
HAL Id: hal-00876566
https://hal.inria.fr/hal-00876566

Submitted on 10 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending dataflow programs for guaranteed
throughput.

Manuel Selva, Lionel Morel, Kévin Marquet, Stéphane Frénot

To cite this version:
Manuel Selva, Lionel Morel, Kévin Marquet, Stéphane Frénot. Extending dataflow programs for
guaranteed throughput.. MES ’13 - International Workshop on Many-core Embedded Systems, Jun
2013, Tel Aviv, Israel. pp.54-57, �10.1145/2489068.2489077�. �hal-00876566�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49741398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-00876566
https://hal.archives-ouvertes.fr


Extending dataflow programs with throughput properties

Manuel Selva
Bull Echirolles, 1 rue de

Provence 38432 Echirolles
Cedex, France

manuel.selva@ext.bull.net

Lionel Morel
Université de Lyon INSA-Lyon,

CITI-INRIA F-69621
Villeurbanne, France

lionel.morel@insa-lyon.fr

Kevin Marquet
Université de Lyon INSA-Lyon,

CITI-INRIA F-69621
Villeurbanne, France

kevin.marquet@insa-
lyon.fr

Stéphane Frénot
Université de Lyon, INRIA
INSA-Lyon, CITI-INRIA,

F-69621 Villeurbanne, France
stephane.frenot@insa-

lyon.fr

ABSTRACT

In the context of multi-core processors and the trend toward
many-core, dataflow programming can be used as a solu-
tion to the parallelization problem. By decoupling computa-
tion from communication, this paradigm naturally exposes
parallelism in several ways. In this work we propose lan-
guage extensions for expressing throughput properties over
dataflow programs together with a run-time mechanism for
the observation of events meaningful to compute the effec-
tive throughput. We show the limited impact of such mech-
anisms on the application overall performances. We also
review existing run-time adaptation mechanisms that may
be used in a dataflow context to satisfy throughput require-
ments.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.3.2 [Programming Lan-

guages]: Language Classifications—Data-flow languages

Keywords

Dataflow, Quality of Service, Monitoring, Throughput

1. INTRODUCTION
The trend toward more parallelization in general-purpose

computers started in 2005 and is now leading to many-
core processors [4]. The software industry is facing chal-
lenging concerns about programming such hardware. The
question of which programming model to adopt in this con-
text remains open. The imperative concurrent programming
model a-la Pthread is today prevalent in the industry even

if strong arguments go against its use [9]. Particular classes
of programs may benefit from other programming models,
both from the expressiveness and the optimization points
of view. Our work focuses on the dataflow programming
paradigm described below and on applications with quality-
of-service requirements. These include audio or image pro-
cessing, trading applications, telecommunication data pro-
cessing, stream compression and encryption.

In this paper, we first show how dataflow languages can
be extended to express an expected throughput. We then
detail how dataflow compilers are modified to generate mon-
itoring code verifying that the throughput expressed by the
programmer is respected at run-time.

2. EXECUTING DATAFLOW PROGRAMS
We consider the dataflow programming model introduced

by Lee and Parks in [11] and one of its specialization called
Synchronous Dataflow [10] (SDF). We recall the foundation
of these models before introducing how dataflow programs
are transformed to be executed on the execution model we
target.

2.1 Dataflow programming
A dataflow program is a graph of actors. An actor repre-

sents a computation unit. Actors are connected with each
other through communication channels. They consume to-
kens on their input channels and produce tokens onto their
output channels. Writing a token adds it at the end of the
channel and reading returns a single token (if available) in
a First-In-First-Out (FIFO) manner. At a given time, a
channel contains all the tokens produced by the writing ac-
tor but not yet consumed by the reading actor. These FIFO
channels are the only way through which actors can commu-
nicate, which makes this a functional model well-suited for
compositional reasoning. Actors and channels form dataflow
networks that can be hierarchically composed to form com-
plex systems.

The execution of an actor is driven by the availability of
tokens on its input channels. From an external point of view,
an actor can perform two operations: reading tokens from
its inputs channels and writing tokens to its output chan-
nels. This defines the model of communication of programs.



The complementary model of computation expresses how
new values are computed before they are communicated on
output channels. We do not detail it here.

In the SDF model, the number of tokens needed by an
actor is known at compile time. This allows to statically
compute a schedule of the actors and to bound the FIFO
queues size.

Fig. 1 illustrates actors and channels concepts with an
MPEG 4 part-2 simple profile decoder application. This
example explicits the different kind of parallelism exposed
by the dataflow programming model. Luminance (Y) and
chrominances (U,V) parallel decoding is tasks parallelism.
Pipeline parallelism is achieved by letting consumers work-
ing ahead of producers. Finally, data parallelism concerns
the duplication of actors without state such as Text Y in
this example.

Parser Parser

Text Y
Text Y
Text Y

Data
parallelism

Text U

Text V

Mot Y

Mot U

Mot V

Task
parallelism

Merger Display

Pipeline parallelism

Figure 1: MPEG 4 part-2 decoder dataflow graph

2.2 Compilation and execution model
We focus on dataflow programs executed using a set of

imperative concurrent tasks. These tasks run concurrently
on one or more hardware execution units. Communication
mechanisms, e.g. shared memory or inter-core event mech-
anisms, are used to let tasks exchange data and to synchro-
nize. Targeting this execution model, a compiler transforms
a dataflow program into a set of imperative concurrent tasks.

Depending on the underlying hardware, task execution
model implementations may vary. Dataflow compilers tar-
geting standard multi-core architectures such as [13, 3] gen-
erate C or C++ code using Pthreads. These files need then
to be compiled to machine code. The communication be-
tween threads is implemented using global variables and
POSIX synchronization mechanisms. Other dataflow com-
pilers are dedicated to specific many-core hardware [7, 6].

Dataflow compilers perform optimizations to exploit par-
allelism. As reported in [6], these compilers often have
to perform complex transformations on the initial dataflow
graph to extract the right degree of parallelism for a specific
hardware target.

The first kind of transformations consists in fusing actors.
They are used for example when the number of actors is
larger than the number of execution units dedicated to the
application. Fusions can either merge consumer/producer
pairs or parallel branches of actors into a single actor as
shown on Fig. 2a and Fig. 2b. In both cases, the compiler
puts in sequence in a new actor, producer’s code respectively
first branch actor’s code with consumer’s code respectively
second branch actor’s code. The second class of transfor-
mation adds parallelism to the dataflow graph. Data paral-
lelism introduction depicted on Fig. 2c duplicates stateless
actors to allow them to work on several data sets in parallel.
Pipeline parallelism introduction splits actors into a pipeline
of smaller actors.

A1
<CA1>

A2
<CA2>

Fused
<CA1>;

<CA2>

(a) Consumer/producer fu-
sion

A1
<CA1>

A2
<CA2>

A3
<CA3>

Fused
<CA1>;

<CA2>

A3
<CA3>

(b) Parallel branch fusion

A1
<CA1>

A2
<CA2>

A11
<CA1>

A12
<CA1>

A2
<CA2>

(c) Data parallelism introduction

Figure 2: Compilers transformations - Ax are actors names
and <CAx> represent the sequential code of actors.

3. EXTENDING DATAFLOW PROGRAMS
We now describe our approach for expressing expected

throughput, observing applications and building effective
throughput information.

3.1 Expressing throughput properties
The Expected ThroughPut (ETP), is expressed at appli-

cation’s source level on the dataflow graph. This can be
done either on channels or inside actors. On a channel, it
represents the number of tokens that must enter the chan-
nel every time unit. Inside an actor, a throughput property
needs to be defined by the programmer, e.g. as the num-
ber of times a given atomic action is performed every time
unit. This is too intrusive and we shall prefer expressing
throughput objectives on channels. In Fig. 3, the channel
connecting the Merger and Display actors is tagged with a
throughput information ETP = 25, expressed in number of
frames per second.

Merger Display
25f/s

Figure 3: Mpeg example with throughput information.

3.2 Reporting
The reporting mechanism is responsible for gathering and

storing information allowing to compute the effective through-
put, denoted OTP for Observed ThroughPut. The informa-
tion we report is the number of tokens written on a given
monitored channel since the application’s start time. This
information must be stored in a location where it can be
shared by the tasks implementing actors and the ones imple-
menting the monitoring and decision mechanisms described
in section 3.3.

To implement the reporting, we adapt the compiler to
generate reporting code. The token count is initialized to



A1
<CA1>

A2
<CA2>

Fused
<CA1>;

<Report>;

<CA2>

(a) Consumer/producer fu-
sion

A1
<CA1>

A2
<CA2>

A3
<CA3>

Fused
<CA1>;

<Report>;

<CA2>

A3
<CA3>

(b) Parallel branch fusion

A1
<CA1>

A2
<CA2>

A11
<CA1>

A12
<CA1>

A2
<CA2>

(c) Data parallelism introduction

Figure 4: Impact of transformations on reporting - Red ar-
rows are monitored channels, Ax are actors names, <CAx>
represent the sequential code of actors and <Report> are
reporting annotations.

zero when the application starts. Then, for each token writ-
ten on an observed channel, the instrumented version of the
actor increments the token counter with the number of writ-
ten tokens. There is no need to reset counters because the
monitor uses counters differences to compute the OTP.

The process of adding reporting code when a token on
a monitored channel is written is straightforward for com-
pilers who don’t apply transformations. For compilers ap-
plying the transformations described in section 2.2, we need
to follow monitored channels across these transformations.
Fig. 4a and Fig. 4b illustrate how reporting is handled is
the case of fusion. To guaranty the reporting as initially
expressed, we keep track in the fused actor of the frontier
between the two initial actors. Fig. 4c shows how data par-
allelism introduction impacts reporting . When one of the
initial actor’s output channel is monitored, we add reporting
on each created duplicate. In the case of pipeline parallelism
introduction, we report the monitoring of the split actor on
the last actor of the created pipeline.

3.3 Monitoring
To compute the OTP, the monitor performs simple arith-

metic on token counts provided by the reporting system.
The comparison of this OTP and the ETP is done at reg-
ular time intervals according to the monitoring frequency.
When the OTP becomes lower than the ETP, the decision
making mechanism is invoked.

In the targeted execution model, we implement this moni-
tor in one or more dedicated tasks for each monitored appli-
cation. The number of monitoring tasks and their location
is an important parameter regarding the introduced over-
head. When enough free execution units exists, they are
naturally used to execute the monitoring. When the num-
ber of monitoring tasks is greater than the number of free
execution units, it is strongly recommended to locate moni-

Task 1
<CParser>;

... ;
<CMotV >

Task 2
<CMerger>;

<Report>;

<CDisplay>

Task 1
<CA1>

Task 2
<CA2>

Applications

Mpeg Decoder
App 2

Count 1 Count 2

Mon. Task 1 Mon. Task 2

Operating System
or Run-time

increment increment

read read

Figure 5: System overview

toring tasks on execution units with the lowest load.
Another important parameter is the frequency of the mon-

itoring because of its potential impact on performances, the
higher the frequency, the bigger the overhead. It can be
configured independently for each monitored channel. The
maximum pertinent frequency is directly linked to the ex-
pected throughput rate: in the case of a throughput of 25
frames per second, monitoring at a frequency of 25Hz is
enough. Indeed, the decoder never sends more than 1 frame
every 1/25s. On the other hand a low frequency will de-
crease the reaction time of our run-time mechanisms. The
value for this parameter is strongly application and context
dependent.

[1] provides a complete report with overhead evaluation
for different frequencies, different numbers and different lo-
cations of the monitoring tasks.

3.4 System overview
Fig. 5 illustrates the mechanisms described so far. In this

scenario the mpeg decoder of Fig. 1 is running along with
another dataflow application called App 2. Both applica-
tions have been compiled to two tasks and have exactly one
monitored channel. The monitored channel of the mpeg de-
coder is located in a task resulting of actors fusion. App 2
has not been transformed at all and its monitored channel
still exists at run-time. In this scenario we arbitrarily decide
to create one monitoring task for each monitored channel
and we can see how monitoring tasks gets reporting infor-
mation: applications increments tokens counts shared with
monitoring tasks.

3.5 Toward dynamic adaptations
If the OTP is lower than the ETP, dynamic adaptations

must be performed. It is beyond the scope of this arti-
cle to detail which dynamic adaptations to use ; we focus
on detecting unacceptable throughput. However, we are al-
ready investigating dynamic adaptations mechanisms. We
consider how the dataflow graph imperative task mapping
can be reconsidered at runtime. Existing work in this di-
rection [12] proposes to statically specify different dataflow
graphs for the same application. These graphs are assigned
with QoS information. Depending on the observed perfor-
mances the run-time system can then choose among these
configurations. We are also working on reconfiguration mech-
anisms such as the deactivation and reactivation of optional
actors and large actors internal reconfiguration. This last
adaptation requires actors to provide quality selection pa-
rameters. Finally, reconfiguration of the overall dataflow
graph can be performed.



4. EXPERIMENTS
The concepts previously introduced have been validated

into the StreamIt [13] language rooted in the SDF model.
We used the compiler back-end generating C source code
using Pthreads to evaluate the impact of our mechanisms
on a standard multi-core platform running Linux. See [1]
for implementation details and overhead evaluation.

5. RELATED WORKS
Different execution layers for dataflow programs have been

set up [5], even for multi-core machines [3, 14]. However,
none of these is explicitly concerned with dynamic optimiza-
tions nor the respect of QoS properties. [2] tackles dynamism
in an ad-hoc manner while we try to be as generic as possi-
ble. To our knowledge , the work described in [12] and the
Flextream [8] approach are the closest to our proposition,
each taking a route that is rather orthogonal to the other
one. The first approach considers a set of pre-defined, stat-
ically built, configurations of dataflow graphs and dynam-
ically decides, depending on observed conditions over the
whole system’s performances, which configuration to apply
at given switch points in time. On the other hand, Flex-
tream does not supposes any pre-defined configurations in-
stead allowing for dynamically recomputing partitioning of
actors among available computing units in order to meet
run-time performance constraints.

6. CONCLUSION
We believe that dataflow is an attractive alternative to

write efficient parallel program. Parallelism is clearly ex-
posed in this programming model and can be one of the
answer to the question on how program tomorrow massively
parallel architectures. Dynamic adaptation of dataflow pro-
grams is a hot topic for ensuring the satisfaction of quality-
of-service requirements of applications at run-time. In this
paper, we present a solution allowing to monitor through-
put properties of dataflow programs with QoS requirements.
The solution has been evaluated on a general purpose multi-
core platform showing the limited overhead of the solution.

In this work, we ran our monitoring mechanism together
with only one dataflow application. In the short term, we
intend to adapt it so that it can monitor different applica-
tions. Moreover, the possibility to attach ETPs to differ-
ent channels in dataflow graphs allows to imagine dynamic
adaptations at the granularity of actors and not only of ap-
plications.

We want to conduct comparable studies on different data-
flow languages and architectures. The next step in that
direction will be to adapt our proposal to languages such as
ΣC [7] targeting many-cores.

Finally, we plan to deeply investigate adaptation mecha-
nisms. We want to study how information exposed by the
dataflow programming model could help in applying well-
known run-time adaptation mechanisms such as load bal-
ancing, exploitation of cache affinity and affinity scheduling.

We also want to conduct a general study on the actor ac-
tivation and deactivation idea. Unplugging an actor is quite
simple but depending on the considered dataflow model of
computation, plugging it back could be more difficult. We
plan to clearly identify the required conditions for each data-
flow model of computation to safely plug and unplug actors.

7. REFERENCES
[1] http://perso.citi-lab.fr/mselva/mes13/

dataflow-experiments.pdf.

[2] A. Albers and P. With. Task complexity analysis and
qos management for mapping dynamic
video-processing tasks on a multi-core platform.
Journal of Real-Time Image Processing, 7:185–202,
2012.

[3] I. Amer, C. Lucarz, G. Roquier, M. Mattavelli,
M. Raulet, J.-F. Nezan, and O. Deforges.
Reconfigurable video coding on multicore. Signal
Processing Magazine, IEEE, 26(6):113 –123, november
2009.

[4] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny,
K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson,
K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A
view of the parallel computing landscape. Commun.
ACM, 52(10):56–67, Oct. 2009.

[5] J. Boutellier, V. Sadhanala, C. Lucarz, P. Brisk, and
M. Mattavelli. Scheduling of dataflow models within
the reconfigurable video coding framework. In Signal
Processing Systems, 2008. SiPS 2008. IEEE Workshop
on, pages 182–187, 2008.

[6] M. I. Gordon, D. Maze, S. Amarasinghe, W. Thies,
M. Karczmarek, J. Lin, A. S. Meli, A. a. Lamb,
C. Leger, J. Wong, and H. Hoffmann. A stream
compiler for communication-exposed architectures.
ACM SIGARCH Computer Architecture News,
30(5):291, Oct. 2002.

[7] T. Goubier, R. Sirdey, S. Louise, and V. David. σc: A
programming model and language for embedded
manycores. In Algorithms and Architectures for
Parallel Processing, volume 7016 of Lecture Notes in
Computer Science, pages 385–394. 2011.

[8] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah,
T. Mudge, and S. Mahlke. Flextream: Adaptive
compilation of streaming applications for
heterogeneous architectures. In Proceedings of the
2009 18th International Conference on Parallel
Architectures and Compilation Techniques, pages
214–223, 2009.

[9] E. A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[10] E. A. Lee and D. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 75(9):1235 – 1245, 1987.

[11] E. A. Lee and T. Parks. Dataflow process networks.
Proceedings of the IEEE, 83(5):773 –801, may 1995.

[12] S. Stuijk, M. Geilen, and T. Basten. A predictable
multiprocessor design flow for streaming applications
with dynamic behaviour. In Proceedings of the 2010
13th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, DSD ’10, 2010.

[13] W. Thies, M. Karczmarek, and S. Amarasinghe.
Streamit: A language for streaming applications. In
Proceedings of the 11th International Conference on
Compiler Construction, pages 179–196, 2002.

[14] H. Yviquel, E. Casseau, M. Wipliez, and M. Raulet.
Efficient multicore scheduling of dataflow process
networks. In Signal Processing Systems (SiPS), 2011
IEEE Workshop on, pages 198 –203, oct. 2011.


