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Abstract

.
In this paper we study the partitioning and allocation of computations associated

with the numerical solution of partial differential equations (FDEs). Strategies for the
mapping of such computations to parallel MIMD architectures can be applied to
different levels of the solution process. We introduce and study heuristic approaches
defined on the associated geometric dara srructures (meshes). specifically, we study
methods for decomposing finite element and finite difference meshes into balanced,
nonoverlapping subdomains which guarantee minimum communication and synchroni­
zation among the underlying associated subcomputations. Two types of algorithms are
considered: clustering techniques based on sequential orderings of the discrete
geometric data and optimization based techniques involving geometric or graphical
metric criteria. These algorithms support the automatic mode of a geometry decompo­
sition tool developed in the parallel ELLPACK environment which is implemented
under Xli-window systems. A brief description of this tool is presented.
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~ this paper we study the partitioning and aIloca.
tion of computations associated with the numeri­
cal solution of partial ditferential equations
(PDEs). SlIategies for the mapping of such com­
putations to parallel :MIMD architectures can be
appli~d to different levels of the solution process.
We lDtroduce and study heuristic approaches
defiD.ed on the associated geometric data struc­
tures (meshes). Specifically, we study methods
for decomposing finite element and finite
difference meshes into balanced, nonoverlapping
subdomains which guaIaDtee minimum communi­
catio~ and synchronization among the underlying
~OClated subc.omputations. Two types of alga­
nthms are considered: clustering techniques based
on sequential orderings of the discrete geometric
data and optimization based techniques involving
geometric or graphical mettic criteria. These al­
gorithms support the automatic mode of a
geometry decomposition tool developed in the
parallel ELLPACK environment which is imple­
mented under X1l-window systems. A brief
description of this tool is presented.

Abstract

N.P. Chrisochoides, C.E. Houstist, E.N. Houstis,
S.X Kortesist and J.R Rice

Department of Computer Science
Purdue University

West Lafayette, IN 47907

1. lNTRODUCTION

In this paper we consider the problem of
partition and allocation of computations associ­
ated with the numerical solution of..Eartial
Differential Equations (PDEs) into load balanced
tasks requiring miDimum synchronization and
communiCation. The efficient solution -of this
problem is essential for Lbe parallel processing of
such computations. Its formulation can be based
either on the geometric or the algebraic data
structures associated with the PDE solution pro­

. cess or on the precedence graph of the PDE
solver. In [Hous 88] we prescnt a methodology
for partitioning and allocation which is applicable
to the computation graph of the PDE solution
process. In this paper we formulate and analyze
partitioning methodologies for computations
defined on geometric data structures. The
approach bas been implemented as a special
software tool in the parallel EUPACK environ­
ment [Hous 89b]. The issue of automatic parti­
tioning has been raised in [Fara 88] in conjunc­
tion with finite element computations on local
memory machines and in [Fox 86a,b] for certain
algebraic computations. Some partitioning stra­
tegies for nonuniform problems on multiproces4

SOIS are studied in [Berg 85]. In Section 2 we
present seve.ral partitioning strategies and formu­
late various criteria that are lLSed to determine
them. A new algorithm. based on geomettic graph
partitioning (GGP) ideas is developed and
presented in Section 3, together with the descrip­
tion of existing clustering approaches. In Section
4 we present the performance evaluation of four
automatic partitioning strategies. The results
obtained indicate that the new GGP algorithm.
produces "optimum" partitions within reasonable
time intervals. Finally, Section 5 contains a brief



description of the geometry decomposition
software too! implemented under X-windows,
which allows the user to specify and manipulate
domain decompositions interactively, as well as
to display the automatically generated ones. A
detailed descIiption of this tool will appear in
[Hous 89bj.

2. PAR=ONING STRATEGIES FOR PDE
COMPUTATIONS

The numerical solution of partial differential
equations usually is represented by an approxi­
mate function defined over a given mesh of the
PDE domain. This function is determined by
solving a system of algebraic equations that
depends on the discretization method used. For
the solution of this set of equations with a parallel
MIMI> _machine consisting of many processor
elements, a partitioning of the underlying compll.
tation is required. The strategy of allocating the
partitions of the computations to processors
affects the performance of the parallel processing.
Any optimal partitioning/allocating strategy bas
the following objectives (a) the work loads of all
processors are balanced, and (b) the processor
synchronization and communication cost is kept
to a minimum. Partitions of PDE computations
that satisfy the above goals can be defined either
on the geometric data structures (meshes) or alge­
braic data structures (discrete systems) or on the
computation graph of the selected PDE solver. In
this paper we consider partitioning strategies
applied to fixed PDE meshes Qh, which are
referred as geometry decomposition approaches.
IDstances of the other two approaches are formu­
lated and studied in [Fox 86] and [Hous 88j.
Throughout this paper we assume that Q h is a
finite element mesh consisting of {nj(x,y.z)}~l

nodes with ki} f..l connectivity ~d,
{ej(n 1> ••• , nk)li -1 elemen~. The case of finite
difference meshes can be bandIed in a similar
way. In the geometry decomposition strategy, we
seek a partition of the underlying PDE computa­
tion determined by a decomposition of Qh in[O P
(number of processing elemen~) nonoverlapping
subdomains {Di }!..l such that

(i) each subdomain contains almost the
same number of elements,

(ii) they are "circular." or "spherical"
and connected, and

(iii) the number of interface nodes or inte­
rior boundary elements among sllb­
domains is minimum.

It has been observed that a nearest neighbor allo­
cation of such partitioning computations tends to
be close to optimum.. For the mathematical for­
mulation of this partitioning problem, we intro.
duce Euclidean and ~"phical metrics.
ThroUghout we denote by (~'Yi) the geometric
center of a 2-D element ei, IDkl "" ck the number
of elements in this subdomain, D~ the interface
interior elements of Dk, C~J the subset of Q h con­

sisting of all adjacent elements to ejr and x(ej,ej),
the characteristic function {x(ej,ej) - 1 if ei E CtlJ

and ej and ej are in different domains or
x(ei,ej) - 0 otherwise}. In the case of 2­
dimensional meshes we define the mass center of

._-~. - -

each subdomain Dj to be the point

1 AI ...
:eDt -;- L X;. YDl -;- L Yj

ktltEDt ktllED~

and the Euclidean distance between two sub­
domains (Dk,D,) to be the distance between mass
centets

dD1JJI - {(:eDt - :CD.)2 + (YDt - YD
1
)2 .

Furthermore, we denote by Tk. v'JDk l/1t the
radius of the subdomain Dk. The topology of a
finite element mesh Qh is represented by a grapb

_G(Ji';L) whose vertices V correspond 10 the ele­
ments of Q h and edges L correspond to adjacent
pails of elements. A p·way domain decomposi­
tion of Q h is viewed as a P-way graph decompo­
sition of G. The problem of partitioning graphs
has been studied by many researchers (Bam 82],
[Dona 73]. [G<>ld 84j. [Cbri 76]. In this paper we
are particularly interested in the techniques
presented in [Kern 70]. For the formulation of
P-way graph partitioning techniques, we define
the mass center CRk of a subgrapb G..I;(Vk,Lk) as
follows:

CR. - {Vi E V.: min ~ [P(Vi.Vj)J'}
VIE 1ft

wbere p(Vj, Vj) denotes the minimum path that
connects the pair Vi, Vj in V.I:. The distance of
vertix Vi E V.I: from CR.I: is defined by the quan­
tity



while the distaIlce between 5ubdomains (sub­
graphs) D.(G.) and D, (G,) is defined ta be

d 1 2
D•.D. - ICR I ICR I ~ [P(Vi.Vj)] 0

It. t '" eCR.
"I ECRt

In the case of graphical memes, the radius r/t. of
. D" is defined as the minimum ~ CR for all ver-

o • •

bees 'Vi E G" for which the corresponding element
belongs to the interface D; of the subdomain D/t.-

3. AUTOMATIC LOAD BALANCED
GEOMETRY PARTITIONING STRA.
TEGIES

In this section we formulate and analyze
various heuristic domain decomposition
techniques for finite element meshes.
Specifically, we identify and study two classes of
methods. The fiIst class consists of partitioning
strategies which are based OIl some global order­
ing of elements which mjnimize the bandwidth or
envelope of the discrete PDE system. The other
class involves optimization based methods using
Euclidean or graphical metrics.

3.1 Qustering techniques

The simplest load balanced decomposition
strategy is to group the fiIst NE!P elements of the
mesh into subdomains, assuming some a priori
global ordering of the mesh elements. Figure 3.1
depicts a domain partitioning based on an order­
iDg of elements along vertical mesh lines.
Although this ordering scheme leads to banded
systems with minimum bandwidth, it produces
partitions whose subdomains are •'non­
spherical", sometimes disconnected and with
lengthy interior interfaces.

A second, more sophisticated clustering approach
is based on the Cuthill and McKee ordering
scheme. This approach tries 10 determine sub~

domains D" around some specific element ei such
that ~(eiJei) > 0 over all elements ej E Clft • If

th~ cardinality of 1D" I < C". then D" is enJarged
recursively by including the elements
CIft - (CIf~ n D,,) where eft ED" until ID" I - Ck'

TIIis expansion of the CuthilI~McKee ordering
ensures to some degree local minimization of sub~

domain interfaces while it forces two Consecutive
subdomains to be adjacent This ensures the glo­
bal minjmization of the subdomain interface
lengths:. Our experiments indicate that this
scheme leads to partitioning with disconnected
subdamains (Figure 3.1b). Differeat

j-
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Figure 3.1 Two P-way partitions of a discretized
semi-annulus domain using the clus­
tering approach based on Ihe natural
ordering and Cuthill-McKee ordering
of the mesh elements.



implementations of the above strategy are
presented in [Fab! 88] and [Hous 89b].

3.2 Optimization based techniques

We now consider P-way balanced partitions
which optimize certain objective functions.
Specifically the problem of determining a load
balanced P-way partition with minimum interface
length is reduced to the minimization of the com·
munication or cut cost function

1 p
"2 ~ ~ ~ x(e"ej) (3.1)

k,t .1.IED~ "/EDI

P
provided ID" I - c" > 0, '-111 - U Dr.: and

k-t
D" n D, - 0 for allsubdomains. The number of
feasible solutions of a P-Way partitioning is prohi­
bitively large [Kern 70] even for a moderate
number P of subdomains. A good alternative is
to determine semi-optimal solutions using fast
heuristics. It· appears that the most efficient
heuristic strategy for partitioning graphs is the
so-called Kernighan-Un (Ker-Un) approach
[Kern 70]. According to this technique, a given
feasible solution is improved with respect to the
minimization of the objective function (3.1) by
interchanging the pair of elements
(ej,ej) E Dr.: x D, such that the so-called profit
jUnction

f (e"ej) ~ 2 ~ x(e,.-.) - IC" I
f!~ecoj

+ 2 ~ x(e .,ej)- IC., I - 2x(e"ej)
•• EC./

is ma:ximum. Although the method is capable of
determining a IIgood" local minimum as Figure
3.2 indicates, its time complexity is significantly
large.

In order to guarantee that a P-way partition

satisfies the criteria (i) to (iii), we introduce the
following profit function for elements ej, ej in Dr.:
and D£ respectively

F(e"ej) • w [ ['\~' _ 1]- [dj~~, _ I}
[

d;.CR, ] [ dj •CR, ] ]+ --1 - ---Ir, r,

h.92

I."

....
'.$

.."

L"

""....
'.$

.."

..~

.."

'."
'.$

Figure 3.2 2-way partitions of a discrete rec­
tangular domain. (a) Culhill-McKee
partition, (h) Ker-Un partitioo, (c)
GGP solution (optimal solution).



~ An automatic 2-way domain decomposition
algorithm '/

The values of the cut-cost function
and the distance dD D , during the, ,
execution of the GGP-algorithm for
an L-shape domain. A mesh with
406 elements was used.

Figure 3.3

The data in Figure 3.3 imply that the new profit
function forces interchanges of elements among
subdomains D l and D2 that increase their dis­
tance while reducing the objective function (3.1).

4. PERFORMANCE OF GEOMErRY PAR.
TITIONING STRATEGIES

In this section we present the resul~ of
some preliminary experiments to measure the
degree of satisfiability of the partitioning criteria
(i) to (ill) and the time complexity of various
geometry decomposition approaches. We have
implemented five load balancing algorithms. The
two are cluslering algorithms based on Ihe natural
and Cuthill-McKee orderings which are called
Nat-dust and CM-clust, respectively. The other
three are graph panitioning type algorithms which
try to op[irnize certain cut-cost functions guided

::- ------set the number of unsuccessful
interchanges equal to 0, update
D l and Dz and repeat the algo­
rithm. OTHERWISE ter­
minate.

initial decomposition
IDli -Cto ID2 1~C2 and

Determine a pair (ehej)
E D~ )( D; such that the profit
function F(ei,ej) is positive or
maximum and ej or ej has not
been considered in the previous
interchanges with !(ej,ej):S: O.

If the value of the profit func­
tion F is positive and the
number of interchanges with
nonpositive F values is less
than the given limit (max-int),
then update D l • D 2 and repeat
the algorithm with the updated
decomposition as the initial
decomposition

If the value of the profit func­
tion F is non-positive, the
number of unsuccessful inter­
changes is greater than the
given limit (max-int) and the
distance dD D increases or" ,
cut-cost has been reduced then

Slep 3:

Assume an
Qft; -Dl U D z with, ,
interfaces Db Dz.

Step 1: Compute the characteristics of
the initial decomposition
(center of mass, distance,
communication-eost or cut­
cost).

Step 2:

It is easy to see that the maximization of F forces
the interchanging of elements outside the
"radius" of Db D t which are closer to the
CUIJent interface of the two selected. subdomains.
Next, we describe a 2-way optimization based.
algorithm. Its generalization to a P-way optimi­
zation is called GOP-recur and is obtained by
applying the same algorithm recursively. The
Cuthill-McKee algorithm. and the 2-way GGP
have been combined to produce a P-way partition
algorithm called eM-GGP. A global non­
recursive P-way partitioniDg geometry graph
algorithm. is under development and it will appear
elsewhere.



by certain profit functions involving Euclidean
metries. Their implementation using graphical
metries is under way. These are the Kernighan
Lin (Ker-Lin), the recursive algorithm based on
the 2-way algorithm described in Section 3
(GOP-recur) and the GGP-alg algorithm. Figure
4.1 presents the communication requirements or
interface lengths for the semi-annulus discrere
domain of Figure 3.1 obtained woing the four
algorithms. In the case of Ker-Lin and GGP­
recur algorithms the initial feasible partition used
is the P-way solution of CM-clusl The data indi­
cate clearly that the GGP-recur solution is quanti­
tative and qualitative "closer" to the optimum.

.
K<..l.in.
GGP_all

The interface lengths of five P-way
partitions of a 2500 element mesh in
the semi·annulus domain obtained
with the one clustering and the three
graph paItitioning algorithms.

-­,."

.. 1--;'--+-+-------i--+--4

.. I-:--+--!--+--!­
i.. --'--'--+_.

•

Figure 4.1
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Figure 4.2 The average number of interface
nodes for two 2-way optimization
based partitions for different mcslles
over five different domains.

Finally the data in Figures 4.4 and 4.5 sup-­
port the conclusion that the proposed GGP algo­
rithm. produces "better" partitions among the
clwotering and opUmization based nlgorithms.

In Figure 4.2 we present the number of
interface nodes as a function of the mesh size, for
2-way partitions obtained by two optimization
haaed algorithms (Ker-Iin, GGP-alg). Figure 4.3
shows the time complexity of these algOrithms
measured in terms of the number of interchange
elements required for different meshes. The
results in Figure 4.2 and 4.3 are the average
values over a population of five domains assum­
ing random initial partition. These results indi­
cate that the GGP solution is closer to the
optimum partition as defined by criteria (i) to
(iii). Furthermore, the time complexity measured
implies that the "better" algorithm (GGP) is the
faster one.

Figure 4.3 Average time complexity of 2-way
optimization based methods for
different size meshes over five
different domains.
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5. GEOMEfRY DECOMPOSITION

Figure 4.5 The time complexity of Ker-Lin and
GGP-a1g algorithms with the initial
partition of the CM-clust solution.

Figure 4.4 The number of interface nodes as a
function of the mesh size obtained by
the clustering algorithm CM-clust and
the two optimization based algorithms
(Ker-Lin, GGP-a1g) with initial parti­
tion the CM.-clust solution.

In this basic window, there are three additional
widgets (X Toolkit jargon), for input o~table
parameters of the 1001. The first, NUMBER OF

- SUBDOMAIl'lS, specifies the number of sub-
domains for the decomposition. The user
specifies the number of subdomains before using
the AUTOMATIC bunco. When the MANUAL
button is used, an estimate of the number of sub­
domains is entered, which should not be tess lhan
the final number of the subdomain.s. The second
widget, MODE, provides two options, SUB­
DOMAIN and INTERFACE. Every click inside

. the rectangle changes the mode of the tool. Mode
refer.; to what the user is planning to accomplish,
ie., specify subdomain.s or specify the assignment
of the interface grid points. The last widget is
one that shows the currently selected subdomain.
If there is none, NONE is displayed, otherwise
the color of the selected subdomain and its
number are displayed.

The second window displayed is a color
palette. A color can be assigned to each sub­
domain and this assignment is displayed on the
palene window. This window is also used to
interactively select (change) the currently selected
subdomain by clicking inside the color rectangle
that corresponds to the subdomain selected.

The third window displays the domain,
which is defined in terms of a set of mesh lines
and a boundary line. In case there is a decompo­
sition, it is displayed using the color assignment
specified by the palette window. This window
can also be used to edit interactively, (by using
the mouse). the current decomoosition. It is also
possible to specify a decomposition from scratch
by selecting the MANUAL option.

in Figure 5.1). It is used to control DecTool
using the following three buttons.

DONE: Signals to exit from the tool.
After exiting, an output file is
produced which contains the
description of the last decompo­
sition of the domain in a
predefined format.

AUTOMATIC: Invokes the automatically
decomposed algorilhm.

MANUAL: Allows the user to specify the
decomposition explicitly using
the mouse.

.
~_t.m

.
~_u.

.0<__

'''''

We have built an interactive environment
called DecTool to help with domain decomposi­
tion. An example display is sbown in Figure 5.1.
The environment provides facilities for both
automatic (using a predefined algorithm), and
maDual decomposition of a domain. This interac4

live environment is written using the Toolkit from
the third release of XU windows. Its detailed
description is given in [Hous 89b].

DecTool consists of three different win­
dows. The first one is the basic DecTool window
which initially appears on the screen (left center
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Figure 5.1 Example of the geometry decomposition tool DecTool for an annular region and 16
subdomains. The two DecTool windows are on the left side, the bottom left is for
parallel ELLPACK and the right one is the display of the decomposed finite ele­
ment mesh.
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