The Complexity of Numerical Methods for Elliptic Partial Differential Equations

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Report Number:

77-253

Houstis, Elias N., "The Complexity of Numerical Methods for Elliptic Partial Differential Equations" (1977). Department of Computer Science Technical Reports. Paper 186.
https://docs.lib.purdue.edu/cstech/186

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.

The Complexity of Numerical Methods for Elliptic Partial
 Differential Equations

E. N. Houstis

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

The Complexity of Numerical Methods for Elliptic Partial Differential Equations

E.N.Houstis *

Abstract

We consider three Ritz-Galerkin procedures with Hermite bicubic, bicubic spline and linear triangular elements for approximating the solution of self-adjoint elliptic partial differential equetions and a Collocation with Hermite bicubics method for general linear elliptic equations defined on general two dimensional domains with mixed boundary conditions. We systematically evaluate these methods by applying them to a sample set of problems while measuring various performance criteria. The test data suggest that collocation is the most efficient method for general use.

[^0]1. Introduction. In this paper, we consider three Ritz-Galerkin procedures with Hermite bicublc, blcubic spline and linear triangular elements for approximating the solution of self-adjoint elliptic partial differential equations and a Collocation with Hermlte bicubics method applied to general linear elliptic equations defined on two-dimensional domains with mixed boundary conditions.

The four finite element procedures are described in Section 2-7. In Section 8 we study the structure of the ITnear algebraic systems for the determination of the approximate solution obtalned by the mention of finite element methods. In Section 9 we deal with the direct solution of such systems. The collocation equations for rectangular domains are solved with a profile, a sparse and an almost block diagonal Gauss elimination scheme with partial pivoting for unsymmetric band matrices. In Section 10 we present a comparison of the considered finite element methods over a test set of eight problems used by Houstis, et. al. in [4].

The principal conclusion is that collocation 15 the most efficient method for general use. The Galerkin with bicubic splines for rectangular domains turns to be competitive to collocation for self-adjoint problems with simple functions in the differential operator and high accuracy requirements.
2. The piecewise bicublc Hermite element. Given the one-dimenstionai mesh $\Delta_{x}=\left\{a=x_{0}<x_{1}<\ldots<x_{N}=b\right\}$, let $H\left(\Delta_{x}\right)$ be the space of piecewlse cubic polynomials with respect to Δ_{x} which are continuously differentiable in $[a, b]$. We will denote by $H_{0}\left(\Delta_{x}\right)$ the set of function: $\rho_{\text {eH }}\left(\Delta_{x}\right)$ which satisfy the boundary conditions $p(a)=p(b)=0$. Given the mesh $\Delta_{y}=\left\{c=y_{0}<y_{1}<\ldots<y_{H}=d\right\}$ the space $H\left(\Delta_{y}\right)$ is defined analogously. in order to introduce a representation of a bicubic rectangular Hermite element we consider 8 one-dimensional functions.

Then the bicubic rectangular element is defined by

$$
\begin{aligned}
& U(x, y)=B_{x 1}{ }^{B}{ }_{y 1} u_{1}+B_{x 2}{ }^{B} y_{y 1} u_{2}+B_{x 2}{ }^{B_{y 2}} u_{3}+B_{x 1} B_{y 2} u_{4} \\
& { }^{+B}{ }_{x 3} B_{y 1} \sigma_{x l}+B_{x 4} B_{y y} \sigma_{x 2}+B_{x 4} B_{y 2} \sigma_{x 3}+B_{x 3} B_{y 2} \sigma_{x 4} \\
& +B_{x 1} B_{y 3} \sigma_{y l}+B_{x 2}{ }^{B}{ }_{y 3} \sigma_{y 2}+B_{x 2}{ }^{B_{y 4}} \sigma_{y 3}+B_{x 1}{ }^{B}{ }_{y 4} \sigma_{y 4} \\
& +B_{x 3}{ }^{B}{ }_{y 3}{ }^{\tau}{ }_{x y 1}+B_{x 4}{ }^{B}{ }_{y 3}{ }^{\tau} x y 2^{+}{ }^{B} B_{x 4} B_{y 4}{ }^{\top} x y 3^{+}{ }^{B}{ }_{x 3}{ }^{B}{ }_{y 4}{ }^{\top}{ }_{x y 4}
\end{aligned}
$$

where $u_{i}=$ value at the point 1

$$
\begin{aligned}
& \sigma_{x i},{ }^{\prime} y_{i}=x \text { and } y \text { derivatives at the polnt } l \\
& \tau_{x y l}=x y \text { (cross) derivative at the point } f \text {. }
\end{aligned}
$$

We denote by $B_{i}(x, y), 1=1,16$ the 16 basis functions in the above representation; i.e.

$$
B_{1} \equiv B_{x 1} B_{x 1}, B_{2} \equiv B_{x 3} B_{y 1}, \ldots, B_{13} \equiv B_{x 1} B_{y 2}, \ldots, B_{16} \equiv B_{x 3} B_{y 4} \text {, }
$$

3. The piecewise bicubic Spline Element. Let $S_{0}\left(\Delta_{x}\right)$ be the space of functions $s(x)$ which are cubic polynomials in each subinterval $\left[x_{i} x_{i+1}\right]$. twice continuously differentiable in $[a, b]$, and satisfy the boundary conditions $s(a)=s(b)=0_{0}$. We choose the B-spline basis for the piecewlse polynomial spare $S_{0}\left(\Delta_{x}\right)$ and denote them by $\left\{\phi_{i}(x)\right\}_{i=0}^{N}$. The graph of $\phi_{i}(x)$ is

The space $S_{0}\left(A_{Y}\right)$ and the corresponding basis $\left\{\phi_{j}(y)\right\}_{j=0}^{N}$ are defined analogousiy. Then the bicubic spline is defined in each subrectangle $\left[x_{i}, x_{i+1}\right] x$ $\left[y_{i}, y_{i+1}\right]$ by

$$
U(x, y)=\sum_{k=i-3}^{i} \sum_{\ell=j-3}^{j} \quad \alpha_{k, l} \phi_{k}(x) \phi_{l}(y)
$$

He denote $B_{m}(x, y) \equiv \phi_{k}(x) \phi_{l}(y)$ for $m=k+(n+1) \ell+1,0 \leq k, \ell \leq N$, $f=A_{x}{ }^{x} \Delta_{y}$ and $S_{0}(p)$ the space of bicublc splines respresented by
$s(x, y)=\sum_{m=1}^{(N+1)^{2}} \quad \beta_{m} B_{m}(x, y)$.
4. Collocation with Hermite bicubic elements. This method is used for approximating the solution $u(x, y)$ of the linear elliptic boundary value problem
(4.1) $L u \equiv \alpha(x, y) u_{x X}+2 \beta(x, y) u_{x y}+\gamma(x, y) u_{y y}+\delta(x, y) s_{i} ; i+\varepsilon(x, y) u_{y}+\mathcal{F}(x, y) u$ $=f(x, y)$ defined on a general domaln Ω and subject to mixed type
boundary conditions
(4.2) $B u \cong a(x, y) u_{x}+b(x, y) u_{y}+c(x, y) u={ }^{t} g(x, y)$ on $\partial \Omega \equiv$ boundary of Ω. Thls method consists of five components:
(I) Partition: A rectangular grid is placed over the domain Ω. Rectangular elements whose center is not inside the domain are discarded.
(ii) Approximation space: the Hermite bicublcs
(iii) Operator discretization: Each bicubic element satisfies the differential equatlon exactly at the four Gauss points of the rectangular element. For elements that overlap the boundary the four Gauss points were projected in the portion of the element Inside the domaln.
(iv) Discretization of boundary conditions: The boundary conditions are interpolated at a selected set of boundary points (see [4]). If the domain is a rectangle and the problem has homogeneous Dirichlet or Neumann boundary conditions, then the Hermite bicublcs were selected to satisfy the boundary conditions.
(v) Equation solution: The linear system is solved by these direct equation solvers based on Gauss elimination. A description of the equation solution algorithms will be given in Section 7.

The error analysis of this method for rectangular regions is given by Houstis in [3]. The computer implementation of the above described Collocation method used for the numerical experimentation is due to Houstis and Rice [5].
5. Ritz-Galerkin with Hermite bicubic elements. This method is used to approximate the solution $u(x, y)$ of the self-adjoint boundary value problem. (5.1) $L u \cong-D_{x}\left(p(x, y) D_{y} u\right)-D_{y}\left(q(x, y) D_{y} n\right)+c(x, y) n=f(x, y)$ on a rectangular domain subject to homogeneous boundary conditions. (5.2) $u(x, y)=0$ or $\frac{\partial u}{\partial n}=0$ or $\partial \Omega$. The functions p, q, c and f are assumed to be smooth and to satisfy
(5.3) $p(x, y) \geqq$ § $q(x, y) \geqq \gamma, c(x, y) \geqq 0$ on Ω for some positive constant γ. The method consists of the following components.
(i) Grid: rectangular
(ii) Approximation space: the Hermite bicubics which satisfy boundary conditions (5.2).
(ii) Operator discretization: In each element E of the partition we have the Galerkin equations

16
$\sum_{i=1}^{16} a_{i} \int_{\varepsilon}^{\iint\left\{p D_{x} B_{i} D_{x} B_{j}+q D_{y} B_{i} D_{y} B_{j}+c B_{i} B_{j}\right\} d x d y=\iint_{E} B_{j} d x d y}$
(iv) Equation solution: The local equations are assembled by the direct stiffness method to form the global matrix. The equations are solved by profile Gauss elimination for symmetric positive definite matrices.

For an error analysis of the above method see [7]. The computer implementation of this method used for experimentation is due to Houstis. A nine-point Gaussian quadrature scheme is used to compute the coefficients of the Galerkin equations.
6. Ritz-Galerkin with bicubic. Spline elements. This method can be used to approximate the solution of (5.1), (5.2). It consists of the same components as the Ritz-Galerkin with Hermite bicubics where B_{i} 's in the third component are the B-splines. The Galerkin equations are solved by a sparse Gauss elimination algorithm for symmetric positive definite matrices. This method is studied in [2]. Its computer Implementation used is due to Elsenstat and Schultz.
7. Ritz-Galerkin with triangular linear elements. This method has been Implemented to approximate the solution of (5.1) over a general twodimensional domains provided the solution is known on a part of the boundary. It consists from the same components as the above described Ritz-Galerkin methods. The Galerkin equations are solved by a Gauss elimination algorithm for symmetric band positive definite matrices. A four-point Gauss quadrature scheme is used to compute the coefficients of the Galerkin equations. The implementation is due to Houstls.
8. The Structure of matrices of the four finite element methods. .

The local nature of the basis functions, used for the representation of the approximate solution In the three finlte element methods considered, dominates the structure of the finite element equations. In the case of Hermite cubics, the one-dimensional basis functions
(8.1) have support contained in at most two contiguous subintervals and (8.2) at most four basis have support In any subinterval $\left[x_{i}, x_{i+1}\right]$.

In the case of oubic B-splines each basis function (8.3) has support contalned in at most four contiguous subintervals and (8.4) at most four basis functions have support in any subinterval $\left[x_{i}, x_{i+1}\right]$. Because of properties (8.1), (8.2) each collocation equation has 16 nonzero elements. The equations which correspond to collocation points associated with each element have the same structure. Thus the system of Collocation equations has an almost diagonal structure. with $2 N+6\left(H_{0}\left(\Delta_{x} \times \Delta_{y}\right)\right)$ or $4 N+12\left(H\left(\Delta_{x} \times \Delta_{y}\right)\right)$ half bandwidth for rectangular domains.

Each entry of the system of Ritz-Galerkin (Hermite bicublcs) equations is the sum of integrals over 4 contiguous rectangular elements. Besides, each equation has at most 36 non-zero elements. The system of Galerkin (Hermite blcubics) equations for problem (5.1), (5.2) is symmetric positive definite with $2 N+6\left(H_{0}(p)\right)$ half bandwidth.

Finally, because of properties (8.3)(8.4) each entry of the Galerkin (bicubic spifine) system Is the sum of Integrals over 16 contiguous rectangular elements. It Is symmetric and positive definite with $3 \mathrm{~N}+7$ $\left(S_{0}(p)\right)$ half bandwidth and 49 non-zero elements per equation.
9. The direct solution of the three Linear Finite Element systems.

For the solution of Ritz-Galerkin (Hermite bicubics) a profile Gauss elimination algorlthm for symmetric positive definlte matrices without pivoting is used. The Ritz-Galerkin (bicubic spline) system of equations is solved by a sparse Gauss elimination scheme.

For the system of Collocation (Hermite bicublcs) equations three equation solvers were applied. The first is a profile Gauss ellmination algorithm (BNBSOL) for unsymmetric band matrices, (stored in band storage mode) with row plvoting and taking into account the zeroes in the system. The second is a sparse Gauss elimination algorithm (NSPIV) with column pivoting (see [6]). The coefficient matrix of Collocation equations A is stored by means of three vectors which contain the non-zero elements of A row by row, the column number and the position of the first element of the ith row of A in the previous two vectors. Finally, the third scheme (SLVBLK) used is a Gauss elimination with row pivoting for solving almost block diagonal llnear systems (see [1]). The matrix is stored in blocks in one-dimenslonal array together with four vectors containing an index pointing the starting of th block, the number of rows, the number of columns of each block, the number of steps of the Gauss algorithm to be performed on the ith block.

The Collocation (Hermite blcubics) and Galerkin (Hermite bicubics) were compared by Houstls, et. al. in [4]. In Table 2 we present the solution of an elliptic boundary value problem (see [4]) by the four finite element procedures described in this paper.

The data in Table 2 Indicate that collocation with Hermite bicubics requlres the least execution time for generating equations and that Collocation is faster than the other considered for the element methods. In Table 3 we observe that the proflle Gauss elimination scheme BNDSOL is more efficient for moderate-size systems of collocation equations.
10. Test Results. In this sectlon, we present a comparison of the finite element procedures considered above over a set of eight test problems used by Houstis, et, al. In [4]. We measure equation formation and solution time in seconds. The maximum error is calculated for each mesh. These resuits are shown in Tables 4-ll. All computations were performed on a CDC 6500 in single precision arithmetic.

The data in Table 2 Indicate the superlority of Collocation (C^{\prime}) for operators with expensive functions. The results in Tables 4, 6, 7 show that collocatlon (C^{1}) is more efficient than Galerkin (c^{2}) for simple operators and moderate accuracy (1 to 5 digits correct). The superiority of Collocation (C^{1}) over Galerkin (C^{0}) for curved boundarles is demonstrated in Tables 9, 10. Finally, Tables $B, 11$ show that Galerkin (C^{0}) is more efficient than collocation (C^{1}) and Galerkin (C^{2}) only for low accuracy (\} digit correct) and non-smootl solutions. These results turn out to be compatible with those obtained in 14].

REFERENCES

[1] Carl de Boor and R. Weiss [1976], SOLVEBLOK: A package for solving almost block diagonal linear systems, with applications to spline approximation and the numerical solution of ordinary differential equations, MRC Technical Sumnary Report \#1625.
[2] S. C. Eisenstat and M. H. Schultz [1973], The complexity of Partial Differential Equations in "Complexity of Sequentlal and Parallel Numerical Algorl thms," (J. F. Traub, ed.), Academic Press, pp. 271-282.
[3] E. N. Houstis [1976], Collocation methods for linear Elliptic problems, to appear in Mathematics of Computation.
[4] E. N. Houstis, R. E. l.ynch, T. S. Papatheodorou, and J. R. Rice [1977], Evaluation of numerical methods for Elliptic partial differential equations, accepted for publication in the Journal of Computational Physics.
[5] E. H. Houstis and J. R. Rice [1977], Software for linear Elliptic problems on general two dimenslonal domains, "Advances in computer methods for Partial Differential Equatlons--II," (R. Vichnevetsky, ed.) published by IHACS (AICA).
[6] A. H. Sherman [1976], Algorithms for Sparse Gaussian Elimination with Partial Pivoting, to appear.
[7] M. H. Schultz [1973], Spline Analysis, Prentice-Hall, Inc.

Table 1 Data indicating the structure of GalerkIn and Collocation equations based on piecewise polynomial approximations for a $N \times N$ mesh of rectangular elements.

	GALERKIN			COLLOCATION
Number of Equations	Linear $(N-1)^{2}$	Hermite Cubics $4 N^{2}$	Cubic Splines $(N+1)^{2}$	Hermite Cubics $4 N^{2}$
Half bandwidth	$\mathrm{H}+3$	$211+6$	$3 \mathrm{~N}+7$	$2 \mathrm{~N}+6$
Sparsity*	5	36	49	16

Table 2 Data for solving $u_{x x}+u_{y y}-[100+\cos (3 \pi x)+\sin (2 \pi y)] u=f$ on unit square with u taken as $[5.4-\cos (4 \pi x)] \sin (\pi x)\left(y^{2}-y\right)[5.4-\cos (4 \pi y)] *\left[1 /\left(1+\phi^{4}\right)-1 / 2\right]$ $\phi=4(x-.5)^{2}+4(y-.5)^{2}$

METHOD: GALERKIN based on Mermite bicubles (C^{l})

Number of Equations	HaIf Bandwidth	Matrix Formation	Profile Gauss Elimination Solution	Maximum Error
36	12	4.463	.059	$3.09 \mathrm{E}-01$
64	14	7.865	.204	$5.39 \mathrm{E}-02$
100	16	12.377	.532	$4.78 \mathrm{E}-03$
144	18	17.695	1.164	$8.10 \mathrm{E}-03$
196	20	23.996	2.112	$3.13 \mathrm{E}-03$
256	22	31.384	3.666	$6.60 \mathrm{E}-03$
324	24	39.98	5.835	$4.50 \mathrm{E}-03$

METHOD: GALERKIN based on bicuble splines $\left(\mathrm{C}^{2}\right)$

Number of Equations	Half Bandwidth	Matrix Formation	Sparse Gauss Solution	Maximum Error
9	Full	.196	.008	$7.669 \mathrm{E}-01$
16	Full	.485	.030	$1.098 \mathrm{E}+00$
25	19	.920	.075	$1.585 \mathrm{E}-01$
36	22	1.469	.169	$4.032 \mathrm{E}-01$
49	25	2.159	.287	$1.540 \mathrm{E}-01$
64	28	2.977	.494	$6.443 \mathrm{E}-02$
81	31	3.961	.793	$3.588 \mathrm{E}-02$
100	34	5.048	1.180	$3.171 \mathrm{E}-02$
121	37	6.232	1.722	$2.168 \mathrm{E}-02$

METHOD: COLLOCATION based on Hermite bicubics

N	Number of Equations	Half Bandwidth	Matrix Formation	Profite tauss Solution	Maximum Error
2	16	10	. 082.	.139	3.18E-01
3	36	12	. 189	. 19	2. 10E-01
4	64	14	. 335	. 463	1.31E-01
5	100	16	. 518	. 921	3.31E-02
6	144	18	. 776	1.710	2.68E-02
8	256	22	1.367	4.405	1.25E-02
9	324	24	1.714	6.663	$6.88 \mathrm{E}-03$

Table 3 Data indicating Collocation equation solution times for BNDSOL, NSPIV, SLVBLK

	SLVBLK		NSPIV		BNDSOL	
N	Matrix Formation	Equation Solution	Matrix Formation	Equation Solution	Matrix Formation	Equation Solution
2	.033	.036	.036	.054	.036	.061
3	.089	.151	.081	.216	.086	.199
4	.178	.419	.143	.584	.159	.477
5	.308	.924	.223	1.266	.255	.963
6	.485	1.775	.322	2.391	.368	1.739
7	.724	3.042	.443	4.055	.5	2.836
8						.645
4.151						

Table 4. Data for solving $\left(e^{x y} u_{x}\right)_{x}+\left(e^{-x y} u_{y}\right)_{y}-\frac{u}{1+x+y}=f$ on unit square with u taken as $e^{x y} \operatorname{sn}(\pi x) \sin (\pi y)$.

METHOD: COLLOCATION based on Hermite bicubics (${ }^{1}$)

\mathbf{N}	Matrix Formation	Profile Gauss Elimination Sol.	Maximum Error
2	.059	.061	$3.17 \mathrm{E}-02$
3	.137	.203	$5.64 \mathrm{E}-03$
4	.248	.464	$1.79 \mathrm{E}-03$
5	.396	.932	$8.51 \mathrm{E}-04$
6	.569	1.73	$3.11 \mathrm{E}-04$
7	.792	2.961	$1.82 \mathrm{E}-04$
8	1.028	4.491	$1.13 \mathrm{E}-04$

METHOD: GALERKIN based on bicubic splines (c^{2})

	Matrix Formation	Sparse Gauss Solutions	Maximum Error	L_{2}-Error
2	.175	.007	$1.497 \mathrm{E}-02$	$5.221 \mathrm{E}-03$
3	.429	.028	$5.267 \mathrm{E}-03$	$1.353 \mathrm{E}-03$
4	.811	.077	$1.876 \mathrm{E}-03$	$4.155 \mathrm{E}-04$
5	1.314	.16	$7.260 \mathrm{E}-04$	$1.623 \mathrm{E}-04$
6	1.922	.285	$3.39 \mathrm{EE}-04$	$7.672 \mathrm{E}-05$
7	2.662	.507	$1.792 \mathrm{E}-04$	$4.072 \mathrm{E}-05$
8	3.54	.783	$1.004 \mathrm{E}-04$	$2.366 \mathrm{E}-05$

Table 6. Data for solving $u_{x x}+u_{y y}=f, u=0$ on unit square with u taken as $x^{5 / 2} y^{5 / 2}-x y^{5 / 2}-x^{5 / 2} y+x y$.
METHOD: COLLOCATION based on Hermlte bicubics (c^{1})

N	Matrix Formation	Profile Gauss Eliminat.	Maximum Error
2	.034	.062	$7.50 \mathrm{E}-05$
3	.081	.213	$3.20 \mathrm{E}-05$
4	.146	.456	$2.00 \mathrm{E}-05$
5	.240	.955	T
6	.348	1.709	$9.69 \mathrm{E}-05$
7	.501	2.811	$7.10 \mathrm{E}-06$
8	.633	4.331	$5.40 \mathrm{E}-06$

METHOD:N	GALERKIN based on bicubic Splines (C^{2})			L_{2}-Error
	Matrix Formation	Profile Gauss Elimin. Sol.	Maximum Error	
2	. 102	. 008	2.650E-04	$1.036 \mathrm{E}-04$
3	. 264	. 030	8.059E-05	3.270E-05
4	. 515	. 074	4.191E-05	$1.447 \mathrm{E}-05$
5	. 844	. 157	2.439E-05	7.518E-06
6	1.246	. 29	1.472E-05	4.409E-06
7	1.745	. 498	1.019E-05	2.800E-06
8	2.321	. 789	7.394E-06	1.891E-06
9	2.981	1.176	5.499E-06	1.338E-06
10	3.735	1.705	4.234E-06	9.819E-07

METHOD: GALERKIN based on 11 near trlangular elements $\left(C^{\circ}\right.$)

NN	Matrix Formation	Gauss Elim. Solution	Maximum Error
2	.017	.001	$1.708 \mathrm{E}-02$
4	.07	.008	$4.801 \mathrm{E}-03$
8	.284	.131	$1.348 \mathrm{E}-03$
16	1.179	1.791	$3.401 \mathrm{E}-04$
32	2.671	8.42	$1.516 \mathrm{E}-04$

Table 7. Data for solving $4 u_{x x}+u_{y y}-64 u=f, u=0$ on unjt square with u taken as $4\left(x^{2}-x\right)(\cos (2 \pi y)-1)$.
METHOD: COLLOCATION based on Mermite bicubics (c^{1})

N	Matrix Formation	Proflle Gauss Elimin. Sol.	Maximum Error
2	.034	.053	$5.15 \mathrm{E}-02$
3	.082	.191	$3.05 \mathrm{E}-02$
4	.159	.46	$7.89 \mathrm{E}-03$
5	.239	.961	$4.21 \mathrm{E}-03$
6	.366	1.714	$1.98 \mathrm{E}-03$
7	.489	2.878	$1.04 \mathrm{E}-03$
8	.622	4.428	$3.96 \mathrm{E}-04$

METHOD: GALERKIN based on bicubic splines (c^{2})

N	Matrix Formation	Sparse Gauss Elimin. Sol.	Maximum Error	L $_{2}$-Error
2	.11	.008	$1.675 \mathrm{E}-02$	$8.020 \mathrm{E}-03$
3	.285	.029	$5.417 \mathrm{E}-02$	$2.200 \mathrm{E}-02$
4	.549	.074	$1.114 \mathrm{E}-02$	$4.566 \mathrm{E}-03$
5	.923	.156	$5.288 \mathrm{E}-03$	$1.673 \mathrm{E}-03$
6	1.357	.292	$2.173 \mathrm{E}-03$	$7.182 \mathrm{E}-04$
7	1.901	.494	$9.849 \mathrm{E}-04$	$3.650 \mathrm{E}-04$
8	2.53	.791	$5.570 \mathrm{E}-04$	$2.038 \mathrm{E}-04$

Table 8. Data for solving $u_{x x}+u_{y y}=f, u=0$ on the unit square with u taken as

$$
10 \phi(x) * \phi(y), \phi(x)=e^{-100(x-.1)^{2}}\left(x^{2}-x\right)
$$

METHOD: COLLOCATION based on Hermite bicubics (C^{1}) *

	Matrix Formation	Profile Gauss Elimin. Sol.	Max!mum Error
2	.063	.061	$2.3 \mathrm{E}-00$
3	.143	.214	$5.71 \mathrm{E}-01$
4	.239	.482	$3.38 \mathrm{E}-01$
5	.367	.968	$3.20 \mathrm{E}-01$
6	.536	1.720	$1.59 \mathrm{E}-01$
7	.719	2.814	$1.03 \mathrm{E}-01$
8	.946	6.71	$8.16 \mathrm{E}-02$
9	1.223		$1.49 \mathrm{E}-02$

METHOD: GALERKIN based on linear triangular elements (C^{0})

	Matrix	Gauss Elim.	Maximum
\mathbf{N}	Formation	Solution	Error
2	.059	.000	1.439
4	.234	.008	$1.888 \mathrm{E}-01$
8	.921	.13	$3.093 \mathrm{E}-02$
16	3.718	1.775	$1.891 \mathrm{E}-02$
32	8.38	8.338	$8.985 \mathrm{E}-03$

Table 8. (continued)
METHOD: GALERKIN based on blcublc splines (c^{2})

N	Matrix Formation	Sparse Gauss Eilmin. Sol.	Maximum Error
2	.146	.008	$6.218 \mathrm{E}-01$
3	.368	.029	$5.425 \mathrm{E}-01$
4	.683	.075	$1.906 \mathrm{E}-01$
5	1.121	.156	$3.261 \mathrm{E}-01$
6	1.657	.294	$1.365 \mathrm{E}-01$
7	2.301	.493	$2.289 \mathrm{E}-01$
8	3.048	.779	$3.086 \mathrm{E}-02$
9	3.855	1.169	$1.308 \mathrm{E}-01$
10	4.819	1.704	$4.293 \mathrm{E}-03$

METHOD: COLLOCATION based on Hermite bicubics (c^{1}) *

N	Matrix Formation	Profile Gauss Ellm. Sol.	Maximum Error
3	.127	.195	$2.90 \mathrm{E}-01$
4	.229	.468	$3.00 \mathrm{E}-01$
5	.358	.963	$9.10 \mathrm{E}-02$
6	.542	1.753	$6.16 \mathrm{E}-02$
7	.73	2.856	$3.80 \mathrm{E}-02$
8	.97	4.547	$2.65 \mathrm{E}-02$

[^1]Table 9. Data for solving $u_{x x}+u_{y y}=f, u=g$ on Ω (Firgure 1) with u taken as

$$
y\left[(x-2)^{2}+y^{2}-1\right] e^{-.0625 x(x-4)(y-2)} /\left[\left(3+(x-2)^{2}\right)\left(3+y^{2}\right)\right]
$$

METHOD: COLLOCATION based on Hermite bicubics (c^{1})

Number of Equations	Matrix Formation	Proflle Gauss Elim. Sol.	Maximum Error
56	.146	.507	$2.367 \mathrm{E}-03$
108	.311	1.478	$9.307 \mathrm{E}-04$
164	.496	3.049	$2.305 \mathrm{E}-04$
240	.746	5.646	$1.141 \mathrm{E}-04$

METHOD: GALERKIN based on linear triangular elements (c^{0})

Number of Equations*	Matrix Formation	Gauss	Maximum
2	.095	E1im. 5ol.	Error
17	.403	.002	$3.344 \mathrm{E}-01$
45	.886	.023	$1.476 \mathrm{E}-01$
		.101	$8.302 \mathrm{E}-02$

*Boundary conditions have been eliminated.
Figure 1 The geometry and boundary conditions for problem in Table 9.
$u=2$

Tabie 10. Data for solving $u_{x x}+u_{y y}=f, u=g$ on an ellipse with u taken as $u=\left(e^{x}+e^{y}\right) /(1+x y)$

METHOD: COLLOCATION based on Hermite bicubics $\left(c^{1}\right)$

Number of Equations	Matrix Formation	Profile Gauss Ellm. Sol.	Maximum Error
24	.048	.143	$1.42 \mathrm{E}-02$
56	.122	.558	$7.80 \mathrm{E}-03$
156	.366	2.972	$3.28 \mathrm{E}-04$
228	.572	5.662	$2.20 \mathrm{E}-04$

METHOD: GALERKIN based on linear triangular elements (C^{0})

Number of Equations*	Matrix Formation	Gauss Elimin. Sol.	Maximum Error
1	.022	.001	$7.001 \mathrm{E}-02$
3	.042	.002	$8.256 \mathrm{E}-02$
8	.081	.008	$4.256 \mathrm{E}-02$
39	.289	.112	$3.039 \mathrm{E}-02$

[^2]Table 11. Data for soiving $u_{x x}+u_{y y}=f, u=g$ on the unlt square with u taken as $\phi(x) * \phi(y)$ where $\phi(x)=U(.35)+(U(.35)-U(.65)) p(x)$ is a quintic polynomlal determined so that $\phi(x)$ has two continuous derlvatives and $U(x)$ is unit step function.

METHOD: COLLOCATION based on Hermite bicubics (${ }^{1}$)

N	Matrlx Formation	Proflle Gauss Elim. Sol.	MaxImum Error	MaxImum Error*
3	. 152	. 846	5.34E-01	
4	. 242	1.838	1.13E-01	
5	. 363	3.436	9.90E-03	
6	. 505	5.79	1.51E-02	1.77E-03
7	. 664	9.25	5.99E-02	
8	. 845	14.19	7.03E-02	4.13E-04

METHOD: GALERKIN based on Ilnear triangular elements (c^{0})

N	Matrlx Formatlon	Gauss Elim. Sol.	MaxImum Error
2	.027	.001	$2.007 \mathrm{E}-01$
4	.103	.008	$1.298 \mathrm{E}-01$
8	.447	.134	$4.828 \mathrm{E}-02$
16	1.8	1.796	$1.629 \mathrm{E}-02$
32	4.018	8.41	$3.693 \mathrm{E}-03$

[^0]: * Department of Computer Sciences Purdue University, West Iafayette, Indiana 47907

[^1]: *Non-uniform mesh

[^2]: *The Boundary conditions have been eliminated.

