identify siblings in the tree since members of
the clusters are likely to share a common parent feature. For ex-
ample, clusters can help tuning the previously computed weights,
thus increasing the quality of the previous ranking list. Moreover,
users can operate over the clusters to define the parent of a group of
features (instead of choosing a parent for all features of a group).

Once we get the two pieces of information, we select the branch-
ing that has the maximum total weight. To compute an optimum
branching, we use Tarjan’s algorithm [50, 51] whose complexity
is O(m logn) with n the number of vertices and m the number of
edges. The hierarchy is then fed to syntesise a complete FM. The
synthesis process is likely to be incremental and interactive ; users
can validate and modify the ranking list and the set of clusters. The
overall synthesis process is described in Fig. 4.

4.2 Heuristics for Parent Candidates
The design of the heuristics is guided by a simple observation:

parent-child relations in a hierarchy often represent a specializa-
tion or a composition of a concept (feature). For example, Java is a
specialization of a Programming language while a Wiki is composed
of a License, a Storage and a Programming Language. As siblings
are specializations or parts of the more general concept of their
parent, they share the same context. For example, Open source and
Commercial are both referring to permissive rights about the use of
a product. The intuitive idea is that sharing the same context tends
to make a feature semantically close to its parent and its siblings.

From these observations, we developed several heuristics that
exploit the feature names in order to compute the edges’ weights of
the BIG. We can divide the heuristics in two categories: syntactical
heuristics and semantical heuristics.

Syntactical heuristics use edit distance and other metrics based on
words’ morphology to determine the similarity of two features. In

RT n° 441



6 Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr

Sorting parent 
candidates

Hierarchical 
clustering Optimum 

branching

User

Feature 
hierarchy

Feature 
Model 
(FM)

Ranking lists

Clusters

!
(1) Binary Implication Graph (BIG)

 
 (2) Reduced BIG

 (3) Cliques of BIG

 (4) Logical feature groups

Syntactical similarity 
(Smith-Waterman, 
Levenshtein, etc.) 

Semantical similarity 
(Wordnet, Wikipedia, etc.)

(refactoring)

(interactive choices)

Breathing Ontological KnowledgeLogic

Figure 4: Ontologic-aware feature model synthesis

our example in Figure 3b, License is closer to Proprietary License
than Storage because the two first features contains the same sub-
string: License. We used Smith-Waterman [52] algorithm that looks
for similar regions between two strings to determine their distance.
We also used the so-called Levenshtein edit distance [53] that com-
putes the minimal edit operations (renaming, deleting or inserting
a symbol) required to transform the first string into the second one.

Semantical heuristics Syntactical heuristics have some limits: fea-
ture names that are not syntactically closed but semantically close
(in the sense of meaning) are not identified (e.g. Java and PHP).
Thus, we need to add some semantical knowledge to improve our
technique. We explored two general ontologies out of which we
built semantical metrics.

First, we explored WordNet [54]. This is a structured English dic-
tionary that provides hyperonymy (specialization) and meronymy
(composition) relations between word senses. As we are exclu-
sively using the features’ names, we could not use the most effi-
cient metrics based on a text corpus [55]. Therefore, we selected
two metrics named PathLength and Wu&Palmer that are only based
on WordNet’s structure. The PathLength metric gives the inverse
of the length of the shortest path between two words in WordNet
considering only hyperonymy relations. Wu and Palmer described
a metric based on the depth of the words and their lowest common
ancestor in the tree formed by hyperonymy relations [56].

These two metrics compute the similarity of two words, however
features’ name may contain several words. Wulf-Hadash et al. also
used the Wu&Palmer metric in order to compute feature similar-
ity [57]. We used the same formula for combining word similarity
into sentence similarity:

Sim( f 1, f 2) =

m
∑

i=1
max
j=1..n

wsimi, j +
n
∑

j=1
max

i=1..m
wsimi, j

m+n

where m and n are respectively the number of words in f 1 and f 2
and wsimi, j is the similiarity between the i-th word of f 1 and the
j-th word of f 2.

WordNet contains few technical words, thus we explored Wikipedia
to increase the number of recognized words. The well known en-
cyclopedia offers a large database containing text articles and links
between them. Associating a set of articles to a feature enables the
use of techniques that compute semantic similarity of texts. For
example we can associate Java and Programming language to their
respective articles in Wikipedia. Then we compute their similar-
ity by comparing the links contained in these articles as proposed
by Milne et al. [58, 59]. They created a model based on the hy-
perlink structure of Wikipedia in order to compute the semantic
similarity of two articles. In this model, an article is represented
by a vector containing the occurence of each link found in the ar-
ticle weighted by the probability of the link occuring in the entire
Wikipedia database.

4.3 Detecting Siblings with Hierarchical Clus-
tering

Defining weights on the BIG’s edges and computing the opti-
mum branching can be summarized as choosing the best parent for
a feature. However, it is sometimes easier to detect that a group of
features are siblings. To detect such siblings we reuse the previ-
ous heuristics to compute the similarity between features without
considering the BIG structure. Then we perform agglomerative
hierarchical clustering on these values. Agglomerative hierarchi-
cal clustering consists in putting each feature in a different cluster.
Then, the closest clusters according to their similarity are merged.
Finally, this operation is repeated until the similarity falls below a
user specified threshold. We use the BIG to determine if the clus-
ters belongs to one of the two categories below. In the following, C
represents a cluster and possibleParents gives the parent candidates
according to the BIG.

• ∃ fp ∈F ,∀ fc ∈C, fp ∈ possibleParents( f c), i.e., all the fea-
tures can be siblings. It remains to find a common parent of
the cluster among the other features.

• ∃P⊂C,∀ fp ∈ P,∀ fc ∈C, fp 6= fc, fp ∈ possibleParents( f c),
i.e., some features are parent of the others. It remains to find
the parent among the features within the cluster.

Once we have defined the parents of the clusters, we modify the
edges’ weights of the BIG to consider this new information dur-
ing the optimum branching algorithm. This modification consists
in setting the maximal weight to each edge between a child and
its chosen parent. The rationale is that features of the clusters are
likely to share the same parent, thus the idea of augmenting the
weights. For example, in Fig. 3b, we could determine with a heuris-
tic, that Java and PHP are semantically close, thus being in a same
cluster. It corresponds to the first category exposed above. The key
benefit is that we can now solely focus on their common parents
(computed using the BIG). The best parent is chosen according to
heuristics for parent candidates. (It should be noted that the heuris-
tic is not necessarily the same one used for the clustering). We ob-
tain Programming Language in the example. As a result, we assign
the maximum weight (i.e., 1) for the BIG’s edges, i.e., Java→ Pro-
gramming Language and PHP→ Programming Language.

4.4 Implementation of Ontological Heuristics
We have developed six heuristics based on specialized libraries.

The syntactical heuristics, Smith-Waterman and Levenshtein, come
from the Simmetrics library [60]. PathLength and Wu&Palmer
rely on extJWNL [61] which handles the communication between
WordNet and our tool. Wikipedia Miner [58] offers an API to
browse Wikipedia’s articles offline and compute their relatedness [62].
We used this tool on the english version of Wikipedia and Wik-
tionary which form the last two heuristics.

In the reminder FMONTO denotes the synthesis technique that
applies one of the six ontological heuristics over the BIG.

Inria



Breathing Ontological Knowledge Into Feature Model Management 7

4.5 An Hybrid Solution: Logic to the Rescue
Instead of operating over the BIG, other logical structures ob-

tained from φ can be considered when applying ontological heuris-
tics (see left part of Fig. 4).

Reduced BIG. Because of the transitivity of implication, a BIG
is likely to have potentially a large number of edges, out of which
many candidates are not parent-child relationships. It is tempting
to consider the transitive reduction of a BIG (called reduced BIG in
the remainder). The counterpart is that the reduced BIG is incom-
plete, i.e., the selection of some hierarchies is no longer possible.

Cliques. Another aggressive technique is to consider that features
that always logically co-occur are likely to denote mandatory parent-
child relationships. Co-occurring features are identified as cliques
in the BIG and efficient techniques exist [41]. Cliques can be seen
as clusters in which one of the member is possibly a parent feature
of the other features.

Logical feature groups. All possible feature groups of φ can be
automatically computed [11, 41] and can be seen as clusters. The
computation can be performed over the BIG or the reduced BIG.

4.5.1 Pure logical techniques
Before presenting our hybrid solution (combining ontological

and logical techniques), we describe possible techniques that only
rely on logic.

A first basic approach, denoted FMRANDBIG, is to weight the
BIG with random values. The optimum branching can be applied
afterwards to generate a complete FM. Similarly, it can be used
to compute ranking lists or clusters. A second approach, denoted
FMRANDRBIG, is to assign random values over the reduced BIG.
A third approach is proposed in [43]. Haslinger et al. proposed
a technique (referred as FMFASE in the remainder of the paper)
that takes as input a set of products and fully generates an FM.
The algorithm is iterative and essentially relies on logical structures
exposed above: cliques are randomly unfolded, a reduced BIG is
used to select parents, and feature groups (if any) are promoted.

FMFASE has three major drawbacks: (1) as reported in [43], the
generated FM may not conform to the input configurations in the
case of arbitrary constraints ; (2) the operations for computing log-
ical structures assume the enumeration of the complete set of prod-
uct. It leads to an exponential blowup ; (3) the feature names and
the ontological semantics are not considered during the synthesis.

4.5.2 An hybrid solution
The two first drawbacks – the lack of soundness and the perfor-

mance issues – prompted us to re-develop their algorithm based this
time on state-of-the-art satisfiability techniques [41]. We consider
that the algorithm, called FMFASESAT hereafter, is representative of
a pure logical-based technique for fully synthesizing an FM. Yet
the third drawback – unawareness of ontological semantics – is not
addressed by FMFASESAT .

We propose an hybrid approach based on both ontological and
logical techniques, called FMONTOLOGIC in the remainder. The on-
tological heuristics we develop in Section 4.4 operate this time over
the transitive reduction of the BIG (instead of the BIG itself).

5. EVALUATION
We conducted a series of experiments to empirically evaluate our

techniques on 123 realistic FMs (see Section 5.1). We aim at an-
swering the following research questions:

RQ1: How effective are our techniques to fully synthesize an FM?
Is a fully automated synthesis feasible? The whole synthesis
process is performed in only one step without any interven-
tion of the user. It is particularly challenging and the result-
ing FM may be far from the ground truth.

RQ2: How effective are our techniques to compute ranking lists
and clusters and thus assist users? The most likely parents
and siblings of a given feature can significantly reduce the
number of choices a user has to perform during the interac-
tive selection of a feature hierarchy.

For each of the research question, we compare logical, ontologi-
cal and hybrid-based techniques exposed in Section 4. We notably
explore the possible role of the reduced BIG, cliques and logical
feature groups for improving the synthesis – "as such" or as a com-
plement to ontological techniques.

5.1 Experimental Settings

5.1.1 Techniques
Table 1 summarizes the available techniques and when they can

be applied (e.g., FMFASE does not provide user support and thus
cannot address RQ2).

For FMFASE we use the binary provided by the authors [63]. To
reduce fluctuations caused by random generation, we performed
100 iterations for FMRANDBIG and FMRANDRBIG in each of the ex-
periments they are involved. The results are reported as the mean
value over 100 iterations.

5.1.2 Data
Our experiments operate over two data sets. From each FM of

the data sets, we translate its configuration semantics into a Boolean
formula φ . The formula serves as input of our procedure. The orig-
inal hierarchy and feature groups of the FMs constitute a ground
truth on which we can rely to evaluate the ontological quality of
the different algorithms and heuristics.

SPLOT dataset. The SPLOT [44] public repository offers a
large set of FMs from different domains created by academics or
practitioners. From this repository, we manually selected FMs that
are written in English and contain meaningful feature names1. It
results in 108 FMs with a total of 2374 features. Due to memory
consumption issues [43], 15 FMs from the SPLOT data set could
not be handled by FMFASE. Therefore, we perform the experiment
on the remaining 93 FMs. Overall the experiments utilize a simi-
lar dataset than the one used in [43], authorizing a fair comparison
with FMFASE.

PCM dataset. Product Comparison Matrices (PCMs) compare
features of domain specific products and now abound on the inter-
net and in particular in Wikipedia [45]. We gathered 30 FMs with
an automated extraction process – in the same vein as the one de-
scribed in [24]. Each configuration authorized by the extracted FM
corresponds to at least one product of the PCM. The structure of
the matrix and the Wikipedia pages (sections, headers, etc.) is ex-
ploited to produce hierarchies. Cell values (plain text values, "yes"
value, "no" value, etc.) are interpreted in terms of variability. The
dataset is challenging for the synthesis procedures since the num-
ber of cross-tree constraints and the number of features are rather
important, feature names are disparate, and last but not least the
depth of the hierarchies is 4 in average.

1Essentially we remove FMs with nonsense feature names like F1
or FT22 or written in Spanish. We did not discard FMs containing
feature names not recognized by our ontologies

RT n° 441



8 Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr

Technique Logical/ontological Research questions
FMFASE Logical over reduced BIG, cliques, feature groups RQ1
FMFASESAT Logical over reduced BIG, cliques, feature groups RQ1
FMRANDBIG Randomization over BIG RQ1 and RQ2
FMRANDRBIG Randomization over reduced BIG RQ1 and RQ2
FMONTO Ontological over BIG RQ1 and RQ2
FMONTOLOGIC Hybrid (Ontological over reduced BIG) RQ1 and RQ2

Table 1: Synthesis techniques used for the experiments

Dataset # features # edges # edges Depth of
in the BIG in the reduced BIG hierarchy

SPLOT (93 FMs) 17.6 (min 9, max 77) 138.9 56.6 3.8
PCM (30 FMs) 72.4 (min 23, max 177) 567.4 318.2 4

Table 2: Properties of FMs (average per FM)

Table 2 presents some statistics of the FMs. To give an overview
of the complexity of the synthesis process, we also compute the
number of parent candidates for each feature from the BIG of an
FM. We have an average of 7.9 (from 0 to 36) parent candidates in
SPLOT FMs and 7.8 (from 1 to 86) for PCM-based FMs.

5.2 RQ1: Fully Automated Synthesis
Our goal is to evaluate the effectiveness of a fully automated syn-

thesis technique. The resulting synthesized FM should exhibit a
feature hierarchy as close as possible to the original hierarchy of
the ground truth. We consider that the more the number of com-
mon edges between the two hierarchies is, the more effective the
technique is. For each input formula/set of configurations of the
two data sets, we challenge all the techniques of Table 1 to fully
synthesize an FM.

Table 3 reports the percentage of common edges with the ground
truth. For each dataset and technique, we compute the average (i.e.,
the sum of the values divided by the number of values) and the me-
dian (i.e., the middle number in a sorted list of numbers). We split
the table in two, clearly separating (1) techniques that operate over
the BIG (see Table 3a) from (2) techniques that applies a logical
heuristic and operate over the reduced BIG (see Table 3b). There
are two hypotheses behind this separation.

(H1) Our first hypothesis is that ontological techniques are supe-
rior to random or logical heuristics when operating over the same
logical structure.

H1 Results. In Table 3a all ontological heuristics (FMONTO)
outperform FMRANDBIG. For SPLOT, the best heuristic PathLength
improves by 10.7% (average) and 12.3% (median) the effective-
ness of FMRANDBIG. Similar observations are made for the PCM
dataset: the best heuristic Wikipedia improves by 10.7% (average)
and 13.3% (median) the effectiveness of FMRANDBIG.

Table 3b also shows that all ontological heuristics (FMONTO)
outperform FMFASE, FMFASESAT or FMRANDBIG being on SPLOT
or PCM dataset. However the improvement gained by ontological
heuristics is less significant than in Table 3a. A possible reason is
the use of the reduced BIG (see H2 below).

(H2) Our second hypothesis is that the reduced BIG can improve
the effectiveness.

H2 Results. Looking at Table 3a and Table 3b, we can observe
that all techniques benefit from the reduction of the BIG. However
the improvement is more apparent for FMRANDBIG. Specifically
FMRANDRBIG increases by 24.5% (resp. 9.2%) the effectiveness
of FMRANDBIG in PCM dataset (resp. SPLOT dataset). Compara-
tively, the improvement of FMONTOLOGIC w.r.t. FMONTO is 18.2%
(resp. 4.8%) in PCM dataset (resp. SPLOT dataset).

The reduction of the BIG significantly decreases the number of

edges, thus favouring a random selection. For SPLOT dataset,
60.4% (in average, 62.5% for the median) of edges are removed
from the BIG while being actually parent-child relationships in the
ground truths. For PCM dataset, 87.9% (in average, 89.7% for
the median) of edges are removed from the BIG while being ac-
tually parent-child relationships in the ground truths. In practice
the tradeoff between a reduction of the problem space and a less
accurate representation clearly favours both approaches.

Another important observation in favour of H2 is that FMRANDRBIG,
FMFASE and FMFASESAT outperform FMONTO. Without the use of
the reduced BIG, ontological heuristics are beat by randomized or
logical-based heuristics, highlighting the prior importance of the
logical structure.

Summary for RQ1. The experiment demonstrates that an hy-
brid approach provides the best support for fully synthesizing an
FM. A key aspect is that the reduced BIG significantly improves
the effectiveness of all techniques. At best, the percentage of
good parent-child relationships in the synthesized FM is 36.7%
(for SPLOT) and 45.5% (for PCM). A fully automated synthesis
produces FMs far from the ground truth. In practice the hybrid
approach could provide a "by-default" visualisation of the FM
but numerous faulty parent-child relationships (more than a half)
need to be reviewed and corrected. Therefore it remains crucial
to guide the users when refactoring the faulty FM or interactively
selecting a feature hierarchy during the synthesis process.

5.3 RQ2: User Support
Our goal is to evaluate the quality of the ranking lists and the

clusters. In this experiment we do not consider FMFASE and FMFASESAT

techniques as they do not provide user support.

5.3.1 Ranking lists
We consider that the ranking lists should place the original par-

ent of the ground truth as close as possible to the top of the list.
Specifically we check for each feature that its correct parent from
the ground truth appears in the Top 2 positions of the list. With
an average of less than 8 parent candidates per feature for both
datasets, we chose to restrict our evaluation to the top 2 positions
in order to reduce the impact of random choices. Indeed, it already
allows a probability of almost 25% (in average) of having a correct
parent for randomized approaches.

Table 4 reports the percentage of correct parents in the Top 2 po-
sitions of the ranking lists. As in the previous experiment we com-
pute the average and the median for each dataset and technique. We
also separate techniques that operate over the BIG from techniques
that operate over the reduced BIG and pose the same two hypothe-
sises.

(H3) We hypothesize that ontological techniques are superior to
random heuristics when operating over the same logical structure.

H3 Results. In Table 4a, FMONTO outperforms FMRANDBIG.
For SPLOT FMs, the best heuristic PathLength improves by 9%
(average) and 11.7% (median) the effectiveness of FMRANDBIG.
For the other dataset, the Wikipedia heuristic improves by 10.2%
(average) and 12.3% (median) the effectivness of FMRANDBIG. Ta-
ble 4b also shows that FMONTO outperforms FMRANDBIG on both
data sets but the scores are significantly closer. Overall we can con-
clude the hypothesis H3 is verified.

(H4) We hypothesize that the reduced BIG can improve the quality
of ranking lists.

H4 Results. The PCM dataset results in a 15.6% (average) and

Inria



Breathing Ontological Knowledge Into Feature Model Management 9

Table 3: Effectiveness of full synthesis (percentage of common edges)

(a) Full synthesis with BIG

Data set Pure logical techniques Ontological techniques (FMONTO)
FMRANDBIG Smith Waterman Levenshtein Wu & Palmer PathLength Wikipedia Wiktionary

SPLOT average 21.2 29.5 27.7 31.4 31.9 30.9 29.4
median 16.7 25.0 22.2 28.6 30.0 28.6 28.6

PCM average 16.6 24.7 19.8 21.2 23.4 27.3 23.2
median 14.9 20.5 18.6 19.1 23.7 28.2 20.5

(b) Full synthesis with a reduced BIG ( means that the approach cannot be applied due to performance issues)

Data set Pure logical techniques Hybrid techniques (FMONTOLOGIC)
FMFASE FMFASESAT FMRANDRBIG Smith Waterman Levenshtein Wu & Palmer PathLength Wikipedia Wiktionary

SPLOT average 33.8 31.4 30.4 34.9 34.0 36.2 36.7 35.7 35.4
median 27.8 27.3 27.8 30.0 31.8 31.8 34.5 33.3 34.8

PCM average  40.8 41.1 44.1 41.2 44.8 44.9 45.5 42.5
median  37.5 35.1 37.7 33.3 35.9 40.5 39.0 35.1

12.4% improvement of the effectiveness of our best heuristic Path-
Length. However, for SPLOT, we note that reducing the BIG has
negative impact on FMONTO: all ontological heuristics have a lower
score. For SPLOT, we also observe that FMRANDRBIG is only slightly
better (+0.4% in average) than FMRANDBIG.

As a result, the hypothesis H4 is not verified and the reduced BIG
may have the opposite effect. This may be explained by the 39.6%
of correct parents brutally removed by the reduction in the SPLOT
dataset. However, for the PCM dataset, the transitive reduction
removes only 12.1% of correct parents.

Our results are also in contradiction with hypothesis H2. In other
words, the reduction of the BIG is more effective for the Top 1.

5.3.2 Clusters
We consider that the computed clusters should contain either

sibling features from the ground truth or siblings with their cor-
responding parent – in line with the two cases identified in Sec-
tion 4.3. For example in Figure 3b, {Hosted Service, Local} is a
correct cluster because the two features are siblings. {Hosted Ser-
vice, Local, Hosting} is also a correct cluster because Hosting is the
parent of Hosted Service and Local.

For each dataset, we report on the number of clusters, the cluster
size, the percentage of correct clusters computed by the techniques,
and the number of features in a correct cluster (in average and for
the median).

Table 4c shows that FMONTO generates less clusters per FM
than FMRANDBIG. However, FMONTO produces clusters that are
slightly bigger and more accurate. For SPLOT, our best heuris-
tic PathLength FMONTO generates 70.1% (average) and 80% (me-
dian) of correct clusters while FMRANDBIG reaches 26.7% (aver-
age) and 25% (median). The percentage of features in correct clus-
ters is also significantly better than FMRANDBIG. For the PCM
dataset, the difference is greater with 79.2% (average) and 78.6%
(median) of correct clusters for PathLength and 14.9% (average)
and 13% (median) for FMRANDBIG.

We also experimented with the reduced BIG (instead of the BIG)
for computing clusters. We did not observe significant differences.
Details can be found in [64].

Clusters and logical feature groups.2 Logical heuristics can
exploit cliques and feature groups as clusters.

For example FMFASE chooses one feature of a clique and places
it as the parent of the others. We observe this pattern is respected in
49% (average) and 50% (median) of the cliques of SPLOT FMs.
2Details of the results about cliques and logical feature groups can
be found in [64]

For PCM FMs, this pattern represents 31.7% (average) and 0%
(median) of the cliques. For SPLOT (resp. PCM), we note that
only 5.4% (average) and 0% (median) of the cliques (resp. 1.1%
and 0%) do not only contain parent-child relations. As a result,
cliques almost always contain parent-child relationships but require
more user effort than a traditional clique in which only one parent
should be selected.

For feature groups, we check that they are correct clusters as
defined previously. For SPLOT, they represent 69.6% (average) and
75% (median) of correct clusters. For PCM, they represent 92.5%
(average) and 100% (median) of correct clusters. If we compute
the feature groups over the reduced BIG, it significantly reduces the
number of groups but increases their accuracy. Features groups are
thus good candidates for clusters, but induce a lot of false positives.
Summary for RQ2. The experiment demonstrates that an ap-
proach based on ontological heuristics provides the best support
for producing ranking lists. At best, the user has to review only
2 parent candidates for 52.4% of the features (for SPLOT) and
56.3% (for PCM). An approach based on the reduced BIG does
not necessarily improve the quality of the ranking lists. The
experiment also demonstrates that an ontological approach pro-
duces less clusters than FMRANDBIG but they are more accurate.
Logical clusters such as cliques and feature groups can also be
used to reduce the user effort. Feature groups form accurate clus-
ters especially when they are computed over the reduced BIG.
Cliques require complex unfolding in more than half of the cases.

5.4 Threats to Validity
Threats to external validity are conditions that limit our ability to

generalize the synthesis results to other forms of dependencies or
feature names. A first concern is whether FMs are representative
of practice. We use the SPLOT public repository [44]. SPLOT is
a common benchmark for the FM community (see, e.g., [13, 14,
16, 29, 38, 40, 41, 43, 65]) and is considered to manage "realistic"
examples by several authors. We also diversify the dataset with the
use of PCMs.

Our major concern is whether FMs (from SPLOT or PCMs) are
good ground truths w.r.t ontological semantics. Indeed, an unique
characteristic of our work is that we do consider the ontological
semantics of the FMs. From this respect, it is hard to certify that
the chosen FMs are of good quality. The fact that FMs of SPLOT
come from academic publications and practitioners is certainly a
good point, but not a guarantee. A possible improvement is a man-
ual review of the FMs, at least to discard FMs with nonsense feature
names, at best to possibly improve FMs. The ontological seman-

RT n° 441



10 Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr

Table 4: Percentage of correct parents in the top 2 positions of the ranking lists (RQ2)

(a) With BIG

Data set Pure logical technique Hybrid techniques (FMONTO)
FMRANDBIG Smith Waterman Levenshtein Wu & Palmer PathLength Wikipedia Wiktionary

SPLOT average 43.4 51.6 48.7 50.7 52.4 52.3 50.9
median 38.3 50.0 50.0 50.0 50.0 55.6 51.2

PCM average 33.3 40.9 38.4 37.9 40.7 43.5 38.4
median 32.1 38.8 36.2 37.5 42.1 44.4 36.4

(b) With reduced BIG

Data set Pure logical technique Hybrid techniques (FMONTOLOGIC)
FMRANDRBIG Smith Waterman Levenshtein Wu & Palmer PathLength Wikipedia Wiktionary

SPLOT average 43.8 48.0 47.9 47.9 48.1 49.1 48.2
median 43.0 44.4 45.5 45.5 44.4 47.7 44.4

PCM average 52.0 54.9 53.6 55.6 56.3 56.0 53.2
median 47.8 54.4 48.3 56.1 54.5 55.3 57.9

(c) Clusters generated by FMRANDBIG and FMONTO

Metric Data set Pure logical technique Ontological techniques (FMONTO)
FMRANDBIG Smith Waterman Levenshtein Wu & Palmer PathLength Wikipedia Wiktionary

Number of clusters
SPLOT average 6.2 4.1 4.1 2.7 2.4 3.3 2.8

median 5 4 4 2 2 3 3

PCM average 29.7 16.8 17.6 5.8 8.7 9.8 12.3
median 25 16 15 5 7 8 10

Clusters’size
SPLOT average 2.2 2.8 2.8 2.3 2.2 2.9 2.3

median 2.1 2.6 2.5 2.0 2.0 2.7 2.2

PCM average 2.3 3.3 2.8 2.6 2.6 5.8 3.0
median 2.3 3.1 2.8 2.5 2.4 5.2 2.9

Percentage of Correct clusters
SPLOT average 26.7 50.8 52.0 57.9 70.1 54.6 64.2

median 25.0 50.0 50.0 50.0 80.0 50.0 66.7

PCM average 14.9 49.6 62.6 60.8 79.2 53.7 71.0
median 13.0 48.0 66.7 66.7 78.6 57.1 66.7

Percentage of features in a correct cluster
SPLOT average 18.2 29.2 30.0 18.8 22.0 26.6 23.5

median 15.4 23.5 29.4 18.2 18.2 20.0 20.0

PCM average 12.5 35.0 41.4 12.9 22.8 24.5 32.2
median 10.8 32.4 41.5 12.5 23.3 22.2 32.6

tics of FMs we extract from PCMs is aligned with the structure of
Wikipedia pages and the matrix itself but would also benefit from
an external review, e.g., by another pool of researcher.

Another external threat is that we hypothesize that the user ef-
fort is reduced thanks to clusters computation, ranking lists and the
branching algorithm. Yet we have not run user experiments to val-
idate this claim. This evaluation is our immediate concern.

A first internal threat is that the extraction of FMs from PCMs is
a mix between automated techniques and manual directives. This
creates a threat of potential bias, since the author knew the proce-
dures that were to be evaluated against this model. We take care
of retaining the original structure of the PCMs. The manual inter-
vention essentially consists in removing unnecessary columns (like
the version number, website or developer name of a product). Our
interpretation of variability remains fixed for all the PCMs (e.g.,
we interpret a "No" value in a cell as an absence of a feature).
Another interpretation of variability can lead to a different set of
dependencies and may disturb some heuristics (e.g., the use of the
reduced BIG). We plan to further investigate this hypothesis in the
future. Moreover, as we apply part of our procedures to Wikipedia
PCMs dataset, one might perceive that some of the heuristics, based
also on Wikipedia, are biased. However the heuristics do not oper-
ate over Wikipedia pages where we extracted the PCM. We exploit
Wikipedia as a general ontology.

Another internal threat comes from the manual optimization of
the clustering thresholds for the evaluation of the heuristics. An-
other set of thresholds could generate less favourable results. It is
unclear whether this difference would be significant.

Finally we implement various heuristics and procedures for syn-
thesizing FMs or collecting statistics. Their implementation may be
incorrect. We thoroughly tested our infrastructure using test cases

and reuse as much as possible existing codes [11, 15, 41].

6. RELATED WORK
We discuss the differences and synergies between existing works

and our proposal.

6.1 FM synthesis
Techniques for synthesising an FM from a set of dependencies

(e.g., encoded as a propositional formula) or from a set of config-
urations (e.g., encoded in a product comparison matrix) have been
proposed [11, 20, 29, 38, 39, 41–43, 66]. An important limitation
of prior works is the identification of the feature hierarchy when
synthesizing the FM (i.e., the user support is either absent or lim-
ited). In [11, 41], the authors calculate a diagrammatic representa-
tion of all possible FMs, leaving open the selection of the hierarchy
and feature groups. The procedure exposed in [66] for probabilistic
FMs does not offer ontological support either. In [29], we proposed
a synthesis procedure that processes user-specified knowledge for
organizing the hierarchy of features. Janota et al. [39] propose an
interactive environment to guide user in synthesizing an FM. In
both cases [29, 39], the effort may be substantial since users have
to review numerous potential parent features (7.9 in average for the
FMs of the SPLOT repository, see Section 5).

Our experiments further the understanding of strengths and weak-
nesses of logical components computed by these approaches. From
this perspective, the feature graph structure presented in [41] has
interesting properties.

The algorithms proposed in [38, 42, 43] do not control the way
the feature hierarchy is synthesized in the resulting FM. We demon-
strated in Section 5.2 that the ontological semantics of the resulting
FMs significantly deviates from the ground truths while an hybrid

Inria



Breathing Ontological Knowledge Into Feature Model Management 11

approach provides better results. In addition no user support is pro-
vided to interactively synthesize or refactor the resulting FM.

Davril et al. [67] presented a fully automated approach, based on
prior work [68], for constructing FMs from publicly available prod-
uct descriptions found in online product repositories and marketing
websites such as SoftPedia and CNET. The proposal is evaluated in
the anti-virus domain.

A key difference is the presence of textual documents to mine
and organize features. Our techniques operate over a predefined
set of features and dependencies. We do not assume any additional
inputs for selecting the feature hierarchy (see next section for a
discussion). Moreover no user support is provided to refactor the
resulting FM or breath ontological knowledge during the synthe-
sis procedure. It could help users to improve the quality of FMs,
i.e., closer to the quality of reference FMs manually specified by
participants of the experiment [67].

She et al. [20] proposed an heuristic to rank the correct parent
features in order to reduce the task of a user. Though the synthesis
procedure is generic and similar to ours, the ontological heuristics
are specific to the operating system domain. We develop a series
of alternative techniques for computing ranking lists and also clus-
ters, applicable to any domain. Another difference is the existence
of feature descriptions in the software projects Linux, eCos, and
FreeBSD. She et al. reported in Section 7 of [20] that their at-
tempts to fully synthesize an FM did not lead to a desirable hierar-
chy – such as the one from reference FMs used in their evaluation –
coming to the conclusion that an additional expert input is needed.
Our evaluation confirms that a full synthesis is not adequate and
that the user support is highly needed.

6.2 FM extraction
In [24], a semi-automated procedure to support the transition

from product descriptions (expressed in a tabular format) to FMs is
proposed. In [25], architectural knowledge, plugins dependencies
and the slicing operator are combined to obtain an exploitable and
maintainable FM ; in particular the feature hierarchy reflects the hi-
erarchical structure of the system. Ryssel et al. developed methods
based on Formal Concept Analysis and analyzed incidence matri-
ces containing matching relations [26].

The procedures exposed in [20,24–26,67] are specific to a project
or a domain and assume the existence of a certain structure or arte-
facts (e.g., textual corpus, hierarchical model of the architecture)
to organize the features. We cannot make similar assumptions in
the general case. First, there are sometimes no opportunity to ex-
ploit artefacts or knowledge. In the case of the SPLOT repository,
there are no artefacts (e.g., feature descriptions) associated to FMs.
Another example is when the list of features is flattened and no
prior ontological knowledge can be inferred as is the case in the
matrix of Fig. 3a (cf page 4). Ontological knowledge is also miss-
ing when extracting conditional compilation directives from source
code and build files [27]. Second, procedures to extract ontological
knowledge are specifically developed or customized to a project,
requiring a substantial effort.

Our solution can be seen as an agnostic, lightweight method to
breath ontological knowledge into FM synthesis, reusable in every
projects or domains.

Alves et al. [69], Niu et al. [70], Weston et al. [23] and Chen et
al. [71] applied information retrieval techniques to abstract require-
ments from existing specifications, typically expressed in natural
language. These works do not consider precise logical dependen-
cies and solely focus on ontological semantics. As a result users
have to manually set the variability information. Moreover a risk
is to build an FM in contradiction with the actual dependencies

of a system. Bagheri et al. [72] proposed a collaborative process to
mine and organize features using a combination of natural language
processing techniques and Wordnet.

The techniques exposed in this section are complementary to our
proposals, since they compute ontological knowledge that can be
incorporated into our FM synthesis support.

7. CONCLUSION
In this paper, we addressed the problem of synthesising a feature

model (FM) conformant to a set of dependencies and also exhibit-
ing an appropriate ontological semantics as defined by its hierarchy
and feature groups. This problem is crucial for software product
line (re-)engineering scenarios involving reverse engineering, slic-
ing, or refactoring of FMs.

We developed and evaluated a series of automated techniques,
applicable without prior knowledge or artefacts, to breath ontologi-
cal knowledge into FM synthesis. Our empirical evaluation on 123
FMs, coming from various domains, demonstrated that an hybrid
approach, mixing ontological and logical techniques, provides the
best support – either for fully synthesizing FMs or for assisting
users through ranking lists and clusters.

The data, code, and instructions for reproducing the results are
available online http://tinyurl.com/OntoFMExperiments
and act as a baseline for comparison. Based on our findings, we de-
veloped an ontologic-aware synthesis environment that allows im-
portant automated operations for FMs with ontological capabilities
and guides the users throughout the interactive process. More de-
tails can be found in http://tinyurl.com/OntoFMEnv.

Our immediate concern is to conduct user experiments to evalu-
ate the effort saved by our procedures in practical reverse engineer-
ing or maintenance settings. Another research direction is to ex-
ploit specific information sources and artefacts that may be present
in software projects to automatically capture and breath ontological
knowledge. Meanwhile, we can hope that generic ontologies (like
Wordnet) and open, collaborative-based initiatives (like Wikipedia)
will be enriched to cover more and more technical domains. Future
work could also generalize our ontological-aware synthesis to FMs
with attributes and multi-features [73].

RT n° 441



12 Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr

8. REFERENCES
[1] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software

Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2007.

[2] “Sei’s software product line hall of fame.”
[3] K. Pohl, G. Böckle, and F. J. van der Linden, Software

Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, 2005.

[4] S. Apel and C. Kästner, “An overview of feature-oriented
software development,” Journal of Object Technology (JOT),
vol. 8, no. 5, pp. 49–84, July/August 2009.

[5] S. Apel, D. Batory, C. Kästner, and G. Saake,
Feature-Oriented Software Product Lines: Concepts and
Implementation. Springer-Verlag, 2013.

[6] G. Mussbacher, J. Araújo, A. Moreira, and D. Amyot,
“Aourn-based modeling and analysis of software product
lines,” Software Quality Journal, vol. 20, no. 3-4, pp.
645–687, 2012.

[7] T. Berger, S. She, R. Lotufo, A. Wasowski, and
K. Czarnecki, “A study of variability models and languages
in the systems software domain,” IEEE Transactions on
Software Engineering, vol. 99, no. PrePrints, p. 1, 2013.

[8] Berger, Thorsten and Rublack, Ralf and Nair, Divya and
Atlee, Joanne M. and Becker, Martin and Czarnecki,
Krzysztof and Wasowski, Andrzej, “A survey of variability
modeling in industrial practice,” in VaMoS’13. ACM, 2013.

[9] A. Hubaux, T. T. Tun, and P. Heymans, “Separation of
concerns in feature diagram languages: A systematic survey
(to appear),” ACM Computing Surveys, 2013.

[10] K. Kang, J. Lee, and P. Donohoe, “Feature-oriented product
line engineering,” Software, IEEE, vol. 19, no. 4, pp. 58–65,
2002.

[11] K. Czarnecki and A. Wasowski, “Feature diagrams and
logics: There and back again,” in SPLC’07. IEEE, 2007,
pp. 23–34.

[12] T. Thüm, D. Batory, and C. Kästner, “Reasoning about edits
to feature models,” in ICSE’09. ACM, 2009, pp. 254–264.

[13] R. Pohl, K. Lauenroth, and K. Pohl, “A performance
comparison of contemporary algorithmic approaches for
automated analysis operations on feature models,” in
ASE’11, 2011, pp. 313–322.

[14] R. Pohl, V. Stricker, and K. Pohl, “Measuring the structural
complexity of feature models,” in ASE’13, 2013.

[15] M. Acher, P. Collet, P. Lahire, and R. France, “Familiar: A
domain-specific language for large scale management of
feature models,” Science of Computer Programming (SCP),
vol. 78, no. 6, pp. 657–681, 2013.

[16] A. S. Sayyad, T. Menzies, and H. Ammar, “On the value of
user preferences in search-based software engineering: a
case study in software product lines,” in ICSE’13, 2013, pp.
492–501.

[17] K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg, “Feature
models are views on ontologies,” in SPLC ’06. IEEE, 2006,
pp. 41–51.

[18] M. T. Valente, V. Borges, and L. Passos, “A semi-automatic
approach for extracting software product lines,” IEEE
Transactions on Software Engineering, vol. 38, no. 4, pp.
737–754, 2012.

[19] C. Kästner, A. Dreiling, and K. Ostermann, “Variability
mining: Consistent semiautomatic detection of product-line

features,” IEEE Transactions on Software Engineering,
2013, (to appear).

[20] S. She, R. Lotufo, T. Berger, A. Wasowski, and
K. Czarnecki, “Reverse engineering feature models,” in
ICSE’11. ACM, 2011, pp. 461–470.

[21] J. Rubin and M. Chechik, “Locating distinguishing features
using diff sets,” in ASE’12. ACM, 2012, pp. 242–245.

[22] ——, Domain Engineering: Product Lines, Conceptual
Models, and Languages. Springer, 2013, ch. A Survey of
Feature Location Techniques.

[23] N. Weston, R. Chitchyan, and A. Rashid, “A framework for
constructing semantically composable feature models from
natural language requirements,” in SPLC’09. ACM, 2009,
pp. 211–220.

[24] M. Acher, A. Cleve, G. Perrouin, P. Heymans,
C. Vanbeneden, P. Collet, and P. Lahire, “On extracting
feature models from product descriptions,” in VaMoS’12.
ACM, 2012, pp. 45–54.

[25] M. Acher, A. Cleve, P. Collet, P. Merle, L. Duchien, and
P. Lahire, “Extraction and evolution of architectural
variability models in plugin-based systems,” Software and
Systems Modeling (SoSyM), 2013.

[26] U. Ryssel, J. Ploennigs, and K. Kabitzsch, “Extraction of
feature models from formal contexts,” in FOSD’11, 2011,
pp. 1–8.

[27] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and
D. Lohmann, “A robust approach for variability extraction
from the linux build system,” in SPLC’12, 2012, pp. 21–30.

[28] A. Rabkin and R. Katz, “Static extraction of program
configuration options,” in ICSE’11. ACM, 2011, pp.
131–140.

[29] M. Acher, P. Heymans, A. Cleve, J.-L. Hainaut, and
B. Baudry, “Support for reverse engineering and maintaining
feature models,” in VaMoS’13. ACM, 2013.

[30] K. Czarnecki and K. Pietroszek, “Verifying feature-based
model templates against well-formedness ocl constraints,” in
GPCE’06. ACM, 2006, pp. 211–220.

[31] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe
composition of product lines,” in GPCE ’07. New York,
NY, USA: ACM, 2007, pp. 95–104.

[32] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin, “Model checking lots of systems: efficient
verification of temporal properties in software product lines,”
in ICSE’10. ACM, 2010, pp. 335–344.

[33] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay,
“Symbolic model checking of software product lines,” in
ICSE’11. ACM, 2011, pp. 321–330.

[34] S. Apel, A. von Rhein, P. Wendler, A. Größlinger, and
D. Beyer, “Strategies for product-line verification: Case
studies and experiments,” in ICSE’13. IEEE, 2013.

[35] F. Heidenreich, P. Sanchez, J. Santos, S. Zschaler,
M. Alferez, J. Araujo, L. Fuentes, U. K. amd Ana Moreira,
and A. Rashid, “Relating feature models to other models of a
software product line: A comparative study of featuremapper
and vml*,” Transactions on Aspect-Oriented Software
Development VII, Special Issue on A Common Case Study
for Aspect-Oriented Modeling, vol. 6210, pp. 69–114, 2010.

[36] K. Czarnecki and U. Eisenecker, Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[37] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and
G. Saval, “Disambiguating the documentation of variability

Inria



Breathing Ontological Knowledge Into Feature Model Management 13

in software product lines: A separation of concerns,
formalization and automated analysis,” in RE’07, 2007, pp.
243–253.

[38] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed,
“Reverse engineering feature models from programs’ feature
sets,” in WCRE’11. IEEE, 2011, pp. 308–312.

[39] M. Janota, V. Kuzina, and A. Wasowski, “Model
construction with external constraints: An interactive journey
from semantics to syntax,” in MODELS’08, ser. LNCS, vol.
5301, 2008, pp. 431–445.

[40] L. Yi, W. Zhang, H. Zhao, Z. Jin, and H. Mei, “Mining
binary constraints in the construction of feature models,” in
RE’12. IEEE, 2012, pp. 141–150.

[41] N. Andersen, K. Czarnecki, S. She, and A. Wasowski,
“Efficient synthesis of feature models,” in Proceedings of
SPLC’12. ACM, 2012, pp. 97–106.

[42] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides,
S. Segura, and A. Egyed, “Reverse engineering feature
models with evolutionary algorithms: An exploratory study,”
in SSBSE’12, ser. LNCS, vol. 7515. Springer, 2012, pp.
168–182.

[43] E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed, “On
extracting feature models from sets of valid feature
combinations,” in FASE’13, ser. LNCS, vol. 7793, 2013, pp.
53–67.

[44] SPLOT: Software Product Line Online Tools,
“http://www.splot-research.org/.”

[45] N. Sannier, M. Acher, and B. Baudry, “From Comparison
Matrix to Variability Model: The Wikipedia Case Study,” in
ASE’13. IEEE, 2013.

[46] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and
Y. Bontemps, “Generic semantics of feature diagrams,”
Comput. Netw., vol. 51, no. 2, pp. 456–479, 2007.

[47] Q. Boucher, E. Abbasi, A. Hubaux, G. Perrouin, M. Acher,
and P. Heymans, “Towards more reliable configurators: A
re-engineering perspective,” in PLEASE’12 Int’l workshop at
ICSE’12, ser. , 2012.

[48] S. Apel, C. Kästner, and C. Lengauer,
“Language-independent and automated software
composition: The featurehouse experience,” IEEE
Transactions on Software Engineering (TSE), vol. 39, pp.
63–79, 2013.

[49] A. Hubaux, M. Acher, T. T. Tun, P. Heymans, P. Collet, and
P. Lahire, Domain Engineering: Product Lines, Conceptual
Models, and Languages. Springer, 2013, ch. Separating
Concerns in Feature Models: Retrospective and Multi-View
Support.

[50] R. E. Tarjan, “Finding optimum branchings,” Networks,
vol. 7, no. 1, pp. 25–35, 1977.

[51] P. Camerini, L. Fratta, and F. Maffioli, “A note on finding
optimum branchings,” Networks, vol. 9, no. 4, pp. 309–312,
1979.

[52] T. Smith and M. Waterman, “Identification of common
molecular subsequences,” Molecular Biology, vol. 147, pp.
195–197, 1981.

[53] R. A. Wagner and M. J. Fischer, “The string-to-string
correction problem,” Journal of the ACM (JACM), vol. 21,
no. 1, pp. 168–173, 1974.

[54] G. A. Miller, “Wordnet: a lexical database for english,”
Communications of the ACM, vol. 38, no. 11, pp. 39–41,
1995.

[55] A. Budanitsky and G. Hirst, “Evaluating wordnet-based
measures of lexical semantic relatedness,” Computational
Linguistics, vol. 32, no. 1, pp. 13–47, 2006.

[56] Z. Wu and M. Palmer, “Verbs semantics and lexical
selection,” in the 32nd annual meeting on Association for
Computational Linguistics. Association for Computational
Linguistics, 1994, pp. 133–138.

[57] O. Wulf-Hadash and I. Reinhartz-Berger, “Cross product line
analysis,” in VaMoS’13. ACM, 2013.

[58] D. N. Milne and I. H. Witten, “An open-source toolkit for
mining wikipedia,” Artif. Intell., vol. 194, pp. 222–239, 2013.

[59] O. Medelyan, D. N. Milne, C. Legg, and I. H. Witten,
“Mining meaning from wikipedia,” Int. J. Hum.-Comput.
Stud., vol. 67, no. 9, pp. 716–754, 2009.

[60] SimMetrics, “http://sourceforge.net/projects/simmetrics.”
[61] extJWNL, “http://extjwnl.sourceforge.net.”
[62] D. Milne, “Computing semantic relatedness using wikipedia

link structure,” in the new zealand computer science research
student conference. Citeseer, 2007.

[63] Algorithm of Haslinger et al. [43],
“http://www.jku.at/sea/content/e139529/e126342/e188736/.”

[64] Companion web page with all the results, data, code, and
instructions to reproduce results,
“http://tinyurl.com/OntoFMExperiments.”

[65] M. Mendonca, A. Wasowski, and K. Czarnecki, “SAT-based
analysis of feature models is easy,” in SPLC’09. IEEE,
2009, pp. 231–240.

[66] K. Czarnecki, S. She, and A. Wasowski, “Sample spaces and
feature models: There and back again,” in SPLC’08, 2008,
pp. 22–31.

[67] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher,
J. Cleland-Huang, and P. Heymans, “Feature model
extraction from large collections of informal product
descriptions,” in ESEC/FSE’13, 2013.

[68] N. Hariri, C. Castro-Herrera, M. Mirakhorli,
J. Cleland-Huang, and B. Mobasher, “Supporting domain
analysis through mining and recommending features from
online product listings,” IEEE Transactions on Software
Engineering, vol. 99, no. PrePrints, p. 1, 2013.

[69] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid,
P. Sawyer, P. Rayson, C. Pohl, and A. Rummler, “An
exploratory study of information retrieval techniques in
domain analysis,” in SPLC’08. IEEE, 2008, pp. 67–76.

[70] N. Niu and S. M. Easterbrook, “Concept analysis for product
line requirements,” in AOSD’09, K. J. Sullivan, A. Moreira,
C. Schwanninger, and J. Gray, Eds. ACM, 2009, pp.
137–148.

[71] K. Chen, W. Zhang, H. Zhao, and H. Mei, “An approach to
constructing feature models based on requirements
clustering,” in RE’05, 2005, pp. 31–40.

[72] E. Bagheri, F. Ensan, and D. Gasevic, “Decision support for
the software product line domain engineering lifecycle,”
Automated Software Engineering, vol. 19, no. 3, pp.
335–377, 2012.

[73] M. Cordy, P.-Y. Schobbens, P. Heymans, and A. Legay,
“Beyond boolean product-line model checking: dealing with
feature attributes and multi-features,” in ICSE’13, 2013, pp.
472–481.

RT n° 441



14 Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr

APPENDIX
The appendix aims at complementing Section 5.3.2 where we dis-
cuss the effectiveness of ontological-based and logical-based tech-
niques for computing clusters. We report on further empirical re-
sults. We first analyze the effect of the transitive reduction of the
BIG when computing clusters (see Appendix A). We also present
results about cliques (see Appendix B) and logical feature groups
(see Appendix C) – two logical structures that can be considered as
clusters.

A. CLUSTERS ON THE REDUCED BIG
Instead of operating over the complete BIG, ontological-based

or randomized heuristics can operate over a reduced BIG in order
to compute clusters.

Results
Table 5 (see page 16) shows that the reduced BIG allows to pro-
duce less clusters per FM compared to the results of Section 5.3.2
with the complete BIG. The clusters are also slightly smaller. For
SPLOT, 76.2% (average) and 100% (median) of clusters are cor-
rect with our best heuristic Wiktionary. For PCM, the PathLength
heuristic produces 89.1% (average) and 91.7% (median) of correct
clusters.

Therefore, and for every ontological-based heuristics, the accu-
racy of the generated clusters increases when we reduce the BIG.
However, the percentage of features in a correct cluster is slightly
inferior compared to the results with a complete BIG. On a com-
plete BIG (see Table 4c), our best heuristic Levenshtein produces
30% (average) and 29.4% (median) of correct clusters for SPLOT
(resp. 41.4% and 41.5% for PCM). On a reduced BIG, Levenshtein
produces 27.1% (average) and 24.1% (median) for SPLOT (reps.
40.5% and 41.5% for PCM).

Conclusion
The results show that there is no clear superiority of an approach.
The use of the reduced BIG or the use of the BIG when computing
clusters have both pros and cons. On the one hand, the reduced BIG
has the advantage of being more accurate but less clusters with less
features are computed. On the other hand, the use of the complete
BIG provides more false positives but a user can consult and ma-
nipulate larger clusters. From a practical and tooling point of view,
there is a classical tradeoff to find between precision and recall.

Finally, we note that FMONTOLOGIC outperforms FMRANDRBIG
for all the results of Table 5. It confirms the usefulness of ontological-
based heuristics, whether they operate over a reduced BIG or a BIG.

B. CLIQUES
Features that co-occur in configurations (i.e., cliques) can be ef-

ficiently computed using standard logical techniques [41]. As pre-
viously reported in Section 5.3.2, cliques almost always represent
parent-child relations between features3. Therefore cliques can be
seen as special kinds of clusters.

Unfolding of cliques
In the most favourable case, users just have to select one feature
in the clique that will play the role of parent feature of the others.

3We recall that for SPLOT (resp. PCM), only 5.4% (average) and
0% (median) of the cliques (resp. 1.1% and 0%) do not only contain
parent-child relations and are represented as bi-implication cross-
tree constraints.

Wiki

Storage License Hosting

(a) Simple unfolding : one parent and one level
of decendants

Wiki

Storage

License Hosting

(b) Complex unfolding : one parent
and several levels of descendants

Figure 5: Clique unfolding: simple versus complex

For instance, the clique {Wiki, Storage, License, Hosting} is trans-
formed through a simple unfolding in Figure 5a: Wiki is the parent
of Storage, License and Hosting. However, more complex unfold-
ing may arise. We could have decided that the Storage is part of
the Hosting concern. Thus, Storage would be below Hosting (and
not Wiki). In that case, the clique requires a complex unfolding that
consists in defining several levels of features in the hierarchy (see
Figure 5b for an example).

User effort
Our empirical experience shows that complex unfolding is required
in at least half of the cases (49% in average for SPLOT, 31.7% in
average for PCMs, see Table 6a page 16). Therefore, using cliques
requires more user effort than a traditional cluster in which only
one parent should be selected.

Theoretical benefits
Table 6a, column "Cliques" (see page 16) shows the metrics (num-
ber of clusters, clusters’ size, percentage of correct clusters, per-
centage of features in a correct cluster) applied on the cliques. The
goal is to understand the possible benefits of using cliques as clus-
ters4.

We first observe that the number of cliques is low: 1.6 (resp. 1.4)
in average for SPLOT (resp. PCM). As a comparison, the number
of clusters we obtain with ontological heuristics can be superior
to 4 in average for SPLOT, to 17 in average for PCMs. A sec-
ond related observation is that features involved in cliques are not
sufficient per se. For SPLOT, features involved in cliques repre-
sent only 16.6% (average) and 15% (median) of the total features
in the original FM. Comparatively, our clusters reaches 30% (av-
erage) and 29.4% (median) (see Table 4c, page 10). For PCM, the
correct cliques represent only 2.9% (average) and 0% (median) of
the FMs’ features while our clusters reaches 41.4% (average) and
41.5% (median).

Conclusion
We can conclude that cliques represent an interesting logical struc-
ture but i) their numbers are typically low, thus are far for be-
ing sufficient for fully completing an interactive synthesis and ii)
users have to perform complex unfolding in a significant number of
cases. On the other hand, clusters computed with ontological-based

4As a reminder and for the sake of comparison, Table 4c, page
10 shows the results of our ontological heuristics when computing
clusters.

Inria



Breathing Ontological Knowledge Into Feature Model Management 15

Wiki

Storage License Hosting

MySQL PostgreSQL

_

MySQL PostgreSQL

Wiki & Storage & 
License & Hosting

MySQL PostgreSQL

Figure 6: Logical feature groups: bi-implied features, clique contraction, parent place-holder

heuristics or logical feature groups (see next Appendix) require a
more simple unfolding and represent a larger source of information.

C. LOGICAL FEATURE GROUPS
There exists different kinds of clusters: i) clusters computed with

ontological-based heuristics either with the BIG or the reduced
BIG, ii) cliques, and iii) feature groups. Indeed, a feature group
consists in a set of sibling features and a parent feature – in line
with the definition of cluster given in the paper.

All possible feature groups of a formula can be computed either
using the reduced BIG [41] or the BIG. We study here how the
so-called logical feature groups are interesting structures for rep-
resenting clusters. The expected benefit is that users can review
logical feature groups and decide to integrate some of the them in
the feature diagram.

A place-holder for logical feature groups
There are cases in which the group’s parent is logically bi-implied
by another feature (i.e., the parent feature belongs to a clique). An
example is given in Figure 6. Therefore, it leads to numerous fea-
ture groups containing the same set of sibling features but different
parents. To avoid this combinatorial explosion, we omit the parent
and consider only the sibling features. We introduce a place-holder
that can be one of the parent of the clique (see right of Figure 6).

Results and observations
Table 6a shows the metrics for clusters (see Section 5.3.2) applied
on these groups. For SPLOT FMs, 69.6% (average) and 75% (me-
dian) of feature groups are correct clusters. These results are sim-
ilar to the 70.1% (average) and 80% (median) of correct clusters
generated by our best heuristic PathLength (see Table 4c). For
PCM FMs, 92.5% (average) and 100% (median) of feature groups
are correct clusters. It outperforms the 79.2% (average) and 78.6%
(median) of correct clusters from our heuristic PathLength. How-
ever, we note that 473 Xor groups were generated from a unique
FM and 36 only were correct clusters. This extreme example shows
that, in some cases, logical feature groups may overwhelm the user
with incorrect clusters.

Table 6b shows the same metrics for feature groups computed
from the reduced BIG of the FM. It significantly reduces the num-
ber of computed feature groups. Their accuracy increases com-
pared to the groups in Table 6a but the correct groups involve less
features.

Summary
Logical feature groups are good candidates for clusters. They allow
to reduce the user effort assuming that he/she correctly replaces

the "place-holder" with the right parent. However, in some cases,
logical feature groups may introduce a lot of false positives.

RT n° 441



16 Guillaume Bécan, Mathieu Acher, Benoit Baudry, and Sana Ben Nasr

Metric Data set Pure logical technique Ontological techniques (FMONTOLOGIC)
FMRANDRBIG Smith Waterman Levenshtein Wu & Palmer PathLength Wikipedia Wiktionary

Number of clusters
SPLOT average 3.9 2.8 2.9 2.1 1.8 2.4 2.1

median 4 3 3 2 2 2 2

PCM average 12.7 11.1 13.9 4.7 7.5 7.1 9.7
median 12 10 13 5 7 6 9

Clusters’size
SPLOT average 2.0 2.4 2.4 2.1 1.9 2.3 2.0

median 2.0 2.3 2.4 2.0 2.0 2.3 2.0

PCM average 2.2 3.0 2.7 2.4 2.5 4.1 2.9
median 2.2 2.8 2.8 2.4 2.3 3.7 2.7

Percentage of Correct clusters
SPLOT average 39.9 69.1 65.4 66.7 75.7 67.2 76.2

median 33.3 75.0 66.7 66.7 100.0 75.0 100.0

PCM average 37.8 68.1 76.6 75.3 89.1 74.9 85.2
median 29.4 75.0 83.3 77.8 91.7 80.0 88.9

Percentage of features in a correct cluster
SPLOT average 17.1 26.1 27.1 17.5 19.2 23.9 20.5

median 15.4 21.4 24.1 16.7 15.4 20.0 16.7

PCM average 12.2 34.1 40.5 12.5 22.4 24.1 31.7
median 10.5 32.3 41.5 12.3 23.1 21.6 32.6

Table 5: Clusters generated by FMRANDRBIG and FMONTOLOGIC

Metric Data set Cliques Feature groups
All groups Mutex Xor Or

Number of clusters
SPLOT average 1.6 11.8 3.5 7.2 1.1

median 1 3 1 1 1

PCM average 1.4 63.2 45.4 17.9  
median 1.0 9 8 1  

Clusters’size
SPLOT average 5.1 2.4 1.3 1.7 1.8

median 4.0 2.3 2.0 2.0 2.0

PCM average 6.3 6.0 5.9 5.5  
median 6.0 5.0 5.3 5.0  

Percentage of correct clusters
SPLOT average 49.0 69.6 34.5 89.1 81.0

median 50.0 75.0 14.3 100 100

PCM average 31.7 92.5 92.1 91.1  
median 0.0 100.0 100.0 100.0  

Percentage of features in a correct cluster
SPLOT average 16.6 36.6 5.4 19.4 11.8

median 15.0 33.3 0.0 15.0 10.5

PCM average 2.9 70.1 54.0 16.1  
median 0.0 71.7 56.6 14.9  

(a) With the BIG ( means that the clusters cannot be computed due to performance
issues)

Metric Data set Feature groups
All groups Mutex Xor Or

Number of clusters
SPLOT average 3.7 0.5 2.1 1.1

median 2 0 1 1

PCM average 10.4 8.4 2.0  
median 8 5 1  

Clusters’size
SPLOT average 2.3 0.6 1.5 1.8

median 2.3 0.0 2.0 2.0

PCM average 5.9 5.3 5.8  
median 5.0 4.1 5.0  

Percentage of correct clusters
SPLOT average 82.5 65.6 92.3 81.0

median 100.0 100.0 100.0 100.0

PCM average 100.0 100.0 100.0  
median 100.0 100.0 100.0  

Percentage of features in a correct cluster
SPLOT average 28.8 2.8 14.2 11.8

median 28.6 0.0 12.5 10.5

PCM average 62.1 44.5 17.6  
median 59.5 41.5 14.9  

(b) With the feature graph (reduced BIG)

Table 6: Cliques and logical feature groups as clusters

Inria



RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-0803


