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The Complexity of Numerical Methods for Elliptic Partial 
Differential Equations 

* 

E.N.Houstis 

Abstract 

We consider three Ritz-Galerkin procedures with Hermite "bicubic, 
bicubic spline and linear triangular elements for approximating 
the solution of self-adjoint elliptic partial differential equa-
tions and a Collocation with Hermite bicubics method for general 
linear elliptic equations defined on general two dimensional domains 
with mixed boundary conditions.We systematically evaluate these 
methods by applying them to a sample set of problems while measuring 
various performance criteria.The test data suggest that Collocation 
is the most efficient method for general use. 

•Department of Computer Sciences Purdue University,West Lafayette, 
Indiana 47907 



1. Introduction. In this paper, we consider three Rttz-Galerkln 

procedures with Hermite bicubic, bicubic spline and linear triangular 

elements for approximating the solution of self-adjotnt elliptic partial 

differential equations and a Collocation with Hermite bicubics method 

applied to general linear elliptic equations defined on two-dimensional 

domains with mixed boundary conditions. 

The four finite element procedures are described in Section 2-7. 

In Section 8 we study the structure of the 1Tnear algebraic systems for 

the determination of the approximate solution obtained by the mention 

of finite element methods. In Section 9 we deal with the direct solution 

of such systems. The collocation equations for rectangular domains are 

solved with a profile, a sparse and an almost block diagonal Gauss elimination 

scheme with partial pivoting for unsymmetric band matrices. In Section 10 

we present a comparison of the considered finite element methods over a test 

set of eight problems used by Houstls, et. al. in [4], 

The principal conclusion is that collocation Is the most efficient 

method for genera] use. The Galerkin with bicubic splines for rectangular 

domains turns to be competitive to collocation for self-adjoint problems 

with simple functions In the differential operator and high accuracy 

requi rements. 



2„ The piecewlse bicubic Hermite element. Given the one-dimensional 

mesh A = {a = x < x < ... < x = b}, let H(A ) be the space of piecewlse 
X U I N X 

cubic polynomials with respect to A^ which are continuously differentiate 

in [a,b]. We will denote by H (A ) the set of functions PeH(A ) which 
U X X 

satisfy the boundary conditions p(a) = p(b) = 0. Given the mesh 

A = {c = y < y < ... < y = d} the space H(A ) is defined analogously, 
y u I n y 

in order to introduce a representation of a\icubic rectangular Hermite 

element we consider 8 one-dimensional functions. 
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where u. value at the point I 
r 

a ,, a , = x and y derivatives at the point I 
xl y i 

T
x y
| •= xy (cross) derivative at the point I. 

We denote by B (x,y)
f
 I = 16 the 16 basis functions in the above 

representation; I,e
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3. The piecewise bicubic Spline Element. Let SQ(a^) be the space of 

functions s (x) which are cubic polynomials in each subinterval 

twice continuously differentiate in [a,b], and satisfy the boundary 
r 

conditions s(a) - s(b) = 0
o
 We choose the B-spline basis for the 

N 
piecewlse polynomial spare S (A ) and denote them by (<fi.(x)} „ The 

1

 i=0 
graph of ij>. (x) is 

The space S ^ A ^ ) and the corresponding basis {<frj(y)}j_g are defined analogously, 

Then the bicubic spline is defined In each subrectangle [x.,
 x

;
+
] ]

 x 

y
i + ]

l by 

i j 
U(x,y) = E 3! ct

k9
 •

k
(x)* (y) . 

k=T-3 l=J-3
 4 

We denote B
m
(x,y) = <|>

k
 (xH^Cy) for m » k + (n+lH+I, 0 £ s N, 

r- «= A xA and S„(p) the space of bicubic splines resprese.ntcd by 
x y 0 

(N+l)
2 

s(x,y) = S 8 B (x,y) . 
m=l

 m m 



h. Col location with Hermite bicubic elements. This method Is used for 

approximating the solution u(x,y) of the linear elliptic boundary value 

p rob 1 em 

('M) Lu = a(x,y) u + 2p(x,y)u + y(x,y)u + r+ e(x,y)u
j
 + j(x,y) 

xy yy y 
=

 f(
x

»y) defined on a general domain n and subject to mixed type 

boundary conditions 

(1«.2) Bu = a(x,y)u + b(x,y)u + c(x,y)u = g(x,y) on = boundary of fJ. 
x y 

This method consists of five components: 

(i) Partition: A rectangular grid is placed over the domain fi. 

Rectangular elements whose center Is not Inside the domain are discarded, 

(ii) Approximation space: the Hermite blcublcs 

(iii) Operator discretization: Each bicubic element satisfies the 

differential equiatlon exactly at the four Gauss points of the rectangular 

element. For elements that overlap the boundary the four Gauss points were 

projected in the portion of the element inside the domain. 

(iv) Discretization of boundary conditions: The boundary conditions 

are interpolated at a selected set of boundary points (see [4 ]). If the 

domain is a rectangle and the problem has homogeneous Dirichlet or Neumann 

boundary conditions, then the Hermite bicublcs were selected to satisfy the 

boundary conditions. 

(v) Equation solution: The linear system is solved by these direct 

equation solvers based on Gauss elimination. A description of the equation 

solution algorithms will be given in Section 7* 

The error analysis of this method for rectangular regions Is given by 

Houstis In [3]. The computer Implementation of the above described Col 1oca11 

method used for the numerical experimentation Is due to Houstts and Rice [5]. 



5. RItz-Galerkln with Hermite bicubic elements. This method is used to 

approximate the solution u(x,y) of the self-adjoint boundary value problem. 

(5.1) Lu = -D (p(x,y)D u) - D (q(x,y)P n) + c(x,y)n = f(x,y) on a 
x y y y 

rectangular domain subject to homogeneous boundary conditions. 

(5.2) u(x,y) = 0 or -jp- = 0 or The functions p, q, c and f are 
dn 

assumed to be smooth and to satisfy 

(5.3) p(x,y) > y» q(x,y) t y, c(x,y) t 0 on fi for some positive constant y. 

The method consists of the following components. 

(i) Grid: rectangular 

(ii) Approximation space: the Hermite bicublcs which satisfy boundary 

conditions (5.2). 

(iii) Operator discretization: In each element E of the partition we 

have the Galerkin equations 

16 
Z a f f { p D B, 0 B . + q D B. D B . + c B . B . } dxdy = // f B, dxdy 

i = 1
l

E
 x l x j ^ y i y j I j

 E
 j 

(iv) Equation solution: The local equations are assembled by the 

direct stiffness method to form the global matrix. The equations are 

solved by profile Gauss elimination for symmetric positive definite matrices. 

For an error analysis of the above method see [7]. The computer 

implementation of this method used for experimentation is due to Houstis. 

A nine-point Gaussian quadrature scheme is used to compute the coefficients 

of the Galerkin equations. 



6. Ritz-Galerkin with bicubic Spline elements. This method can be used 

to approximate the solution of (5.1), (5.2). It consists of the same 

components as the Ritz-Galerkin with Hermite bicubics where B.'s in the 

third component are the B-splines. The Galerkin equations are solved 

by a sparse Gauss elimination algorithm for symmetric positive definite 

matrices. This method is studied in [2]. Its computer Implementation 

used is due to Elsenstat and Schultz. 

7. Ritz-Galerkin wlth_trjangular linear elements. This method has been 

Implemented to approximate the solution of (5.1) over a general two-

dimensional domains provided the solution Is known on a part of the 

boundary. It consists from the same components as the above described 

Ritz-Galerkin methods. The Galerkin equations are solved by a Gauss 

elimination algorithm for symmetric band positive definite matrices. 

A four-point Gauss quadrature scheme Is used to compute the coefficients 

of the Galerkin equations. The implementation is due to Houstts. 



8 . The Structure of matrices of the four finite element methods. . 

The local nature of the basis functions, used for the representation 

of the approximate solution In the three finite element methods considered, 

dominates the structure of the finite element equations. In the case of 

Hermite cubics, the one-dimensional basis functions 

(8.1) have support contained in at most two contiguous subintervals and 

(8.2) at most four basis have support In any subinterval [x., x.,,]. 

I i + l 

In the case of dubic B-splines each basis function 

(8.3) has support contained in at most four contiguous subintervals and 

(8.*)) at most four basis functions have support in any subinterval [x.,
 x

|
+
j 1 

Because of properties (8.1), (8.2) each collocation equation has 16 non-

zero elements. The equations which correspond to collocation points 

associated with each element have the same structure. Thus the system 

of Collocation equations has an almost diagonal structure 

with 2N+6 ( H
q
U

x
 x A

y
)) or 4N+12 (H (&

x
 x A

y
)) half bandwidth for 

rectangular domains. 

Each entry of the system of RItz-Galerkln (Hermite bicublcs) 

equations Is the sum of Integrals over 4 contiguous rectangular elements. 

Besides, each equation has at most 36 non-zero elements. The system of 

Galerkin (Hermite blcubics) equations for problem (5.1), (5.2) is symmetric 

positive definite with 2N+6 (Hjp)) half bandwidth. 

Finally, because of properties ^8,3)(8.4) each entry of the Galerkin 

(bicubic spline) system Is the sum of Integrals over 16 contiguous 

rectangular elements. It Is symmetric and positive definite with 3N+7 

($
n
(p)) half bandwidth and 49 non-zero elements per equation. 



9, The direct solution of the three linear Finite Element systems. 

For the solution of Ritz-Galerkin (Hermite bicubics) a profile Gauss 

elimination algorithm for symmetric positive definite matrices without 

pivoting is used. The Ritz-Galerkjn (bicubic spline) system of equations 

is solved by a sparse Gauss elimination scheme. 

For the system of Collocation (Hermite bicubics) equations three 

equation solvers were applied. The first is a profile Gauss elimination 

algorithm (BNBSOL) for unsymmetric band matrices, (stored in band 

storage node) with row pivoting and taking into account the zeroes in 

the system. The second Is a sparse Gauss elimination algorithm (NSPIV) 

with column pivoting (see [6]). The coefficient matrix of Collocation 

equations A is stored by means of three vectors which contain the non-zero 

elements of A row by row, the column number and the position of the first 

element of the ith row of A In the previous two vectors. Finally, the third 

scheme (SLVBLK) used is a Gauss elimination with rowplvotlng for solving 

almost block diagonal linear systems (see [1]). The matrix Is stored In 

blocks In one-dimensional array together with four vectors containing an 

index pointing the starting of Ith block, the number of row% the number of 

columns of each block, the number of steps of the Gauss algorithm to be 

performed on the ith block. 

The Collocation (Hermite bicubics) and Galerkin (Hermite bicubics) 

were compared by Houstls, et. al. In [4]. In Table 2 we present the solution 

of an elliptic boundary value problem (see [4]) by the four finite element 

procedures described in this paper. 



The data in Table 2 indicate that collocation with Hermite bicubics requires 

the least execution time for generating equations and that Collocation Is 

fa ster than the other considered for the element methods. In Table 3 we 

observe that the profile Gauss elimination scheme BNOSOL Is more efficient 

for moderate-size systems of collocation equations,, 

10. Test Results. In this section, we present a comparison of the finite 

element procedures considered above over a set of eight test problems used 

by Houstis, et. al. In [4J. We measure equation formation and solution 

time in seconds. The maximum error is calculated for each mesh. These 

results are shown in Tables 4-11. All computations were performed on a 

CDC 6500 in single precision arithmetic. 

The data In Table 2 Indicate the superiority of Collocation (c
1

) 

for operators with expensive functions. The results In Tables 4, 6, 7 

1 2 
show that collocation (C ) is more efficient than Galerkin (C ) for simple 

operators and moderate accuracy {1 to 5 digits correct). The superiority 

1 , 0. 
of Collocation (C ) over Galerkin (C ) for curved boundaries is demonstrated 

In Tables 9, 10. Finally, Tables 8, 11 show that Galerkin (C°) is more 

1 2 
efficient than collocation (C ) and Galerkin (C ) only for low accuracy 

(1 digit correct) and non-smooth solutions. These results turn out to 

be compatible with those obtained in (.4]. 
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Tab 1e 1 Data indicating the structure of Galerkin and Collocation 

equations based on piecewise polynomial approximations for a 

N x N mesh of rectangular elements. 

GALERKIN COLLOCATION 

Linear Hermite Cubics Cubic Splines 

Number of Equations (H-l)' 4N (N+l)' 

Hermite Cubic 

4N
2 

Half bandwidth 

Spars!ty 

N + 3 2H+6 

36 

3N+7 

49 

2N+6 

16 

Sparsity Is the maximum number of nonzero elements per row. 



Table 2 Data for solving u + u - [100 + cos(3irx) + sln(2iry)]u = f on unit 
XX yy 

square with u taken as [5.4-cos (4TTX) ] s In (irx) (y
2

-y) [5.4-cos (4?ry) ] *[1/(nV*)-l/2] 

• - M x - . 5 )
2

 + 4(y-.5)
2 

METHOD: GALERKIN based on Hermite blcublcs (C
1

) 

Number of Half Ma t r i x Profile Gauss Maximum 
N EquatIons Bandwidth Formation Elimination Solution Error 

3 36 12 4.463 .059 3.09E-0I 

4 64 14 7.865 .204 5.39F-02 

5 100 16 12.377 .532 4.78E-03 

6 144 18 17.695 1.164 8.40E-03 

7 196 20 23.996 2.112 3.13F-03 

8 256 22 31.384 3.666 6.60E-03 

9 324 24 39.98 5.835 4.50E-03 

METHOD: GALERKIN based on bicubic splines (C
2

) 

Number of Half Matrix Sparse Gauss Solution Maximum Error 
N Equat ions Bandwidth Formation 

2 9 Full .196 .008 7.669E-0I 

3 16 Full .485 .030 1.098E+00 

4 25 19 .920 .075 1.585E-01 

5 36 22 1.469 .169 4.032E-01 

6 49 25 2.159 .287 1.540E-01 

7 64 28 2.977 .494 6.443E-02 

8 81 31 3.961 .793 3.588E-02 

9 100 34 5.048 1.180 3.171E-02 

10 121 37 6.232 1.722 2J68E-02 



METHOD: COLLOCATION based on Hermite bicubics 

Number of Half Matrix Prof M e Gauss 
Maximum Error N EquatIons Bandwidth Formation SolutIon Maximum Error 

2 I (, 10 .002 .139 0.48E-01 

3 36 12 .189 .19 2.10E-01 

4 64 14 .335 .463 1.31E-01 

5 100 16 .518 .921 3.31E-02 

6 144 18 .776 1.710 2.60E-02 

8 256 22 1.367 4.405 1.25E-02 

9 324 24 1.714 6.663 6.08E-03 

Table 3 Data I ndicating Collocation equation solution t i mes fo r 

BNDS0L , NSPiV, SLVBLK 

SLVBLK NSPIV BNDS0L 

Matrix 
N Formation 

Equation 
Solut ion 

Ma t r i x 
Formation 

Equation 
Solution 

Matrix 
Formation 

Equation 
Solution 

2 .033 .036 .036 .054 .036 .061 

3 .089 .151 .081 .216 .086 • 199 

4 .178 .419 .143 .584 -159 .477 

5 .308 .924 .223 1.266 .255 <.963 

6 .485 1.775 .322 2.391 .368 1.739 

7 .724 3.042 .443 4.055 .5 2.836 

8 .645 4.451 



XV —vy y 
Table 4. Data for solving (e u ) + (e

 7

u ) - -.—-• = f on unit square 
x x y y i+x+y 

with u taken as e
 y

sn (TTX) sin (iiy). 

METHOD: COLLOCATION based on Hermite bicubics (C
1

) 

N Matrix Profile Gauss Maximum N 
Formation Elimination Sol. Error 

2 .059 .061 3.17E-02 

3 .137 .203 5.64E-03 

4 .248 .464 1.79E-03 

5 .396 .932 8.51E-04 

S .569 1.73 3.11E-04 

7 .792 2.961 1.82E-04 

8 1.028 4.491 1.13E-04 

METHOD: GALERKIN based on bicubic splines (C
2

) 

N 
Matrix 
Format ion 

Sparse Gauss 
Solutions 

Maximum 
Error 

L
2
-Error 

2 .175 .007 1.497E-02 5.221E-03 

3 .429 .028 5.267E-03 1.353E-03 

4 .811 .077 1.876E-03 4.155E-04 

5 1.314 .16 7.260E-04 1.623E-04 

6 1.922 .285 3.391E-04 7.672E-05 

7 2.66? .507 1.792E-04 4.072E-05 

8 3.54 .703 I.004E-04 2.366E-05 



Table 5. Data for solving u + u = f, u = 0 on unit square with u taken as 

3 e V ( x - x
2

) ( y - y
2

) .
X X Y V 

METHOD: COLLOCATION based on Hermite bicubics (C
1

) 

Matrix Profile Gauss Maximum 
N Formation Elimination Sol. Error 

3 .086 .199 4.48E-04 

4 .159 .477 1.35E-04 

5 .255 .963 5.00E-05 

6 .368 1.739 2.79E-05 

7 .5 2.836 1.49E-05 

8 .645 4.451 3.28E-05 

METHOD: GALERKIN based on bicubic splines (C
2

) 

N 

2 

3 

4 

5 

6 

7 

8 

9 

10 

N 

2 
4 

8 

16 

32 

Matrix 
Format ion 

.108 

.279 

.544 

.857 

1.296 

1.798 

2.407 

3.06 

3.82 

Sparse Gauss 
Ellm. Sol. 

.006 

.029 

.074 

.163 

.288 

.501 

.793 

1.194 

1.733 

Maximum 
Error 

3.335E-03 

1.045E-03 

3.361E-04 

1.597E-04 

7.78IE-05 

4.278E-05 

2.53IE-05 

1.562E-05 

1.004E-05 

METHOD: GALERKIN based on linear triangular elements (C°) 

Matrix 
Format ion 

.02 

.082 

.327 

1.338 

3.035 

Gauss Elimln. Sol. 

.003 

.009 

.130 

1.772 

8.305 

Maximum 
Error 

6.433E-02 

3.620E-02 

9.674E-03 

2.466E-03 

1.100E-03 

L
2
-Error 

1.I50E-03 

2.744E-04 

9.037E-05 

3.91IE-05 

1.929E-05 

1.065E-05 

6.327E-06 

3.996E-06 

2.645E-06 



Table 6, Data for solving u + u = f, u 
xx yy * 

x
5/2

y
5/2 .

 x y
5/2 „

 x
5/2

y + x y < 

METHOD: COLLOCATION based on Hermite bicubfcs (C
1

) 

0 on unit square with u taken as 

N 
Matrix 
Formation 

Profile Gauss 
Eliminat. Sol. 

Maximum 
Error 

2 .034 .062 7.50E-05 

3 .081 .213 3.20E-05 

4 .146 .456 2.00E-05 

5 .240 .955 1.40E-05 

6 .348 1.709 9.69E-06 

7 .501 2.811 7.10E-06 

8 .633 4.331 5.40E-06 

METHOD: GALERKIN based on bicubic Splines (C
2

) 

N 
Matri x 
Formation 

Profile Gauss 
Elimin. Sol. 

Maximum 
Error 

L2
-

Error 

2 .102 .008 2.650E-04 1.036E-04 

3 .264 .030 8.059E-05 3.270E-05 

.515 .074 4.191E-05 1.447E-05 

5 .844 .157 2.439E-05 7.518E-06 

6 1.246 .29 1.472E-05 4.409E-06 

7 1.745 .498 1.019E-05 2.800E-06 

8 2.321 .789 7.394E-06 1.891E-06 

9 2.981 1.176 5.499E-06 1.338E-06 

10 3.735 1.705 4.234E-06 9.819E-07 

METHOD: GALERKIN based on linear triangular elements (C^) 

m 
Matrix 
Formation 

Gauss Ellm. 
Solution 

Maximum 
Error 

2 .017 .001 I.708E-02 

4 .07 .008 4.801E-03 

8 .284 -131 I.348E-03 

16 1.179 1.791 3.401E-04 

32 2.671 8.42 1.516E-04 



Table 7. Data for solving 4u + u -64u = f, u = 0 on unit square with u taken as 

4 (x - x) (cos (2iry) -1). 

METHOD: COLLOCATION based on Hermite bicubics (c
1

) 

N 
Matrix 
Formation 

Profile Gauss 
Elimin. Sol. 

Max imum 
Error 

2 .034 .053 5.15F-02 

3 .082 .191 3.05E-02 

4 .159 .46 7.89E-03 

5 .239 .961 4.21E-03 

6 .366 1.714 1.98E-03 

7 .489 2.878 1.04E-03 

8 .622 4.428 3.96E-04 

METHOD: GALERKIN based 
2 

on bicubic splines (C ) 

N 
Matrix 
Format ion 

Sparse Gauss 
Elimin. Sol. 

Maximum 
Error L

2
~Error 

2 .11 .008 1.675E-02 8.020E-03 

3 .285 .029 5.417E-02 2.200E-02 

4 .549 .074 1.114E-02 4.566E-03 

5 .923 .156 5.288E-03 1.673E-03 

6 1.357 .292 2.173E-03 7.182E-04 

7 1.901 .494 9.849E-04 3.650E-04 

8 2.53 .791 5.570E-04 2.038E-04 



Table 8. Data for solving u + u = f, u = 0 on the unit square with u taken as 
xx yy 

2 

10 «(x) * •(y>. + (x) =
 e
"100(x

_

.l)
 ( x

2 _
x ) 

METHOD: COLLOCATION based on Hermite bicubics (C
1

) * 

Matrix Profile Gauss Maximum 
N Format ion Elimin. Sol. Error 

2 .063 .061 2.3E-00 

3 .143 .214 5.71E-01 

4 .239 .482 3.38E-01 

5 .367 .968 3.20E-01 

6 .536 1.720 1.59E-01 

7 • 719 2.814 1.03E-01 

8 .946 4.39 8.16E-02 

9 1.223 6.71 1.49E-02 

*Uni form mesh 

METHOD: GALERKIN based on linear triangular elements (C°) 

Matrix Gauss Elim. Maximum 
N Formation Solution Error 

2 .059 .000 1.439 

4 .234 .008 1.888E-01 

8 .921 .13 3.093E-02 

16 3.718 1.775 1.891E-02 

32 8.38 8.338 8.985E-03 



Table 8. (continued) 

METHOD: GALERKIN based on bicubic splines (C
2

) 

N 
Matrix 
Formation 

Sparse Gauss 
Ellmln. Sol. 

Maximum 
Error 

2 .146 .008 6.218E-01 

3 

OO 
OA • .029 5.425E-01 

4 .683 .075 1.906E-0I 

5 1.121 .156 3.261E-01 

6 1.657 .294 1.365E-01 

7 2.301 .493- 2.289E-0! 

8 3.048 .779 3.086E-02 

9 3.855 1.169 1.308E-01 

10 4.819 1.704 4.293E-03 

METHOD: COLLOCATION based on Hermite bicubics (c' 

N 
Matrix 
Formation 

Prof 1le Gauss 
Ellm. Sol. 

Maximum 
Error 

3 .127 .195 2.90F-01 

4 .229 .468 3.00E-01 

5 .358 .963 9.10E-02 

6 .542 1.753 6.I6E-02 

7 .73 2.856 3.80E-02 

8 .97 4.547 2.65E-02 

*Non-uniform mesh 



Table 9. Data for solving u + u = f, u = g on fi ('Figure 1) with u taken as 
xx yy 

y[(x-2)
2

 •
 y
2.

1 ] e
-.062

5
x(x-i,)(

y
-2)

/
 [ ( j ^ , * , 

METHOD: COLLOCATION based on Hermite bicubics (C
1

) 

Number of Matrix Profile Gauss Maximum 
Equations Formation Elim. Sol. Error 

56 .146 .507 2.367E-03 

108 .311 1.478 9.307E-04 

164 .496 3.049 2.305E-04 

240 .746 5.646 1.141E-04 

METHOD: GALERKIN based on linear triangular elements (C°) 

Number of Matrix Gauss Maximum 
Equations* Formation Elim. Sol. Error 

2 .095 .002 3.344E-01 

17 .403 .023 1.476E-01 
45 .886 .101 8.302E-O2 

^Boundary conditions have been eliminated. 

Figure 1 The geometry and "boundary conditions for problem 
in Table 9. 

u = 2 



Table 10. Data for solving u + u «=f, u g on an ell Ipse with u taken as 
xx yy 

u = (e
X

 + e
Y

)/(J + xy) 

METHOD: COLLOCATION based on Hermite bicubics (C
1

) 

Number of Matrix Profile Gauss Maximum 
Equations Formation Elim. Sol. Error 

24 .048 .143 1.42E-02 

56 .122 .558 7.80E-03 

156 .366 2.972 3.28E-04 

228 .572 5.662 2.20E-04 

METHOD: GALERKIN based on linear triangular elements (C°) 

Number of Matrix Gauss Maximum 
Equations* Formation Ellmln. Sol. Error 

1 .022 .001 7.00IE-02 

3 .042 .002 8.256E-02 

8 .081 .008 4.256E-02 

39 .289 .112 3.039E-02 

*The Boundary conditions have been eliminated. 



Table 11. Data for solving u + u = f, u = g on the unit square with u taken 
xx yy 

<Mx) * *(y) where <|><x) = U(.35) + (U(.35) - U{.65))p(x) Is a qulntlc 

polynomial determined so that <f> (x) has two continuous derivatives and 

U(x) Is unit step function. 

METHOD: COLLOCATION based on Hermite blcublcs (C
1

) 

Matrix Profile Gauss Maximum Maximum 
N Formation Elfm. Sol. Error Error* 

3 .152 .846 5.3^-01 

4 .242 1.838 1.13E-01 

5 .363 3.436 9.90E-03 

6 .505 5.79 1.51E-02 1.77E-03 

7 .664 9.25 5.99E-02 

8 .845 14.19 7.03E-02 4.13E-04 

ACollocation — non-uniform mesh 

METHOD: GALERKIN based on linear triangular elements (C°) 

Matrix Gauss Maximum 
N Formation Ellm. Sol. Error 

2 .027 .001 2.007E-01 

4 .103 .008 I.298E-01 

8 .447 .134 4.828E-02 

16 1.8 1.796 1.629E-02 

32 4.018 8.41 3.693E-03 
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