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STOCHASTIC ANALYSIS OF THE EFFECT OF RANDOM PERMEABILITY 

DISTRIBUTIONS ON CONFINE SEEPAGE 

iV 
B. Dendrou", E. N. Houstls" 

CSD-TR 23^ 
April 1977 

Abstract 

We describe two stochastic models for the determination of the 

statistical properties of the solution process. An error analysis of 

the models is considered which indicates the convergence of the overall 

procedure. Then a real case of a seepage encountered in an underground 

facility is treated based on the data provided by a field Investigation. 

The outcome of the analysis Is In concordance with the past 

engineering experience. 

JL 
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It is generally recognized that within any homogeneous rock mass 

the physical properties exhibit a variability which must be considered 

in a design project. 

This variability is due to different causes during the geologic 

formation of the strata, and is estimated by means of a site investi-

gation. This will in turn provide the designer with the desired phys-

ical properties of the rock media at particular locations where the 

drillings are performed, • 

To handle the variability of the rock media an uncertainty factor 

is introduced in the simplified analytical model. 

Two interrelated problems are thenVccountered: 

A. Hov the above mentioned uncertainty of the physical properties 

will be inferred from the field information. 

B. How to introduce the uncertainty of these properties in the 

already existing analytical model simulating the real world. 

Both cases are treated by assuming that the rock properties 

Pj(*,y,z) are spatial stochastic processes, as suggested by Cornel (1). 

Thus to a point in space (x,y,z) corresponds a merely probable value of 

Pj known also as statistical uncertainty which can be decreased at the 

expense of additional field informations. 

The two problems are in the common practice solved independently 

and not coupled together to provide a consistent picture of the real 

phenomenon. 

Usually the first problem is overcome by making the assumption that 

the statistical properties of the rock media are the same all over the 



I 

region of interest or in other words that the process reflecting the 

randomness of the physical property is stationary. In that case there 

is no need of an inference model and one can proceed to solve the 

second problem by applying a first-order uncertainty analysis in con-

nection with the already existing analytical model. This approach was 

adopted by several investigators in the field of continuum mechanics. 

B. Cambow (z ) L. Esteva (*) and J. Pqdilla(6). 

However, in rock mechanics the above, procedure cannot be adopted 

and the first problem has to be solved exhaustively merely because of 

the nonstationarity of the physical properties. 

In this case the rock volume is assumed as made up of a number of 

elementary volumes within each of which the physical property at hand 

if treated as stationary. 

Moreover the properties assigned to each particular point in the 

two dimensional system must "be inferred from the field data of a limited 

number of rock samplej cfe«t"i'ly then the need of an inference model is 

Justified for: 

1) The relatively large scale used to perform the analytical 

model. 

2) The small amount of information of the rock media. 

Krumbein gives the fundamental techniques used in defining linear 

inference models. Such techniques are for example the method of leQ&t 

squares, fitting a polynomial in two variables, etc. All these techniques 

fail to provide an evaluation of how well the estimatron is performed, 

and present operational difficulties for the nonstationary case. 

However, G. Matheron (5) proposed an inference scheme which is 

attractive for our case. Indeed with every obtained estimation of the 

property under consideration a parameter related with each estimat 'on 
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is indicating the performance level reached by the inference. This 

parameter is nothing else than the variance of the estimator. Moreover 

the nonstationarity can be treated as veil as the stationarlty case. 

In the following a technique similar to the one suggested by G. 

Mather.-on " adopted to estimate the physical, properties in the 

domaine of interest and to determine their spatial distribution. The 

results of the inference procedure aire then^ used to treat the second problem. 

In other words a coupling of the inference model and the analytical 

v ^ T jfcj 

model ,Ya coupling of the data field investigation and the analytical 

simulation of the real phenomenon, is proposed. The analytical model 

is handled by using a finite element technique. 

Implementation of the Inference model in a two-dimensional geometric space. 

To determine the values of a rock property z(x,y) a number of meas-

urements are made on rock samples from boreholes. The set of points where 

observations are made is the set index 6 and Z„ represents the measured 
> ~ value of the random rock property at point 0. Then the estimation Z(x ,y ) 

o o 

at any particular point (
x
Q > y o ) "the media Ly evaluated based on 

the given Zg values. 

A simple way that one can Imagine to perform this estimation is 
A 

to define Z in terms of the known values Z^ according to a linear combin-

ation as follows: 

Where B and the known data points and b^ are the unknown weight coefficients 

to be determined by the inference model which is based on an optimal scheme 

o{ Ike C ^ J o h . j^riALVfi 



An aJtcrnato approach would. beVeutlmate thu mean value of Z(x,y), 

namely Z(x,y) according to a linear combination. 

where & are the known data points as previously and a^ are the unknown 

weight coefficients. 

The random variable Z(x,y) is characterized spatially by the ex-

pression . 

^ € + * * 

where Z(x,y) the mean and FZ(x,y) the fluctuating term around the mean. 

Then the two overmentioned estimation procedures to two distinctive 

groups of assumptions characterizing the inference model. 

The first group is given by 

1) E l U < „ l ] = 

2) t l ^ u ^ ^ t w ^ o l = + 

where Z(x,y) is the trend and c(n, Hj) the covariance of the variable Z( x ^ . 

However these assumptions are in many cases dealing with rocks, too re-

strictive and need to be replaced by some^"" flexible assumptions. 

This • iS. realized by considering the rate of change of the ran-

dom variable Z(x,y) and will lead to the second group of assumptions. 

The second group indeed is defined by: 

1) i t i K v l - ^ f j o ] -

2) E - a u ^ x f t
1 ,
 - 2. U \ 



In both set nevertheless of assumptions there is a need to characterize 

the nature of the randomness of the variable Z(x,y). 

Therefore the following hypothesis concerning the randomness are 

added to each group. More specifically we assume: 

First locally at a point (x,y) the mean Z(x,y) is approximated by 

known functions. Indeed, 

a^ being some unknown weight coefficients and ^ \ the apriori 

known functions. 

Secondly the covariances c(x^,x ) are computed based on field meas-

urements (See Padilla) and can be represented as approximated functions 

I - oi 

of the form c(x ,x 2) = G 

where r - distance between x^ and x^, ^ and k some 

parameters. 

At that point following the general trend of thought the two groups 

of assumptions correspond two inference models with two different goals 

reached in each case. 

In the first model the goal will be t<jinake the best estimation for 

the mean 2 llt>l) while in the second model the best estimation 

is required for the random variable Z(x,y) itself. 

Both models lead to the problem of identifying the best estimators 

among all possible functions satisfying the hypothesis covering the ran-

domness of the rock media. 

These goals are achieved in each case by optimizing the expression 

of the variance using the method of lagrangian multipliers under the 

constraints imposed by the assumptions concerning the first moments. 



In appendix (I) the computations give the following results: 

KQR MODEL 1 concerning the mean Z(x,y) 

The method of Lqgragian multipliers leads to a set of + ^ 

equations with & unknowns namely the weight coefficients: 

- r ; 

£ 
A 

£ 
c 

where Qj the unknown weight coefficients (^ the Lcjgrangian multipli 

and the krovie.c.k.e»- dc'td 

The variance of the estimati on is given by 

^ ^ Vi I ' M 

FOR MODEL 2 concerning the random variable Z(x,y) 

Similarly the following system is obtained (Appendix (l)) 

lers 

k i 

I ^ u + ^ " V U ^ ^ j O ... 1 

z. \>" 7 * . 

ti 

o 

where b the unknown weight coefficients and ^ ^ the Lagrongian 

multipliers. 

The variance of estimation being: « i 

t r - 2 . t " 'I + U 

" " . . UNCERTAINTY ANALYSIS THE ANALYTICAL MODEL 

As mentioned previously the analytical model . i-S treated using 

the finite element technique, which .. provides us the transfer mechanism 

between a set of inputs and set of outputs generally linknown . 



Then the general solutions ls given by the following relation in 

matrix form 

- 4 
W = i v y \ s i 

[k] is generally known as transfer matrix and is defined function of the 

random variables Z, . Z„, . . .Z . 
1 2 n 

tte] = ( •-• 

Applying now the first order uncertainty analysis as described by Popoulis 

( ) the following moments are obtained: 

FIRST MOMENT 

- X . . -

L L 

The second part of the second member can be neglected being a very small 

quantity 

SECOND MOMENT 

+ 2. ^ * u coo 

lUt^ + W fxjrti'al ^e^^w^i'lies Oft. "̂ wt S ' ^ t i o m o^ 

W i ^ z d ^ A i ^ A ^ I l i L - ^ t M * \ u a , U L u 
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Coupling of the Inference Model and the Analytical Uncertainty Model 

In this procedure the statistical properties of the solution process 

are determined by the previously given expressions where the moving aver-

age or spatial mfean Z (x,y), Z (x,y) and the variances a„ (x,y)j a (x,y) 
1 2 . Z 1 Z 2 

are provided by the inference model. By substituting these quantities in 

the statistical relations of the dependent random variable {ID, its co-

efficient of variation is defined. This in turn is an essential statis-

tical quantity used to evaluate the performance of the analytical model. 

The convergence of the overall procedure is considered in Appendix 2 

and checked through several examples. In general the results are im-

proved both in the analytical and statistical sense when the mesh becomes 

denser. 

Algorithm Description 

The geometric domain under investigation is divided using a rectang-

ular mesh common for the Inference Model and the analytical model (Finite 

element mesh). 

The computations will be performed in each mode using a number of 

known realizations of the random variable Z(x,y). Therefore a zone of 

influence, characteristic of the media and depending on the covariance 

c(x^,x^) is defined at each node of the mesh. In this zone eight given 

points are selected for efficiency and influence the computed estimation 

of the random variable Z(x,y) at that particular node. 

Indeed at every nodal point (x,y) a system of fourteen equations 
A 

is solved and the estimator Z(x,y) computed according to the previously 

defined relations. The outcome of the procedure will of course depend 



on Lhc number and closeness of the measured information of Z(x,y) provided 

by the field investigation. 

If the informations are not enough in number for all the domaine of 

interest then the1 estimator violates the original assumptions^but the 

variance on the other hand indicates the poor performance of the estim-

ation and gives the exact location in which more informations are needed. 

The flow chart in figure { 1 ) gives the sequence in which the com-

putations will be performed by program INFMODA. 

Several examples were treated to test the program, the more signif-

icant being the following: 

A square of hOOm by UOOm is examined and the random value Z(x,y) 

is assumed to possess a realization lying on a portion of a sphere as 

shown in figure ( 2, ). The domaine is divided into squares of 25 x. 25m 

having 289 nodes in which the computations are performed. 

The apriori known function characterizing the behavior of the 

mean Z(x,y) was taken as a quadratic function of the form: 

f(x,y) = a Q + a^ x y + ' ' i * 1 ^ ! , 

On the other hand the covariance was given by 

c ( Ua.) = e 

The results are given in table ) and are conform with what was expected. 

An interesting point to be mentioned, is that the computed variances are 

more sensitive to the location of the given information than,the gradient 

of the mean 

x ^ 

T h e »i>tcoM« tVe. i* -Jirvftotl^ J 

a t the nodes of the triangular element vised in the finite element procedure. 

Then the uncertainty analysis is conducted in a conventional way. 
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« 2 
The problem, therefore, consist to "minimize E[{z-z) ] the variance with 

A 
the constrain E[z(x,y}] - E[z(x,y)] = 0. 

In appendix three the above quantities are evaluated and was found to 

be: 

and 

The minimization of the variance will be obtained using the method of La-

grangian multipliers as followed. 

The Lagrangian function being 

"it* 



The conditions to obtain the minimum are 

0 ^ . Q {or o\l 

o y 4 

- 0 ^ ^ ' * 

The unknowns being 6 and we obtain a linear system of a+fc equa-

tions. 

The differentiation of with respect to fe* and ^ gives: 

First with respect to tf* . 

Second with respect to • 

The system then can be written as inc bybtem tnen can oe written as . / t 

k si 

The covariances c(z a,z 0) and c(z a >z) are obtained in appendix three and are 

given 1n the following relations: 

Then the linear system of equations becomes 

f ~ * M ) * \ C = 2 - l f l V 1 1 

? ^ f K ) = { V « 

where the b's and m's are the unknown quantities. Therefore, solving this 

system the estimator of the variable is defined by: 

A 
estimate is 
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