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Abstract: In this paper first we address the problem of predicting SPARQL query execution
time. Accurately predicting query execution time enables effective workload management, query
scheduling, and query optimization. We use machine learning techniques to predict SPARQL query
execution time. We generate the training dataset from real queries collected from DBPedia 3.8
query logs. As features of a SPARQL query, we use the SPARQL query algebra operators and
different basic graph pattern types that we generate by clustering the training SPARQL queries. We
achieved high accuracy (coefficient of determination value of 0.84) for predicting query execution
time.
Second, we address the problem of suggesting similar SPARQL queries based on query history.
Users often need assistance to effectively construct and refine Semantic Web queries. To assist
users in constructing and refining SPARQL queries, we provide suggestions of similar queries
based on query history. Users can use the suggestions to investigate the similar previous queries
and their behaviors.
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Prédiction du temps d’exécution d’une requête SPARQL
et suggestion de requêtes sur la base d’un historique

Résumé : Dans ce rapport, nous examinons tout d’abord le problème de la prédiction du
temps d’exécution des requêtes SPARQL. Prédire avec précision le temps d’exécution des requêtes
permet une gestion efficace de la charge de travail, la planification et l’optimisation des requêtes.
Nous utilisons des techniques d’apprentissage automatique pour prédire le temps d’exécution des
requêtes SPARQL. Nous générons l’ensemble de données d’apprentissage à partir de requêtes
réelles recueillies dans les logs de DBPedia 3.8. Comme caractéristiques d’une requête SPARQL,
nous utilisons les opérateurs de l’algèbre de requêtes SPARQL et les différents types de motifs de
graphes requêtes que nous générons par le regroupement des requêtes SPARQL d’apprentissage.
Nous obtenons une précision élevée (coefficient de valeur de détermination de 0,84) pour prédire
le temps d’exécution des requêtes.

Deuxièmement, les utilisateurs ont souvent besoin d’aide pour construire efficacement et
d’affiner les requêtes au Web sémantique. Pour aider les utilisateurs à construire et affiner les
requêtes SPARQL, nous fournissons des suggestions de requêtes similaires basées sur l’historique
des requêtes. Les utilisateurs peuvent utiliser ces suggestions pour étudier les précédentes
requêtes similaires et leurs comportements.

Mots-clés : SPARQL, les performances des requêtes
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4 Hasan & Gandon

1 Introduction

Predicting how a query will behave is important for effective workload management, query
scheduling, and query optimization.[6, 7]. As the complexity of the Semantic Web increases,
it is becoming increasingly important to develop effective ways of querying the Semantic Web
data. Central to this problem is knowing how a query will behave prior to executing the query.
This will help us to adjust our queries accordingly. Knowing the history of similar queries will
also help in making these adjustments.

In this paper, we first address the problem of predicting SPARQL query execution time.
In the previous work in database research[6, 7], researchers have successfully applied machine
learning techniques to accurately predict database query performance. Inspired by their success,
we use machine learning techniques to predict SPARQL query execution time. A key contribution
of our work is transforming SPARQL queries into vector representation necessary for machine
learning algorithms.

Previous research [17, 18] suggests that constructing and refining Semantic Web queries is
a difficult task especially if the users do not have expert level knowledge of the data and the
underlying schema. Users often need assistance in forms of suggestions to effectively construct
and refine Semantic Web queries. We use the same vector representation of SPARQL queries
to suggest similar SPARQL queries using nearest neighbors search. Users can use these sugges-
tions for various purposes including understanding the history of similar query behaviors, and
constructing and refining queries.

In section 2 we discuss the problems we address and our research methodology. In section 3
we describe our solution components and experiment configurations. In section 4 we describe
the features we use for our solution and explain the experiments we performed for predicting
SPARQL query execution time. In section 5 we discuss how we suggest similar SPARQL queries
based on query history. In section 6 we describe the related work. Finally, in section 7 we
conclude and outline the future work.

2 Problem Description and Methodology

We address two problems in this paper: (i) how to predict SPARQL query execution time prior
to query execution; (ii) how to suggest similar SPARQL queries based on query history.

To study query performance, we apply the same scientific approach that scientists use to
understand the natural world. Sedgewick and Wayne [15] discuss the application of scientific
methods to study running time of computer programs. This approach is motivated by D.E.
Knuth’s insight of using scientific methods to understand performance of algorithms. In sum-
mary, the scientific method comprises of: (a) observing some features of the natural world; (b)
hypothesizing a model consistent with the observation; (c) predicting some events using the hy-
pothesis; (d) verifying the predictions by further observations; (e) validating by repeating until
the observations and the predictions agree. In addition, the experiments must be reproducible,
so that others can validate the hypothesis. Hypotheses must also be falsifiable, so that we know
when a hypothesis is wrong. We use this methodology to experimentally study SPARQL query
running time. We build the model for suggesting SPARQL queries by reusing the models we
build in the experimental study of SPARQL query running time.

Inria
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3 Solution Components

Our system configuration includes the Jena TDB triple store1, Mac OS X version 10.6.8 operating
system, Intel Core i7 2.7 GHz processor, 8 GB system RAM with 4 GB RAM allocated to Jena
TDB. We randomly select 6000 queries from DBPSB (DBpedia SPARQL Benchmark) [10] query
log dataset 2 containing all queries posed to the official DBpedia SPARQL endpoint from April
to July 2010. We load the DBpedia 3.8 dataset 3 into our Jena TDB. Then we run the randomly
selected 6000 queries and record their execution times. We choose Jena TDB as the triple store
because Jena includes tools to generate the SPARQL query algebra expressions that Jena TDB
uses.

Out of the 6000 queries, we use 3600 queries and their execution times as the training dataset
(60%), 1200 queries and their execution times as the validation dataset (20%), and 1200 queries
and their execution times as the test dataset (20%). In our experiments we use Weka’s [8]
implementation of the Support Vector Machine (SVM) regression, x -means clustering, k -nearest
neighbors regression, k -dimensional tree; and libsvm [4] implementation of SVM classifier.

4 Building a Prediction Model for SPARQL Queries

The first step to build the prediction model is to represent SPARQL queries as vectors. Then
we train our model with the vector representation of our training queries and their execution
times. We use the coefficient of determination, denoted as R2, to evaluate our model. R2 is a
widely used evaluation measure for regression. R2 measures how well future samples are likely
to be predicted. R2 values range from 0 to 1 where 0 is the worst and 1 is the best score. In this
section, we walk through our experiments and discuss the choices we make.

4.1 Model with SPARQL Algebra Features

The SPARQL query engine of Apache Jena - known as ARQ4 - performs a series of steps to
execute a query. First, parsing the query string into an abstract syntax tree (AST). Next, ARQ
transforms the abstract syntax tree to an algebra expression comprising the SPARQL algebra
operators5. An algebra expression is also a tree. Finally, ARQ optimizes and evaluates the
algebra expression on an RDF dataset. We use the SPARQL algebra operators to construct
a query feature vector. We use Jena ARQ API to programmatically create SPARQL algebra
expressions from SPARQL query strings. For an algebra expression, we use the frequencies of
all the SPARQL algebra operators in the algebra expression except the slice operator. Each of
these operators represent a dimension in the feature vector. The slice operator is the combi-
nation of OFFSET and LIMIT SPARQL keywords. We take the sum of all the slice operator
cardinalities appearing in the algebra expression as the value of the dimension that represents
the slice operator. We also use the depth of the algebra expression tree as a feature. Figure 1
shows an example of extracting the SPARQL algebra features vector from a SPARQL query.

We train a regression variant of the Support Vector Machine (SVM) [16] to test out these
SPARQL algebra features. This model performs poorly for our test queries with a low R2 value
of 0.004492. Figure 2 shows the log scale plotting of predicted execution time vs actual execution
time for our test queries. We plot them in log scale to account for wide range of execution times

1Jena TDB: http://jena.apache.org/documentation/tdb
2Query log dataset: ftp://download.openlinksw.com/support/dbpedia/
3DBpedia 3.8: http://wiki.dbpedia.org/Datasets3.8
4Overview of ARQ Query Processing http://jena.apache.org/documentation/query/arq-query-eval.html
5SPARQL algebra operators: http://www.w3.org/TR/sparql11-query/#sparqlQuery
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distinct

project (?name ?nick)

leftjoin

bgp bgp

triple 
?x 
foaf:mbox 
<mailto:person@server.com>

triple 
?x 
foaf:name 
?name

triple 
?x 
foaf:nick
?nick

triple bgp join leftjoin . . . . project distinct . . . . depth
  3     2   0      1     . . . .    1       1     . . . .   4

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT DISTINCT ?name ?nick WHERE { 
   ?x foaf:mbox <mailto:person@server.com> . 
   ?x foaf:name ?name  
   OPTIONAL { ?x foaf:nick ?nick }
}

Figure 1: Example of extracting SPARQL algebra features vector from a SPARQL query.

Inria
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in the visualization. The model under-estimates the execution times for queries which have long
actual execution time - highlighted in red in figure 2. A large number of queries are far from the
perfect prediction line.

Figure 2: Log scale plotting of predicted vs actual execution times for the test queries (test
dataset R2 = 0.004492).

Figure 3 compares the predicted vs actual execution times for test queries which have shorter
query execution times. In this figure, we plot the execution times without scaling them to log
values. Again a large number of queries are far from the perfect prediction line. This means that
the predictions by this model are not accurate.

Figure 3: Predicted vs actual execution times for the test queries which have shorter query
execution times (test dataset R2 = 0.004492).

RR n° 8392



8 Hasan & Gandon

After observing the long execution time outliers, we found out that many of them share
structurally similar basic graph patterns. In our algebra features, we only considered the number
of triples in the basic graph patterns appearing the queries. But this does not represent the basic
graph patterns themselves. In other words, our algebra features do not represent the basic graph
patterns appearing in SPARQL queries. What kind of basic graph pattern appears in a SPARQL
query influences the execution time of the query. In subsection 4.2, we discuss how we address
this problem.

4.2 Model with Additional Basic Graph Pattern Features

For an RDF graph, there are infinite number of possibilities to write a basic graph pattern. There
are infinite number of possibilities for literals values. Even if we consider only the set of literal
values and the set of resources appearing in the RDF graph, the number of possibilities to write
a basic graph patterns would be exponentially large. More precisely, an RDF graph with a set
of n triples has 2n subsets of triples – i.e. the power set. Each of these subsets can be a possible
basic graph pattern. Therefore, transforming basic graph patterns directly to vector space would
result in exponentially large number of dimensions.

We represent a basic graph pattern as a vector that is relative to the basic graph patterns in
the training data. As the first step of this process, we cluster the structurally similar basic graph
patterns in the training data into K clusters. The basic graph pattern in the center of a cluster
is the representative basic graph pattern for that cluster. Second, we represent a basic graph
pattern as a K dimensional vector where the value of a dimension is the structural similarity
between the basic graph pattern and the representative basic graph pattern corresponding to
that dimension. We use K = 10 for the experiments in this paper. To compute the structural
similarity between two basic graph patterns, we first construct two graphs from the two basic
graph patterns, then compute the graph edit distance [3] between these two graphs.

A basic graph pattern in a SPARQL query contains a set of triples. We take the triples in
all the basic graph patterns appearing in a SPARQL query and construct an RDF graph from
these triple. Then we replace the SPARQL variable labels in the constructed graph by a fixed
symbol - the symbol ‘?’. We call such a graph a pattern graph.

The graph edit distance between two graphs is the minimum amount of distortion needed
to transform one graph to another. The minimum amount of distortion is the sequence of edit
operations with minimum cost. The edit operations are deletions, insertions, and substitutions of
nodes and edges. The example from [13] in figure 4 shows a possible edit path to transform graph
g1 to graph g2. The edit operations in this path are three edge deletions, one node deletion, one
node insertion, two edge insertions, and finally two node substitutions.

Figure 4: A possible edit path to transform graph g1 to graph g2.

A well known method for computing graph edit distance is using the A* search algorithm to
explore the state space of possible mappings of the nodes and edges of the source graph to the
nodes and edges of the target graph. However, the computational complexity of this edit distance
algorithm is exponential in the number of nodes of the involved graphs, irrespective of using A*

Inria
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search with a heuristic function to govern the tree traversal process. We use the polynomial
time suboptimal solution of graph edit distance that Riesen and Bunke [13] propose. We use
the implementation of the suboptimal solution of Riesen and Bunke that Riesen et al. [14] later
integrated in the Graph Matching Toolkit6.

We use the k -mediods [9] clustering algorithm to cluster the basic graph patterns in training
data. We use k -mediods because it chooses data points as centers and uses an arbitrary distance
function. We use the suboptimal graph edit distance algorithm as the distance function for k -
mediods. For the K dimensional vector representation of basic graph patterns, we compute the
structural similarity between a basic graph pattern pi and a basic graph pattern C(k) representing
a cluster center as below:

sim(pi, C(k)) =
1

1 + d(pi, C(k))
(1)

The term d(pi, C(k)) is the graph edit distance between basic graph patterns pi and C(k). This
formulation gives us a similarity score within the range of 0 to 1. A similarity score of 0 being
the least similar and a score of 1 being the most similar.

We again train a SVM regression model with both the SPARQL algebra features and the basic
graph pattern features. The R2 value on the test queries improves to 0.124204. Figure 5 shows
the log scale plotting of predicted execution time vs actual execution time of our test queries
using this model. The model still under-estimates the execution times for queries which have
long actual execution time - highlighted in red. However, the predictions moved more towards
the perfect prediction line. Therefore the R2 value improved.

Figure 5: Log scale plotting of predicted vs actual execution times for the test queries (test
dataset R2 = 0.124204).

A possible reason for this under-estimation could be the fact that our training dataset has
queries with various different time ranges. Fitting a curve in such irregular data points is often
inaccurate. In the next subsection we discuss how we address this problem.

6Graph Matching Toolkit http://www.fhnw.ch/wirtschaft/iwi/gmt

RR n° 8392

http://www.fhnw.ch/wirtschaft/iwi/gmt


10 Hasan & Gandon

4.3 Model with Multiple Regressions

To address the problem of our irregular training data, we first split our training data according
to execution time ranges, then we train different regressions for different time ranges. We use the
x-means [12] clustering algorithm to find X clusters of execution times in our training data. We
used x-means because it automatically chooses the number of clusters. For each cluster found
in the training data, we create a training data subset with all the queries of the corresponding
cluster. We use these X training data subsets to train X number of SVM regressions. As
features, we use both the algebra and the basic graph pattern features.

We also train a SVM classifier [4] with a training dataset containing all the training queries
and the cluster number of each query as the label for the queries. For an unseen query, we first
predict the cluster for the query using the SVM classifier, then we predict the execution time
using the SVM regression that correspond to the predicted class for the query. The accuracy of
the SVM classifier on our test dataset is 96.0833%. This means that we can accurately predict
the execution time ranges of unseen queries as each cluster correspond to a time range of query
execution times. The high accuracy also validates our previous observation that the lower R2

values were due to queries with irregular execution times - long and short running queries - in
our training data.

The overall R2 value on our test dataset with this model jumps to 0.83862. Figure 6 shows the
log scale plotting of predicted execution time vs actual execution time of our test queries using
multiple regression models. The long running queries are very close to the perfect prediction
line. Also there are more queries moved towards the perfect prediction line.

Figure 6: Log scale plotting of predicted vs actual execution times for the test queries (test
dataset R2 = 0.83862).

4.4 k-Nearest Neighbors Regression Model

The k -nearest neighbors algorithm (k -NN) [1, 2] is a non-parametric classification and regression
method. The k -NN algorithm predicts based on the closest training examples. The k -NN
algorithm is often successful in the cases where decision boundary is irregular. We have a similar

Inria
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k = 1 k = 2 k = 3 k = 4 k = 5
R2 0.2078 0.3551 0.1473 0.0301 0.0318

Table 1: R2 values for different k for k -NN for the validation dataset.

situation with our training data. In our final experiment, we train the regression variant of k -NN
algorithm. We use Euclidean distance as the distance function of k -NN. For predictions, we use
the weighted average of the k -nearest neighbors - weighted by the inverse of the distance from the
querying data point. This ensures that the nearby neighbors contribute more to the prediction
than the faraway neighbors. We use the k -dimensional tree (k -d tree) [5] data structure to
compute the nearest neighbors. For N training samples, k -d tree can find the nearest neighbor
of a data point with O (log N) operations.

We select the value of k for k -NN by cross validation. Table 1 shows the R2 values for different
k for the validation dataset. As k = 2 gives the best R2 value, we select k = 2 for our k -NN
model.

The R2 value on the test dataset for the model is 0.837. Figure 7 shows the log scale plotting
of predicted execution time vs actual execution time of our test queries using k -NN regression.
The result of k -NN and multiple regressions are almost same. However, the complexity of training
the k -NN regression is less.

Figure 7: Log scale plotting of predicted vs actual execution times for the test queries (test
dataset R2 = 0.837).

5 Suggesting SPARQL queries

Query suggestions are useful for constructing and refining queries. We use the same k -d tree that
we construct for our k -NN regression model to suggest similar SPARQL queries. For a given
query, we suggest the k nearest neighbors of the query from the k -d tree. For example, listing 1
shows a SPARQL query for which we suggest SPARQL queries.

RR n° 8392



12 Hasan & Gandon

Listing 1: A sample SPARQL query
SELECT DISTINCT ?uri

WHERE

{ dbpedia :1549 _Mikko ?p ?uri .

?uri rdf:type ?x

}

The top 3 suggestions our algorithm generates are below:

Listing 2: Suggestion 1
SELECT DISTINCT ?uri

WHERE

{ dbpedia:Radu_Sabo ?p ?uri .

?uri rdf:type ?x

}

Listing 3: Suggestion 2
SELECT DISTINCT ?uri

WHERE

{ dbpedia:Hafar_Al -Batin ?p ?uri .

?uri rdf:type ?x

}

Listing 4: Suggestion 3
SELECT DISTINCT ?uri

WHERE

{ dbpedia:Maurice_D._G._Scott ?p ?uri .

?uri rdf:type ?x

}

The suggested queries are very similar to the query in listing 1. A user can use such query
suggestions for various purposes. For example, checking the similar queries executed for a given
query and analyzing their behavior. This would help the user to understand behavior of similar
queries based on the query execution history.

6 Related Work

To the best of our knowledge, there is no existing work on predicting SPARQL query performance
using machine learning techniques. In the database literature, Ganapathi et al. [6] discuss pre-
dicting performance metrics of database queries prior to query execution using machine learning.
The authors use Kernel Canonical Correlation Analysis (KCCA) to predict a set of performance
metrics. The authors use a set of query operators as query features to predict the performance
metrics. For the individual query elapsed time performance metric, the authors were able to
predict within 20% of the actual query elapsed time for 85% of the test queries. The authors
envision that their approach can support database workload management and capacity plan-
ning. Gupta et al. [7] use machine learning for predicting query execution time ranges on a data
warehouse. Gupta et al. achieved an accuracy of 80% predicting with 4 time ranges.

Stojanovic et al. [17] study the problem of query refinement in ontology-based systems. They
propose a logic-based approach which enables users to refine queries in a step-by-step fashion. In
each step, this approach suggests a ranked list of refinements according to the user’s needs. The
authors argue that this approach is suitable for modeling information retrieval tasks on databases.
Nandi et al. [11] present an automatic query completion approach to he users construct queries
without prior knowledge of the underlaying schema. This approach helps the users to construct

Inria
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queries while they type by suggesting schema level parameters and text fragments from the
data. Zenz et al. [18] introduce the QUICK system to help users construct semantic queries from
keywords. QUICK enables a user to start with arbitrary keywords and incrementally constructs
the intended query.

7 Conclusion and Future Work

We study the techniques to predict SPARQL query execution time and suggesting SPARQL
queries. We learn query execution times from query history using machine learning techniques.
An important contribution of our work is transforming SPARQL queries into vector represen-
tation necessary for machine learning algorithms. We achieved high accuracy (coefficient of
determination value of 0.84) for predicting query execution time.

In future, we would like to evaluate our query suggestions. A possible evaluation method
would be to perform a user-centric evaluation. Users would be asked to rate the quality of
suggestions. Then we would compute the overall accuracy of our approach by evaluating how
much the opinions of the users and the results of our algorithm match.
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