
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1996

Annotated Statistical Indices for Sequence Analysis Annotated Statistical Indices for Sequence Analysis

Alberto Apostolico

Mary Ellen Bock

Xuyan Xu

Report Number:
96-072

Apostolico, Alberto; Bock, Mary Ellen; and Xu, Xuyan, "Annotated Statistical Indices for Sequence Analysis"
(1996). Department of Computer Science Technical Reports. Paper 1326.
https://docs.lib.purdue.edu/cstech/1326

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ANNOTATED STATISTICAL INDICES
FOR SEQUENCE ANALYSIS

Alberto Apostolico
Mary Ellen Bock

Xuyan Xu

CSD·TR 96·072
November 1996

Annotated Statistical Indices for Sequence

Analysis

Alberto Apostolico' Mary Ellen Bock! Xuyan Xut

November 20, 1996

Abstract

.-\ statistical index for string x is a digital-search tree or /.,'ie that returns. for

any query string w aud in a number of comparisons bounded by the length of w, the

number of occurrences of IV in :L'. Clever algorithms are available that support the

construction and wC'ighting of such indices in time and space linear in the length

of x. This paper addresses the problem of annotating a statistical index with SllCh

parameters as the expected value and variance of the number of occurrence of each

substring.

Key Words and Phrases: Design and analysis of algorithms. cambinatories

on strings. pattern matching, substring statistics. suffix tree, annotated suffix tree.

period of a string, l"l.:'petltion in a string.

AMS subject classification: 68C2.5

-Department of Computer Sciences. Purdue University, Computer Sciences Building, West Lafayette,

IN 47907, USA and Dipartimento di Eletlronica e Informatica, Universita di Padova, Pado....a. Haly.
axaCllcs.purdue.edu. Work ;;l1pported in part by j\SF Grant eCR-9201078, by NATO Grant eRG

900293. by the National ReSCI\Tch Council of Haly, and by the ESPRIT III Basic Research Programme
of the EC under contract No. 9072 (Project GEPPCOM).

tDepanment of Statistics. Purdue University, 1\1ath. Sciences Building, \Vest Lafayette. IN 47907,
USA. mbockCllstat. purdue. edu.

lDeparunent of Statistics. Purdue University, Math. Sciences Building, West Lafayette, IN 47907,

USA. xuyanCllstat. purdue. edu.

1 Introduction

Searching for repeated substrings, periodicities, symmetries, cadences, and other similar

regularities or unusual patterns in objects is an increasingly recurrent task not only in

the analysis of genomic sequences but also in countless other adivilies, ranging from data

compression to symbolic dynamics and the monitoring and detection of unusual events.

In most of these endeavors, substrings are sought that are, by some measure, typical or

anomalous in the context. of larger sequences. Some of the most conspicuous and widely

used mca."ures of typicalit.y for a substring hinge on the frequency of its occurrences: a

substring that is either t.oo frequent or too rare in terms of some suitable parameter of

expectation is immediately suspected to be anomalous in its contcx:L.

Tables for storing the number of occurrences in a string of substrings of (or up to)

a given length are routinely computed in applications. Actually, clever methods are

available to compute and organize the counts of occurrences of all substrings of a given

string. The corresponding tables take up the tree-like structure of a special kind of digital

search index or tTie (see, e.g., [Mc-76], [Ap-85], [AP-96])_ These trees heLVe found use in

numerous applications [Ap-85], including of course computational biology [Wa-95]. Once

the index itself is built, it makes sense to annotate its cntrics with the expected values

and variances that may be associated with them under one or more probabilistic models.

One such process of annotation is addressed in this paper.

The paper is organized as follows. In the next section, we review some basic facts

pertaining to the construction and structure of statistical indices. We then summarize in

Section 3 some needed combinatorics on words. Section 4 is devoted to the derivation of

formulae for expected va.llles and variances for substring occurrences, in the hypothesis of

a generative process governed by independent, identically distributed random variables.

Our formulae will be written in a form that is conducive to efficient computation, within

the paradigm discussed in Section 2. The computation itself will be the object of Section

5, which concludes our presentation.

2 Preliminaries

Given an alphabet E, we use E+ to denote the free semigroup generated by E, and set E'"

= E+ U{),}, where), is tIte empty word. An element of L;+ is called a sLl'ing or sequence

1

or word, and is denoted by one of the letters s, u, V, w, x, y and z. The same letters, upper

case, are used to denote random strings. We write x = XIX2 ••. Xn when giving the symbols

of x explicitly. The number of symbols that form tv is called the length of 'UJ and denoted

by Iwl. 1f:1: = vwy, then tv is a Subst17ng of :1: and the integer 1 + Ivl is its (slarting)

position in x. Let I = [l,j] be an interval of posilions of a string x. We say that a.

substring w of :1: begins in J if I contains the starting position of w, and that it ends in

J if 1 contains the posit.ioll of the last symbol of w.

Clever pattern matching techniques and tools (see, e.g., [Ah-90, AHU-74, AG-85, CR­

94]) have been developed in recent years to count (and locate) all distinct occurrences

of an assigned substring 'W (the pattem) within a longer string x (the text). As is well

known, this problem can be solved in O(lxl) time, regardless of whet.her instances of the

same pattern w that overlap - i.e., share positions in x - have to be distinctly detected, or

else the search is limited to one of the streams of consecut.ive nonoverlapping occurrences

of tv.

·When frequent queries of this kind are in order on a fixed text, each query involving a

different pattern, it miglil. be convenient to preprocess x to construct an auxili<Lry index

tree [AHU-74, Ap-85, We-73, Mc-76, CS-85] storing in O([xl) space information about

the structure of x. This auxiliary tree is to be exploited during the searches as the state

transition diagram of a [inite automation, whose input is the pattern being sought., <md

requires only time linear in the length of t.he pattern to know whether or not the latter

is a substring of x. Here. we shall adopt the version known as suffix tree, introduced in

[Mc-76]. Given a string .1' of length n on the alphabet .E, and a symbol $ not in .E, the

suffix tree Tx associat.ed with x is the digital search tree that collects the first n suffixes of

x$. In the expanded representation of Tx , each arc is labeled with a symbol of.E, except

for terminal arcs, that are labeled with a substring of x$. The space needed can be 8(n2)

in the worst case [AHU-H]. An example of expanded suffix tree is given in Figure 1.

In the compacl. representation of Tx (see Figure 2), chains of una.ry nodes are collapsed

into single arcs, and ever.\" arc of Tx is labeled with a substring of .1:$. A pair of pointers

to a common copy of x ca.n be used for each arc label, whence the overall space taken

by this version of Tx is 0(11,). In both representations, suffix SUfi of x$ (i = 1,2, ... , 11.) is

described by the concatenation of the labels on the unique path of Tx that leads from the

root to leaf i. Similarly, any vertex a of Tx distinct from the root describes a subword

w(O') of x in a natural wa.y: vertex a is called the proper [OCllS of tv(O'). In the compact TXl

2

b

,
b,

b ,
b ,
, b

b ,,
S

,
,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a baab a baab aaba ba S

Figure 1: An expanded suffix tree

the locus of 10 is the uniquG vertex of 1:' such that w is a prefix of w(a) and w(Father(a))

is a proper prefix of w.

An algorithm for the construction of the expanded Tx is readily organized as in Figure

3. Vole start with an empty tree and add La it the suffixes of x$ one at a time. Conceptually,

the insertion of suffix sufi U= 1,2, ... , n + 1) consists of two phases. In the first phase,

we search for sufi in Ti _ l • Note that the presence of $ guarantees that every surfix will

end in a distind leaL Therefore, this search will end with failure sooner or later. At that

point, though, we will have identified the longest prdix of suf; that has a locus in Ti _ 1 _

Let head; be this prefix and IT the locus of head j • We can write :mfi = head, . taih with

lail; nonempty. In the second phase, we need to add to Ti _ 1 a path leaving node a and

labeled tail;. This achieves the transformation of Ti _ 1 into T,..

We can assume that the first phase of insert is performed by a procedure findhead ,

which takes sufi as input and returns a pointer to the node 0:. The second phase is

performed then by some procedure addpath, that receives such a pointer and directs a

path from node a to leaf i. The details of these procedures are left for an exercise. As is

easy to check, the procedure buildtree takes time 8(n2) and linear space. It is possible

to prove (see, e.g., [AS-92]) that the average length of head; is O(logi), whence building

T:J,. by brute force requires O(nlogn) time on average. Clever constructions such as in

[Mc-76] avoid the necessit.y of tracking down each suffix starting at the root.

3

(4,2) b

(1,1)

• ,
b (2,2)

•

,

1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17

a baab a baab aaba ba s

Figure 2: A sufIix tree in compact form

Irrespectlve of the type of construction used, some simple additional manipulations on

the tree make il. possible 1.0 count the number of distinct (possibly overlapping) instances

of any patLern w in x in O(lwl) steps, For this, observe that the problem or finding all

occurrences of w can be solved in time proportional to Iwl plus the total number of such

occurrences: ei ther visi t the subtree of 1~ rooted at the locus of 'W, or preprocess Tx

once for all by attaching to each node the list of the leaves in the subtree rooted at that

node. A trivial bottom-up computation on Tx can then weight each node of Tx with the

number of leaves in the subtree rooted at that node, This weighted version serves then

as a statistical index for :r [Ap-85, AP-96]' in the sense that, for any w, we can find the

procedure buildtree (x, Tx)

begin

To +- 0;
for i = 1 to n +1 do Ti +-insert(suf;, Ti _ 1);

Tx +- Ttl+!;

end

Figure 3: Building an expanded suffix tree

4

frequency of w in x in O(lwl) time. We note that this weighting cannot be embedded

in the linear time construction of Tz , while it is trivially embedded in the brute force

construction: Attach a counter to each node; then, each time a node is traversed during

insert, increment its counter by 1; if insert culminates in the creation of a new node

f3 on the arc (Father(a), 0:), initialize the counter of f3 to 1 + counter of Q. A suffix tree

with weighted nodes is presented in Figure 4 below. Note that the counter associated

with the locus of a string reports its corrcd frequency even when the string terminates

in the middle of an arc.

a
b

a

s

6

123456

abaaba
7 8 9 10 1112 13 14 1516 17 18 1920 21

baab aaba baaba bas

Figure 4: A pa.rtial suffix tree weighted with substring statistics

In conclusion, the full statistics (with possible overlaps) of the substrings of a given

string x can be precomputed in one of these trees, within time and space linear in the

textlength.

5

3 Periodicities in Strings

A string z has a pe1'1:od 10 if z is a prefix of 10
k for some integer k. Alternatively, a string

10 is a period of a string:: if z = w/v and v is a possibly empty prefix of w. Often when

this causes no confusion, we will use the word "period" also to refer to the length or size

1101 of a period 10 of z. A string may have several periods. The shortest period (or period

length) of a string z is ci-1.11ed the pe1iod of z. Clearly, a string is always a period of itself.

This period is called the trivial period.

A germane notion is that of a border. Vve say that a non-empty string tv is a bonlc1'of

a string z jf z starts and ends with an occurrence of w. That is, z = uw and z = wv for

some possibly empty strings u and v. Clearly, a string is ahvays a border of itself. This

border is called the trivia.! border.

Fact 3.1 A strin.fJ ,'l:[l..h] has period of length q, such that q < k, if and only if it has a

non-trivial b01'dcr of length I..~ - q.

Proof: Immediate fmm the definitions of a border and a period. 0

A word x is primitive if setting x = sl.· implies k = 1. A string is periodic if its period

repeats at least twice. The following well known lemma shows, in particular, that a string

can be periodic in at most one primitive period.

Lemma 3.2 (Periodicity Lemma [LS-62J) If tv has pen:ods of sizes d and q and Iwl ~
d + q thcn w has period of size gcd(d, q).

A word x is strongly fJl'imitiveor squa.re-free if every substring of x is a primitive word.

A square is any string of the form ss where s is a primitive word. For example, cabca and

cababd are primitive words, but cabca is also strongly primitive, while cababd is noL, due

to the square abab. Given (L square ss, s is the root of that square.

Let now w be a substring of x having at least two disLiTlcL occurrences in x. Then,

there are words U,y,l/,y' such that u =j:. U', and x = Utvy = U'tvy'. Assuming w.l.o.g.

lui < lu'l, we say that t.hose two occurrences of w in x are disjoint iff lu'l> luwl, adjacent

iff lu'l = luwj and overlapping if lu'l < luwl. Then, it is not difficult La show (see, e.g.,

[Lo-S3]) that word x con(,(Lins two overlapping occurrences of a word tv =j:.). iff x contains

a word of the fmm avavu with a E E and v a word.

One more important consequence of the Periodicity Lemma is that if y is a periodic

string, u is its period, and y has consecutive occurrences at positions ill i·l , ... , i k in x with

6

i j - i j _ 1 s: lyl/2, (l < j s: k), then it is precisely ij - i j _ 1 = lui (1 < j s: k). Tn

other words, consecutive overlapping occurrences of a periodic string will be spaced apart

exactly by the length of the period.

4 Computing Expectations

LeL X = XjXz .. ,Xn be a t.exlsll'in.9 randomly produced by a source that emits symbols

from an an alphabet :B according to some known probabily distribution, and let y =

YIYZ ... Ym (m < n) be all arbitrary but fixed pattem string on .E. ,~re want to compute

the expected number of occurrences of y in X, and the conesponding variance. For

i E {I, 2, ... ,n - m + 1}. define Z .. to be 1 if Y occurs in X starting at position i and a
otherwise. Let

n-m+l

Z= I: Z;,
;=1

so that Z is the I,ota.l Humber of occunences of y. For given y, we assume nmdom

Xk's in the sense that:

J. the Xk's are independent of each other and

2. The Xk's are identically distributed, so that, for each value of k, the p1'Obahility

that X k = Yi is Pi·

Then

E(Z;ly] = rr;,;,p; = p,

and

E(Zly] = (n - m + l)p

n-m+l

Vm'(Zlv) = I: Cov(Z;, Zj) = I: Vm'(Z;) + 2 I: Cov(Z;, Zj)
I,J ;=1 '<i$n-m+J

=(n-m+l)Vm'(Z,)+2 I: Cov(Z;,Zj)
i<j$n-m+l

7

(I)

Because Zi is an indicator [uncLion,

E[Z?] = E[Z;] = p.

This a1so implies that

Var(Z;) = p(l- P)

and

Cav(Z;, Zj) ~ E[Z;Zj] - E[Z;]E[Zj].

Thus

L: Cov(Z;,Zj)~ L: (E[Z;Zj]-p')
i<i:S;'I-m+1 i<i:S;n-m+1

If j - i 2: m, then E[Z;Zj] = E[Z;]E[Zj], so Cov(Z;, Zj) = O. Thus, if j - i < m,

n-m

L: Cov(Z;, Zj) = L:
i<i:S;n-m+1 i=1

min(i+m-1,1l-m+1)

L: Cov(Z;, Zj)
i=i+1

n-m mill(m-1,n-m+1-i)

~ L: L: Cov(Z;, Z;+,,)
;=1 d=l

min(m-1,n-m)

L:
d=1

n-m+1-d

L: Cov(Z;, Z;+d)
;=1

min(m-1,n-m)

L: (n - m + 1 - d)Cov(Z" ZI+').
d=l

Before we compute Cov(Zll Zl+d), recall that an integer d ::; Tn is a period of Y

YIY2 ... Ym if and only if y,- = Yi+d for all i in {I, 2, ... , m - d}. Now, let {d1, d2, ... , d.• }

be the periods of Y that satisfy the conditions:

1 ::::; d l < d2 < ... < ds ::::; min(m - 1,11. - 111.).

Then, for d E {1, 2, ... , Tn - I}, we have that the expected value

8

may be nonzero only in correspondence with a value of d equal Lo a period of y. There­

fore, E[ZlZ1+d] = 0 for all d's less than m not in the set {dl,d2, ... ,ds }, whereas in

correspondence of the generic d i in that seL we have:

llesuming our compnl.a,Lion of the covariance, we geL theT1:

m'n(m-1,n-m)

I: CouIZ;, Zj) = I: In - m+1- d)Cov(Z" Z1+')
i<jSn-m+l d=l

m'''('''-l,n-".)

I: (n - m+ 1 - d) * (E[Z,Z,+,] - P')
<1=1

s mi"(m-I,,,-m)

= I:ln - m+1 - (h)fiIIj~m_"+lPj - I: In -m +1 - d)fi'
1=] d=1

,
= I:ln - m+1 - d,)fiIIj~m_d'+lPj

/=1

-ji(2(n - m + 1) -1 - min(m -1,11. - m)) * min(m -1,11. - m)j2.

Thus,

11or(Z) = (n - m + l)fi(l- fi)-

ti(2(n - m + 1) -1- min(m -1,11. - m)) * rnin(m.-l,n - rn)
,

+2]j:L)n - m +1- ddIIj=m_d/+1Pj,
1=1

which depends on the val lies of m - 1 and 11 - m. We distinguish the following Ci1ses.

Case 1: m:o (n + 1)/2

11"'-IZ) ~ In - m + l)fi(1 - fi) - fi'(2n - 3m + 2)(m -1)

+
,

2p 2:)11. - m + 1 - dl)IIj~m_dl+1Pj
1=1

9

(2)

Case 2: 111 > (n +1)(2

Va1'(Z) ~ (n - 111 + l)fi(1 - fi) - fi'(n - 111 + l)(n - 111)

+ 2fi 2)n - 111 + 1 - d,)nj';,m_d,+lP;
/=1

5 Index annotation

(3)

As .sLated ill the introduction, our goal is to augment a statistical index such as Tx so that

its generic node a shall not only refl.ccL the count of occurrences of the corresponding

substring y(a) of X, but also display the expected values and variances that apply La

y(a) under our probabilistic assumptions. Clearly, this can be achieved by performing

the appropriate comput,il.l,ions starting from scratch for each string. Even neglecting for

a moment the computations needed to expose the underlying period structures, however,

this would cost G(ly!) time for each substring y of x and thus resull in overall Lime O(n3)

for a st.ring x of n symbols. Fortunately, expressions 1, 2 and a can be embebbed in

the "brute-force" constrncLion of Section 2 (d. Figure :1) in a way that yields an O(n 2)

overall time bound for the .mnotation process. We note that as long as we insist on having

our values on each one of the substrings of x, then such a performance is optimal as x

may have as many as 8(n2
) distinct substrings. (However, a corollary of probabilistic

constructions such as in [AS-92] shows thaL if attention is restricted to substrings that

occur at least twice in x then the expected number of such strings is only O(nlogn)).

Our claimed performance rests on Lhe ability to compuLe Lhe values associated with

aU prefixes of a string in overall linear time. These values will be produced in succession,

each from the preceding one (e.g., as part of insert) and at an average cost of constant

time per update. Observe that this is trivially achieved for the expected values in the

form E[Zly]. In fact, even more can be stated: if we compuLed once and for all on :z; the

11. consecutive p'refix prodllets of the form

'PI = rr{:=lPi (i = 1,2, ... , 1),

then this would be enough to produce later the homologous product as well as the expected

value E[Zly] itself for ouy substring y of x, in constant time. To see this, consider the

product pf, associated with a prefix of x that has y as a suffix, and divide JiJ by i1f-lyl'

10

This yields the probabilit.y fi for y that appears in 1. Multiplying this value by (n -Iyl + 1)

gives then (n-m+l)fj = B[Z!yJ). From now on, we assume that the above prefix products

have been computed for ,1' in overall linear time and are available in some suitable array.

The situation is more complicated with the variance. However, expressions 2 and 3

still provide a handle for fast incremental updates of the type th<Lt was just discussed.

Observe that each expression consists of three terms. In view of our discussion of prefix

products, we can conclude immediately that the fj-values appeal'ing in the first two terms

of either 2 or 3 take constant time to compute. Hence, those terms are evaluated in

constant time themselves, and we only need to concern ourselves with the third term,

which happens t.o be Llw same in both expressions. In conclusion, we can concentrate

henceforth on the evaluation of the sum:

•
B = I)n - m + 1 - dl)IIj=m_dl +1Pj'

1=1

Note that the computation of B depends on the structure of all dl periods of y that are

less than or equal to min(m - 1, n - m). V\'hat seems worse, Expression B involves a

summation on this set of periods, and the cardinality of this set is in general not bounded

by it cOTistant. Still, we can show that the value of B can be updated efficiently following

a unit-symbol extensions of the string itself. We will not be able in general to carry out

every such update in constant time. However, we will manage to carry out all the updates

relative to the set of prefixes of a same string in overall linear time, thus in amortized

constant time per update. This possibility rests on a simple adaptation of a classical

implement of fast string searching, that computes the longest borders (and corresponding

periods) of all prdixcs or a string in overall linear time and space, We report such a

construction in Figure 5 helow, for the convenience of the reader, but refer for details

and proofs of linearit.y t.o discussions of "failure functions" and related construds such as

found in, e.g., [AUD-H, Ah-90, CR-94].

To adapt Procedure maxborder to our Ileeds, it suffices to show that the computation

of B(m), i.e., the value of B relative to prefix Y1Y2"'Ym of y, follows immediately from

knowledge of b01'd(m) and of the values B(l), B(2), ...B(m -1), which can be assumed to

have been already computed. Noting that a same period d l may last for several prefixes

of a string, it is convenicllt to define the border associated with dl at position m to be

11

procedure maxborder (Y)

begin

bOI'd[1] ~ 0;

for m = 2 to h do

I' ~ bord[m - 1];

while 1" > 0 and YT+! =I Ym do

r ~ bord(r];

endwhile

if :tiT+! =I Ym and 7' = 0 then b01"d(m] t---- 1" + I;
endfor

end

Figure 5: Computing the longest borders for all prefixes of Y

Note that dl ~ min(m. - ',n - m) implies that

bl.m (=711.-dl) 2:: m - mi71,(m-1,n-m)

= ma:I:(m - Tn + I,m - n + 711.) = max(1, 2m - n).

However, this correction is not serious unless m > (n + 1)/2 as in case 2. We will assume

we are in Case 1, where m ~ (71, +1)/2.

Let S(m) = {bl,mJ:~'t be the set of borders at m associated with the periods of

Y1Y2···Ym· The crucial fact subtending the correctness of our algorithm rests on the fol­

lowing simple observatioll.

S(m) = {bord(m)) U S(b01·d(m)).

Going back to Expression B, we can write now using b/,m = 111 - d/:

E(m) ~ 2)n - 2m + 1 + b'.m)IIj=b, ,".,Pi'
/=1

Separating [rom the rest the term relative to the largest border, this becomes:

12

'm
+ L)n - 2m +1 + bl,m)IIj~blm+lPj

1=2 '

Using Relation 4 and the definition of a border to re-write indices, we get:

B(m) = (71. - 2m + 1 + bord(m))IIj=:bord(m)+lPj

Sbo"ll m)

+ L (71. - 2m +1 + bl,bord(mj)IIj=b"bord(m)+IPj,
/=1

which becomes, adding the substitution m = m - bord(m) + bord(m) in the sum,

11(m) = (71. - 2m +1 +bord(m))IIj=bord(m)+lPj

SL""J(",)

+2(bord(m) - m) 2:: l1j=bl.bord(mj+lPi
/=}

Sbo,d(m'

+ " In - 2· bard(m) + 1 + b/bo,d(m))ll7'_b +.PiL..J 'J- (,bord(m)
1=1

= (n - 2m + 1 + bard(m))nj~bord{m)+tPj

Sbo.d{m)

+2(bard(m) - m) "ll7~b +,PiL..J J- l.~ord(m)
/=1

+ (IIi=bord(m)+lPj)

"~ord(m)

" (n - 2 . bard(m) +1 + b/bo'd(m))ll~::(m) +,PiL...J 'J- l,bord(m)
/=1

OboTd(m)

+2(bord(m) - m) '"' II~~b +IPjL...J J- I,bord(",)
/=}

From knowledge of 11., m" burd(m) and the prdix Pl"OdllcLs, we can clearly compute the

first term of B(m) in consLant time.

Except for (bord(m) - m), the second term is essentially a sum of prefix products taken

over all distinct borders of YIYZ ...Ym. Assuming that we had such a sum and B(bol'd(m))
at this point 1 we would dearly be able to compute B(m) whence also our variance, in

constant time. In conclusion, we only need to show how to mainLain knowledge of the

13

value of such sums during maxborder. But this is immediate, since the value T(m) of the

sum at m is clearly:

T(m) = (T(bo1'd(m) + 1)· IIj~b"'d(m)+l]Ji

and the product appearing in this expression is immediately obtained from our prdix

pl"Oduds.

\Ve have thus established that, under the probabilistic assumpt.ions which were made,

the variances of all prdixes of a string may be computed in linear time. This const.ruction

may be applied, in particular, to each suffix sufi of a string x while that suffix is being

handled by insert as part of procedure buildtree. This would result in an annotated

version of '1~; in overall quadratic time and space ill the worst case.

6 Acknowledgements

Vie are indebted to R. Arratia for suggesting the problem of annotating statistical in­

dices wit.h expected values, and to M. Waterman for enlightening discussions and helpfull

comnlcnts.

References

AHU-74 Aho, A.V., J.E. Hopcroft and J.D. Ullman, The Design and Analysis of ComputeT'

Algorithms, Addisoll- Wesley, Reading, Mass. (197rl).

Ah-90 Aha, A.V., Algorithllls for Finding Patterns in Strings, in Handbook oJ Theoretical

Computer Science. Volume A: Algorithms and Comple:~ity, The MIT Press (1990).

Ap-85 Apostolico, A., The myriad virtues of suIIix trees. pg. 85-96 in [AG-85].

AG-85 Apostolico, A. and h. Galil (eds.), Combinatorial Algorithms on Words, Springer­

Verlag Nato ASI Series F, Vol. 12 (1985).

AP-96 Apostolico, A. and F.P. Preparata, Data Structures and Algorithms for the String

Statistics Problem, Algorithmica, 15, 481-494 (1996).

AS-92 Apostolico, A. and W. Szpankowski, Self-Alignments in 'Nords and Their Applica­

tions, Joumal of A/gol'ithms, 13, 446-467 (1992).

14

CS-85 CHEN, H.T., AND J. SEIFERAS [1985]. "Efficient and elegant subword tree con­

st.ruction", pp. 97-109 in [AG-85].

CR-94 Crochemore, M. and W. Rytler, Tea;/. ALgorithms, Oxford University Press, New

York (1994).

LMS-96 Leung, M.Y., G.lVI. rVTarsh and T.P. Speed, Over and Undcrrepresentation of Short

DN A Words in Herpesvirus Genomes, J01lrnal of Computational Biology 3, 3, 315

- 360, 1996.

Lo-83 Lothaire, M., Combinatorics on Words, Addison \iVesley, Reading, Mass., (1982).

LS-62 Lyndon, R.C., and 1V1. P. Schutzemberger, The Equation aM = bN c P in a Free

Group, kI1:ch. Jl1ath. Joumal9, 289-298 (1962).

Mc-76 McCreight, E.M., A Space Economical Suffix Tree Construction Algorithm, .JOUT.

of lhe ACM, 25, 262-272 (1976).

Ni-73 Nielsen, P.T., On thE' Expected Duration of a Search for <1 Fixed Pattern in Random

Data, IEEE Information TheoTy, 702-709 (1973).

Wa-89 vVatcrman, M. S. (Ee1.), iVlathematical l11elhods f01' DiVA sequences, CRe Press,

Boca Raton, 1989 .

\~ra-95 VV<lterman, M.S., Introduction to Comp1Llalionai Biology, Chapman & Hall (1995).

We-73 Weiner, P., Linear Pattern Matching Algorithms, Pmc. of the 1./-lh Annual Sym­

posium on Switching and Automata The01'Y, 1-11 (1973).

15

	Annotated Statistical Indices for Sequence Analysis
	Report Number:
	

	tmp.1307986960.pdf.EYLKa

