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Abstract

In this paper we study the partitioning and allocation of computations associated
with the numerical solution of partial differential equations (PDEs). Strategies for the
mapping of such computations to parallel MIMD architectures can be applied to
different levels of the solution process. We introduce and study heuristic approaches
defined on the associated geometric data smuctures (meshes). specifically, we study
methods for decomposing finite element and finite difference meshes into balanced,
nonoverlapping subdomains which guarantee minimum communication and synchroni-
zation among the underlying associated subcomputations. Two types of algorithms are
considered: clustering techniques based on sequential orderings of the discrete
geometric data and optimization based techniques involving geometric or graphical
metric criteria. These algorithms support the automatic mode of a geometry decompo-
sitton tool developed in the parallel ELLPACK environment which is implemented
under X11-window systems. A brief description of this tool is presented.
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Abstract

In this paper we study the partitioning and alloca-
tion of computations associated with the numeri-
cal solution of partial differential equations
(PDEs). Strategies for the mapping of such com-
putations to parallel MIMD architectures can be
applied 1o different levels of the solution process.
We introduce and study heuristic approaches
defired on the associated geometric data struc-
tures (meshes). Specifically, we study methods
for decomposing finite element and finite
difference meshes into balanced, nonoverlapping
subdomains which guarantee minimum commugi-
cation and synchronization among the underlying
associated subcomputations. Two types of algo-
rithms are considered: clustering techniques based
on sequential orderings of the discrete geometric
data and optimization based techniques involving
geometric or graphical metric criteria. These al-
gorithms support the automatic mode of a
geometry decomposition tool developed in the
parallel ELLPACK environment which is imple-
mented under Xil-window systems. A brief
description of this tool is presented.
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1. INTRODUCTION

In this paper we consider the problem of
partition and allocaton of computations associ-
ated with the numerical solution of _Partial
Differential Equations (PDEs) into load balanced
tasks requiring minimum synchronization and
communication. The efficient solution of this
problem is essential for the paraile] processing of
such computations. Its formulatior can be based
either on the geometric or the algebraic data
structures associated with the PDE solution pro-

.cess or on the precedence graph of the PDE

solver. In [Hous 88] we present a methodology
for partitioning and allocation which is applicabie
io the computation graph of the PDE solution
process. In this paper we formulate and analyze
partitioning methodologies for computations
defined on geomewic data structures. The

"approach has been implemented as a special

software ool in the parallel ELLPACK environ-
ment [Hous 89b]. The issue of automatic parti-
tioning has been raised in [Fara 88] in conjunc-
tion with finite element computations on local
memory machines and in [Fox 86a,b] for certain
algebraic computations. Some partitioning stra-
tegies for nonuniform problems on muitiproces-
sors are studied in [Berg 85]. In Section 2 we
present several partitioning strategies and formu-
late various criteria that are used (o determine
them. A new algorithm based on geometric graph
partitioning (GGP) ideas is developed and
presented in Section 3, together with the descrip-
tion of existing clustering approaches. In Section

"4 we present the performance evaluvation of four

automatic partitioning strategies. The resuits
obtained indicate that the new GGP algorithm
produces ‘‘optimum’’ partitions within reasonable

_time intervals. Finaily, Section 5 contains a brief



description of the geometry decomposition
software tool implemented under X-windows,
which allows the user to specify and maripulate
domain decompositions interactively, as well as
o display the automatically generated ones. A
detailed description of this tool will appear in
[Hous 89b].

2. PARTITIONING STRATEGIES FOR PDE
COMPUTATIONS

The numerical solution of partial differential
equations usually is represented by an approxi-
mate fonction defined over a given mesh of the
PDE domain. This function is determined by
solving a system of algebric equations that
depends on the discretization method used. For
the solution of this set of equations with a parallel
MIMD machine consistitg of many processor
clements, a partitioning of the underlying compu-
tation is required. The strategy of allocating the
partiions of the computations to processors
affects the performance of the parallel processing.
Any optimal partitioning/allocating strategy has
the following objectives (a) the work loads of all
processors are balanced, and (b) the processor
synchronization and communication cost is kept
10 a minimum. Partitions of PDE computations
that satisfy the above goals can be defined either
on the geometric data structures (meshes) or alge-
braic data structures (discrete systems) or on the
computation graph of the selected PDE solver. In
this paper we consider partitioning strategies
applied to fixed PDE meshes Q,, which are
referred as geometry decomposition approaches.
Instances of the other two approaches are formu-
lated and studied in [Fox 86] and [Hous 88].
Throughout this paper we assume that Q; is a
finite element mesh consisting of {n,-(x,y,z)},-‘tl
nodes  with w,-},-“‘il connectivity  and,
{ej(ny, ..., m)};oi elements. The case of finite
difference meshes can be handled in a similar
way. In the geometry decomposition strategy, we
seek a partition of the underlying PDE computa-
tion determined by a decomposition of Q; inio P
(number of processing elements) nonoverlapping
subdomains {D;}{., such that

(i} each subdomain contains almost the

same number of elements,

(iiy they are “‘circular’’ or ‘‘spherical’’

and connected, and

(iii) the number of interface nodes or inte-
rior boundary elements among sub-
domains is minimum.

It has been observed that a nearest neighbor allo-
cation of such partitioning computations tends to
be close to optimum. For the mathematical for-
muiation of this partitioning problem, we into-
duce Euclidean and hical  metrics.

. Thronghout we denote by (x;,y;) the geometric

center of a 2-D element ¢;, [D;| = ¢, the number
of elements in this subdomain, Dy the interface
interior elements of Dy, C=; the subset of Q, con-
sisting of all adjacent elements to e;, and x(e;,¢;),
the characteristic function {)(e;,¢;) = 1if ¢; € C,
and ¢; and e; are in different domains or
X(¢;,¢;) =0 otherwise}. In the case of 2-
dimensional meshes we define the mass center of

each subdomain D; to be the point

1 A 1 A
o, = 2 % Yp,=— I ¥
k €D, k s €D,
and the Euclidean distance between two sub-
domains (D, Dy ) to be the distance between mass
centers .

dp,.p, = \/(xo. - xp, ) + (yp, - ¥o, )% .

Furthermore, we denote by r, m Y|Di|/m the
radius of the subdomain D;. The topology of a
finite element mesh Q is represented by a graph
G(V,L) whose vertices V correspond 10 the ele-
ments of $2; and edges L correspond to adjacent
pairs of elements. A P-way domain decomposi-
ton of €2, is viewed as a P-way graph decompo-
siion of G. The problem of partitioning graphs
has been studied by many researchers [Bam 82],
[Dona 73], [Gold 84], [Chri 76). In this paper we
are particularly interested in the techmiques
presented in [Kemn 70]. For the formulation of
P-way graph partitioning techniques, we define
the mass center CR, of a subgraph G,(V,L,) as
follows:

CRc={vi €Vamin T [pvv)]*}
eV,
where p(v;,v;) denotes the minimum path that
connects the pair v;, v; in V. The distance of
vertix v; €V from CR, is defined by the quan-
tity



1 A2
EAPE L)

d; ca, =

while the distance between subdomains (sub-
graphs) D(Gy) and D, (G,) is defined to be

—— 2
ubi = TZRT TCR, | " EZCR, (eCavp)T
v ECR,
In the case of graphical merrics, the radius 7, of
"Dy is defined as the minimum d; g for all ver-
tices v; € G, for which the corresponding element
belongs to the interface Dk of the subdomain D,.

3. AUTOMATIC LOAD BALANCED
GEOMETRY  PARTITIONING  STRA-
TEGIES

In this section we formuiate and analyze
various  heuristic = domain  decomposition
techniques for  finite  ¢lement  meshes.
Specifically, we identify and study two classes of
methods. The first class consists of partitioning
strategies which are based on some global order-
ing of elements which mirnimize the bandwidth or
envelope of the discrete PDE system. The other
class involves optimization based methods using
Euclidean or graphical metrics.

3.1 Clustering techniques

The simplest load balanced decomposition
strategy is to group the first NE/P elements of the
mesh into subdomains, assuming some a prior
global ordering of the mesh elements. Figure 3.1
depicts a domain partitioning based on an order-
ing of elements along wvertical mesh lines.
Although this ordering scheme leads to banded
systems with minimum bandwidth, it produces
partiions whose  subdomains are  ‘‘nom-
spherical”’, sometimes disconnected and with
lengthy interior interfaces.

A second, more sophisticated clustering approach
is based on the Cuthill and McKee ordering
scheme. This approach tries to determine sub-
domains D, around some specific element ¢; such
that >x(e;,e;) > O over all elements ¢; EC,. If
the cardinality of |D| < ¢, then D, is enlarged
recursively by  including the elements
C'gIr - (Cﬂ N D) where e; € Dy until ID&' - Ch
This expansion of the Cuthill-McKee ordering
ensures to some degree local minimization of sub-

domain interfaces whﬂc it forces two consecutive
subdomains to be adjacent. This ensures the glo-
bal minimization of the subdomain interface
lengths. Our cxperiments indicate that this
scheme leads to partitioning with disconnected
subdomains (Figure 3.1b). Different
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Figure 3.1 Two P-way partitions of a discretized
semi-annulus domain using the clus-
tering approach based on the natural
ordering and Cuthill-McKee ordering
of the mesh elements.




implementations of the above strategy are
presented in [Fahr 88] and [Hous 89b].

3.2 Optimization based techniques

We now consider P-way balanced partitions
which optimize certain objective functions.
Specifically the problem of determining a load
balanced P-way partition with minimum interface
length is reduced to the minimization of the com-
munication or cut cost function

1 P
= X 2 X xlewep) 3.1

2 Et=legEl gED

P
provided |Dy| =ce >0, Q= kUI D, and

Dy, N D, = for all subdomains. The number of
feasible solutions of a P-way partitioning is prohi-
bitively large [Kem 70] even for a moderate
number P of subdomains. A good alternative is
to determine semi-optimal solutions using fast
heuristics. It- appears that the most efficient
heuristic strategy for partitioning graphs is the
so-called Kernighan-Lin (Ker-Lin) approach
[Kem 70]. According to this technique, a given
feasible solution is improved with respect to the
minimization of the objective function (3.1) by
interchanging  the pair of  elements
(e;,¢;) €D, x Dy such that the so-called profit
function ‘

flene)=2 3 xlenen) - [Col
@ EC,

+2 2 x(ep.'lej)_ Icql _Zx(e:'rej)
[ C'I
is maximum Although the method is capable of
determining a “‘good’” local minimum as Figure
3.2 indicates, its time complexity is significantly
large.

In order to guarantee that a P-way pam'u'on.

satisfies the criteria (i) to (iii), we introduce the
following profit function for elements e;, e; in Dy
and [, respectively

Fle,e;) mw [ {d'r_i& - 1) - (ff:c.f*. - 1).

1]
T (]
Ty ry
+ flene;)
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Figure 3.2 2-way paritions of a disg:rcte 1ec-
tangutar domain. (a) Cuthill-McKee
partition, (b) Ker-Lin partition, (€)
GGP solution (optimal solution).



It is easy to see that the maximization of F forces

the interchanging of elements outside the
“radivs’’ of D,, D, which are closer to the
current interface of the two selected subdomains.
Next, we describe a 2-way optimization based
algorithm. Its generalization to a P-way optimi-
zation is called GGP-recur and is obtained by
applying the same algorithm recursively. The
Cuthill-McKee algorithm and the 2-way GGP
have been combined to produce a P-way partition
algorithm called CM-GGP. A global non-
recursive P-way partitioning geometry graph
algorithm is under development and it will appear
elsewhere.

{* An automatic 2-way domain decomposition
algorithm */

Assume an  imifal  decomposition
Qi =Dy UD, with |Dy| =y, |Dz| =7 and
interfaces D,, Ds.

Step 1:  Compute the characteristics of
the initial decomposition
(center of mass, distance,
communication-cost or cut-
cost).

Step 2 Dete'rmine, a pair (e,e;)
&€ Dy x Dy such that the profit
function F(e;,e;) is positive or
maximum and ¢; or ¢; has oot
been considered in the previous
interchanges with f(g;,e;) < 0.

Step 3:  If the value of the profit func-
ion F is positive and the
number of imterchanges with
nonpositive F values is less
than the given limit (max-inf),
then update D, D, and repeat
the algorithm with the updated
decomposition as the initial
decomposition

If the value of the profit func-
tion F is pon-positive, the
number of unsuccessful inter-
changes is greater than the
given limit (max-int) and the
distance dp p, increases or
cut-cost has been reduced then

‘set the number of unsuccessful
interchanges equal to 0, update
D and D4 and repeat the aigo-
fthm. OTHERWISE ter-
minate,

The data in Figure 3.3 imply that the new profit
function forces interchanges of elements among
subdomains D, and D, that increase their dis-
tance while reducing the objective function (3.1).
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Figure 3.3 The values of the cut-cost function
and the distance dp p,, during the
execution of the GGP-algorithm for
an L-shape domain. A mesh with
406 elements was used.

4. PERFORMANCE OF GEOMETRY PAR-
TITIONING STRATEGIES

In this section we present the results of
some preliminary experiments to measure the
degree of satisfiability of the partitioning criteria
(D to (ii) and the time complexity of various
geometry decomposition approaches. We have
implemented five load balancing algorithms. The
two are clustering algorithms based on the natural
and Cuthill-McKee orderings which are called
Nat-clust and CM-clust, respectively. The other
three are graph partitioning type algorithms which
ry to optimize certain cut-cost functions guided



by certain profit functions involving Euclidean
metrics. Their implementation using graphical

metrics is under way. These are the Kemighan

Lin (Ker-Lin), the recursive zlgorithm based on
the 2-way algorithm described in Section 3
{(GGP-recur) and the GGP-alg algorithm. Figure
4.1 presents the communication requirements or
interface lengths for the semi-annulus discrete
domain of Figure 3.1 obtained using the four
algorithms. In the case of Ker-Lin and GGP-
recur algorithms the initial feasible partition used
is the P-way solution of CM-clust. The data indi-
cate clearly that the GGP-recur solution is quanu-
tative and qualitative *‘closer’’ to the optimum.
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Figure 4.2 The average number of interface

nodes for two 2-way optimization
based partitions for different meshes
over five different domains.

Figure 4.1 The interface lengths of five P-way
partitions of a 2500 element mesh in
the semi-annuius domain obtaimed
with the one clustering and the three
graph partitioning algorithms.

In Figure 42 we present the number of
interface nodes as a function of the mesh size, for
2-way partitions obtained by two optimization
based algorithms (Ker-lin, GGP-alg). Figure 4.3
shows the tme complexity of these algorithms
measured in terms of the number of interchange
clements required for different meshes. The
results in Figure 4.2 and 4.3 are the average
values over a population of five domains assum-
ing random initial partition. These results indi-
cate that the GGP solution is closer to the
optimum partition as defined by criteria (i) to
(iii). Furthermore, the time complexity measured
impiies that the ‘‘better’’ algorithm (GGP) is the
faster one.

Interchurrgey off El=menry

400 -
Rer L

5003 = .

o0 / GOF Az

0 = -l

2000 /

/
1000 Z T
_-4;._ _____.--—"""'
300 1 L r] =00
Megh Sire

Figure 4.3 Average time complexity of 2-way

optimization based methods for
different size meshes over five
different domains.

Finally the data in Figures 4.4 and 4.5 sup-

port the conclusion that the proposed GGP algo-
rthm produces ‘‘better’’ partitions among the
clustering and optimization based algorithms.
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Figure 4.4 The number of interface nodes as a
function of the mesh size obtained by
the clustering algorithm CM-clust and
the two optimization based algorithms
(Ker-Lin, GGP-alg) with initial parti-
tion the CM-~clust solution.
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Figure 4.5 The time complexity of Ker-Lin and
GGP-alg algorithms with the iritial
partition of the CM-clust solution.

5. GEOMETRY DECOMPOSITION

We have built an interactive environment
called DecTool to help with domain decomposi-
tion. An example display is shown in Figure 5.1.
The environment provides [acilities for both
automatic (using a predefined algorithm), and
manual decomposition of a domain. This interac-
tive environment is written using the Toolkit from
the third release of X11 windows. Its detailed
description is given in [Hous 89b].

DecTool consists of three different win-
dows. The first one is the basic DecTool window
which initially appears on the screen (left center

in Figure 5.1). ‘It is used to control DecTool
using the following three buttons.

DONE: Signals to exit from the tool.
After exiting, an output file is
produced which contains the
description of the last decompo-
sition of the domain in a
predefined format.

AUTOMATIC: |Invokes the  automaticaily

decomposed algorithm.

Allows the user to specify the

decomposition explicitly using

the mouse.

MANUAL:

In this basic window, there are three additional
widgets (X Toolkit jargon), for input of editable
parameters of the tool. The fist, NUMBER OF

" SUBDOMAINS, specifies the number of sub-

domains for the decomposition. The user
specifies the number of subdomains before using
the AUTOMATIC button. When the MANUAL
button is used, an estimate of the number of sub-
domains is entered, which should not be less than
the final number of the subdomains. The second
widget, MODE, provides two options, SUB-
DOMAIN apnd INTERFACE. Every click inside

* the rectangle changes the mode of the tool. Mode

refers to what the user is planning to accomplish,
i.e., specify subdomains or specify the assignment
of the interface grid points. The last widget is
one that shows the currently selected subdomain.
If there is none, NONE is displayed, otherwise
the color of the selected subdomain and its
number are displayed.

The second window displayed is a color
palette. A color can be assigned to each sub-
domain and this assignment is displayed on the
palette window. This window is also used to
interactively select (change) the currently selected
subdomain by clicking inside the color rectangle
that corresponds to the subdomain selected.

The third window displays the domain,
which is defined in terms of a set of mesh lines
and a boundary line. In case there is a decompo-
sition, it is displayed using the color assignment
specified by the palette window. This window
can also be used to edit interactively, (by using

the mouse). the current decomposition. It is also
possible to specify a decomposition from scratch

by selecting the MANUAL option.
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subdomains. The two DecTool windows are on the left side, the bottom left is for

parallel EIT PACK and the right one is the display of the decomposed finite ele-

ment mesh.
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