View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1996

Annotated Statistical Indices for Sequence Analysis

Alberto Apostolico
Mary Ellen Bock

Xuyan Xu

Report Number:
96-072

Apostolico, Alberto; Bock, Mary Ellen; and Xu, Xuyan, "Annotated Statistical Indices for Sequence Analysis"
(1996). Department of Computer Science Technical Reports. Paper 1326.
https://docs.lib.purdue.edu/cstech/1326

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ANNOTATED STATISTICAL INDICES
FOR SEQUENCE ANALYSIS

Alberto Apostolico
Mary Ellen Bock
Xuyan Xu

CSD-TR 96-072
November 1996

Annotated Statistical Indices for Sequence

Analysis

Alberto Apostolico* Mary Ellen Bock' Xuyan Xut

November 20, 1996

Abstract

A statistical index [or string r is a digital-search tree or irie that returns. for
any guery string w and in a number of comparisons bounded by the length of w, the
number of occurrences of w in x. Clever algorithms are available that support the
construction and weighting of such indices in time and space linear in the length
of . This paper addresses Lhe problem of annotating a statistical index with such

paramelers as the expected value and variance of the number of occurrence of each
substring.

Key Words and Phrases: Design and analysis of algorithms. combinatorics

on strings. pattern matching, substring statistics. suffix iree, annotated suffix tree,
period of a string, repetition in a string.

AMS subject classification: 68C25

“Department of Computer Sciences, Purdue University, Computer Sciences Building, West Lafayelte,
IN 47907, USA and Dipartimento di Eletironica e Informatica, Universita di Padova, Padova, Italy.
axattcs.purdue.edun. Work supported in part by NSF Grant CCR-9201078, by NATO Grant CRG
900293, by the National Research Councit of Italy, and by the ESPRIT III Basic Research Programme
of the EC under contract No. 9072 (Project GEPPCOM).

IDepartment of Statistics. Purdue University, Math. Sciences Building, West Lalayette, [N 47907,
USA. mbock@stat.purdue.edu,

IDeparument of Statistics. Purdue University, Math. Sciences Building, West Lafayette, IN 47907,
USA. xuyan@stat.purdue. edu.

1 Introduction

Searching for repeated substrings, periodicities, symmelries, cadences, and other similar

regularities or unusual patterns in objects is an increasingly recurrent task not only in
the analysis of genomic sequences but also in countless other aclivities, ranging from data
compression to symbolic dynamics and the monitoring and detection of unusual events.
In most of these endeavors, subsirings are sought that are, by some measure, Lypical or
anomalous in the context of larger sequences. Some of the most conspicuous and widely
used measures of typicality for a substring hinge on the frequency of its occurrences: a
substring that is either too frequent or too rare in terms ol some suitablc parameter of
expectation is immediately suspected to be anomalous in its conlexl.

Tables for storing the number of occurrences in a string of substrings of {or up to)
a given length are roulinely computed in applications. Aclually, clever methods are
available to compute and organize Lhe counts of occurrences ol all subslrings of a given
string. The corresponding tables take up the tree-like struclure of a special kind of digital
search index or irie (see, e.g., [Mc-T6], [Ap-85], [AP-96]). These lrces have [ound use in
numerous applications [Ap-85], including of course computational biology [Wa-95]. Once
the index itself is built, iL makes sense to annotale its eniries with the expected values
and variances that may be associated with them under one or more probabilistic models.
One such process of annotation is addressed in this paper.

The paper is organized as follows. In the next section, we review some basic facls
pertaining to the construction and structure of statistical indices. We then summarize in
Section 3 some needed combinatorics on words. Section 4 is devoted to the derivation of
formulae [or expected values and variances for substring occurrences, in the hypothesis of
a generalive process governed by independent, identically distributed random variables.
Our formulae will be written in a form thal is conducive Lo efficienl computalion, within
the paradigm discussed in Section 2. The computalion itself will be the object of Section

5, which concludes our presentation.

2 Preliminaries

Given an alphabel £, we use £% 1o denote the {ree semigroup generated by T, and set £*

= T U{)}, where X is Llic empty word. An element of L7 is called a string or sequence

or wortd, and 1s denoted by one of the letters s, u, v, w, z,y and 2. The same letters, upper
case, are used to denote random strings. We write 2 = z125...2, when giving the symbols
of & explicitly. The number of symbols that form w is called the length of w and denocted
by |w|. If @ = vwy, then w is a substring of = and the integer 1 + |v| is ils (starting)
position in x. Let I = [/,] be an interval ol posilions ol a string . We say that a
substring w ol @ begins in [if I contains the starling posilion of w, and that it ends in
1 if 1 contains Lhe position of the last symbol of w.

Clever pattern matching techniques and tools (see, e.g., [Ah-90, AHU-74, AG-85, CR-
94]) have been developed in recent years to count (and locate) all distincl occurrences
of an assigned substring w (the patfern) within a longer string = (the text). As is well
known, this problem can be solved in O(|z|) time, regardless of whether instances of the
same pattern w that overlap - i.e., share positions in x - have to be distinctly delecled, or
else 1he search is limited to one of the streams of conseculive nonoverlapping occurrences
of w.

When [requent queries of this kind are in order on a fixed text, each query involving a
different pattern, it might be convenient to preprocess z to construct an auxiliary index
tree [AHU-74, Ap-85, We-73, Mc-76, CS-85] storing in O(|z|) space informalion about
the structure of x. This auxiliary tree is to be exploited during the searches as the state
transition diagram ol a (inilc automnalion, whose input is the pattern being sought, and
requires only time linear in the length ol the pattern to know whether or not the lalter
is a substring of . Here. we shall adopt the version known as suffiz {ree, introduced In
[Mc-76). Given a string x of length n on the alphabet X, and a symbol § not in ¥, the
suffiz tree T, associated with z is the digital search tree that collects the first n suffixes of
8. In the ezpanded representation of Ty, each arc is labeled with a symbol of ¥, except
for terminal arcs, that are labeled with a substring of 3. The space needed can be Q(n?)
in the worst case [AHU-74]. An example of expanded suffix tree is given in Figure 1.

In the compact representation of Ty (see Figure 2), chains of unary nodes are collapsed
into single arcs, and every arc of T, is labeled with a substring of z$. A pair of poinlers
to a common copy of 2 can bhe used for each arc label, whence the overall space taken
by this version of 7 is O{n). In both representations, suffix suf; ol #$ (z =1,2,...,n) is
described by the concatenation of the labels on the unique path of 7, that leads [rom the
rool Lo lcaf 2. Similarly, any vertex a of T distinct from the root describes a subword

w(a) of 2 in a natural way: vertex « is called the proper locus of w(a). In the compact T,

a a
b a
a a s b b
b a
a 3 17
b b a af S b
a d
¥ VI EC1 I .V . [
ab a b VAN b a
i
bf '\a a a & 13| Ya a s| \b
a ; b 5| % b a b a
bf ¢ % ’ X R a
a a
b . [:]
a c 2] R b S

2 3 4 5 &6 7 8 9 10 1112 13 14 15 18 17
baababaabaababas

B -

Figure 1: An expanded suffix tree

the locus of w is Lhe unique vertex of 17 such that w is a prefix of w(a) and w(Father(«))
is a proper prefix of w.

An algorithm for the construction of the expanded T is readily organized as in Figure
3. Westart with an empty tree and add Lo it the suffixes of 2§ one at a time. Conceptually,
the insertion of suffix suf; (i = 1,2,...,m 4 1)} consists of two phases. In the first phase,
we search [or suf; in T;_,. Note that the presence of $ guarantees that every sullix will
end in a distinct leaf. Therefore, this search will end with failure sooner or later. Al thal
point, though, we will have identified the longest prefix of suf; that has a locus in T:_;.
Let head; be this preflix and a the locus of head;. We can write suf; = head; - tail; with
lazl; nonempty. In the second phase, we need to add to T;_; a path leaving node o and
[abeled taif;. This achieves the transformation of T;_; into 7.

We can assume that the first phase of insert is performed by a procedure findhead,
which Lakes suf; as input and returns a pointer to the node a. The second phasc is
performed then by somec procedure addpath, that recetves such a poinier and directs a
path from node « to leal i. The delails of these procedures are left for an exercise. As is
casy Lo check, the procedure buildtree takes time ©(n?) and linear space. It is possible
Lo prove (see, e.g., [AS-92]) that the average length of head; is O(logi), whence building
T, by brule force requires Q(nlogn) time on average. Clever constructions such as in

[Mc-76) avoid the necessity of tracking down each suffix starting at the root.

3

(1.1} 2.2)
a b a
@2 s a (43)
a a b b
] b a
43 & 17 aj §
“way, A « L b 22)
a a
a b a a
b a b a
a a b b .
b/ X a a a 2 sl \»
{128 a s/ \o s ba b a b A (9.9)
b a a) a a
a
/Ll \ . n

4 5 6§ 7 B 9 10 1112 13 14 1516 17
ababaabaababas

D w

1 2
a b
IMigure 2: A suflix tree in compact form

Irrespective of the type of construction used, some simple additional manipulations on
the tree make it possible to count the number of distinct (possibly overlapping) instances
of any pallern w in z in O(|w|) steps. For this, observe that the probiem of finding all
occurrences of w can be solved in time proportional to |w| plus the total number of such
occurrences: either visil the subtree of 7. rooted at the locus of w, or preprocess T,
once for all by attaching to each node Lhe list of the leaves in the subtree rooted al thal
node. A trivial bottom-up computalion on T, can then weight each node of 7, with the
number of leaves in the subtree rooled al that node. This weighted version serves then

as a statistical index for [Ap-85, AP-96], in the sense that, for any w, we can find the

procedure buildtree(z,7:)
begin
To +— O
for i =1 to n+1do T; —insert(suf;, Ti-1);
Tr — Thir;
end

Iigure 3: Building an expanded suffix tree

frequency of w in @ in O(|w|) time. We note that this weighting cannot be embedded
in the lincar time construction of Ty, while it is trivially embedded in the brute force
consiruction: Attach a counter Lo each node; then, each time a node is traversed during
insert, increment its counter by 1; il insert culminates in the creation ol a new node
B on the arc (Father(a), a), initialize the counter of A to 1 4 counter of . A suffix tree
with weighted nodes is presented in Figure 4 below. Note that the counter associaled
with Lhe locus of a string reports its correct {requency even when the string terminates

in the middle of an arc.

5 6 7 B 9 10 1112 13 14 1516 17 18 19 2¢ 21
b abaabhbaababaababas

v I
O N
0w
O

Figure 4: A partial suffix tree weighted wilh subslring stalislics

In conclusion, the full statistics (with possible overlaps) of the substrings of a given

string & can be precompuled in one of these trees, within time and space lincar in the

textlength.

[|

3 Periodicities in Strings

A string z has a period w il z is a prefix of w* for some integer k. Alternatively, a siring

'v and v is a possibly emply prefix of w. Often when

w s a period of a string - il z = w
this causes no confusion, we will use the word “period” also Lo reler to the length or size
|w| of a period w of z. A siring may have several periods. The shortest period (or period
length) of a string z is called the period of z. Clearly, a string is always a period of itself.
This period is called the trivial period.

A germanc nolion is Lhat of a border. We say that a non-empty string w is a border of
a string z if z starts and ends with an occurrence of w. Thal is, z = ww and z = wv for
some possibly emply strings u and v. Clearly, a siring is always a border of itsel{. This

border is called the trivial border.

Fact 3.1 A siring x[1..k] has period of lenglh g, such that g < k, if and only if il has a
non-trivie! border of lenglh k — q.

Proof: Immediate from the definitions of a border and a period. O
A word z is primitive if setting = = s* implies k = 1. A string is periodic if its period
repeats at leasl twice. The following well known lemma shows, in particular, that a string

can be periodic in at most one primitive period.

Lemma 3.2 (Periodicity Lemma [L.5-62]) Ifw has periods of sizes d and ¢ and |w| >
d+ ¢ then w has period of size ged(d, ¢).

A word z is strongly primiliveor square-free if every substring of is a primilive word.
A squareis any string of the form ss where s is a primitive word. For example, cabea and
cebabd are primitive words, but cabea is also strongly primitive, while cababd is nol, due
to the square abad. Given a square ss, s is the root of that square.

Let now w2 be a substring of & having at least two dislincl occurrences in @. Then,
there are words u,y,u’,y’ such that v # «', and 2 = wwy = v'wy’. Assuming w.l.o.g.
|u| < ju'|, we say that those two occurrences of w in are disjoint ifl [v| > |uw|, adjacent
iff |v'| = |uw| and owverlapping if |u'] < |uw|. Then, it is not difficult Lo show (see, e.g.,
[Lo-83]) that word 2 conlains two overlapping occurrences of a word w # X iff 2 contains
a word of the form avavae with ¢ € ¥ and v a word.

One more important consequence of the Periodicily Lemma is that if ¥ is a periodic

string, u 1s its period, and y has conseculive occurrences at positions 7y, 24, ...,%x in 2 with

6

i — -1 < |yl/2, (1 < j < k), then it is precisely i; —é;_y = |[u| (1 < j < k). In
other words, consecutive overlapping occurrences of a periodic string will be spaced apart

exactly by the length of the period.

4 Computing Expectations

Lel X = X, X;... X, be a tezlsiring randomly produced by a source thal emits symbols
[rom an an alphabet X according to some known probabily distribution, and let y =
Y1y2. .. Ym (m < n) be an arbitrary but fixed pattern string on £. We wanl to compute
the expected number of occurrences of ¥ in X, and the corresponding variance. lor
: € {1,2,...,n —m+ 1}. define Z; to be 1 il ¥ occurs in X starting at position ¢ and 0

otherwise. Let

n-—-m-+41
> Z
i=1
so that Z is the total number of occurrences of 4. Jor given y, we assume random

X’s in Lhe sense that:

1. the X’s are independent of each olher and
2. The X's are identically distribuled, so that, for each value of &, the probability
that Xy = y; is p;.

Then

E[Zily] = T2, pi = p.
Thus,

BIZly) = (n—m+ 1) 0
and

n—m+1
Var(Z|y) = ZCOU Ziy Z3) Z Var(Z)+2 Y. Cov(Z:, Z;)
i, i j<n—m+tl
=(n—-m+1)Var(Z))+2 >, Cov(Z;,Z;)
i<j<n—m+1

Because Z; is an indicalor humclion,

E[Z}] = BE{Z;] = p.

This also implies that

Ver(Z:) = p(1 - p)

and
COU(Z{, Zj) = E[Z,'ZJ'] - E[Z,]E[ZJ]
Thus

S Cow(Z, %)= S (ElZ%) -)

r<isn—rm+1 i<j<n—m+l1

If j —i>m, then E[Z;Z;) = E|Z])E|Z;], so Cov(Z;, Z;) = 0. Thus, if j —1 < m,

n—rm min{i+m—1,n—m+1)

> Cov(Zi,2;) = Z > Cov(Z;, Z;)

i<3en—m+1 =1 F=i+1
n—m min{m—-1n—m-+1—i)
= Z Cov(Zi, Ziya)
=1 d=1

min(m—1n—m} n—m+1l—d

= Z Z COU(Z,',ZH_(;)

d=1 i=1

min(m—1n—m)

= Z (Tc‘. —m + 1 - d)Cov(Zl, Z].;.d).

d=1
Before we compute Cov(Zy, Z114), recall that an inleger d < m is a period of y =
1Yz ... Ym If and only if yi = yepe for all i in {1,2,...,m — d}. Now, lel {dy,ds,...,d;}
be the periods of ¥ that satisfy the conditions:

1<d <dy<...<ds Lmin(m — 1,n —m).

Then, for d € {1,2,...,m — 1}, we have that the expected value

E[Z1Z44]

8

=PXi=y,Xe=y-- - Xn=ym & Xipa =91, X004 =92, ..., Xond = ¥m)

may be nonzero only in correspondence with a value of d equal Lo a period of y. There-
fove, E[Z1Z144) = 0 for all d’s less than m not in the set {d;,ds,...,d;}, whereas in

correspondence of the generic d; in that sel we have:

ElZy Zyyai] = PAH?;m-d.-HPj-
Resuming our computalion of the covariance, we gel then:

min{m-1,n—m)

> Covl(Zi, Z;) = > (n—m+1—d)Cov(Z1, Z144)

i<i<n—m+1 d=1

min{m—1n—m)

— Z (n_m-|-] -—d) *(E{lel-!-d] _}32)

=1
s min{m—f,n—m))
=Y m Al - gapi = Y (n—mA1—d)p
i=1 d=1

=Y (n—m+1—d)pIr, ;.17

=1

—p(2(n -~ m + 1) — 1 —min(m ~ L,n —m)) * min{m — 1,n —m)/2.

Thus,

Var(Z) = (n —m+ 1)p(1 — p)—

p(2(n—m+1)—1—min(m—1,n—m))*min{m — 1,n —m)

+2p E(" -m+1-— dI)H?=m—d,+1Pia
=1

which depends on the values of m — 1 and n — m. We distinguish the following cases.

Case 1: m < (n+1)/2

Var(Z)=(n—m+1)p{(1 —p) — p*(2n — 3m + 2)(m — 1)

+) (n—m+1—d)IjL, 4P (2)

=1

Case 2: m > (n+1)/2

Var(Z) =(n—m+1)p(1 - p) — p*(rn —m + L)(n — m)

+253 (n—m+ 1 —d)If, 40 (3)

=1

5 Index annotation

As staled in the introduction, our goal is 1o augment a statistical index such as T3 so that
ils generic node « shall not only reflect the count of occurrences of the corresponding
substring y(a) of &, but also display the expected values and variances that apply Lo
y(a) under our probabilistic assumptions. Clearly, this can be achieved by performing
the appropriatc computations starting from scratch for each string. Even neglecting for
a moment the compulations needed to expose the underlying period structures, however,
this would cost O(|y|) time for each substring y of = and thus result in overall time O(n?)
for a string @ of n symbols. Fortunately, expressions 1, 2 and 3 can be embebbed in
the “brute-force” constrnclion of Section 2 (cf. Figure 3) in a way that yields an O(n?)
overall time bound [or the annotation process. We note that as long as we insist on having
our values on each one of the substrings of z, then such a performance is optimal as z
may have as many as ©(n?) distinct substrings. (However, a corollary ol probabilistic
constructions such as in [AS-92] shows thal if attention is restricled to substrings that
occur at least twice in & then the expected number of such strings is only O(rlogn)).
Owr claimed performance rests on the ability to compule Lthe valucs associated with
all prefixes of a string in overall linear lime. These values will be produced in succession,
each from the preceding oune (e.g., as part of insert) and al an average cost of constant
time per update. Observe that this is trivially achieved for the expected values in the
form L[Z|y]. In fact, even more can be stated: if we compuled once and [or all on z the

n consecutive prefiz products of the form

ﬁf = H{:lpl' (B = 112: "'1.[)1

then this would be enough o produce later the homologous product as well as the expected
value E[Z|y] itsell for any substring y of z, in constant time. To see this, consider the

producl py, associated with a prefix of x that has y as a suffix, and divide j; by p;_jy.

10

This yields the probability 7 for y that appears in 1. Multiplying this value by (n— |y|+1)
gives then (n—m+1)p = F[Zly]). From now on, we assume that the above prefix products
have been computed for x in overall linear time and are available in some suitable array.

The situatlion is more complicated with the variance. However, cxpressions 2 and 3
still provide a handle for fast incremental updates of the type Lhai was just discussed.
Observe that each expression consists of three terms. In view ol our discussion of prefix
productls, we can conclude immediately that the p-values appearing in the first two terms
of either 2 or 3 take constant time to compute. Ience, those terms are evaluated in
constant lime themselves, and we only need to concern ourselves with the third term,
which happens to be the same in both expressions. In conclusion, we can concenlrale

henceforth on the evaluation of the sum:

B = Z(n ~m+1 - d)L,, g5

I=1

Note that the computation of 13 depends on the structure of all d; periods of y that are
less than or equal to min(m — 1,n — m). What seems worse, Expression B involves a
summalion on this set of periods, and the cardinality of this set is in general not bounded
by a constant. Still, we can show that the value of B can he updated efficiently following
a unit-symbol exlensions of the string itself. We will not be able in general to carry out
every such updale in constant time. However, we will manage to carry out all the updates
relative to the set of prefixes of a same string in overall linear (ime, thus in amortized
constant time per update. This possibilily rests on a simple adaptation of a classical
implement of fast siring scarching, that computes the longest borders (and corresponding
periods) of all prefixes of a string in overall linear time and space. We report such a
construction in Figurc 5 below, for the convenience of the reader, but refer for details
and proofs of linearity Lo discussions of “failure functions” and related conslrucls such as
[ound in, e.g., [AIIU-74, Ah-90, CR-94].

To adapt Procedure maxborder to our needs, it suffices to show that the computation
of B{m), i.e., the value of B relative to prefix y192...ym of y, [ollows immediately from
knowledge of bord(m) and of the values B(1), B(2),...B{m — 1), which can be assumed to
have been already computed. Noting that a same period dy may last [or scveral prefixes
of a string, it is convenicnt 1o define the border associated with d; at position m to be

b =m —d.

T

11

procedure maxborder (y)
begin
bord[1] «— 0;
for m=2to hdo
r « bordlm ~ 1]
while 7 > 0 and y,4q # ¥, do
r +— bord[r];
endwhile
if 4,11 # ym and r =0 then bord[m] « r + 1;
endfor
end

IMigure 5: Computing the longest borders for all prefixes of ¥

Note that d; € min(m — 1,n — m) implies thal
bim (=m—di) >m—min(m—1,n—-m)

=max(m—m+1,m —n+m)=maz(l,2m —n).

However, this correction is not serious unless m > (n 4+ 1)/2 as in case 2. We will assume
we are in Case 1, where m < (n + 1)/2.
Let S(m) = {bin};™ be the set of borders at m associated with the periods of

Y1Y2---¥m- The crucial fact subtending the correclness ol our algorithm rests on the fol-

lowing simpie observation.
S(m) = {bord(m)} U S(bord(m)). (4)

Going back to Expression B, we can write now using &, = m — d;:
B(m) =3 (n—2m+14bm)ILy, 1P

=1

Separating [rom the resl Lhe term relative to the largest border, this becomes:
B(?”) = (T?- ~2m + 1 + bord(?n))lly;bord{m)-{—lpj

12 ,'

+> (n—2m+1+ A8 Y
1=2
Using Relation 4 and Lhe definttion of a border to re-write indices, we get:

B(Tn') = (T?- —2m+ 1+ bord(m))H?::bord[m)+1p.f

Sbord{m)

+ > (n—-2m+1+ Ot pord(m) 11Tty yorgmy+1 P
=1
which becomes, adding the substitution m = m — bord(m) + bord(m) in the sum,

Bm)=(n-2m+1+ bord(m))l’[;?‘:bard(m]ﬂpj

3bard(n:)
+2(bord(m) — m) Z 11?=bt.burd(m)+1pj
=1
Sbord(m)
+ Z (n—2- bOrd(‘nl) +1+ b‘vb""d(m))H.?l:br.bord(m)'l'lpj
i=1

= (n—2m + 1 + bord(m)) L, 4m)+1P;

Sbord{m)
+2(bord(m) — m) Z H;?;b!,burd(m}'l'lpj
I=1
Stord{m) bord({m)
+ (Miisordpmys1Ps) > (n=2-bord(m)+1+ b"*"”’d(m))ﬂi=b!.aord(m)+1pj

=1
=(n—-2m+1+ bﬂrd(m))n}n:bartl(m)-l—lpj

Shord{m)

+2(bord(m) - m') Z H?lzbl.bord(m)‘i‘lpj
=1

+ (H;F=bord(m}+1pj) ' B({)O?'d(?n)).

From knowledge ol n,m, bord(m) and the prefix products, we can clearly compule the
first term ol B(m) in constant time.

Except for (bord(m)—m), the second term is essentially a sum of prefix products taken
over all distinct borders of ¥,¥3...4m- Assuming that we had such a sum and B(bord(m))
at this point, we would clearly be able to compute B{(m) whence also our variance, in

constant time. In conclusion, we only need to show how o maintain knowledge ol the

13

value of such sums during maxborder. But this is immediate, since the value T'(m) of the

sum at m is clearly:
T('ﬂ‘l) = (T(bord(m)) + 1)) H?t:bord[m]+1pj

and the product appearing in this expression is immedialely obtained from our prefix
products.

We have thus established that, under the probabilistic assumptions which were made,
the variances of all prelixes of a string may be computed in linear time. This construction
may be applied, in particular, to cach suffix suf; of a string x while that suffix is being
handled by insert as part of procedure buildtree. This would result in an annotated

version of 7). in overall quadratic time and space in the worst casc.

6 Acknowledgements

We are indebted to R. Arratia for suggesting the problem of annotating statistical in-
dices with expected values, and to M. Waterman for enlightening discussions and helpfull

comnicnls.

References

AHU-74 Aho, AV, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Compuler
Algorithms, Addison-Wesley, Reading, Mass. (1974).

Ah-90 Aho, A.V., Algorithius for Finding Pallerns in Strings, in Handbook of Theoretical
Computer Science. Volume A: Algorithms and Complezity, The MIT Press (1990).

Ap-85 Apostolico, A., The myriad virtues of suflix trees. pg. 85-96 in [AG-85].

AG-85 Apostolico, A. and Z. Galil (eds.), Combinatorial Algorithms on Words, Springer-
Verlag Nalo ASI Series F, Vol. 12 (1985).

AP-96 Apostolico, A. and [F.P. Preparata, Dala Structures and Algorithms for the String
Statistics Problem, Algorithmica, 15, 481-494 (1996).

AS-92 Apostolico, A. and \W. Szpankowski, Self-Alignments in Words and Their Applica-
tions, Journal of Algorithms, 13, 446-467 (1992).

14

CS-85

CR-94

LMS5-96

Lo-83

LS-62

Mc-706

Ni-73

Wa-89

Wa-95

We-73

CHEN, H.T., AND J. SEIFERAS [1985]. “Efficient and clegant subword tree con-
struction”, pp. 97-109 in [AG-85].

Crochemore, M. and W. Rytler, Text Algorithms, Oxford University Press, New
York (1994).

Leung, M.Y., G.M. Marsh and T.P. Speed, Over and Underrepresentation of Shorl
DNA Words in Herpesvirus Genomes, Journal of Computational Biology 3, 3, 345
— 360, 1996.

Lothaire, M., Combinatorics on Words, Addison Wesley, Reading, Mass., (1982).

Lyndon, R.C., and M. P. Schutzemberger, The Equalion a* = d¥cP in a Free
Group, Mich. Math. Journal 9, 289-298 (1962).

McCreight, E.M., A Space Economical Suffix Tree Construction Algorithm, Jousr.
of the ACM, 25, 262-272 (19706).

Nielscn, P.T., On the Expected Duration of a Search [or a Fixed Pattern in Random
Data, [EEE Information Theory, T02-709 (1973).

Waterman, M. S. (Ed.), Mathematical Methods for DNA sequences, CRC Press,
Boca Ralon, 1989 .

Walerman, M.5., Introduction to Compululional Biology, Chapman & Mall (1995).

Weiner, P., Lincar Pallern Matching Algorithms, Proc. of the 14-th Annual Sym-
posium on Swilching and Avlomata Theory, 1-11 (1973).

I3

	Annotated Statistical Indices for Sequence Analysis
	Report Number:
	

	tmp.1307986960.pdf.EYLKa

