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Abstract. Let u. . = u(jh,kh,Jlh) denote values of a 
J j K , Ji 

function on a cubic lattice. Let £
 9
 u- . . denote the sum 
C J jK,J6 

of values of u at lattice points a distance r from (jh,kh,Jih). 
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where I denotes the identity, V
2

 = X + Y + Z denotes the 

Laplacian, and X = 3/3x, Y = 3/9y, Z = 9/3z. 
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 Dirichlet boundary conditions 

yield 0(h
6

) estimates of u at lattice points. If the 

region is a cartesian product of three intervals, then 

tensor product or Fast Fourier Transform techniques can be 

used to solve the discrete problem. Experimental results 

are given which confirm the 0(h ) behavior of the 

discretization error. 
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1. 0(h ) discretization to solutions of the Poisson equation in 

terms of f and its derivatives. Consider the Poisson equation: 

V
2

u s 3
2

u/3x
2

 + 3
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u/3y
2

 + 3
2

u/3z
2

 = f 

With X = 9/3x, Y = 3/9y, Z = 3/3z, the Laplacian can be written as 

V
2

 = X
2

 + Y
2

 + Z
2 

Taylor's series representations of an anlytic function can be 

written as 

u(x+h,y,z) = u{x,y,z) + h Xu(x,y,z) + (h
2

/2) X
2

u(x,y,z) + ... 

= e
h X

u(x,y,z) 

u(x+h,y+h,z) = e
h ( X + Y )

u { x
s
y , z ) 

u(x+h,y+h,z+h) = e
h ( X + Y + Z )

u ( x , y , z ) 

and so on. Divided central differences can then be represented conveniently, 

for example 

2 
5

2

 u(x,y,z) = [u(x-h,y,z) - 2u(x,y,z) + u(x+h,y,z)]/h 

= [X
2

 + (h
2

/12) X
4

 + <h
4

/360) x
6

 ] u(x,y,z) + 0 ( h
6

) 

* 

This report records a derivation of a specific difference approximation. 

It is riot intended for publication and is, therefore, not in polished form. 

The derivation is elementary and once the approximation is available, it 

can easily be verified directly. 
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and so on. 

We use the operators A
h >
B

h >
 and C^ defined by 
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We define operators M^ and L^ in terms of as 

(1-la) M
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where I denotes the identity operator. 

To express the operator L^ in terms of coefficients of a 

stencil, let J
 0
 u. . , denote the sum of values of u at lattice 

J » K 1 & 

points a distance r from (jh,kh,2.h). Then we have 
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THEOREM 1: Let R denote a connected domain made up of the union 

3 

of cubes, each of which has volume hg
S
 with disjoint interiors and 

edges parallel to coordinate axes. Let 3R denote the boundary of R 
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Let one of the vertices of a cube be. the origin. For an integer N ^ 2 , 

let h = h
Q
/N and let (jh,kh,&h), with j,k,ft integers, denote points 

of a cubic lattice with contains the vertices of the cubes as a 

sublattice. Let R^ denote the set of lattice points in R and 

the set of lattice points in 3R. Let u denote a function with 

continuous eighth derivatives and let f and g denote functions 

f = V
2

u , (x,y,z) e R, and -.:g = u, (x,y,z) e 9R 

Let denote the solution of 

(l-3a)
 L

h
 = M

h
 f

j , M
5

 (Jh.kh^h)
 e
 R, 

(l-3b) u ! ^ ^ = g
j ) k

^ , (jh,kh,Jlh) e 3R
h 

There exists a constant K which depends on u but not on h 0£ 

(jh,kh,£h) such that 

(1-4) | u
j j k ) £

 - u j ^ ^ l < K h
6

, (jh,kh, h ) e R
h 

Furthermore, no other coefficients in (1-lb) or̂  (1-2) can give 

a higher order of accuracy. 

Proof: The error, e = u - U ^ 'satisfies (l-3a) with 

right side replaced with O(h^) and zero boundary conditions (l-3b). 

For functions which are zero at the boundary, the operator L^ is of 

monotone type (L^v < 0 implies v ^ O), and L^ applied to 

(Kh
6

/6)[x
2

 + y
2

 + z
2

 - r
2

] yields Kh
6

. Hence, for sufficiently large 

r and K, this function bounds the error. Hence (1-4) follows. 

The last statement of the Theorem follows from the polynomial 

displayed in the proof of Theorem 11 in Birkhoff and Gulati [1974]. 

This polynomial is an eighth degree harmonic polynomial in two 
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Q 
independent variable which is 0(h ) on the nine points (0,0), (+h,0), 

(0,+h), (+h,±h). Application of L
h
 to this polynomial gives, 

g 

therefore, 0(h ), whereas the right side of (1-3a) is zero. 

The coefficients in (1-2) are given by Mikeladze [1937]. He 

o 

also displays the terms through 0(h ) in the He did not realize, 

apparently, that (l-3a) yields 0(h ) accuracy, for he only proved 

0(h
4

). 
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2. 0(h
6

) discretization error for solutions in terms 

of values of f. Rather than evaluate derivatives of f to 
g 

obtain values of the right side of (l-3a), we construct 0(h ) 

difference approximation to the operator e 

One cannot obtain an 0 ( h ) approximation by using 

only the 27 lattice points used for the operator L^. This 

is because one obtains v
2

 and v
1

* only from A^; they do 

not appear in B^ or C^. In A^, these have coefficients 
2 2 1 and h /12, respectively, with ratio 12/h , whereas the 

coefficients of these in M
h
 are h

2

/12 and h
4

/360 with 

2 
ratio 30/h . 

There are a number of disadvantages of using values of 

f at other lattice points in addition to the 27 used in 

the operator L^. These include the following: A linear 
g 

combination of ^ ' ^ ^ ^ ' ^ h
l B

2 h ' ^ 2 h
 w

^
c i l

 9
l v e s a n

 ) 

approximation to the derivative terms in M^ leads to 

negative coefficients of some of the values of f ; there is 

a close relationship between the solution of (1-3) in terms 

of values of f and quadrature and it is customary in 

quadrature formulas to use positive coefficients to 

reduce round-off error. [The connection is: elements of 

the inverse of the matrix associcated with "the system 

of difference equations has elements which approximate the 

Green's function.of the Poisson equation problem, the product 

of the inverse and the vector of right-side-values of the 

difference equation gives components which approximate 

the integral of the Green's function and the right side of 
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the Poisson equation.] For lattice points adjacent to the 

boundary values of f must be evaluated outside the region. 

The coefficient in the error term is larger than if values 

3 

of f are taken in and on the cube of volume 8h 

centered at an interior lattice point. 
Thus, we use additional values of f in a cube of 

3 

volume 8h . There are a number of choices. We choose 

to use the operators defined in Section 2 and 

also E
h / 2

: 

E
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 = 4 V Z +
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/ 4
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2 

This requires evaluation of f at the eight half-lattice 

points: (jh+h/2,kh±h/2,£h+h/2). Thus, f is evaluated at 

points of a body-centered cubic lattice and there is on 

the average two evaluations of f for each lattice point. 

1
h
 by using F

h 

g 
One obtains 0(h ) approximation to M, by using F, 

defined by 

F
h
 = I + (h

2

/90)A
h
 + (h
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 + (h
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By changing the coefficients, one can include a term 

proportional to D^ in the approximation, but this 

increases the amount of calculation required to evaluate 

F
h
 applied to f. 

Except for reference to specific equations, the proof 

of Theorem 1 is the same as the proof of the following. 

THEOREM 2: The results stated in Theorem 1 hold when 

(l-3a) is replaced with 

(2-1} 
• (h) F

h
f

o , M ' (3h.kh.th)
 e
 Rj, 

For the case that 3u/8z = 0, the difference equation 

reduces to a two variable equation. The stencil for L^ is 

1 4 1 

(2-2) l/(6h
2

) 4 -20 4 

1 4 1 

ctnd the stencil at half-lattice points i 

1 0 4 0 1 

0 48 0 48 0 

(1/360) 4 0 148 0 4 

0 48 0 48 0 

1 0 4 0 1 

Milne, p. 136 [1953] and others give expressions for the 

stencil in (2-2) in terms of derivatives. Milne is the only 
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c 

source we know of which displays the term proportional to h . Using 

the result in Milne, we have 

L
h
u = V

2

u + (h
2

/12)V*u • + (h
4

/360)[V
6

u + 2X
2

Y
2

V
z

u] 

+ (h
6

/8!)[12V
8

u + 6 4 X
2

Y
2

W + 80X
4

Y
4

u] + 0{h
8
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from which it is clear that the stencil in (2-2) cannot yield 
g 

0(h ) approximation to solutions of the Poisson equation in 

two variable, but can obtain 0(h®) approximation. 

If 3u/3y = 0, 9u/3z = 0, then (2-1) reduces to 

(2-3) 

[

V i "
2 U

j
 +

 V i
) / h 2 

• Cfj-1
 + + 2 6

f j
 + 1 6 f

j
+
l / 2

 + f

j +
l

] / 6

° 

In contrast to multi-dimensional problems involving elliptic 

second order partial differential equations in n independent 

variables^an approximation with finite difference operators 

made up of the cartesian product of n set of three points 

of a lattice along the coordinate directions, such as L^, 

there is no limit to thtorder of accuracy of approximation 

of second order ordinary differential operators. See 

Lynch and Rice [1976,1977]. 

c 

Rosser [1976] has given an 0(h ) scheme for the Poisson 

equation on a two dimensional region with f evaluated only 

at mesh points in the region; some of their coefficients are 

negative. 
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4. Evaluation by tensor product methods. If the domain R 

is the cartesian product of three intervals of lengths N h, N h, N h x y z 

with N ,N ,N integers, then tensor product methods—which are 
x y z 

equivalent to separation of variables—yield very efficient 

computational schemes for solving either (l-3a) or (2-1) subject to 

Dirichlet conditions in (2-3b) as well as a variety of other 

standard boundary conditions. The use of tensor products for 

solving difference equations is discussed by a number of authors, see 

for example, Lynch, Rice and Thomas [1964a,1964b,1965]. Application 

to the difference approximation to the Poisson equation in three 
4 

variables on a mesh with N
x
 = = N

2
 = N requires order N 

operations. Since the discretization error is decreasing as N"®, 

asymptotically, the error is halved with a 59% increase in work. 4 
Use of Fast Fourier Transforms reduces the work from order N to 

3 

order N log^N; for N = 2,4,8,16, this gives a savings of factors of 

order 2, 2, 2.6, 4, respectively. For such techniques, see Hockney 1970. 

Figure 1 shows experimental results for the Poisson equation 

subject to zero boundary conditions on the unit cube. The function 

f was chosen so that the solution is 

u(x,y,z) = x(x-l)y(y-l )z(z-l) exp(x+y+z) 

The maximum error is plotted versus N and so is the solution time 

6 4 
as'iv/ell as K/N and CN for some constants K and C. The 

calculation was done on Purdue University's CDC 6500 computer which 

15 

uses floating point numbers accurate to about 1 part in 10 . 

For information which can be used to convert these times to other 

computers, we note that the solution time required for the solution of 
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50 linear algebraic equations with Gauss elimination, Crout 

reduction and one step of iterative refinement of the solution 

takes about 1.75 seconds. 

Values used to plot the graphs in Figure 1 are given in 

Table 1. 

Table 1 

Values of N, number of unknowns, maximum error, and 

solution time for solving 

u
v v
 + u + u = f , u = 0 o n unit cube 

with u taken as x(x-l)y(y-1)z(z-l)exp(x+y+z) and 

tensor product methods. 

N (N-l)
3 

maximum error time (seconds) 

2 1 4.36(-4} 0.018 

3 8 5.54{-5) 0.053 

4 27 9.92(-6) 0.126 

5 64 2.34(-6) 0.272 

6 125 8.28(-7) 0.526 

7 216 3.37(-7) 0.947 

8 343 1.49(-7) 1.582 

9 521 7.24(-8) 2.499 

10 729 3.94(-8) 3.756 
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