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STOCHASTIC ANALYSIS OF THE EFFECT OF RANDOM PERMEABILITY

DISTRIBUTIONS ON CONFINE SEEPAGE
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Abstract

We describe two stochastic models for the determination of the

statistical properties of the solutlon process. An error analysis of
the models is considered which indlcates the convergence of the overall
procedure. Then a real case of a seepage encountered in an underground
. facillty is treated based on the data provided by a fleld investigation.
The outcome of the analysis Is In concordance wlth-the past

englneering experience,
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1t is generally recognized that within any homogeneous rock mass
the physical properties exhibit a variability which must be considered
in a design project,

This variability is due to different causes during the geologic
formation of the strata, and is estimaied by means of & site investi-
gation. This will in turn provide the designer with the desired phys-
ical properties of the rock media at particular locations where the
drillings are performed. -

To handle the variability of the rock media an uncertainty factor
is introduced in the simplified analytical ﬁodel.

Two interrelated problems are theﬁﬁptCDuntered:

A. How the above mentioned uncertainty of the physical properties
will be inferred from the field information.

B. How to introduce the uncertainty of these properties in the
already existing ahalytical model simulating the real world.

Both ceses are treated by assuming that the rock properties
PJ(x,y,z) are spatial stochastic processes, as suggested by Cornel (4).
Thus to a point in space (x,y,z) corresponds s merely probable value of
PJ known also as statistical uncertainty which can be decreased at the
expense of additional field informstions.

The two problems are in the common practice solved independently
and not coupled together to provide a consistent picture of the réal
phenomenon.

Usually the first problem is overcome by making the assumption that

the statistical properties of the rock media are the same e&ll over the
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region of interest or in other words that the process reflecting the
randomness of the physical property is stationary. In that case there
is no need of an inference model and one can proceed to solve the
second procblem by applying a first-order gncertainty analysis In con-
nection with the already existing analytical ‘model. This approach was
adopted by several investigators in the field of continuum mechanics.
B. Cambow (2) L. Esteva (3) and J. Pqdilla(é).

Kowever, in rock mechanics the above procedure cannot be adopted
and the first problem has to be solved exhaustively merely because of
the nonstationarity of the physical properties.

In this case the rock volume is assumed as made up of a number of
elementary volumes within each of which the physical property at hand
if treated as stationary.

Moreover the properties assigned to each pariicular point in the
two dimensional system must be inferred from the field data of a limited
number of rock samples cfﬂnf”g then the need of an inferencg model is
Justified for:

1) The relatively large scale used to perform the analytical
model.
2) The small amount of information of the rock media.

Krumbein (%) gives the Tundamental techniques used in defining linear
inference models. Such techniques are for example the method of lenst
squares, Titting a polynomial in two variables, etc. All these techniques
fail to provide an evaluation of how well the estimatron is performed,
and present orerational difficulties for the nonstationary case.

However, G. Matheron (5) proposed an inference schemg which is
attractive for our case. Indeed with every obtained estimat,on of the

property under consideration s parameter related with each estimat ‘on




is indicating the.performance level reached by the inference. This
parameter is nothing else than the variance of the estimator. Moreover
the nonstaticnarity can be treated as well as the stationarity case.

In the following a technique similar to the one suggested by G.
Mather.-on - 15 adopted to estimete the physical properties in the
domaine of interest and to determine their spatial distribution, The
results of the inference procedure are then used to treat the second problem.

In othgr words a coupling of the inference model and the analytical

4
modeljﬁ?%ﬁiﬁiing of the deta field Investigation and the analytical
simulation of the real phenomencn, is proposed. The analytical model
(s handled by using a finite element technique,

Implementation of the Inference model in a two-dimensional geometric space.

To determine the values of a rock property z{x,y) & number of meas-—
urements are made on rock samples from boreholes. The set of points where
cbservations are made is the set index B and Z6 represents the measured
value of the random rock property at point B. Then the estimatEOn E(xo,yo)
at any particular point (xo,yo) in the media § evaluated based on

the given ZB values.

A simple way that one can imagine to perform this estimation is

to define Z in t=rms of the known values ZB according to a linear combin-
ation as follows:
A3n
-, —
1(.;. I3 = L b 2
5‘) - ﬁ" P ﬂ
Where B and the known data points and bB are the unknown weight coefficients

to be determined by the inference model which is based on en optimal scheme

ol(, the  randem vadasie  Zl(x,4).



t
At nlternate approach waould bevgbttmate the mean value of 4(x,y),

namely Z{x,y) azccording to a linear combination.

p

where B are the known data points as previously and ag are the unknown
weight coefficicnts.

The random variable 2(x,y) is characterized spatially by the ex-
pression.

2le,s) = Z leu) + F&{x,4)

where Z(x,y) the mean and FZ(x,y) the fluctuating term around the mean.
Then the two overmentioned estimation procedures lead to two distinctive
groups of assumpfions characterizing the inference model.

The first group is given by

1) £ L2tyatl = Zla)

2) E‘L%\"“i.\‘-\“s‘hn = Tlxy) 2lxaud) =+ e {x, %)
where Z(x,y) is the trend and c(x, %;) the covariance of the variable Z{x,s) .
llowever these assumptions are in many cases dealing with rocks, too re-
‘ more.
strictive and need to be replaced by some ™ flexible assumptions.
This * 1% realized by considering the rate of change of the ran-

dom variable Z{x,y) and will lead to the second group of assumptions.

The second group indeed is defined by:

1) ELRmy - ux "57.\1 = Tlow) = Elxesa)

2) € [2luw) -3y, L,n\-&z E A (AN

vhere X Lx, o) i the  variogram




In both set nevertheless of essumptions there is a need to cheracterize
the nature of the randomness of the variable Z(x,y).

Therefore the following hypothesis concerning the randomness are
added to each group. M;re specifically we assume:

First locally at a point (x,y) the mean Z(x,y) is approximated by

known functions. Indeed, u :
El#,a\ . [.: a; # (%,4)
a, being some unknown weight coefficients and xkllaa\ the apriori
krown funections.
Secondly the covariances c(xi,xe) are computea based on field meas-
urements (See Padilla) and can be represented as approximated functions

-l

of the form c(xl,xQ) =

vhere r = distance between Xy and,xz, o¢ and k some {;tj;n%
parameters.

At that point following the general treﬂd of thought the two groups
of assumptions correspond two inference models with two different goals
reached in each case.

In the first m§del the goal will be tqhake the best estimation for
the mean i{n‘%l while in the second model the best estimation
is required for the random variasble Z(x,y) itself.

Both models lead to the problem of identifying the best estimators
among all possible functions satisfying the hypothesis covering the ran-
domneas of the rock media.

These goals are gchieved in each ¢ese by optimizing the expression

of the variance using the method of lagrangian multipliers under the

consiraints imposed by the essumptions concerning the first moments.




In appendix (1) the computations give the following results:
¥OR MODEL 1 concerning the mean Z{x,y)
The method of Lqgragian multipliers leads to a set of n+ U

equations with n+ & unknowns namely the weight coefficients:

y. qﬂ' c - Z }a'p 'LS - Q0 ,p=4, o m
{ o“h P I W

i B=t, .. &«
A 5 * -

a Qt {-‘ - s‘l - O

where ﬂ? the unknown welght coefficients,tu!the Logrengian multipliers
and 3: the kronecker delts
The variance of the estimation is given by
ElThal’ = & §'bes)
FOR MODEL 2 concerning the random variable Z(x,y)

Similarly the following system is obtained (Appendix (1))

WA X t
L % Yo ~ ?:\H L = Yixe,n) od,p =4, 1
A )
. K«
l - 'tL (= 1)
- = %)
il *
Z b = A4 .
o
where bB the unknown weight coefficients and e the Lagrongien

multipliers.
The variance of estimatjon being:

¥

S

. UNCERTAINTY ANALYSIS Of THE ANALYTICAL MODEL

As mentioned previously the analytical model . . iS treated using
the finite element technique, which ™ . providesus the transfer mechanism

between a set of inputs {3} and set of outputs generally unknown f{u} .

£




Then the general solutions s given by the following relation in

matrix form

jul = 170 151

[k] is generally known as transfer matrix and is defined function of the
rendom variables Z., Z2,, . . .Z_.
1 2 n

l:k'.] = 4(1..11. s

Applying now the first order uncertainty snalysis as described by Papoulis
() the following moments are obtained:

FIRST MOMENT

) - - %, -~ -
gl 1ozt b l]  §ulEb), Tlny .’;__[G;m'ﬂ Ve A
NV kg }

The second part of the second member can be neglected being a very small
quantity

SECOND MOMENT

> y 'Muli‘i Teat)L ot [ 2@ EY :
E\\ukt.{tah%;\ng\\ﬂ 2 B3, k ey, ;le] -+ 2 ( .

"D-Z,Lr,\ﬂ r '-024_
+ 2 QORI AMuER)  eu (3, 2]
e, QT

Thew e Parffal desivalives are tle Setutiony o;‘ e

{:alla-oihs 5‘3‘*&-\ N

| “u N ‘ L% (®E ) -
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Ghe  tolotien will he  obtained Using the  dlassic fiuite  elewent

wethodoleey .




Coupling of the Inference lModel and the Analytical Uncertainty Model

In this procedure the statistical properties of the solution process
are determined by the previously given expressions where the moving aver-

age or spatial mean Z {x,y), Zz(x,y) and the variances o, (x,vy), a, (x,y)
: 1l 2

are provided by the inference model By substituting these quantities in

1

the statistical relations of the dependent random variable {W}, its co-
efficient of variation is defined. This in turn is an essential statis-~
tical quantity used to evaluate the performance of the analytical model.

The convergence of the overall procedure is considered in Appendix 2
and checked through several examples, In general the results are im-
proved both in the analytical and statistical sense when the mesh becomes
denser.

Algorithm Description

The geometric domain under investigation is divided using a rectang-
ular mesh common for the Inference Model and the analytical model {Finite
elcment mesh).

The computationg will be performed in each mode using a number of
known realizations of the random variable Z(x,y). Therefore a zone of -
inrluenﬁe, characteristic of the media and depending on the covariance
c(xl,x2) is defined &t each node of the mesh. In this zone eight given
points are selected for efficiency and influence the computed estimation
of the random variable Z(x,y} at that particular node.

Indeed at every nodel point (x,y) a system of fourteen equations
is solved and the estimator E(x,y) computed according to the previcusly

defined relations. The outcome of the procedure will of course depend




N

on Lhc nunber and closeness of the measured information of Z(x,y) provided
by the field investigation.
If the informations are not enough in number for all the domaine of

interest then the estimator violates the original assumptions,but the

variance on the other hand indicates the poor performance of the estim-

ation and gives the exact location in which more informations are needed.

The flow chart in figure (4 ) gives the sequence in which the com-
putations will be performed by program INFMODA.

Several examples were treated to test the program, the more signif-
icant being the fellowing: '

A square of 4OOm by 400m is examined and the random value Z{x,y)

is assumed to possess a realization lying on a portion of a gphere as
shown in figure (2 ). The domaine is divided into squares of 25 x 25m
-having 289 nodes in which the computations are performed.

The apriori known function characterizing the behavior of the .
wean Z(x,y) was taken as a guadratic function of the form:

flx,y) = a_+ 8 X a1y + At e a, 4P+ a5y

On the other hand the covariance was given by

- ( l.-r.':.) ,{n'-h]) - e.—r ‘

: 1 ;
vhere | ol _(\,‘._M)\_' {'3-"'3:}" '
The results are given in table (4 ) and are conform with what was expected.
An interesting point to be mentioned, is that the computed variances are

more sensitive to the location of the given information than.the gradient

of the mean D (x,4) , Q_&l!&}
% Dy

The Wf(‘aht ..‘ *‘\c. In&gfg‘“ W\ode‘ e Al.f‘&c.{"g ;q“'foJu‘&-‘
at the nodes of the triangular element used in the finite element procedure.

Then the uncerteainty analysis is conducted in a conventional way.

#
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The problem, therefore, consist to minimize E[(z-i)"’] the variance with
the constrain Ef{z{x,y)}] - E[E(x,y)] = 0.
In appendix three the above quantities are evaluated and was found to

be:
E[(?.-—i]"} = clzals %5,( Z';.L'ﬁ [C(ia'zh_}—‘zz& 5 €(%,2)

and
. oL
£l - (2] = }_;2 a,, ‘\" - Ta, [Z“b ‘_L‘l =

:%Qk[ik-—és*{,:] =0

The minimization of the variance will be obtained using the method of La-
grangian multipliers as followed.

The Lagrangian function being
P - efza) -2Zbiclrr) ez el ) -
_ < b

© - [




The conditions to obtain the minimum are

nd _g for oW LS
(DU‘ .

3% .o for A myls
n Wy :

The unknowns being £’ and H«'s we obtain a linear system of at{{ equa-

tions.

The differentiation of ¥ with respect to ¢ and ¥y, gives: ' '

First with respect to ®°¥ .

Q . =q-h
-2 e(z,20) « Zte () s T iy =© V oozt %
Second with respect to Wi - ' ' |
k 15‘ '-0 v &=4JP
"& nd {4 , |

The system then can be written as
(VLR sz c(?,“!h) -+ Z h\«#

uY .
K=y L" '{q * '(a

d

_? = 2 c_‘(;-(:%)

. T P eeow

|
" e = o

The covariances c(z yZ ) and c(z ,z) are obtained in appendix three and are - |

given in the following relations:
elz,y ,3) =y ( FRu-F2) ows ¢(2y,30) = gtnrt:@,,\

Then the linear system of equations becomes
kn (2 -3) v B oww dy = 2 1B
74
ﬁ: 4B = ¥
where the b's and m's are the unknown quantities. Therefore, solving this
system the estimatqr of the variable is defined by:

é(x 3\ = zu Lﬂ. 2:44 and Tle Um;f\m-‘c o“. the
)
estimate is it

o Tyl + T 1

a2
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