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The Complexity of Numerical Mkethods for Elliptic Partial
Differential Equations

E.N.Houstis ¥

Abstract

We consider three Ritz-Galerkin procedures with Hermite bicubic,
bicubic spline and linear triangular elements for approximating

the solution of self-adjoint elliptic partial differential equz-
tions and a Collocation with Hermite bicubics method for general
linear elliptic equations defined on general two dimensional domains
with mixed boundary conditions.We systematically evaluate these
methods by applying them to a sample set of problems while measuring
various performance criteria.The test data suggest that Collocation
is the most efficient method for general use,

*Department of Computer Sciences Purdue University,Westi lLafayette,
Indiana 47907




I. Introductlon. In this paper, we consider three Rltz-Galerkin
procedures with Hermite bicublc, blcubic spline and linear triangular
elements for approx!mating the solution of self-adjolnt elliptic partial
differential equations and a Collocation with Hermlte bicubics method
applied to general linear elliptic equations defined on two-dimensional
domains with mixed boundary conditions.
The four finite element procedures are described in Section 2-7.
In Sectlon 8 we study the structure of the lTnear algebraic systems for
the determination of the approximate solution obtalined by the mention
of finite element methods. In Sectlon 9 we deal with the direct solution
of such systems. The collocation equations for rectangular domains are
solved with a profile, a sparse and an almost block diagonal Gauss elimination
scheme with partial pivoting for unsymmetric band matrices. |In Section 10
we present a comparison of the considered finite element methods over a test
set of eight problems used by Houstls, et. al. in [4].
The principal conclusion is that collocation |5 the most efficient
method for general use. The Galerkin with bicubic splines for rectangular
domains turns to be competitive to collocation for self-adjoint problems i
with simple functions in the differentlal operator and high accuracy i

requi rements. :




2. The piecewise bicublc Hermite element. Given the one~dimensional

mesh A = {a = x) < X < 4o <X = b}, let H(Ax) be the space of plecewlse
cubic polynomials with respect to Ax which are contlinuocusly differentiable
in [a,bl. We will denote by HO(Ax) the set of functionr DeH(Ax) which
satisfy the boundary conditions p(a) = p{b) = 0. Given the mesh

Ay = {¢c = Yo < yl € bee < YH = d} the space H(Ay) is defined analogously,

In order to introduce a representation of a-kicubic rectangular Hermite

element we consider 8 one-~dimensional functions.

y<
(0,b) (a,b) s=xfa and 0 &5 51
= . 1
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Then the bicubic rectangular element is defined by
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where u, = value at the point |

a ,, a = xand y derlvatives at the polnt |
xI? yi

T = xy {cross) derivative at the point 1.

xyl

We denote by Bi(x,y), I =1, 16 the 16 basis functions in the above

representation; f.e.

B,. =8 8 B, = = =
14 B B Byz' assp B|6 =

1= P Bk By S B By ees Big S B, Bes Byye

3. The piecewise bicubic Spline £lement. Let SO(Ax) be the space of

functions s(x) which are cubic polynomials in each subinterval fxixﬁdl'

twice continuously differentiable in [a,b], and satisfy the boundary

-

conditions s{a) = s(b) = 0. We choose the B-spline basis for the
N
piecewlse polynemial spare SO(Ax) and denote them by f¢i(x)} « The
i=0 ~
graph of ¢i(x) is

¥ e e— o

X X

X P+2 j+3 Xith

i+l

M }
The space SO(AY) and the corresponding basis {¢j(y)}j=0 are defired analogously.

Then the bicubic spline is defined In each subrectangle [xi, xi+]] X

[y.» vipqd by

J
}I %, $Xefy) .

We denote Bm(x.y) = ¢k(x)¢£(y) form =k + (n+1}2+1, 0 s k,2 < H,

re A xAY and So(p) the space of bicublc splines respresented by
2

(N+1)
I Bm Bm (x,y) .

s(x,y} =
m=1




L, Collocation with Hermite bicublic elements. This method is used for

approximating the solution u(x,y) of the linear elliptic boundary value

problem |

(h1) Lu = alxy)u  + ZB(X'V)"xy + ;r(X.Y)uyy + S(xigns i+ s(X.Y)Uy + 7lx,y)u
= f(x,y) defined on a general domaln 9 and subject to mixed type
boundary condltions

(k.2) Bu = a(x,y)ux + b(x,y)uy + ¢(x,y)u = 'g{x,y) on 32 = boundary of Q.

This method consists of five components:

(I) Partition: A rectangular grid Is placed over the domain Q.
Rectangular elements whose center Is not Inside the domain are dl;carded.

(it) Approximation space: the Hermlte bicublcs

(iii) Operator discretization: Each bicubic element satisfies the
differentlal equatlon exactly at the four Gauss points of the rézihngular
element. For elements that overlap the boundary the four Gauss polnts were
projected in the portion of the element Inside the domaln.

(iv) Dlscretization of boundary conditions: The boundary conditions
are interpolated at a selected set of boundary points (see [4 ]}. If the
domain is a rectangle and the problem has homogeneous Dirichlet or Neumann
boundary conditions, then the Hermite bicublcs were selected to satisfy the
boundary conditlons.

(v) Equation solution: The linear system is solved by these direct
equation solvers based on Gauss elimlnation, A description of the equation
solution algorithms will be given in Section 7.

The error analysis of this method for rectangular regtons Is'glven by
Houstis Tn [3]. The computer Implementatlion of the above described Collocatlon

method used for the numerical experimentation Is due to Houstls and Rice [5].




5. Ritz-Galerkin with Hermite bicubic elements. This method is used to

approximate the solution u(x,y) of the self-adjeint boundary value problem.
(5.1) Lu = -Dx(p(x,y)Dyu) - Dy(q(x,y)Dyn) + c(x,y)n = f(x,y) on a
rectangular domain subject to homogeneous boundary conditions.
(5.2) u(x,y) =0 or %ﬁ-= 0 or 3. The functions p, q, ¢ and f are
assumed to be smooth and to satisfy
(5.3) pilx,y) Z v, qlx,y) 2 v, c{x,y¥) 2 0 on  for some positive constant vy.
The method consists of the following components.
(i) Grid: rectangular
(ii) Approximation space: the Hermite bicubics which satisfy boundary
conditions (5.2).

(i1i) Operator discretization: In each element E of the partition we

have the Galerkin equations

]

oo

a Sf{p Dx B

b B,+qD B, D B, +cB
;o1 x ] y Iy ]

B.} dxdy = ff f B, dxdy
j £ d

i I

i
(iv) Equation solution: The local equations are assemblied by the
direct stiffness method to form the global matrix. The equations are
solved by profile Gauss elimination for symmetric positive definite matrices.
For an error analysis of the above methed see [7]. The computer
implementation of this method used for experimentation is due to Houstis.
A nine-point Gaussian quadrature scheme {s used to compute the coefficients

of the Galerkin equations.



6. Ritz-Galerkin with bicubic Spline elements. This method can be used

to approximate the solution of (5.1}, (5.2)., It consists of the same
components as the Ritz-Galerkin with Hermite bicubics where Bi's in the
third component are the B-splines. The Galerkin equations are solved
by a sparse Gauss elimination algorithm for symmetric positive definite
matrices, This method is studied in [2]. Its computer Implementation

used is due to Elsenstat and Schultz,

7. Ritz-Galerkin with trlangular linear elements. This method has been

implemented to approximate the solution of (5.1) over a general two-
dimensional domains provided the solution is known on a part of the
boundary. It consists from the same components as the above described
Ritz=Galerkin methods. The Galerkin equations are solved by a Gauss
elimination algorithm for symmetric band positive definite matrices.

A four-point Gauss quadrature scheme s used to compute the coefficients

of the Galerkin equations. The implementatlon is due to Houstls,



8. The Structure of matrices of the four flnite element methods.,

The local nature of the bhasis functions, used for the representation
of the approximate solution In the three finlte element methods cons idered,
dominates the structure of the finite element equations. In the case of
Hermite cubics, the one~dimensional basis functions
(8.1) have support contalned in at most two contiguous subfntervals and

1.

(8.2) at most four basis have support In any subinterval [xi, X4l

In the case of ocubic B-splines each basis function
(8.3) has support contalned in at most four contigucus subintervals and

(8.4) at most four basis functions have support in any subinterval [xi, x|+]].

Because of properties (8.1), (8&2) each collocation equation has 16 non-
zero elements. The equations which correspond to collocation points
associated with each element have the same structure. Thus the system
of Collocation equations has an almost diagonal structure . o
with 2N+6 (HO(Ax X Ay)) or N+12 (H (Ax X Ay)) half bandwidth for
rectangular domains,

Each entry of the system of Ritz-Galerkin (Hermite bicublecs)
equations Is the sum of integrals over 4 contiguous rectangular elements.
Besides, each equation has at most 36 non-zero elements. The system of
Galerkin (Hermite blcubics) equatlons for problem (5.1), (5.2) is symmetric
positive definite with 2N+6 (HJp)) half bandwidth.

Finally, because of properties f8.3)(8.4) each entry of the Galerkin
(bicubic spline) system Is the sum of Integrals over 16 contiguous

rectangular elements, 1t Is symmetric and positive definite with 3N+7

(So(p)) half bandwidth and 49 non-zero elements per equation.



9. The direct solution of the three Linear Finite Element systems,

For the solution of Ritz-Galerkin (Hermite bicubics) a profile Gauss
elimination algorithm for symmetric posltive definlte matrices without
pivoting Is used. The Ritz-Galerkin (blcubic spline) system of equations
is solved by a sparse Gauss elimination scheme,

For the system of Collocatlon (Hermite bicublcs) equations three
equation solvers were applied. The first is a profile Gauss ellmination
algorithm (BNBSOL) for unsymmetric baod matrices, (stored in band
storage node) with row pfvoting and taking into account the zeroes in
the system, The second Is a sparse Gauss elimlnation algorithm (NSPIV)
wlith column pivoting (see [6]). The coefficient matrix of Collocation
equations A is stored by means of three vectors which contain the non-zero
elements of A row by row, the column number and the positlon of the first
element of the ith row of A in the previous two vectors, Finally, the third
scheme (SLVBLK) used is a Gauss elimination with rowpivoting for solving
almost block diagonal !inear systems (see [1]). The matrix is stored tn
blocks in one=dimenslonal array together with four vectors containing an
index pointing the starting of {th block, the number of rows, the number of
columns of each block, the number of steps of the Gauss algorithm to be
performed on the ith block.

The Collocation (Hermite bicubics) and Galerkin (Hermite bicubics)
were compared by Houstls, et. al, Tn [4]. In Table 2 we present the solutlon
of an elliptic boundary value problem (see {4]) by the four fipite element

procedures described in this paper.



The data in Table 2 Indlcate that collocation with Hermite bicubics requlres
the least execution time for generating equations and that Collocation is
faster than the other considered for the element methods, [n Table 3 we
observe that the profile Gauss elimination scheme BNDSOL is more efficient

for moderate-size systems of collocation equations,

10. Test Results. In this sectlon, we present a comparison of the finite

element procedures considered above over a set of eight test problems used
by Houstis, et, al. In [#]. We measure equation formation and solution
time in seconds. The maximum error is ca]eu!ated for each mesh. These
results are shown in Tables 4-11. All computations were performed on a
CDC 6500 in single precision arithmetic.

The data In Table 2 Indicate the superlority of Collocation (CI)
for operators with expensive functions. The results tn Tables &4, 6, 7
show that collocatlon (Cl) is more efficient than Galerkin (62) for simple
operators and moderate accuracy {1 to 5 digits correct). The superiority
of Collocation (CI) over Galerkin (CO) for curved boundarles is demonstrated
in Tables 9, 10. Finally, Tables B, 11 show that Galerkin (Co) is more
efficient than collocation (CI) and Galerkin (Cz) only for low accuracy
{1 digit correct) and non=-smooth solutions. These results turn out to

be compatible with those obtained in [4].
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Table 1 Data indicating the structure of Galerkin and Collocation
equatfons based on piecewise polynomial approximations for a

N x N mesh of rectangular elements,

GALERKIN COLLOCAT{ON
Linear Hermite Cubie¢s Cubic Splines Hermite Cubics
Number of Equations (H-I)z ﬁNz (N+|J2 hNZ
Half bandwldth H+ 3 2N+6 3N+7 2N+6
Sparsity* 5 36 49 16

*
Sparsity Is the maximum number of nonzero elements per row.
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Table 2

Data for solvingu _+ u
XX Yy

- [100 + cos(3wx) + sIn(2sy)Ju = f on unit

o = h(x~.5)2 + L(y-.5)2

METHOD: GALERKIN based on Hermite bicublcs (C!)

Number of
Equattions

36

64
100
14h
196
256
324

Half
Bandwidth

12

14

16

18

20

22

24

Matrix
Formation

4,463

7.865
12,377
17.695
23,996
31.384
39.98

Profile Gauss
Elimination Solution
+059
. 204
«532
1.164
2,112
3.666
5.835

METHOD: GALERKIN based on bicubic splines (Cz)

Number of
Equations

9
16
25
36
h9
64
81

100
121

Half
Bandwidth

Full
Full
19
22
25
28
31
34
37

Hatrix
Formation

.196
.485
920
1.469
2,159
2,977
3.961
5.048
6.232

Sparse Gauss Solution

.008
.030
075
169
.287
43k
793
1.180
1.722

square with u taken as [S.H-cos(ﬁwx)]sln(wx)(yz'Y)[5.h-cos(4WY)]*[1/(1+¢4)-1/2]

Maximum
Error

3.09E-01
54398-02
h.78e-03
8.40E-03
3.13-03
6.60E-03
4.50E~03

MaxImum Error

7.669E-01
1,098E+00
1.585E-01
4,032E-01
1.540E~-01
6.442E-02
3.588E-02
3.171E-02
2,168E-02



b o 0 1 & Wz

METHOD: COLLOCATION based on Hermite bicubics

Number of Half Matrix Proflte Gauss .
Equations Bandwidth Formatlion Solution Maximum Error
16 10 .082 .139 8.48e-01
36 12 .189 .19 2.10E=-01
100 16 .518 »921 3e31E-02
144 18 .776 1.710 2.68E~02
256 22 1,367 L.hos 1.25E=02
324 24 1.714 6,663 6.88E-03
Table 3 Data indicating Collocation equation solution times for
BNDSOL, NSPiV, SLVBLK
SLVBLK NSPiV BNDSOL
Matrix Equation Matrix Equation Matrix Equation
N fFormation Solution Formation Solution formation Solution
2 033 .036 036 054 036 2061
.089 J51 .081 216 .086 199
178 RAL 143 .584 .159 477
5 »308 .924 223 1.266 .255 .962
6 - 485 1.77% 322 2,391 . 368 1,739
7 072‘} 300'42 ohl!B 1'0055 .5 20836
8 645 L 451



—' = f on unlt square

. Xy XY -
Table 4, Data for solving (e ux)x + (e uy)y Tty

with u taken as exysn(ux)sin(ny).

METHOD: COLLOCATION based on Hermite bicubics (C')

N Matrix Profile Gauss Max imum

Formation Elimination Sol. Error
2 .059 .061 3.17E-02
3 137 .203 5.64E-03
4 .248 Lok 1.79E-03
5 .396 .932 8.51E-04
6 .569 1,73 3. 11E-04
7 .792 2,961 1.82E~04
8 1.028 4.491 1.13E-04
METHOD: GALERKIN based on bicubic splines (C2)
M S pdmn e
2 .175 .007 1.497E-02 5.221E-03
3 429 .028 5.267E-03 1.353E-03
i 811 077 1.876E-03 4, 155E-04
5 1.314 .16 7.260E-04 1.623E~04
6 1.922 .285 3.391E-04 7.672E-05
7 2.662 507 1.792E-04 4,072E-05
8 3.54 .783 1.004E~04 2.366E-05



Table 5. Data for solving U + uyy = f, u <=0 on unit square wlth u taken as
2
3e%eY (x-x%) (y-y?).

METHOD: COLLOCATION based on Hermite bicubics (C])

Matrix Profile Gauss Max ! mum
N Formation Elimination Sol. Error
3 .086 .199 4 48E-04
L .159 477 1.35E-04
5 .255 .963 5.00E-05
6 .368 1.739 2.79E-05
7 .5 2,836 1.49E-05
8 .645 4,451 3.28E-05
METHOD: GALERKIN based on bicublc spllnes (Cz)
Matrix' Sparse Gauss Maximum L ~Error
N Formation Ellm. Sol. Error 2
2 .108 .006 3.335E-03 1.150E-03
3 .279 .029 1.045E-03 2.744E-04
] 544 074 3.361E-04 9.037E-05
5 .857 .163 1.597E-04 3.911E-05
6 1.296 .288 7.781E~05 1.929E-05
7 1.798 . 501 4.,278E-05 1.065E=05
8 2.407 +793 2.531E-05 6.327E-06
9 3.06 1.194 1.562E-05 3.996E-06
10 3.82 1.733 }.004E~05 2,645E-06
METHOD: GALERKIN based on linear trlangular elements (CO)
Matrix Max mum
N Formation Gauss Elimin. Sol. Error
2 .02 .003 6.433E-02
4 .082 .009 3.620E-02
8 .327 130 9.674E-03
16 1.338 1.772 2.466E-03
32 3.035 8.305 1.100E-03



Table 6, Data for solving U + uyy = f, u= 0 on unit square with u taken as

SI2,502 _ 512 52

METHOD: COLLOCATION based on Hermlte bicubics (C)

Matrix Profile Gauss Maximum
N Formation Eliminat. Sol. Error
2 ,034 .062 7.50E~05
3 .08 213 3.20E-05
4 .146 <456 2.00E-05
5 240 .955 1. 40E-05
6 348 1.709 9.69E-06
7 .501 2.8 7.10E-06
8 .633 4.33) 5.40E-06
METHOD: GALERKIN based on bicubic Splines (cz)
Matrix. Profile Gauss Maximum L2-Error
N Formation Elimin. Sol. Error
2 102 .008 2.650E-04 1.036E-04
3 .264 .030 B.059E-05 3.270E-05
4 .515 074 4,191E=05 1. L47E-05
5 .84k -157 2.439E-05 7.518E-06
6 1.246 «29 1.472E-05 L, 409E~-06
7 1.745 .498 1.019E-05 2.800E-06
8 2.321 .789 7.394E-06 1.891E~06
39 2.981 1.176 5.499E-06 1.338E~06
10 3.735 1.705 4.234E-06 9.819E-07
METHOO: GALERKIN based on llnear triangular elements (CO)
Matrix Gauss Eilm, Maximum
NN Format!lon Solution Error
2 .017 .001 1.708E-02
4 .07 .008 4,801E-03
.284 - 131 1.348E-03
16 1.179 1.791 3.401E-04
32 2,671 8.42 1.516E=04



Table 70

METHOD :

W ~N OV W N

METHOD:

0~ O U W Z

Data for solving bu,, + Uy

h(xz - x) (cos (2ny) -1).

COLLOCATION based on Hermite bicubics (Cl)

Matrix
Formation

.034
.082
.159
.239
.366
. k89
622

GALERKIN based on bicubic splines (cz)

Matrix
Fermation

1
.285
.549
.923
1.357
1.901
2.53

Proflle Gauss
Elimin. Sol.

053
191
.46
.961
1.714
2.878
4.428

Sparse Gauss
Elimin.

.008
-029
074
. 156
-292
- 49h
791

Max imum
Error

5.15E-02
3.05E-02
7.89E-03
L.21E-03
1.98E-03
1.04E~03
3.96E-0k

Max f mum
Error

1.675E~02
5.417€-02
1.114E=-02
5.288E-03
2.173E-03
9.849E-04
5.570E-04

f, u= 0 on unit square with u taken as

L2-Error

8.020€E-03
2.200E-02
4.566E-03
1.673E-03
7.182E-04
3.650E~04
2.038E~-04




Table 8.

Data for solving U + uYY = f, u= 0 on the unit square with u taken as

10 ¢(x) * ¢(y), ¢(x) =e

—loo(x-.l)z(xz_x)

METHOD: COLLOCATION based on Hermite bicublcs (C]) *

0 @O~y O 1w N

Hatrix
Formatton

.063
. 143
239
367
.536
.719
. 946
1.223

*Un! form mesh

METHOD: GALERKIN based on linear triangular elements (CO)

xR N

16
32

Matrix
Formation

.059

.234

.921
3.718
8.38

Profile Gauss
Elimin. Sol.

.061
214
182
.968
1.720
2.814
4.39
6.71

Gauss Elim.
Solution

-000
.008
.13

1.775

8.338

Max!mum
Error

2.3E-00

5.71-01
3.38E-01
3.20E-01
1.59E-01
1.03E~01
8.16E-02
1.49E-02

Maximum
Error

1.439

1.888E~0t
3.093E-02
1.891E~-02
8.985E-03



.~

Table 8. {(continued)

METHOD: GALERKIN based on blcublc splines (c2)
Matrix Sparse Gauss Maximum

N Formation Eiimin, Sol. Error

2 46 .008 6.218E~01
3 .368 .029 5.425E-01
4 .683 .075 1.906E-01
5 1.121 .156 3.261E-01
6 1.657 .294 1.365E-01
7 2.301 493, 2.289E-01
8 3,048 779 3.086E-02
9 3.855 1.169 1.308E-01
0 4.819 1.704 4.293E-03

METHOD: COLLOCATION based on Hermite bicubics (CI) *

Matrix Profile Gauss Maximum
N Formation Ellm. Sol, Error
3 127 .195 2.90E-01
4 .229 468 3.00E-01
5 .358 .963 9.10E-02
b 542 1.753 6.16E-02
7 .73 2.856 3.80E-02
8 .97 4.547 2.65E-02

*Non=-uni form mesh



Table 9. Bata for solving u  + Uy = f, u=gon £ (Figure 1) with u taken as

2_1 ]e" - 0625)‘ (X"

ylix=2)% + y N2, L34 (x-2)2) BeyD)]

METHOD: COLLOCATION based on Hermite bicubics (Cl)

Number of Matrix Profile Gauss Max1mum
Equations Formation Elim. Sol. Error
56 . 146 507 2.367E~03
108 311 1.478 9.307E-04
164 496 3.049 2.305E~04
240 .7h6 5.646 1.141E-~0k

METHOD: GALERKIN based on linear triangular elements (c°)

Number of Matrix Gauss Maximum
Equations® Formation Elim. S5Sol. Error
2 .095 . 002 3.344E-01
17 403 .023 1.476E-01

*Boundary conditions have been eliminated.

Figure 1 The geometry and boundary conditions for problen
in Table 9. ’

u=2




Table 10. Data for solving U x + uyy = f, u=g on anelllpse with u taken as

u= (e +e)/(1 + xy)

METHOD: COLLOCATION based on Hermite bicubles (C])

Number of Matrix Profile Gauss Max1mum
Equations Formation Elim. Sol. Error

24 .048 143 1.42E~-02

56 122 .558 7.80E-03

156 . 366 2,972 3.28E-04

228 .572 5.662 2.20E-04

METHOD: GALERKIN based on linear triangular elements (CO)

Number of Matrix Gauss Max1mum
Equations* Formatlon Elimin, Sol. Error
1 .022 .001 7.001E-Q2
3 042 . 002 8.256E-02
8 .081 .008 t,256E-02
39 .289 112 3.039E-02

*The Boundary cond!tions have been eliminated.



Table 11, Data for soiving U + uyy = f, u= g on the unlt square wlith u taken as
¢ (x) * ¢(y) where ¢{x) = U(.35) + (U({.35) - U(.65))p(x) Is a quintic
polynomlal determined so that ¢(x) has two contlnuous derlvatives and

U(x) is unit step functlion.

METHOD: COLLOCATION based on Hermite bicubics (Cl)

Matrix Proflle Gauss HaxImum Max Imum
N Formation Etim. Sol. Error Error#
3 .152 846 5.34E-01
4 o242 1,838 1.13E=01
5 .363 3.436 9.90E-03
6 505 5.79 T.51E~02 1.77E-03
7 .664 9.25 5.99E-02
8 845 14,19 7.03E-02 4.13E~04
*Collocatlion -- non-unlform mesh

METHOD: GALERKIN based on llnear triangular elements (CO)

Matrix Gauss Max Imum
N Formatlon Elim. Sel. Error
2 027 .001 2.007E-01
b .103 .008 1.298E-01
8 47 134 4.828E-02
16 1.8 1.796 1.629E~02
32 4.018 B.41 3.693E-03
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