Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1990

The Second International Conference on Expert Systems for
Numerical Computing

John R. Rice
Purdue University, jrr@cs.purdue.edu

Robert Vichnevetsky

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Report Number:
90-963

Rice, John R.; Vichnevetsky, Robert; and Houstis, Elias N., "The Second International Conference on Expert
Systems for Numerical Computing” (1990). Department of Computer Science Technical Reports. Paper
817.

https://docs.lib.purdue.edu/cstech/817

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

THE SECOND INTERNATIONAL CONFERENCE
ON EXPERT SYSTEMS FOR
NUMERICAL COMPUTING*

Co-Chairman: John R. Rice and Robert Vichnevetsky
Conference Coordinator: E.N. Houstis

Computer Sciences Department
Purdue University
Technical Report CSD-TR-963
CAPO Report CER-90-13
March, 1990

Co-sponsored by Computing About Physical Objects Laboratory, IMACS, SIGNUM, NSF and

AFOSR.
The conference was partially supported by NSF and AFOSR.

TABLE OF CONTENTS

SESSION 1: Mathematical EXPErt SFSEEINS ..o imcmsissssmnisms s sessassssssisserassrssssssssssssssersssassssssssasssnss

EVE: An Object-Centered Knowledge-Based PDE Solver,

P. Barras, J. Blum, J.C. Paumier and P. WHORISKEc...cvnvsninnsinssssosm s s s snassss s sssnsstasassss s

Expert Systems For Scientific Computation and The Algorithm Selection Problem,

Wayne R. Dyksen and Carl R. GTIET ..o rrmec s s st st st s et

ODEXPERT: A Knowledge Based System For Automatic Selection of Initial Value ODE Sysr.em Solvers,

Mohamed Kame! and Wayne H. Enright....

Implementing Fast Fourier Transform For Direct Solution of Poisson’s Equation,

Bert Bradford and ROIGNA A. SWEEL ... ssisssrssssrsmess s s 8 s a8 s st

A Prolotyping Environment For Ordinary Differential Equations,

Toufic I. Boubez, Andy M. Froncioni and RiChard L. PESKIM .ccwvicumereecvssssmsnnssrsesssini s st

SESSION 2: INVILEH TAIKS.........couueeresssuseeesssseeresssssossssosssssssssssssssssss s s s sesss o sssss s sassesssesssass s sossssnssss

A User’s View of High-Performance Scientific and Engineering Software Systems in the Mid-21st Century,
DNAVIA T, BUCK v evsvamssvaseasesssssavasssasassases vasoeuss sss semssed thnss peRsaracasas sosmamsces AL AT LSRR8 A s AL LT st S R ree

Software Produclivity Issues For Scientists,

FCEMIEIR G WHISOM. oo eeeereeemeeeestasssssssesssstasssesssecsbasssnsss srsmsssbann s asmened HE4S HER L2 0E R R4S HE 111 L SRS RARLE AR TR a s e b 00

Learning, Teaching, Optimization and Approximation,

JOHN R RICEnuvesveveessesesseessueseussnassens s sssases sis eumsrneseabdma b i1 aEs sasemsans st ssnms semt | HRLLER S PES SRR SAm LS e oA AR RR s S ann nmee
.18

SESSION 3: Expert User Interfaces.......ooonene

A Development Shell For Knowledge Based Systems in Scientific Compuhng,

F. Rechenmann and B. Rousseau...

CLAM and CLAMShell: A System for Buﬂdmg User Interfaces,
David E. Foulser and William D. Gropp ...

A Softwarc Platform For Relaxation,

Scott McFadden and JORN R. RECE it st sesss st st st snrrest st sens s ab s s s s s b a0

Towards an Expert System For Solving Systems of Linear Equations,

Stefan Koenig and CHArles P. UHFICH e st cassss s s s s e o

Numerical and Statistcal Knowlcdge-Based Front-Ends Research and Development al NAG,
J. Chelsom, D. Cornali and I. Reid ...

SESSION 4: Expert System Solutions to Parallel Computing ISSUES........ocormiemmersssersssirs s

Intcligent FORTRAN Compiler For Paralle] Compulers,

Vasanth Balasundaram and GeOffrey FOX ..ttt st pitts st s s o st st s s

10

15

15

16

17

.22

26

32

w34

37

37

Automatic Parallel Program Instrumentation: Applications in Performance and Error Analysis,
B. Bliss, M.-C. Brunet and E. GAllOPOUIOS ...cuuuevcsriin i isneimasnsisis s st sn s s st st s e st st

ATHENA: A Knowledge Base System for //ELLPACK,

38

C.E. Houstis, EN. lHoustis, M. Katzouraki, T.S. Papatheodorou, JR. Rice and P. Varodoplot .ueeenecnernn 36

SESSION 5: Engineering EXPErt SYSTEITSo s s st s ssssss s

An Expert System as a Support to the Design of Airfoils,

L. Ghielmi Gnd D. QUAGHATEII c....ccuvessuivarrnsivssaemssmssrensssasess s snas e srass srssase s s s R R e s s

The Use of an Expert Systcm in the Control of Structural Analysis Idealizations,

M.S. Shephard, E.V. Korngold, R. Weniorf, A. Budhiraja and R.R. 007117 - O

QOPSP: An Object-Oriented Particle Simulation Programming System,

Xinming Lin Gnd WaILEr J. KATPILS cu..owveevossiessss s crsssas s st st s s s s s b s s

Continuation Expert System - CONVEX,

P. Rosendorf, J. Orsag, I Schreiber and M. Marek ... rinississsims s st

SESSION 6: Symbolic and Formal Specification of Modeling Programs.........c....mn

Synthesis of Malhemaur,al Modeling Program,
Elaine Kant, Francois Daube, Willian MacGregor and Joseph Wald ...

Effective Knowledge Representation Schemes For Automatic Numerical Program Generalion,
Mark F. Russo, A. Daniel Kowalski and Richard L. PeskiR ..ot snssassnsnd

Using MACSYMA 10 Write Finite-Volume Solvers,

Stanley Steinberg and POIFICK ROACAL ... ccvviivorercsssssers st s s bt s s et s

Formal Specification of Engmeenng Analy51s Program
John W, Baugh, Jr... v

ALPAL’s Matrix Editor For Symbolic Jacobians,
Jeffrey F. Painter...........

Construction of Large -Scale Simulation Codes Usmg ALPAL,
Grant Q. Cook, Jr..

Functional Representation of Software Selection Expertise,

Michael Lucks, and 1 GIAGWELL..c.c..vvcreossimsiimsrieesssnm s stsssss eass sosasss sbass sassms s s s s st s sess

ii

35

59

61

1

By

"

.17

.80

SESSION 1

EVE: An Object-Centered Knowledge-Based PDE Solver

P. Barras, J. Blum, J.C. Paumier and P. Witomski

IMAG/lab. TIM 3
BP 53 X
38041 Grenoble Cedex, FRANCE

F. Rechenmann

INRIA, IMAG/lab ARTEMIS
BP 53 X
38041 Grenoble Cedex, FRANCE

The EVE system is very representative of the class of knowledge-based systems in
scientific computing. It incorporates knowledge on the algorithmic methods involved in
the numerical solution of systems of partial differential equations, on the mathematical,
and possibly physical, entities manipulated by these methods and on the ways a global
problem should be decomposed according to its characteristics. All this knowledge is
represented as objects classes: classes describing methods, classes describing entities
and classes describing tasks. EVE is written in Lisp and heavily relies on SHIRKA, a
frame-based model, to represent the knowledge of exploits. It is the result of the colla-
boration between a group of artificial intelligence specialists and a group of applied
mathematicians. This paper describes the knowledge used by EVE, its global architec-
ture and its user interface.

A class is attached to each algorithmic model needed by EVE. The slots of the
class describe the various parameters of the module by their name, their type, their
range of admissible values and possibly the ways to compute their value when it is
unknown in an instance, i.e. a particular element of the class. The type of a slot can be
the name of another class; this means that its values must be instances of that class. It
is thus possible to specify that a method can only be applied to some specific type of
input parameters and that its output parameters are expected to be of some specific
types. One of the slots of a method class contains the name of the executable code.

Classes are also used to describe the entities handled by the system. The classes
are organized as a hierarchy in which any subclass inherits the properties of its super-
class and possibly adds its own properties. These hierarchies support a classification
mechanism which is able to determine the possible classes for a given instance. As this
instance is moving down the hierarchy, its associated knowledge is refined and some
property values are inferred. in EVE, classes are thus used to describe mathematical
entities like equations and their components, variables, parameters or constant values,
domains and their frontiers, conditions on frontiers, linear systems and so on.

In EVE, the classificarion mechanism is used to characterize the set of PDE equa-
tions. The set of equations entered by the user through a high level editor is analyzed
and translated as a composite object. The components are operators and operands: vari-
ables, constant values and parameters. The knowledge base of EVE contains a list of
prototypical basic components of PDE to which the basic components of the actual

-7

equations are compared through a structural pattern-matching process. When all the
components have been identified, it is easy to determine some basic mathematical pro-
perties of the system and to rewrite it in a canonical form.

The classification mechanism of SHIRKA is also able to retrieve the adequate
methods for some given entity. The entity is first characterized by classification in the
hierarchy to which its class belongs. A second classification process is initiated on the
hierarchy of methods. The result of this second stage is a list of methods which can be
applied to the entity. For instance, this process is used in EVE to determine an ade-
quate method for the solution of the linear system, which is obtained when the finite
elements method is applied.

This process has to be repeated each time a precise task must be executed, for
which several methods are available. EVE manipulates tasks and incorporates
knowledge on the ways a PDE problem should be recursively decomposed in sub-
problems up to the point it becomes a sequence of calls to algorithmic modules. The
decomposition is of course, dependent on the characteristics of the problem. The tasks
are themselves described as classes.

EVE is now operational on any workstation supporting Le-Lisp of INRIA and its
graphical interface development system. It is presently able to solve linear PDE in one
and two dimensions and is well adapted to pedagogical uses. The user enters its system
through a specialized equations editor (see figures). Classical operators appear as icons
the user selects. These operators can be nested up to the desired level of complexity.
In the same way, the user specifies the boundaries conditions. The domain and its fron-
tiers can also be entered via an interactive and graphical way. The user interface offers
facilities to link the name of the frontiers in the definition of the boundaries conditions
and in the domain definition.

When solving the problem, EVE displays the decomposition of tasks into subtasks
it has decided on, and, when requested, provides the user with explanations.

Extensions of the system are planned and some of them are already started. The
main extension is to consider time-varying, possibly non-linear equations. This will
need a very powerful planning algorithm in order to control the iterations of the solving
process. The introduction of some algebraic manipulation modules is also considered.

Saixie acrxintes da probleses

———)

fiouvaile guation
feerractiog

splless Dulths La-Kiep

868060300000

cm-defaut
gamma
pto
ptl

2= -

intardl
interi2
intaroz

e

Rafralchir

V—ricuallear-2

=t sy lana dm paklvns 1
et (a1, 33T Oml, 7 1L} wwr raa

Imlan = VEIE -""““:"_Iﬂ“-mﬂf‘" = 31T
el

_4-

Expert Systems For Scientific Computation
and
The Algorithm Selection Problem

Wayne R. Dyksen and Carl R. Gritter

Depar-r_:n_lént of Cor}ipﬁtcrmSciencc
Purdue University
West Lafayette, IN 47907

In today’s world of scientific computing, there exists a large base of well-written,
reliable numerical software that solves a host of very complex numerical problems.
This base is becoming so large that it has become necessary to investigate the applica-
tion of expert systems to scientific computation. Thus we are building Elfiptic Exper:,
an expert system for elliptic partial differential equations (PDEs). We are in the pro-
cess of completing a knowledge-base for Elliptic Expert and, using our experience as a
springboard, developing a paradigm for expert systems for scientific computing in gen-
eral.

What the average scientific software user really wants is an expert system which
uses artificial intelligence knowledge-base techniques to guide the user towards an accu-
rate solution to his problem. In order to do this, we are using OPS5, a member of the
family of production-system languages based on the production system paradigm, to
define and control the knowledge-base for our expert system. Our software base is
XELLPACK, a large software system that solves PDEs.

There are three main components of such an expert system. The first component
focuses on finding the set of algorithms which apply to a given problem. After obtain-
ing such a set, the next step is to select the “‘best” algorithm or ‘‘best’’ set of algo-
rithms. We call this the Algorithm Selection Problem. Once an algorithm is selected,
the solution is analyzed using error analysis techniques and the performance of the
algorithm is measured. If the user is still unsatisfied, repeated use of the second and
third components in conjunction with the knowledge base will provide an excellent
guide to a more accurate solution.

This paper concentrates on the second component, the Algorithm Selection Prob-
lem. First of all, we focus on the problem of determining what it means to be the
“best’” algorithm. One of the problems with this is that this concept of “‘best’’ may
mean entirely different things to different people. Therefore, we develop ways of let-
ting the user, as much as possible, define his own environment by letting him place
emphasis on what he thinks are important criteria in determining the best algorithm.

There are two ways of getting information to help find the best algorithm, symboli-
cally, and algorithmically. This helps build goal strategies and rule strategies for the
expert system knowledge base. The symbolic information is based on priori
knowledge; that is, the information depends only on a symbolic analysis of the elliptic
problem, knowledge from the user, theoretical performance knowledge of part or all of
an algorithm, and actual performance data of algorithms applied to other problems.
The algorithmic information is dynamic and is based on both a priori and a posteriori
knowledge; that is, the information may depend on any of the following: calculations to

-5.

study the behavior of the coefficients, forcing function and boundary data; trial, low
accuracy, cheap solutions; trial solutions using the two or three “‘most promising’’
methods; or, additional input from the user after presentation of the initial results.

Once the information has been gathered, we develop techniques to use this infor-
_ mation to pick a ‘‘best’”’ method by studying what happens in simple cases and slowly
building machinery to solve the more complex cases. One idea that is fundamental to
this process is the idea of matching the characteristics of problems to the capabilities of
algorithms. Finding the ‘‘best” algorithm can be viewed as finding the algorithm
which is “‘most’ capable of handling the problem. It would be nice if we knew
definitely whether every algorithm could handle certain types of problems. Unfor-
tunately, this is not the case and we are left with many gray areas. However, we show
how we can overcome some of these difficulties by developing algorithmic and heuris-
tic methods of determining these capabilities.

The Algorithm Selection Problem is not an easy problem and there is no simple,
straightforward solution. However, through the machinery available in Elliptic Expert,
we can begin to piece together this complex puzzle. One might think that in order to
be snccessful, this system should provide the *‘optimal’’ algorithm to handle a particu-
Jar problem. Because it is unclear what the ‘“‘best”” algorithm is, this can not be
guaranteed in general. However, we consider it a success if we can provide a process
that provides a better algorithm than the average scientist would obtain with just his
OWN Iesources.

-6-

ODEXPERT: A Knowledge Based System For Antomatic
Selection of Initial Value ODE System Solvers

Mohamed Kamel

Department of Systems Design
University of Waterloo
Waterloo, Ontario N2L 3G1, CANADA

Wayne H. Enright

Department of Computer Science
University of Toronto
Toronto, Ontario M5S 1A4, CANADA

With the availability of a wide range of numerical software for solving initial
value ordinary differential equations, users may face some difficulty in selecting an
appropriate method to solve their problems. Unless they know their problem’s proper-
ties and structure this selection will typically be based on factors such as ease and use
of availability. Failing to select an appropriate method may lead to results that are not
correct or, at best, correct results at high computational costs.

In an effort to automate this selection process, the authors are building a prototype
knowledge based system for ODE-solver selection (ODEXPERT). The system gives
the user an expert’s selection based on automated examination of the problem and
user’s answers to the expert’s questions.

In this paper we describe the design and implementation of ODEXPERT. More
specifically, we explain the techniques, their implementation and the testing employed
by the selector for representing a problem and automatically identifying its properties
and structure (e.g., linear, nonlinear, stiff, sparse, banded, etc.). Based on these proper-
ties and structure, the selector, utilizing a knowledge base of decision rules that an
expert would normally use, selects the appropriate solver. The intelligent selector is
also intended to generate the parameters and any information that may be required by
the solver. In case the system is not able to generate the required information from the
problem and its properties, it will guide the user to provide such information.

The system is capable of acquiring knowledge about the problem to be solved
from the problem specification and is capable of identifying the problem properties and
structure and selecting the appropriate solution method. The basis architecture of the
system consists of the following components:

1. User Interface. This represents the front end of the system. It provides an
easy to use representation language which the user can specify the problem
in. The input is parsed and information about the problem is represented for
further use by other components. Among the features that are included in the
parser is the ability to transform high order ODE’s into a system of first order
equations, the ability to detect the complexity of the problem and the ability
to detect an inconsistency in the input.

-7-

2. Structure Identification. This component has routines for identifying the
structure of the problem. For example, it has routines for checking whether a
linear system of equation has special structure such as banded, sparse or
block structure. Both structure of the problem and the Jacobian are
identified. Among the properties that are identified are linearity and stiffness.
‘Linearity of the problem is detected during the parsing of the input using a
simple check. Further identification which includes simplification of expres-
sions and identfication of implicitness is also possible. For detecting
stiffness a test has been developed based on pilot integration of the ODE sys-
tem backward. The test is adequate for the purpose of the selection and has
the advantage of being simple and computationally inexpensive compared to
other stiffness detectness tests.

3. Inference Mechanism. The information gathered from the input and through
the detection components are represented as knowledge which the system has
to analyze in order to select a solver. The inference mechanism performs this
analysis by correlating the provided information to rules in the knowledge
base of the system.

4. Knowledge Base. This is the core of the system, it contains the rules and
control information about the application domains as well as any acquired
knowledge from the user. It is mainly divided into two parts. The first part
includes rules that relate to the properties and structure of the ODE system
and different possible decisions on recommending appropriate solvers. The
second part includes knowledge rules about solution methods and the parame-
ters used in their calling statements. These rules are to be used to generate
the appropriate calling sequence to the selected method.

5. Merhods Bank. This is a bank of the different methods for solving ODE sys-
tems.

The paper will discuss the details of the automatic detection of problem’s structure
and properties, the rules represented in the knowledge base and the user interface. We
also discuss the implementation of the system and show some examples to demonstrate
its performance.

-8-

Implementing Fast Fourier Transforms For
Direct Solution of Poisson’s Equation

Bert Bradford and Roland A. Sweet

. o Math Department, Campus Box 170
University of Colorado at Denver
Denver, CO 80204

This presentation will briefly describe compact algorithms used to incorporate the
Cooley-Tukey Fast Fourier Transform (FFT) into the solution of finite difference
approximations to Poisson’s equation. All frequently occurring boundary conditions are
considered, including those associated with staggered grids. Emphasis will be given to
the complications involved in implementing software for these algorithms, and the
potential for the application of automated code generation.

The potential role for automated code generation arises from the large number of
specialized codes required for various combinations of boundary conditions, grid sizes,
and grid orientations. In each spatial dimension, we must specify boundary conditions
at both the left and right endpoint. Boundary conditions we consider include periodic,
Dirichlet and Neumann. Furthermore, there is often a need to orient the grid such that
one or both of the endpoints of the computational domain are staggered at half of a grid
spacing. This leads to staggered Dirichlet and staggered Neumann boundary conditions.
We have identified 11 such combinations of boundary conditions. When the Poisson
equation is discretized, these boundary conditions are approximated by requiring the
real sequence which represents the approximate solution to satisfy discrete analogs.
The discretized boundary value problem is solved by the eigenvector expansion method.
This method requires finding the eigenvalues and eigenvectors corresponding to the
discretized differential operator which also satisfy the appropriate discrete boundary
conditions. The discrete solution is expanded in terms of these eigenvectors. The
efficiency of this algorithm results from the ability to calculate the coefficients in such
eigenvector expansions using an FFT algorithm. Thus, for each of the boundary condi-
tions discussed above, we have developed an FFT algorithm which computes the
coefficients in the corresponding eigenvector expansion as efficiently as possible by
eliminating all redundant computations which would occur in the full complex FFT,
and without pre- or post-processing. The elimination of pre- and post-processing
improves performance by reducing the number of data accesses. Such FFT algorithms
are referred to as compact symmetric FFTs, and the overall algorithm as fast Poisson
solvers.

Flexible grid sizes also contributes to the need for a large number of specialized
FFT codes. The FFT algorithms we have developed are all general mixed radix algo-
rithms. In order to achieve efficiency, the grid size must be chosen to be a product of
many small primes or small composites. It is possible to implement software which
accepts a general factor p as input. However, for typical values of p (2,3,4,5), there
will be much loop control overhead which could be eliminated if specialized codes
were generated for specific values of p. We have identified a need for at least 5 such
specialized sets of code corresponding to p = 2,3,4,5 and a general factor p.

-9.-

Another consideration which leads to the need for additional FFT codes is the ord-
ering of the input and output sequences. All in-place FFT algorithms based on the
splitting method require either the input or output sequence to be in bit-reversed order.
If additional storage is used, then it is possible for both input and output sequences to
_ be in natural order. This leads to 3 additional options which are independent of those
already discussed above. For Fast Fourier Solvers, we prefer in-place algorithms which
accept the input sequence in natural order. However, other applications may require the
other two options.
If we combine the independent options discussed above, we obtain at least 11 x5
x 3 = 165 FFT variations. Furthermore, these algorithms have excellent potential for
vectorization and/or parallel decomposition. this will lead to additional machine archi-
tecture dependent variations. From a review of the code in FFTPAK, we estimate that
each FFT variation requires approximately 1,000 lines of FORTRAN code. Thus, we
see excellent potential for the application of automated code generation tools. Experi-
ence in coding a few of these FFT algorithms indicates that these codes are sufficiently
regular to make this feasible.

-10 -

A Prototyping Environment For Ordinary
Differential Equations

Toufic I. Boubez

_ Department of Biomedical Engineering, and
CAIP Parallel Computing Laboratory
Rutgers University
Piscataway, N.J. 08855-1390

Andy M. Froncioni and Richard L. Peskin

Department of Mechanical and Aerospace Engineering, and
CAIP Parallel Computing Laboratory
Rutgers University
Piscataway, N.J. 08855-1390

1. Introduction

In a general scientific interface environment, an interactive tool to allow scientists
the capability of experimentation with differential equations is a desirable feature. The
need to enhance scientific interfaces for numerical simulation has been discussed in the
literature [1]. More specifically, when dealing with differential equations, there is need
for a tool that is capable of handling a reasonable variety of initial value, final value
and boundary value problems (including cases where boundary layers and shocks are
present). Campbell [2] has built a prototype differential equation tool in Suntools.
While this system has a graphical interface, its model flexibility is limited. Russo [3]
has an extensive knowledge-based system capable of handling a wide class of problems,
but with limited graphical and interactive interface. By constructing a differential equa-
tion system in Smalltalk-80 we are able to combine model flexibility and complete
graphical interaction capabilities, while taking full advantage of the distributed process-
ing environment available.

In this paper, we present an ordinary differential equation (ODE) tool that is
designed to accept user input in the form of a problem statement (string form) of the
ODE and its boundary conditions. The output is a graphical display of the solution.
User interaction with the input allows rapid change of the equation, its boundary condi-
tions, and any other parameters such as the discretization resolution and the solution

domain.

2. Numerical Solution of ODE’s
In general, the nth order differential equation

y® = f ryy®, ..., yeD (1)

can be reduced to a set of # first order equations

-11 -
yE:gi(x.yl,,..,yn) i=1,...,n (2)

by using some auxiliary functions.

This set of first order equations is then rewritten as a set of finite difference equa-
- tions (FDEs)-for each. of the interior points in the discretized domain. The FDE’s are
linearized by re-writing them as a set of linear equations in the highest derivatives, tak-
ing the non-linear terms from the previous iteration. The equations are then expanded
and a matrix equation,

A-x=b 3)

relating all the interior points in the discretized domain and incorporating the boundary
conditions, is constructed. This equation is more specifically written as:

A*D L xF) = p%-1)y 4

and solved in an iteration loop, using the solution from the previous iteration k-1t
construct the matrix and solve for the next iteration (k). The solution is thus relaxed
until convergence is reached.

3. Numerical Solutions With the ODE Tool

In standard numerical methods, the equations are usually reduced and prepared
beforehand, and the computer is only used in the final solution steps that require
number-crunching (matrix solutions and relaxation iterations). The purpose of using
our prototyping environment is to automate the initial stages as well as the number-
crunching steps, so that an equation is processed from string form to a solution plot,
thus allowing user interaction during the solution process.

The most important user-system interface step is the initial one, that of problem
formulation. The problem equation has to be entered, parsed and processed. Using
Smalltalk syntax rules, a string expression can easily be converted into an equation by
nsing a scanner. The equation ue = u, for example, is entered as: ‘wx — w0’ and, when
scanned, produces a new instance of Equationlist, a subclass of Array, having the value
(uxx — u). A set of higher order derivative variables (g, b, ¢ . . .) are defined such that
a = dufdx, b = dx/dx, etc...

The EquationList instance representing the n-th order equation is recursively
scanned to reduce its order, and the above substitutions are applied, producing n first
order equations. The FDEs are then produced by performing the following substitu-
tions from another Smalltalk Dictionary instance:

ux — (1/deltaX)*((u at: (p + 1)) — (u at: p))
u = 05%(uat:(p+ 1)+ @at: p))

ax — (U/deltaX)*((a at: (p + 1)) - (a at p)}
a = 05%(aat:(p+1))+(aat:p)

-12 -

The resulting set of difference equations is linearized and written in the form given
by equation 4. To effect this process, the system utilizes an ‘expert’ algebraic manipu-
lation tool to reduce and discretize an nth order ODE to a series of matrix operations.
The system builds a back-end MATLAB script and then invokes it via distributed com-
puting on a back-end processor. The resulting solution vector is then graphically
- -displayed in the Smalltalk environment. - - -- e e e -

An important feature of our system is its ability to let the user “‘computationally
steer’’ the solution. The user can alter parameters, boundary conditions, and even
change the equations during the solution process. Implementation of these features
rely, in part, on the use of the Smalltalk incremental compiler.

4. Results

The environment mentioned above was tested on a number of boundary- and
initial-value problems with very good results. The use of a relaxation method lessens
the problem of Gibbs’ phenomena associated with resolving sharp shock-type problems.
For example, the following singularly-perturbed problem was tested on the system:

equation : ‘0.1%Uxx — (w*ux) +u =0
BC’s: u(-=Lu(l)=-1
resolution : 100 points

The problem was solved in approximately 135 seconds, using 44 nonlinear itera-
tions. As is evident from Figure 1, no Gibbs’ oscillation is present in the final solution.
In addition, the shock region is properly represented. Similarly good results were
obtained for other nonlinear shock- and smooth-type ODE's; the user can be confident
of results obtained during prototyping.

5. Conclusion

This paper presents an ODE solution environment for prototyping. This tool has
proved to be robust and correct in solving a number of difficult ODE systeruns, in partic-
ular, a singularly-perturbed, nonlinear ordinary differential equation. The tool imple-
ments computational steering for ODE’s.

Several extensions to the system are being implemented. The Smalltalk algebraic
manipulator will be supplemented with a commercial back-end system. This will
decrease the manipulation time considerably and allow a greater range of ODE’s to be
solved. In addition, the system will soon be modified to handle several nth order non-
tinear ODE’s at once. An expert system is being incorporated to implement domain
decomposition and high-order initial estimates for singular perturbation problems [4).

References

[1] PESKIN, R.L., WALTHER, S.S. and FRONCIONI, A.M., SMALLTALK - The
next generation scientific computing interface?, Mathematics and Computers in

Simulation, 31, (1989), pp. 371-381.

(2]

[3]

4]

-13 -

CAMPBELL, I.R. and McGAVRAN, L.P., An integrated distributed processing
interface for supercomputers and workstations, submitted to ASE’89, Applicanions
of Supercomputers in Engineering, Southampton University, UK, (Sept. 1989).

RUSSO, M.F., Automatic generation of parallel programs using nonlinear singu-

lar perturbation theory, Ph.D. Thesis, Ruigers University, (1989).

RUSSO, M.E. and PESKIN, R.L., Automatically identifying the asymptotic

behavior of nonlinear singularly-perturbed boundary-value problems, submitted to
Journal of Automated Reasoning, (1989).

Figure 1: The ODE Tool

-14-

newBvYP remoteSeclve setibyData addXgrid B
resetsolutlon remoteiterate setibyUser addXtitle
changeBCs keeplasiSolution setybyData addygrid
changetquation redraw setybyUser addriitle
3.0
20 |
0.97 |
-0.065 |
-1.1 | | |
-1.0 =-0.5 0.0 0.5 1.0

Figure 1. ODE tool display of a sample program

- 15 -

SESSION 2

A User’s View of High-Performance Scientific and Engineering Software
Systems in the Mid-21st Century

David J. Kuck
Center for Supercomputing Research and Development
University of Illinois
305 Talbot Laboratory

104 S. Wright Street
Urbana, IL 61801

Problem specification systems exist today on sequential machines for several prob-
lem domains. If parallel processing is to become commonplace, specification systems
will have to exist for future parallel machines. In fact, the development of such sys-
tems may make the exploitation of parallelism easier because of the very high-level
nature of the problem specification.

The value of problem specification systems will be discussed along several dimen-
sions. These include case of use, target machine portability, ease of implementation,
correctness of results, and speed of execution. Specification systems will be compared
along each dimension with the languages and programming systems of the 1990’s.

It seems clear that a number of 20th century issues will remain, even as computing
reaches its centennial in the mid-21st century. For example, no programming system
will satisfy all of its users. Thus, notions of reusability and extensibility must be
explored in detail to make future generations of specification systems as flexible and
useful as possible.

-16 -

Software Productivity Issues For Scientists

Kenneth G. Wilson

Physics Department
_The Ohio State University
174 West 18th Avenue
Columbus, OH 43210

There are three conflicting needs for organization in a large scientific program,
namely (1) organization of program execution, (2) organization of data, and (3) organi-
zation of the explanation of the program and the design decisions which were made
during its development.

The object oriented paradigm has been a notable advance because it elegantly
meshes what otherwise would be conflicting organizational needs of program and data,
in particular, it allows any data item to be accessible to any function, through the class
and object mechanism.

The explanation of a program requires yet another form of organization, essen-
tially a record of how the program was built up from an initial set of goals. At inter-
mediate stages of this build up, both data structures and functions are incomplete,
becoming more fleshed out as finer details of the program design are addressed. I will
discuss ideas, partly from the Gibbs project, now led by David Gries, for how one
might combine explanation oriented and object oriented approaches. I will also note
the relationship of these ideas to Knuth’s *‘literate programming’”.

-17 -

A Study of
Learning, Teaching, Optimization and Approximation

Johrn R. Rice

.. .. Department of Computer Science
Purdue University
West Lafayette, IN 47907

A objective of this study is to create a mathematical framework for analyzing the
concepts of learning and teaching. This framework is oriented towards enabling com-
putational applications, such as now involved in expert systems, using rule based pro-
cessors, neural networks, genetic algorithms and similar methodologies. The relation of
this framework with the traditional ones from optimization and approximation theory, is
analyzed with the view of identifying those aspects of the older, highly developed, ana-
lytic framework which can, might be, or cannot be, transferred to the new, more general

framework.

-18 -

SESSION 3

A Development Shell For Knowledge Based Systems in
Scientific Computing

F. Rechenmann

INRIA, IMAG/lab. ARTEMIS
BP 53 X, 38041
Grenoble Cedex, FRANCE

B. Rousseau

Cap Sesa Innovation
33 rue du Vieux Chene, ZIRST
38240 Meylan, FRANCE

Introduction

Despite considerable progress in hardware and software, scientists still suffer from
the lack of high level tools for numerical computing and programming. Erd users need
more assistance in the choice, practical use and results interpretation of methods.
Developers require more facilities for organizing and integrating existing methods.
Present artificial intelligence and software engineering based solutions are neither satis-
factory, nor generic. A more powerful solution relies on a tight integration, within
scientific software, of the knowledge associated to methods and to entities handled by
these methods. The user can thus express his goals in terms of tasks to be carried out
on the data. Reasoning mechanisms help him in choosing, monitoring and sequencing
the algorithmic modules that will enable him to attain his goals, while hiding the low
level aspects. This paper describes the various key concepts which have been pointed
out during the development of several dedicated knowledge-based systems in scientific
computing. The requirements for both the knowledge representation model and the rea-
soning mechanisms it supports, are presented and discussed. A development shell for
knowledge-based systems in scientific computing is being implemented and will be
described. It satisfies all these requirements by making extensive use of the object-
centered representation model.

Various projects and studies have indeed demonstrated the interest of the object-
centered approach for the development of knowledge bases in scientific computing.
Among them, the EDORA project aims at developing intelligent tools for dynamic
modeling in biology. The SAID project proposes an intelligent system to help signal
processing in the field of mechanical diagnostic. The EVE project addresses expert
software for solving partial differential equations. Demonstrators of these three projects
rely upon SHIRKA, an object-centered knowledge representation developed at INRIA
(Institut National de Recherche en Informatique et Automatique). Important concepts
have emerged during these projects.

-19-

1. Declarative Description of Both Entities and Methods

The basic concept is to embed rough data structures and software modules within
object classes describing their properties and semantics. For instance, the matrix entity
class has slots and constraints related to the size, form, structure, mathematical proper-
ties and computational origin of any matrix. The Gauss-Marguard optimization
method class ‘depicts inpit and Gutput in terms of entities class (equations; “parameters,
variables, steps), execution conditions (non stiff linear equations) and additional infor-
mation about numerical accuracy, precise input formats or memory and time resources
needed. The user creates instances of these classes, asks for values of their slots, focus-
ing on the semantics and ignoring the implementation aspects which are left to the sys-
tem. These classes can be used to construct more abstract entities, which have a
stronger meaning for the scientist. For instance, the population dynamics model entity
class can be build by using the equation, biological process and curve shape classes
and subclasses.

2. Distinction Between Tasks and Methods

In order to allow the incremental enrichment of the knowledge-based systems, one
has to describe separately the ‘‘what’’ and ‘‘how’’ of the algorithmic modules they
incorporate. The ‘‘what’® corresponds to the description of the task performed by the
module, while the ““how”’ is a description of the method to achieve this task. Both
tasks and methods are represented by object classes. A task describes execution condi-
tions and effects in terms of entities. A method covers implementation features such as
formats, data structures and resources. For instance, the FO4AEF NAG method class is
attached to the real matrix inversion task class. Many different methods can be linked
to the same task. The user does not need to access the methods directly, he only makes
reference to the tasks. Adequate reasoning mechanisms, such as classification, are
responsible for the choice of the adapted methods, depending on the context of the task.
From the developers point of view, it is easy to add, remove or substitute methods
without affecting the rest of the knowledge base.

3. Classification Inference Mechanism

Both entities and tasks classes are structured in specialization hierarchies. An
entity is more specialized than another one when it describes a more constrained family
of objects. A task is more specialized than another one when it is able to treat more
specialized entities. These hierarchies, together with the inheritance mechanism they
support, facilitate both the construction and the modifications of the knowledge base.
They also give a sound support for the recursive classification inference mechanism,
which automates the process of determining the best membership classes for a particu-
lar entity or task. The matrix inversion generic task gives an example of the develop-
ment of such a hierarchy. Starting with an instance of the matrix inversion task class,
and given a particular instance of the matrix entity class, the classification traverses this
task hierarchy to find out the best specializations of task and thus the best methods.
This process requires, of course, some information about the matrix, e.g., whether the
matrix is symmetric or not. This information corresponds to the semantics of the slots
of the entity class. Their values must be inferred or requested to the user. The
classification mechanism appears as a very powerful and versatile mechanism to treat

-20 -

problems of entities characterization and of tasks selection,

4, Multiple Points of View on Entities
Our previous experiences in modeling mathematical objects, such as equations,

parameters or models, have shown that, unexpectedly, the related knowledge is difficult

“to describe with classicil object-centered présentdations. One of the limitations is indeed

the inability to describe an object from different, but complementary points of view.
Even a basic example, such as the construction of a taxonomy of types of matrices,
shows the point. It seems easy to characterize a matrix as being square or rectangle,
banded or triangular, complex or real, symmetric or nonsymmetric, and so on and to
propose a hierarchy of classes based on these characteristics. The problem is that a
given matrix can be square and banded and real and symmetric. It is then necessary to
build the corresponding class, using some multiple inheritance mechanism. The result-
ing knowledge base is a collection of highly tangled hierarchies. The solution lies in
the introduction of points of view on a family of classes. In the example of the
matrices, the following points of view could be introduced, structure, algebraic proper-
ties, nature of the elements. On each point of view, a strict hierarchy of classes can
then be elaborated. An instance is allowed to belong simultaneously to several classes
on distinct points of view. The classification process can then take place either on each
point of view separately, or on a set of points of view.

5. Integration of Procedural Knowledge

The basic software modules are usually able to perform only a small part of a
problem solving process (e.g., matrix computations). In order to solve a global prob-
lem, complex tasks describe a problem solving strategy while chaining several tasks
together according to a current goal to be attained, through a process which alternates
classification and planning phases. The classification algorithm is responsible for the
selection of a task among a set of possible tasks, while the planning algorithm decides
on the next task to be executed. Three operators are introduced to define a complex
task, sequence, selection and recursion. The operands of these operators are either com-
plex tasks, which are further decomposed, or elementary tasks, to which a set of algo-
rithmic methods is directly attached. The selection operator introduces non-
determinism in the exploitation of a complex task description. If an elementary task
fails, i.e., the attached methods fail to compute the expected results, the planning pro-
cess is backtracked to the last decision node and the next application task is retained.
The tasks embody the procedural expert knowledge. They allow for modularity through
independence of description.

6. Dedicated Development Shell For Scientific Computing

We are currently implementing a dedicated shell, which embodies much of the
features discussed above. The first operational version relies on SHIRKA, a frame-
based system previously developed, which does not include the facility of multiple
points of view, but offers the classification inference mechanism to handle both entities,
tasks and methods. The user interface can display the recursive decomposition of the
main problem solving tasks into subtasks. The user can point out a task to get more
information on it. Other explanations can be obtained once entities, which are parts of

-21 -

the problem, have been characterized by the classification mechanism. The sequence of
methods invoked during the problem solving process is recorded and can also be con-
sulted by the user. A new version of this shell is currently under development. It
makes use of the multiple points of view facility and is able to reason about the evalua-
tion of the results of the methods. The sequence of tasks is then dependent of these
~evaluations. ” o o e e S ’ ’

-22 -

CLAM and CLAMShell: A System For Building User Interfaces

David E. Foulser and William D. Gropp

Department of Computer Science
~Yale University
~ 'New Haven, CT 06520 =

1. Summary

We present CLAMShell, a system for the rapid generation of graphical user inter-
faces and their subordinate numerical computations. Our approach is based on
CLAM(R), the Computational Linear Algebra Machine, an interactive language for
numerical computation and graphics, and makes use of X Window System graphics.

2. Problem

The essence of an interface is the mediation between the user’s high-level visual
and cognitive processes and the computer’s numerous low-level calculations. The inter-
face becomes more useful as it occupies more of the distance between human and com-
puter.

A useful tool for building interfaces spans the full distance, addressing both the
graphical and computational needs in a succinct and efficient manner. The user’s side
of the interface must make good use of graphical interface concepts, including mouse
input, menus, and graphical feedback presented coherently and consistently. The com-
putational side needs a succinct language that executes efficiently, and must be an open
system that can tie together existing program fragments from a variety of sources. The
tool itself must foster intelligent problem solution through a high-level description of
the interface parts, a logical structure that fits the underlying operations, and an overall
approach that makes problem solution easier with the tool than without it.

3. Current Approaches

There are many tools for the rapid generation of the graphical interfaces. While
these tools include high-level languages for the graphical presentation of a problem
solution, they often neglect the computational solution of the problem. For instance,
some systems require programming at the level of C or FORTRAN, essentially provid-
ing only a high-level front-end. Others provide limited computational languages that
are not suitable for medium or large scale scientific computing.

Other systems allow programmers to create special-purpose graphical user inter-
face for existing programs, for instance by using X Window System library calls and
the Athena widget set. Although this method allows great flexibility, it requires sub-
stantial programming effort and specialized programming knowledge. This approach is
unlikely to save time on small projects or when used by novices.

Ideally, building a smart user interface should be simple enough that it saves time,
even for short term projects and novice users. For this to be true, both the specification
of the interface and the code to perform the actions must be simple to write and smail
in size. Furthermore, the interface must fit neatly with existing or new programs.

-23.

4, New Approach

Build on CLAM and the CLAMShell, we provide a simple user interface
specification to construct a graphical user interface and computational programs in the
CLAM language. The user interface side has menus, dialog boxes, and help text. It is
mouse driven and also accepts command line input. The computational side runs the
""CLAM interpreter, which execiites numerical computations in a matrix-vector style syn-
tax, provides plotting commands, and can integrate C and Fortran routines from exist-
ing subroutine libraries. One can specify an entire problem solution using a convenient
tree-structured menu system, or simply create a new interface to an existing Fortran or
application.

4.1 Details

The CLAMShell is an X Windows client application that serves as a front-end to
the CLAM interactive environment. CLAMShell includes panels for command-line
input and CLAM text output. It is able to start the CLAM help librarian in another
window, allowing the user to scan the help tree while viewing the text output window
and executing CLAM computations.

The feature that most distinguishes the CLAMShell from a terminal window is the
nser definable menu. The contents of this menun and their computational actions are
under user control. Any CLAM computation can be initiated from a CLAMShell user
menu, which can also create recursive sub-menus, dialog boxes, and help text.

The CLAMShell User Menu consists of four predefined buttons (Exit Menu, Open
New Menu, Delete Menu and Toggle Echo, discussed below) and the user-defined but-
tons. Each user-defined button is the root of a user menu-tree. Clicking a button in a
user menu tree may execute some associated CLAM code, initiate queries through dia-
log boxes, display help text, and/or cause a sub-menu to be displayed.

Each user menu tree is defined in a single flat file. The format is a pre-order
traversal of the menu tree, where each new tree node is announced by a single header
line with the node’s level number (starting at 0 for the root node) and its button tite.
All text between successive header lines (the end-of-file mark terminates the last node)
is associated with the previous header line and comprises the menu node.

Each node of the menu tree is specified as a linear stream of control mixing graph-
ical interface and computational actions. When a node’s button is clicked, the initial
actions are executed in order, the optional sub-menu is executed, and then the final
actions take place. The block-structured node syntax includes the pairs %BEGIN-
CLAM/%END-CLAM,%BEGIN-HELP%END-HELP,%BEGIN-QUERY/%END-
QUERY, and the markers %SUB-MENU,%POP, and ! (for comments). On exit, the
button pops up through a user defined non-negative number of menu levels toward the
root of the menu tree.

Once a menu file has been created, there are two steps to incorporate it into the
CLAMShell menu tree. First, the menu is compiled by a menu librarian program, con-
verting the text file into a direct access file incorporating the tree structure, for fast
raversal of the menu tree. Second, clicking the Open New Menu button on the
CLAMShell display adds the compiled menu to the User Menu tree, closing the tree.
When the User Menus button is clicked anew, the new user menu is represented by a

-24 -

button with a header line’s title. Alternatively, selected user menus can be automat-
cally included when the CLAMShell first starts up. The Delete Menu and Exit Menu
buttons are self-explanatory (all menus in a user’s tree have an Exit Menu button, so
that a menu can be closed without activating any user buttons).

The benefits in graphical interface creation of this system are manifest. Moreover,
- -~ ouir iovel” contribution-lies-in-the-fact-that-the-interface-integrates-the -user’s-side -with
the computational side. The CLAM program fragments that are embedded in the menu
tree control numerical computation.

CLAM is an interactive environment for scientific computation and graphics. It
has a high-level syntax built on matrix-vector operations and provides considerable sup-
port for linear algebra computations and graphics. CLAM’s native data types include
dense, banded, and sparse matrices of either real and complex values. It’s built-in
operations handle all six data types, with efficient algorithms for many sparse and
banded operations. CLAM’s workstation graphic use the X Window System, and
include 2-D and 3-D line drawing, surface and contour plots, color polygon filling, and
animation capabilities. CLAM can also call external Fortran and C routines through a
convenient ‘“foreign procedure’’ interface.

CLAM is meant to handle large computations. Its sparse and banded data struc-
tures and algorithms provide important computational methods in an interactive setting.
Moreover, much of the internal computation in CLAM vectorizes efficiently, resulting
in efficient code on problems of significant interest. Through the foreign procedure
interface CLAM makes use of existing libraries of software, parts of application pro-
grams, and optimized (for vector, parallel, or architecture dependent computations)
software. CLAM rtuns on a variety of computers, from SUN workstations to mini-
supercomputers, and is intended to handle problems of substantial interest on the full
range of machines.

5. Examples

Even though the CLAMShell and its tool for generating interfaces is still in the
final stages of development, it has already been used in a variety of applications. Our
early experience shows that the user interfaces are easy to generate and, more impor-
tantly, make the underlying computations easier to arrange. We will present a few
examples of representative applications. One such example is a graphical interface to
an existing package of parallel (biological) DNA sequence comparison routines and
graphics output. In this system, most of the computation is done on a parallel computer
and the data are filtered and displayed using CLAM graphics. Using CLAMShell, it
was straightforward to impose a coherent control structure on the existing functions.
The result is a package that is substantially easier for the developer to use, and that can
now appeal to novice users. A screen dump from a representative sequence comparison

is shown in Figure 1.

:ﬂr.l.vuh-l.l

Tapye |01 WP, 1908, 1983
Sl 1T (o Lo Lwy ot atan
B} righes vl

3
— T _grwrhl
Loty st esielp

) ™ T _1 1\1 -\I_l_i
1) al -
asties fommign pree S -t - — |
Paigh ramgm LT w LB P — LT | pha 1 11
a 1 14]

IIllll!llIllIlll!Il!!lIlll!l!llllll!lll!rrllll

Q 50 1oC 150 200 2%0 300 350 400

i
j

k%ii-%‘

i

L L L

ger

Figure 1. CLAMShell with DNA sequence comparison menus

6. Conclusions

We have implemented a system for the rapid generation of complete user inter-
faces. Based on CLAM and CLAMShell, this system allows the user full control over
the graphical user interface, numerical computations in the CLAM language and exter-
nal libraries, and graphical output under the X Windows System. All parts of the inter-
face can be specified in a single file using a block-structured format. Our initial uses of
the system have proven it to be a rapid way of creating interfaces. It is a time-saving
tool for numerical and graphical work, because the graphical interface naturally imposes
a coherent structure on the underlying computations. Both that structure and the con-
cise CLAM syntax lead to efficient problem statement and solution.

-26 -

A Software Platform For Relaxation
(Extended Abstract)

Scotr McFadden™ and John Rice

Department of Computer Science

~ Purdue University
West Lafayette, IN 47907

1. The Relaxation Paradigm

Almost everyone has used a relaxation method to solve a problem in real life.
Consider a person trying to place the thick false-floor tiles found in many computer
laboratories. Often, the tiles will not fit into their allotted space exactly and thus cannot
be simply dropped into an opening. Instead, neighboring tiles must be slightly raised
and the entire area of tles simultaneously lowered to the floor-frame, squeezing the
new tile into place. In effect, the tiling system must be ‘‘relaxed’ by deforming the
position of neighboring tiles before a solution (placement) can be found. The key
ingredients to solving this system is that the tles have compressible strips and the
human has a way of deforming the system (the ‘‘raise-and-push’ strategy) to find a
snug fit.

Consider the tiled floor to be a software system. As a software system the tiles are
described by ‘‘objects’” which have ‘‘methods’ describing their placement. The tile
objects also have methods telling how their positions may be deformed to seek a solu-
tion to the global system of which they are a part. However, simply providing the
human user (the tile placer) with methods for deforming individual objects (tiles) is not
enough. This system must also provide one or more global strategems by which tles
may be placed and relaxation may occur. The user may then apply these pre-supplied
strategems, possibly simultaneously, to achieve a solution. Note that the tiling problem
is very simple. In general, solutions by relaxation may call for iteration and/or other
sophisticated strategies.

2. Software Relaxation

Software relaxation sysitems are object oriented programming Sysiems which
operate by successively relaxing interfaces between program objects. The objects in a
software relaxation system are software structures which provide methods for deform-
ing their internal state rather than enacting hard changes. Software relaxation is a
superset of the mathematical relaxation used in several areas such as the solution of
linear systems and PDEs. A programming platform for “‘software relaxation systems’’
is currently under active development at Purdue University. The full paper will
describe the programming platform and examples of its application.

* This author’s research was supported by a fellowship provided by IMSL Inc., Houston, Texas.

27 -

3. The System Architecture

Conceptnally, our system is an arrangement of two types of entities: software
objects and relaxers. The software objects are arranged in a graph, called a software
graph, or SG for short. The nodes of this graph are the software objects and edges in
this_graph represent interfaces between these two objects. Figure 1 shows a software

graph. The *‘Helmholtz” boxes are software objects which represent numerical partial
differential equation problems on various domains. Each of these objects contains
several methods for solving the Helmholtz equation —-AAu + pu + f on the indicated
domain. The values of [and f are internal. The choice of method depends on which
boundary conditions are to be shared with the neighboring Helmholtz object. The
edges shown connecting the Helmholiz objects represent a shared interface — in this
case a common geometric boundary.

Helmhokz Helahekt Heinbalr Felninkz Helwholz
thind] e iy |+ V4] Jgee | Tl g0) 1hpLy
i rami RV N ri iy ?-. RN
L~
Pz Felkra
w]..infee)m].jm | wim]ee]...\m{m

Figure 1. A software graph with atrached relaxers

In Figure 1 several relaxes are seen attached to the SG. The relaxers can attach to
either nodes (software objects) or edges (interfaces) in the SG. Currently the system
provides a graphical editor for directly building and manipulating these graphs. The
software objects and relaxers are chosen by selecting their icons from a library. The
human user can enact the relazers by clicking on them. Each relaxer employs a
different boundary-value relaxation method to achieve convergence. The letters below
the “‘Relaxer”’ label indicate a boundary sharing scheme (D = Dirichlet, N = Neu-
mann). The bars represent the geometric boundary. For more details see [1] where
these methods are described and analyzed mathematically.

The goal of our system is to separate the functionality of the relaxer from that of
the objects being relaxed. The reason for this is that a single relaxer may be applicable
to several arrangements of software objects, and that a single arrangement of software
objects may be approached with multiple relaxers or multiple instantations of the same
relaxer. Also, this separation allows a powerful encapsulation of expertise. Individual
internal variations in behavior may be programmed into software objects without regard

-8 -

to the embedded system. The system is not concemed with the inner workings of the
software objects - only with their interfaces with each other. Also, different schemes
for convergence may be programmed into a complicated arrangement by simply provid-
ing different relaxers.

Floleer|

Figure 2. Conceptual Arrangement

Figure 2 is a high level description. Details will appear in the full paper. The
human and relaxers work as a team. This structure allows a four-way sharing of exper-
tise among the following parties:

s The person(s) who created the sofrware objects. In the SG illustrated above,
this expertise would be manifest in the internal numerical techniques for solv-
ing the Helmholtz equations on various domains and under various boundary
conditions.

s The person(s) who used the software objects to construct the SG. This may
involve specialized knowledge of how the domains fit together, or how the
domains apply to some particular problem.

e The person(s) writing the relaxers. This involves a global knowledge of con-
vergence properties.

e The person(s) executing the arrangement, in teamwork with one or more
relaxers. The relaxers take high level commands from the human, via the
coordinator, and spit back evaluations of their progress. The relaxer may not
be able to solve the system all by itself and must rely on the human. The
human may not know exactly how the relaxers work, but may be able to spot
common sense things the relaxer doesn’t.

-29.

4. Related Work

This system draws upon work done in several fields. Most fundamentally, we
have drawn upon work in object oriented programming: See [26], [24], [20], [18], [17].
The graphical editor is basically a visual programming system: See [31], [30], [29],
[281, [27], [25], [23]. The use of objects as atomic building blocks is reminiscent of the

GARDEN ‘‘conceptual’” programiming system: [21],[22]~We draw the motion—of
relaxation from the field of numerical computing, but other fields have employed a
notion of relaxation, for example in constraint-based programming: See [2], [3], [4],
(51, (61, [71, [81, [91, [10], [111, [12], [13], [14], [15], [16], [19].

References

[1]] DANIELE FUNARO, ALFIO QUARTERONI and PAOLA ZANOLLI, An itera-
tive procedure with interface relaxation for domain decomposition methods, SIAM
J. Numer. Anal., Vol. 25, No. 6, (Dec. 1988).

[2] SUTHERLAND, I, SKETCHPAD: A man-machine graphical communication
system, Ph.D. dissertation, Dept. of Electrical Engineering, Massachusetts Insti-
tute of Technology, (1963).

[3] RICHARD E. FIKES, REF-ARF: A system for solving problems states as pro-
cedures, Artificial Intelligence 1, (1970), pp. 27-120.

[4] ALAN BORNING, Thinglab — A constraini-oriented simulation laboratory,
PhD. Thesis, Univ. of Washington, (July 1979). Also available as technical
report SSL-79-3, Xerox Palo Alto Research Center.

[5] ALAN BORNING, The programming language aspects of ThingLab, A
constraint-oriented simulation laboratory, ACM Transactions on Programming
Languages and Systems, Vol. 3, No. 4, (Oct. 1981).

[6] GERALD JAY SUSSMAN and GUY LEWIS STEELE, IR, CONSTRAINTS -
A language for expressing almost-hierarchical descriptions, Artificial Intelligence
14, (1980), pp. 1-39.

[7] GUY STEELE, The definition and implementation of a computer programming
language based on constraints, Ph.D. Thesis, MIT, (Aug. 1980). Also available as
technical report MIT-AI-TR 595.

[81 ROBERT DUISBERG, Constraint-based animation: The implementation of tem-
poral constraints in the animus system, Ph.D. Thesis, Univ. of Washington,
(1986). Also available as Univ. of Washington Computer Science Dept. technical
report 86-09-01.

[91 DAN INGALLS, SCOTT WALLACE, YU-YING CHOW, FRANK LUDOLPH
and KEN DOYLE, FABRIK: A visual programming environment, Proceedings of
1988 Conference on Object-Oriented Programming Systems, Languages and
Applications, (Sept. 1988), pp. 176-190.

[10) DANNY EPSTEIN and WILF R. LaLONDE, A smalltalk window system based
on constraints, Proceedings of 1988 Conference on Object-Oriented Program-
ming Systems, Languages and Applications, (Sept. 1988), pp. 83-94.

[11]

[12]

-30-

ALAN BORNING, ROBERT DUISBERG, BJORN FREEMAN-BENSON,
ALEX KRAMER and MICHAEL WOQOLPF, Constraint hierarchies, Proceedings
of 1987 Conference on Object-Oriented Programming Systems, Languages and
Applications, (Oct. 1987), pp. 48-60.

JOHN H. MALONEY, ALAN BORNING and BJORN N. FREEMAN-BENSON,

[13]

[14]

[15]

(16]

[17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

Constraint technologies for User-interiace constuction in ThingLab 1, Proceed-
ings of 1989 Conference on Object-Oriented Programming Systems, Languages
and Applications, (Oct. 1989), pp. 381-388.

BJORN N. FREEMAN-BENSON, A module mechanism for constraints in
smalltalk, Proceedings of 1989 Conference on Object-Oriented Programming
Systems, Languages and Applications, (Oct. 1989), pp. 389-396.

PEDRO A. SZEKELY and BRAD A. MYERS, A user interface toolkit based on
graphical objects and conswaints, Proceedings of 1988 Conference on Object-
Oriented Programming Systems, Languages and Applications, (Sept. 1988), pp.
36-45.

GREG NELSON, JUNO: A constraint-based graphics system, Proceedings of
1985 SIGGRAPH Conference, Vol. 19, No. 3, (July 1985).

ALAN BORNING and ROBERT DUISBERG, Constraint-based tools for build-
ing user interfaces, ACM Transaciions on Graphics, Vol. 5, No. 4, (Oct. 1935),
pp- 345-374.

JOSEPHINE, CALLEF: Encapsulation, reusability and extendibility in object-
oriented programming languages, Journal of Object-Oriented Programming,
(Apr/May 1988), pp. 12-35.

GUL AGHA, An overview of actor languages, SIGPLAN Notices, Vol. 21, No.
10, (Oct. 1986), pp. 58-67.

RALPH L. LONDON and ROBERT A. DUISBERG, Animating programs using
smalltalk, JEEE Computer, 18(8), (Aug. 1985), pp. 61-71.

BJARNE STROSTRUP, An overview of C++, SIGPLAN Notices, Vol. 21, No.
10, (Oct. 1986), pp. 7-18.

STEVEN P. REISS, A conceptual programming environment, Proceedings of the
Oth International Conference on Software Engincering, 1EEE, (1987), pp.
225-235.

STEVEN P. REISS, An object-oriented framework for graphical programming,
SIGPLAN Notices, Vol. 21, No. 10, (Oct. 1986), pp. 49-57.

STEVEN P. REISS, PECAN: Programming development systems that support
multiple views, /EEE Transactions on Software Engineering, Vol. SE-11, No. 3,
(Mar. 1985), pp. 276-285.

ROB STROM, A comparison of object-oriented and process paradigms, S/G-
PLAN Notices, Vol. 21, No. 10, (Oct. 1986), pp. 88-97.

GRETCHEN P. BROWN, RICHARD T. CARLING, CHRISTOPHER F.
HEROT, DAVID A. KRAMLICH and PAUL SOUZA, Program visualization:
Graphical support for software development, I[EEE Computer, 18(8), (Aug. 1985),
pp. 27-35.

-31 -

[26] RALPH E. JOHNSON and BRIAN FOOTE, Designing reusable classes, Journal
of Object-Oriented Programming, (June/July 1988), pp. 22-35.

[27] ROBERT J.K. JACOB, A state transition diagram language for visual program-
ming, JEEE Computer, 18(8}), (Aug. 1985), pp. 51-59,

[28]_SHI-KUQ _CHANG, Visual languages: A tutorial and survey, JEEE Software,

4(1), (Jan. 1987), pp. 29-39.

[29] GEORG RAEDER, A survey of current graphical programming techniques, IEEE
Computer, 18(8), (Aug. 1985), pp. 11-25.

[30] ROBERT V. RUBIN, ERIC J. GOLIN and STEVEN P. REISS, ThinkPad: A
graphical system for programming by demonstration, IEEE Software, (Mar.
1985), pp. 73-79.

{311 NAN C. SHU, Visual Programming, Van Nostrand Reinhold Company, New
York (1987).

-32-

Towards an Expert System For Solving Systems of Linear Equations
Stefan Koenig and Charles P. Ullrich

Institut fuer Informadk
Universitaet Basel

Mittlere Strasse 142
CH-4056 Basel, SWITZERLAND

In recent years numerical algorithms have been developed for solving systems of
linear equations with high and guaranteed accuracy. Their standard versions are so
powerful that even for ill-conditioned problems often more than 10 digits of the results
are validated. The effort for calculating a solution by these algorithms turned out to be
nearly independent of the condition of the problem. But many users are dealing with
well-conditioned problems and expect a better performance of the problem compared,
for instance, with Hilbert matrices. In particular, a solution with only three or four
correct significant digits asked form should need a fraction of computing time required
for a solution with 13 or 14 correct significant digits; otherwise the user will usually not
accept the algorithm.

In this paper a first study of an expert system, implemented in PASCAL-SC, is
discussed, which applies self-validating methods in a sophisticated manner to a given
system of linear equations. Without any help of the user the system calculates the
result in a computation time appropriate to the condition of the problem and the number
of correct significant digits required by the user. The strongest algorithm available is
the Linear System Solver (LSS), which is discussed in [4], whereas the ordinary Gaus-
sian Algorithm using simple interval operations is faster with the factor 2 to 6, but fail-
ing in a number of cases. Based on the experience of solving thousands of systems of
linear equations the expert system applies a detailed criterion, which algorithm is to be
executed first. The decision is depending on the number of unknowns, the required
accuracy, the accuracy of the input data (because intervals are allowed too) and a
parameter expressing the variation of the components of the matrix. If the Gaussian
Algorithm is executed and the required accuracy cannot be achieved in contrast to the
expectations, the strong algorithm LSS is started without any use of the results calcu-
lated before. Compared with the recent implementations the applied algorithms include
some improvements, which modify the control flow depending on intermediate results
and lead to an essentially better performance.

References

[1] G. BOHLENDER, Ch.P. ULLRICH, J. WOLFF VON GUDENBERG and L.B.
RALL, PASCAL-SC: A computer language for scientific computation, Academic

Press, Orlando, Florida, (1987).

[2] E. KAUCHER, U.W. KULISCH and Ch.P. ULLRICH (eds.), Computerarithmic:
Scientific computation and programming languages, B.G. Teubner, Stuttgart,
(1987).

-33 -

[3] U.W. KULISCH and W.L. MIRANKER (eds.), A new approach to scientific
computation, Academic Press, New York, (1983).

[4] S.M. RUMP, Solving algebraic problems with high accuracy, in [3], pp- 51-120,
(1983).

-34 -

Numerical and Statistical Knowledge-Based
Front-Ends
Research and Development at NAG

J. Chelsom, D. Cornali and I. Reid

‘Numerical Algorithms Group Limited
Oxford OX2 §DR, UK

This paper presents the current research being conducted at the Numerical Algo-
rithms Group (NAG) Limited in numerical and statistical knowledge-based front-ends
(KBFEs). NAG has been developing and distributing numerical and statistical software
since 1970. Mark 13 of the NAG FORTRAN Library [8], the company’s principal pro-
duct, contains 748 use level routines supporting a wide range of numerical and statisti-
cal algorithms on a variety of computing platforms. Additionally, NAG handles a
variety of other products, including Ada and graphics libraries, as well as packages
(e.g., GLIM!).

General purpose numerical software libraries are enormous bodies of information.
Tronically, the very generality and breadth of coverage of these libraries can pose for-
midable problems to the user. These include: choosing the appropriate solver, applying
the solver (e.g., writing a calling program) and interpreting the results.

NAG has chosen to develop KBFEs as one way to bridge the gap between the
problem (the user’s application domain) and the solution (the package/library). KBFEs
would serve NAG’s present users more effectively, as well as broadening the audience
of potential users. This allows the user to focus on solving the problem at hand rather
than mastering the software. KBFEs are the key to the long term survival of large
software libraries as the trend away from the direct use of traditional programming
languages continues. Without KBFEs, those users who are less conversant with com-
puting will seek other solutions. In general, other solutions will be inferior, since they
will not be able to call on the enormous accumulation of algorithmic expertise encapsu-
lated within a large, tried and tested, numerical subroutine library.

Three KBFE projects currently underway at NAG are now discussed: KASTLE,
IRENA and FOCUS.

KASTLE (Knowledge-Assisted Selection Tool for Library Environments [7]) is a
UK Government (DT/SERC Teaching Company Scheme) funded project to develop a
KBEE for the NAG FORTRAN Library. NAG and The Royal Military College of Sci-
ence, Shrivenham, are collaborating on this project to develop a KBFE addressing the
problem of routine selection. KASTLE consults library-wide knowledge about routine
characteristics to provide advice on routine selection. This will be extended to provide
program generation and run-time error analysis capabilities. Now in its third year,
KASTLE has delivered two prototype systems.

IRENA (Interface between REduce and NAg) is a project to link the symbolic
manipulation capabilities of REDUCE [5] with the numerical solving abilities of the

1 Gencralized Lincar Interactive Modeling package [6].

-35-

NAG Fortran Library. The system fits into the REDUCE framework and as such pro-
vides an interactive front-end to the NAG Fortran Library. However, IRENA also
simplifies the use of the Library, by:

e setting many of the housekeeping parameters,

e using sensible defaults for the control pa.rameters,_
» providing high level data structures,
e enhancing the failure messages, and
e creating Fortran programs, executing them and providing the relevant results.

FOCUS (Front-ends for Open and Closed User Systems [1] is a major
knowledge-based system project under the European Community ESPRIT II advanced
information technology programme. NAG and the seven other FOCUS partners will
develop tools, techniques, and commercial prototypes for KBFEs to open (software
libraries) and closed (application packages) numerical systems. FOCUS will consume
over 60 man-years of effort over a four year period, which began in December 1988.

FOCUS has seen significant progress in its first year. Some of the more important
results include:

e definition of the overall KBFE architecture,

o first prototypes of key modules (which include the presentation layer and the
back-end manager),

e initial extracted tools from existing KBFEs,
e research on user modeling and adaptive interfaces [2], and
e work on user and system developer evaluation methodologies.

The three projects mentioned above form the basis of research and development
into KBFE technologies at NAG. However, there are other projects which laid much of
the foundation for this work and two of these are described briefly below.

GLIMPSE (GLIM + Prolog + Statistical Expertise [9]) was a UK Government
Alvey project carried out in collaboration with the Departments of Mathematics (Statis-
tics Section) and Computing at the Imperial College of Science and Technology, Lon-
don. The aim of the project was to build a KBFE to the GLIM 3.77 statistics package.
GLIMPSE the commercial product was released in February 1989.

NAXPERT (NAg ¢XPERT [10] was a project carried out in collaboration with
Professor Colin Cryer and colleagues at the Westfalisch Wilhelms Universitdt, Munster.
The system was an early attempt to build a KBEE for the NAG Fortran Library. The
project proved successful for subsets of the library, but encountered problems when try-
ing to scale up to the full library.

To conclude, NAG is committed to the development of KBFEs to aid the user in
the use of its software. Further, NAG through FOCUS is actively involved in the
development of tools and techniques for building KBFEs to support all existing

-36-

numerical and statistical software. The wealth of knowledge contained in the existing
software should be be discarded and since users require a more friendly environment in
which to solve their problems, NAG will continue research and development in the area
of KBFEs for numerical and statistical software.

7 References

[1]
(2]
(3]
(4}
(5]

[6]
(7]

t
(9]

[10]

FOCUS Consortium. FOCUS: Internal reports of the FOCUS project. Contact
NAG Limited, Oxford, UK (1988/9).

CORNALI D.J., Adaptive strategies for knowledge-based front-ends, Master's
Thesis, Univ. of Edinburg, (1989).

FORD, B. and CHATELIN, F. (eds.), Problem solving environments for scientific
computing, Elsevier, (1987).

FORD, B., HAGUE, S.J. and Iles, R.M.J., Numerical knowledge-based systems,
Mathematics and Computers in Simulation, 31:395-400, (1989).

HEARN, A.C., REDUCE User’s Manual, Version 3.3, The RAND Corporation,
(July 1987).

NAG Limited, Oxford, UK, GLIM System Manual, Release 3.77, (July 1986).
NAG Limited, Oxford, UK, KASTLE: Internal Project Reports of the Teaching
Company Scheme Project, (1987/89).

NAG Limited, Oxford, UK, NAG Fortran Library Manual, Mark 18, (Sept.
1988).

O'BRIEN, C.M., The GLIMPSE system, Technical Report TR 12/88, NAG Lim-
ited, Oxford, UK, (1988).

SCHULZE, K. and CRYER, C., A prototype expert system for numerical
software, SIAM Journal Sci. Stat. Comput., 9(3), (1988).

-37-

SESSION 4

Intelligent FORTRAN Compiler For Parallel Computers

Vasantk Balusurdaramand Geoffrey Fox——
Mail Code 206-49

California Institute of Technology
Pasadena, CA 91125

For at least the next few years, FORTRAN will be a critical language for scientific
computation. One can view it either as a primary user interface or as a portable
“‘machine-language’’, for which excellent compilers exist and which is a target for
more user-friendly systems. Mapping a scientific problem onto a high performance
computer can be viewed as a hard optimization problem, where one minimizes some
combination of user program development time and production program execution time.
We consider how expert systems, neural networks, simulated annealing and related
methods can be integrated into a FORTRAN compiler to both give better code and
feedback to the user on the appropriateness of a particular problem to particular
hardware.

-38 -

Automatic Parallel Program Instrumentation: Applications in
Performance and Error Analysis*
(Extended Abstract)

B. Bliss, M -C. Brunet and E. Gallopoulost

Center for Supercomputing Research and Development
University of Illinois at Urbana-Champaign
Urbana, IL 61801

1. Introduction

With the proliferation of supercomputers the need has arisen to develop appropri-
ate parallel programming environments which will facilitate their efficient usage
[(1,6,11,13)]. Apart from the well-known need for restructuring compilers, good
debuggers, visualization tools, etc., the users are faced with an ever increasing number
of tradeoffs that they have to settle for the tuning of their application. For instance, the
algorithm selection problem becomes very complicated since the performance of the
algorithms used is no longer simply a function of the traditional operation count, but
also depends on many other factors such as the amount of parallelism available in the
algorithm, the tradeoffs between more parallelism overhead and less favorable access
patterns to the memory hierarchy, etc. An area which has received somewhat less
attention, for reasons which are well explained by Skeel in [12], is the development of
tools for providing information to the user regarding the quality of numerical. results
from his algorithm. In view of the flurry of research in developing new algorithms
which would run effectively on multiprocessors, we feel that such tools would be very
valuable, even though unlike most other modules in these programming environments,
they require a greater level of sophistication from the user, for a proper interpretation of
the returned information.

In the full length paper, we will describe the design and the use of a system,
developed to fulfill some of the aforementioned needs. In this extended abstract, we

summarize part of our work.

The system is based on a program instrumentation PIeprocessor. This preproces-
sor can be used for several, scemingly different goals, such as obtaining a count of
floating-point operations, or obtaining information about the error behavior and stability
of an algorithm ([2]). In all cases the user is given the tools to select which sections of
the code he wants analyzed.

In order to achieve these goals, several libraries were developed for linking with
the preprocessor. These are:

+ Rescarch supported by the National Science Foundation under Grant NSF CCF-8717942. Ad-
ditional support provided by AT&T Grant AT&T AFFL67 Samch and the Department of Energy

under Grant DOE DE-FG02-85ER25001.
4 Center for Supercomputing Rescarch and Devclopment, University of Illinois at Urbana-

Champaign, Urbana, Illinois 61801.

-39 -

s P _CT - designed to provide a report of floating-point operation activity,
e LGRAPH - designed to generate a computational graph of a given algorithm,
e PERTURB — designed to perform a statistical analysis of algorithm stability.

This system has been integrated (along with other-tools)-inthe Cedar paratlel-pro=
gramming environment, which is based on the Cedar Fortran restructuring compiler.
Cedar Fortran ([7]), is the language for Cedar ([4)], the hierarchical cluster-based vector
multiprocessor developed at the University of Illinois’ Center for Supercomputing
Research and Development.

2. Preprocessor Design

The preprocessor performs much of the same work as any vectorizing compiler
would. Specifically, it must translate the source code into 3-address statements, creat-
ing temporary variables to hold intermediate results, and generate code for the calcula-
tion of each vector operation’s length an memory stride. It differs from a vectorizing
compiler in that the target language is a subset of the source language, extended Fortan
8x.!

If the preprocessor is invoked without any options, the behavior of the target code
is equivalent to the original source code. Command line options are specified to
replace any operations, type coercions, or intrinsic function calls of a specified data type
with user-defined subroutine calls. These routines must be written by the user, or he
may include any of several libraries written for different applications. A naming con-
vention allows the author of these subroutines to know the data types of the arguments,
and whether the operation is performed upon scalar or array operands. One argument is
a slot to which the routine should assign the return value of the operation. This return
value and/or any of the arguments may be arrays. In such a case, the array is passed as
an argument by reference, followed by the memory stride(s), and the vector length
(common to all vector arguments).

For certain applications it may be necessary to pass along additional information
with the arguments. With data objects of a specified type, any number of variables of
any type may be associated. These associated variables follow the original variables in
the subroutine argument list.

3. Floating Point Count Activity With OP_CT

When the appropriate options are specified, the preprocessor replaces each floating
point operation with a corresponding subroutine call. In addition to performing the
appropriate operation, the subroutine stores information regarding the type of operation,
and the vector length and stride(s). After the computation has completed, a routine is
called® which produces a report summarizing the activities involving floating-peint

! The source language is Cedar Fortran, concurrent Fortran 8x extended (o allow access Lo the
hierarchical memory of Cedar.

2 Therefore it is important that the data types of actual and formal parameters match when using
this option.

- 40 -

operands,

This report breaks down each operation, intrinsic function call, or type conversion
(explicit or implicit) according to data type, and whether the operation was performed
upon scalar or vector operands (and in the case of binary operations or certain intrin-
sics, whether there were one or two vector operands). For vector operations and intrin-

sic function calls, the average vector lengths and strides of the arrays accessed are also
calculated. The report is generated automatically in a file in the user’s current direc-
tory, requiring no intervention from the user. Figure 1 provides an example report file
from the use of OP_CT on a parallel algorithm for the solution of a block tridiagonal
system coming from the discretization of Poisson’s equation on a rectangle with a 31 X

31 grid (I3D-

4. Error Analysis Tools

In order to assess the quality of numerical results, two different methods have been
implemented in this instrumentation system. The first method is based on error lineari-
zation ([9,8]) and computes the condition number of each output of the program with
respect to each intermediate result and input together with a measure of the overall
numerical stability. The second is based on a statistical approach (cf. [3] and references
therein).

4.1, Deterministic error analysis with LGRAPH.

LGRAPH is used to generate the computational graph of the algorithm, that is a
graph of the floating point computations performed. The graph is obtained in a form
appropriate for direct input into the automatic error analysis tool described in [8]. This
is achieved by replacing each floating point operation with a subroutine call, and associ-
ating with each floating point variable an integer variable to be passed along as an argu-
ment to the subroutine calls. This associate variable is used as a pointer to a structure
specifying the operation performed. Pointers to the operands are stored, allowing the
generation of an encoded floating point computational graph after processing is com-
plete.

Note that the “‘minicompiler’’ described in [10] was also designed to produce a
computational graph, but for only a severely restricted subset of Foriran.

4.2. Statistical methods and PERTURB.

For each elementary operation, a function call is generated by the preprocessor
that slightly® perturbs the result. At runtime, the corresponding perturbed final results
are automnatically saved in a file. After obtaining the results from multiple runs, PER-
TURB, can compute important statistical information (mean, standard deviation, etc.)
which can characterize the stability of the algorithm ([3]).

3 The call is inserted by Lhe preprocessor.
In a relative way, within the corresponding epsilon of the machine.

_41 -

5. Examples

Examples will be provided from the use of the OP_CT, LGRAPH, and PERTURB
libraries. These were also integrated in the X-window based parallel programming
environment described in [13]. Figure 2 for example, shows the selection of a code
fragment for the application of OP_CT, and Figure 3 a report file, both generated under

the environment of [13].

6. Further Uses

In addition to the above uses, the system may be augmented to handle a variety of
additional applications, although no software is currently developed for them. For
example, interval arithmetic could be implemented by associating with each floating
point data object a pair of ‘‘interval bounding”’ floating point variables to be passed
along as arguments to the subroutines replacing operations and intrinsic calls.

One may also use an arbitrary number of these associated variables to hold extra
precision for the mantissa, or may use an associated variable to index an area of
memory managed as a heap, storing floating point numbers to arbitrary precision,
effectively producing an implementation of infinite precision arithmetic similar to that
found in many Lisp systems.

Since the creation of any such additional library involves tedious coding, we will
discuss the potential for automating the process of library generation.

References

[1] T. BEMMERL, An integrated and portable tocl environment for parallel comput-
ers, in Proc. 1988 Int'l. Conf. Parallel Processing, Vol. I, Software, Univ. Park,
Penn., (Aug. 1988), Penn. State Univ. Press, pp. 50-53.

[2] B. BLISS, Instrumentation of fortran programs for automatic error analysis and
performance evaluation, Master’s Thesis, Deparmment of Computer Science, Univ.
of Illinois at Urbana-Champaign, (Jan. 1990).

(3] M.-C. BRUNET, Contribution 4 la fiabilité de logiciels numériques et 4 1’analyze
de leur comportement: une approche statistique, Ph.D. Thesis, Universite Paris
IX Dauphine, U.E.R. Mathematiques de la decision, (Jan. 1989).

[4] P.A. EMRATH, D.A. PADUA and P.C. YEW, Cedar architecture and its
software, in Proc. 22nd Hawaiian Int'l. Conf. System Sciences, (Jan. 1989).
Also CSD TR-796.

[S] E.GALLOPOULOS and Y. SAAD, Parallel block cyclic reduction algorithm for
the fast solution of elliptic equations, Parallel Comput., 10, (Apr. 10), pp.
143-160.

[6] D. GANNON, Programming tools for parallel systerms, in Fourth SIAM Conf.
Parallel Proc. Sci. Comput., Chicago, (Dec. 1989).

[71 M. GUZZI, Cedar Fortran Programmer's Manual, Tech. Rep. 601, Center for
Supercomputing Research and Development, (June 1987).

[8] J.L. LARSON, M.E. PASTERNAK and J.A. WISNIEWSKI, Algorithm 594:
Software for relative error analysis, ACM TOMS, 9, (Mar. 1983), pp. 125-130.

-42 -

J.L. LARSON and A.H. SAMEH, Algorithms for roundoff error analysis — a rela-
tive error approach, Computing, 24, (1980), pp. 275-297.

W. MILLER and D. SPOONER, Algorithm 532: Software for roundoff analysis,
ii, ACM Trans. Math. Softw., 4, (Dec. 1978), pp. 369-390.

C._POLYCHRONOPQULOS, M. GIRKAR, M. HAGHIGHAT, C.-L. LEE, B.

[12]

[13]

e

LEUNG and D. SCHOUTEN, Parafrase-2: An environment for parallelizing, syn-
chronizing and scheduling programs on multiprocessors, Int. J. High Speed Com-
put., 1, (1989).

R.D. SKEEL, Safety in numbers: The boundless errors of numerical computation,
Tech. Rep. 89-3, Numerical Computing Group, Dept. of Computer Science, Univ.
of Hiinois, Urbana, (Apr. 1989). Submilted for publication.

1.V. GUARNA, D. GANNON, D. JABLONOWSKI, AD. MALONY and Y.
GAUR, Faust: An integrated environment for parallel programming, /EEE
Software, (July 1989), pp. 20-27.

-43 -

REAL = 4 ASS IGHMENTS
assigamenkt scalar vec/sca total vector/ - av vec av vec vec/vec total vector/ av vec av vec operation
count ‘count scalar ops strida length count vector ops stride length total _
- 8967 8 31 - B.O 3.9 1689 6040 3.5 3.8 "15038
whers 0 12 114 1.0 2.7 43 114 1.0 1.7 228
totals 8967 50 145 2.5 2.9 1731 6154 1.5 3.6 15266
REAL * 4 CPERATIONS
operation ° scalar Vl'ec/scu. total vector/ av vec av vec vec/vee total vector/ av vec av vee operation
count count scalar ops strida length count vector ops stride length tokal
comparisons 5 42 114 1.0 2.7 0 0 0.0 0.0 11%
+ 1157 0 Q0 0.0 g.0 543 4247 27.3 7.8 5404
binary — 310 2599 6954 1.0 2.7 3396 10014 2.9 3.0 17298
unary — 1109 1) 0 0.0 0.0 0 0 g.0 o.0 1109
* 1374 4759 12669 2.0 2.7 2520 6840 1.0 2.7 20883
/ 56 1339 3534 1.0 1.6 0 o 0.0 0.0 3590
L 57 1] o] 0.0 0.0 0 0 a0 0.0 57
totals 4068 8739 23271 1.5 2.7 6459 21121 7.2 1.3 48460
unary operations are listed
in vectory/scalar columns
RERL * 4 INTRINSIC FUNCTION CRLLS
intrinsic scalar veeo/sea total vector/ av vec- av vec vec/ver total vector/ av vec av veo operation
funection count count scalar ops stride length count vector ops atride length total
atan {) 10 1] 1] 0.0 0.0 0) 0.9 0.0 10
cas () -46 0 o 0.0 0.0 0 1] 0.0 0.0 15
dotproduct () 0 1302 534 1.0 2.7 1] 0 0.0 0.0 3534
sqrt () 46 1] -0 a.0 0.0) 1] a_o 0.0 46
totals lo2 1302 3534 1.0 2.0 LA L) (PR XTIl Edd) WEWEN AEwAR 3636
totals, non—elemental ard unary intrinsics
are listed in vector/scalar columns
TYPE CONYERSIONS
type argqumenk scalar vec/scl kokal veckor/ av vec av vec vec/vec total vector/ av vec av vec operation
conversion type count coupk scalar ops stride length count vector ops skride length total
real {) INTEGER * 4 1073 0 1] 0.0 0.0 0 M] 0.0 0.0 1073
totals totals 1073 o 0 0.0 .0 1] 0 g.0 0.0 1073

unary type coaversions are listed

Figure 1: Report from OP_CT

FLOPS

Currant Stare

subroutine backward(N)
Integer N
common af

lntszer

"backward™: -z oreproceasing sucessful :
No errors detected

PPnTH=/nruuDa/Faust/daveJ/mPlupa:/groups/Faust/daveJ/leech:/graups/FaustfdaveJ
fbln:/usr/:srd:/usr/alllant

=G =X —¢ —PzPlle=/nrounsffauatfdaved/mflons/nn_ct_lntr:ns ~-Pz -PBR4 ~FPERE -
PBCB -PEOC ~Pg0 -Pc2 -Pe5 ~Pe? -PcB -Ppiz -PMP_Devaluate.

~Z: program unit “"evaluate™;

"evaluate”; -z Dreprocessling sucessful :
no errors detected

PPﬂTHn/nrnuna/Faust/daved/mPlops:/grnupa/Faust/daveJ/lee:h:/groupsffauat/daveJ
in:/usr/cerd: /ugr/atliant

cf -G X —¢ —Fz?ileufnrouns/#aust/daued/mPluns/nn_ct_intrlns -Pz -PBR4 -PBRB -
PBCB -PBOC ~Pcd -Pc2 —Pog ~Pc? -PcB -Pzi2 -PMP_Ofgause., f

“Z: program unlit “fgauag”:

“faausg”: -y PrEQrocessing sucessfuls
no errore detected

Figure 2

-45 -

Tolect: gauss
SubProd: &
Flop Count: Partial

[N [otals

ntext-Sensitive HELP

REAL = 4 DPERATIONS

acalar duyadic total duadlic total trladiec
ooeratlion count caunt vector oDB veCcTor oos

comparisons
additlona
subtractions
nezhtione
rultipllications
divislona
integer exp,
exp.

[=][R=lalalalelel=]-]
ol O00QQ000
[a] Welelelel=lalsls]
on0oDoOD0O00

Figure 3

-46 -

ATHENA
A Knowledge Base System For /ELLPACK

C.E. Houstis, EN. Houstis, M. Katzouraki,
T.S. Papatheodorou, J.R. Rice and P. Varodoglou

Computer Sciences Department
Purdue University
West Lafayette, IN 47907

1. Introduction

We consider the design and development of a parallel knowledge base for the
parallel (/) ELLPACK [Hous 89] system for solving certain types of partial differential
equations (PDEs). Its design objective is to reduce the overhead associated with the
parallel processing of these types of computations. Specifically, it will provide, a)
facilities for the antomatic partitioning and allocation of the PDE computations to a
variety of parallel machines and b) expert assistance for selecting ‘‘efficient’
method/machine pairs. The //ELLPACK systern allows many alternative ways to solve
elliptic PDEs so the selection of a good way becomes 2 nontrivial task. The ATHENA
expert system is designed to be able to produce expert assistance for the
methodimachine selection problem. Recall that //ELLPACK is designed to run on a
multilevel hardware facility consisting of powerful workstations, machines with hun-
dreds of KMIPS processors (MIPs = millions of instructions per second) and machines
with tens of BIPS processors (BIPS = billions of instructions per second). Thus the
efficiency of the computation will depend critically on the machines. ATHENA's
unique design is its use of performance profiles and its ability to generate new perfor-
mance profiles, and thus better selection capabilities, as it is used. The database facility
uses stochastic methods to rank methods and machines using the performance profiles,
it also selects the most relevant profiles and evaluates their validity. New data can be
incorporated during *‘training”” runs as well as from normal use of //ELLPACK.

Section 2 describes the various performance evalnation data used by ATHENA.
The software organization and design goals of ATHENA are described in Section 3.
Finally, Section 4 describes the inference mechanism of ATHENA.

2. Performance Evaluation Data

1t is clear that the main performance objectives of a user are accuracy and time.
In a PDE computation accuracy is controlled through the refinement of the grid and the
discretization scheme used, while execution time depends on the speed of the targeted
machine and the efficiency of the PDE solver. For a given machine, the computation of
a solution within a certain accuracy (€) and time frame (7) requires the selection of
appropriate grid, discretization and solution schemes (method) plus an appropriate
machine. If the machine is parallel, then the partitioning of the computation into load
balanced, optimally parallel subtasks is also required, For the various steps of the com-
putation a number of performance indicators are measured. We present them as perjor-
mance profiles, one for each combination of PDE problem, method and machine. See
[Boisvert, Rice and Housts, 19791, [Boisvert and Rice, 1985, Chapters 811 and

-47 -

Appendix A] for further details. For each such combination we collect, for different
grid sizes, data on errors, execution time, linear system size, number of iterations and
similar items. Aggregation techniques must be used in retrieving data, for no database
can ever have all the data needed. The techniques used here include:

(@) Machine Equivalences. If we have execution time data for 2 VAX 117780, 2"
VAX 8800 and an Alliant FX80 then we use a conversion factor to estimate
the execution time for all cases on any one of these three (or other) machines.

(b) PDE Problem Associations. For each PDE problem we collect (or can easily
recompute) data on over 60 simple properties of the problem. Sixteen of
these can be considered problem features (e.g., rectangular domain, no cross
derivative term, Dirichlet boundary conditions) in the usual sense. In addi-
tion we have 36 possible features which are more subjective or computation-
ally expensive (e.g., boundary layer present, variable smoothness, nearly
singular). Eighteen of these refer to the PDE problem in general, eight to the
operator and ten to the solution. These latter 36 features are graded on a
scale of 0 to 100.

The machine equivalences atlow us to extend the data to many machines in a straight-
forward manner. The PDE problem features allow us to take a new problem and find
“close matches”” to problems with existing performance data. Thus the aim of
ATHENA is to collect several ‘“close’” problems and to estimate a performance profiles
based on the existing data. The reliability of the estimate depends on the closeness and,
of course, we must be prepared for the case where no relevant data exists, we discuss
the action for this case later. In the case of parallel machines, the data points of the
performance profiles are assumed to correspond to nearly optimal machine
configurations for the corresponding grid sizes. Examples of such performance curves
for sequential and parallel machines can be found in [Rice and Boisvert, 1985, Chapter
8-11], [Hous 88) and [Chri 88].

The ELLPACK project has accumulated an extensive database of performance
measures for sequential machines, about 15,000 PDE solutions involving over 100 PDE
problems, many methods and perhaps 10 combinations of compiler/operating system
and machines. The data collected so far for parallel machines is, of course, still quite
sparse.

3. ATHENA'’s Goals and Software Organization

ATHENA is an expert system whose knowledge base consists of performance
profiles, which are automatically generated from a database of performance measure-
ments and dynamically updated when the corresponding database is reorganized or
enriched. The objective of ATHENA is to select the method (grid, discretization and
solver) and machine based on the nature of the PDE problem and user’s computational
objectives (accuracy, time response). The software infrastructure of ATHENA consists
of a performance evaluation facility, a facility for analyzing the data for various classes
of problems, a facility for antomatically generating performance profiles and an infer-
ence facility that provides an expert solution to selection problems.

-48 -

The overall structure of the ATHENA system is shown in Figure 1. The
J/ELLPACK system [Houstis et. al., 1989] comprises the three boxes on the left while
the ATHENA system is on the right.

USER
ATHENA System
[it Rl B et b |
: : "
//ELLPACK B ;) '
Expert System Interface . Inference Engine !
: 1 :
: ” ;
! Performance Profile !
! Generator !
! : !
//ELLPACK ; ' !
PDE Solver . Performance i
' Evaluation :
" Facility :
[] 1
[] 1
, (Figure 2) '
" 1 :
[] 1
//ELLPACK PROGRAM ' Data Acquisiti '
Performance Indicators ! a Acqmsition '
: "
T e e e .|

Figure 1. The organization of ATHENA’s software structure

Parallel Machines

If the selection process involves a parallel machine, then there is a difficult sub-
problem which the /ELLPACK system solves, namely selecting the number of proces-
sors, decomposing the PDE problem into parts and assigning these parts to the proces-
sors. This subproblem logically follows that of selecting a discretization and grid pair
(as the accuracy requirement determines these). Once such a pair is identified, one can
estimate the time and memory requirements roughly for various parallel machines and
make a machine selection. Once this is done we have a method and a machine, but we
must specify in detail the mapping of the PDE problem onto the parallel machine. This
final step is carried by the //ELLPACK system.

- 49 -

3.1. Performance evaluation and knowledge acquisition facility

Figure 2 shows a block view of the performance database, its data acquisition
facility and its data analyzer or performance estimafe generator. The primary objective
of this facility is to carry out experiments to enrich the performance database. This
facility is also used to collect automatically data from the user’s /ELLPACK program

and dynamically update the database. A knowledge base manager keeps Tack Of thest
operations. The /ELLPACK system is at the center of this facility as also seen in Fig-
ure 1. The performance evaluation generated from the database here is to guide the
experimenter rather than to help the user select a method but the computations and

software are very similar.

Figure 2. Stucture of the performance evaluation and knowledge acquisition facility
for ATHENA

The data analyzer is for locating data relevant to the PDE problem at hand. The
PDE problem associations are made based on a comparison of the vector of problem
properties and features of both the new PDE problem and those in the database. A
metric is used to measure the ‘‘distances’” and one of the key steps in the construction
of this facility is to make this measure reliable. The properties and features have both
logical and numerical values so the metric has components which are numerical weights

R iy
: P mmTmmmmTTTTTTITTTTTTTT T
. Experiment |

' Selection : //ELLPACK Program Generator

, Y AR Problem

: ; Database

: Y :

! (//ELLPACK Programs)

E ' Experimental Subsystem
1 | Performance '

1 Profile U
E Evaluation //ELLPACK P
1 1

' ‘ \ | : Data Management

: N Subsystem

1 y 1

: (Performance Indicators)

I L

E _______________________ _E Performance

] Dara E'] Database

| Analyzer e Database Manager

: :

;

[}

L9

-50-

associated with these values. The machine equivalences are also applied by this
analyzer.

Note that this facility can also be used to tune the inference engine and data
analyzer. An ‘‘expert’’ may observe the results of the inference engine (playing the
role of a user) and then use this facility to review the intermediate steps in the genera-

tion of a selection. He may also experiment with changing various welghts and values
in these processes.

3.2. Knowledge generation

The primary representation of the knowledge are the performance profiles which
relate time and accuracy to machines, discretization, solvers, and grids. These profiles
depend on the PDE problems and so the larger the set of problems, the better chance of
finding profiles relevant to a particular user’s PDE. The ATHENA system attempts to
synthesize performance profiles from data about problems that are ““close’” to the user’s
PDE. As the database grows, cluster analysis techniques are used to identify new prob-
lems (perhaps completely artificial ones) for which there is sufficient data to generate a .
reliable set of performance profiles. Once such a situation is identified, the new prob-
lem is “‘created’’ in the database and the synthesized profiles computed and made avail-
able for later use. In this way the use and training of /ELLPACK allows the ATHENA
system to generate new knowledge about how to select methods and machines.

3.3. Performance estimation

The ATHENA system extracts information about the PDE problem from the user
interface where the problem is formulated. It also asks for information, especially
about features, from the user. Using this information, PDEs in the knowledge base are
located which are close to the given one. The data analyzer then evaluates the
relevance and closeness of the problems located and synthesizes performance profiles
for this problem on ‘‘standard”’ sequential and paralle]l machines. These standard
machines can be equivalenced to any machines actually available for solving the PDE.
This process is illustrated in Figure 3.

3.4. “New” PDE problems

The ATHENA system must be prepared for PDE problems where little or no
relevant information can be Iocated in the knowledge-base. The problem might be one
truly different from any seen before or it might be one where most of the features are
unknown and not readily computed. The system, of course, asks for guidance from the
user when features are missing, but the user may choose not to respond in a helpful
way. In such a case, the system requests permission to make exploratory computations.
If so permitted, it chooses a very robust, general discretization (say, collocation with
Hermite cubics), a coarse mesh (say, 7 by 7), a robust solver (say, Gauss elimination),
and a convenient machines (say, the user’s workstation) and solves the PDE. The mesh
is refined a little and the data collected is examined to see if systematic performance
behavior is present. The results are also displayed to the user in an attempt to prod him
into giving guidance. However, if no further guidance is given, the system continues
along a predetermined path until either the problem is solved or the time response limit

is reached.

-51 -

PDE Problem
/ /E:;EEQ:EK » Identification,
e ~Classificatior——
Data
Analyzer
Database
Manager
‘ Performance
r Profiles
Knowledge
RBase

Figure 3. Schematic of ATHENA’s use of the knowledge base to synthesize perfor-
mance profiles upon which performance estimates are based

4. ATHENA’s Inference Engine

The purpose of the inference engine is to make selections of method and machines
using the performance profiles synthesized for the PDE problem at hand. It also uses
rules (in the usual sense of rule based expert systems) that serve to focus the inferences
and to resolve uncertainties in the selection. The inference starts with the PDE already
classified and a certain number of performance profiles available. The steps in the
inference are as follows:

1. Identify all applicable methods.

2. Eliminate methods which.
a) are generally inferior to other applicable methods
b) have no performance profiles

3. TFor each method (discretization) use the performance profiles of accuracy
versus grid to estimate grid size required.

-52-

4. For each discretization method use the performance profiles to estimate the
execution time for solvers (on the ‘‘standard’’ machines). Eliminate grossly
inferior solvers.

5. Convert execution time estimates from standard machines to available
machines.

6. Query available machines about estimated response for computations that are
likely to meet the time requirements.

7. Select the method and machine which meets the requirements and, if possi-
ble, meets auxiliary objectives such as: Lowest cost, small impact on net-
work, most confidence in estimates, etc.

These steps are shown in schematic form in Figure 4.

Note that parts of this process is similar to that in Elliptic Expert [Dyksen and
Gritter, 1989]. The principal enhancements of ATHENA are, a) the heavy reliance on
performance profiles, b) the synthesizing of new performance profiles, c¢) the inclusion
of parallel machines in the selection, d) the enhancement of the knowledge base during
use of //ELLPACK, and e) the experiment system for ‘training” ATHENA.

References

[Bois 79] Boisvert, R.F., E.N. Houstis and J.R. Rice, A system for performance
evaluation of partial differental equation software’”, [EEE Trans.
Software Engr., 5 (1979), pp. 418-425.

[Dyks 89] Dyksen, W.R. and C.R. Gritter, Elliptic Expert: an expert system for
elliptic partial differential equations, Math. Comp. Simulation, 31
(1989), pp. 333-342.

[Hous 88] Houstis, E.N., I.R. Rice, C.C. Christara and E.A. Vavalis, Performance
of scientific software, Mathematical Aspects of Scientific Software (ed.,
LR. Rice), IMA Volumes in Mathematics and its Applications 14,
Springer-Verlag, New York (1988), pp. 123-155.

[Hous 89a] Houstis, E.N., I.R. Rice and T.S. Papatheodorou, Parallel (//) ELLPACK:
An expert system for the parallel processing of partial differential equa-
tions, Math. Comp. Simulation 31 (1989), pp. 497-508.

[Hous 89b] Houstis, E.N., M. Katzouraki, T.S. Papatheodorou and V. Sotiropoudou,
Logic parallelism in an expert system for solving partial differential
equations, Intelligent Mathematical Software Systems, (eds., E.N.
Houstis, J.R. Rice and B. Vichnevetsky) Elsevier, Amsterdam (1990, to
appear.

[Rice 85] Rice, I.R. and R.F. Boisvert, Solving Elliptic Problems Using ELLPACK,
Springer-Verlag, New York (1985).

[Hous 89b] E.N. Houstis, J.R. Rice, C.C. Christara and E.A. Vavalis, Performance of
scientific software, Mathematical Aspects of Scientific Software (ed., I.R.
Rice), IMA publication, Vol. 14, Springer-Verlag 88, pp. 23-155.

-53.

NOTES
PDE Pclgit_)rgllance
Classified } ~—TOLIES — Start
Synthesized
|
Applicable
Discretizations
]
Interesting | Try to Minimize
Discretizations | Later Complexity
Grid for Grid for Mg)-’ havg 1 t:o 10
Method 1 Method & 1scretization
Grids here
L] L] ‘
T'ime for Time for For each item above
Solver #1 Solver #8 mav b 1 to 20
on Standard on Standard ac}}r1 iave h 0
Machine #1 Machine #4 oices here
\
Time for Time for
Solver #1 Solver #8 The ;:;1 mber of
on Available on Available incr:;icc Oesdgn;ga
Machine #1 Machine #4 se or se
‘ Input fro
Estimate Estimate nPu m
] ; machine statuses
Response Time Response Time used

N

Make
Selection

Figure 4. Schematic diagram of the inference mechanism used to select the combina-
tion of method and machine to solve the PDE

-54 -

SESSION 35

An Expert System as a Support to the Design of Airfoils

| S Ak Y R
——————————d=Ghielmi————————

Aermacchi S.p.A., Ufficio Progetto Aerodinamico
Via Sanvito Silvestro 80
1-21100 VARESE, ITALY

D. Quagliarella

C.LR.A. S.p.A., Laboratorio di Intelligenza Artificiale
Via Maiorise
1-81043 CAPUA (CE), ITALY

We describe herein the state of development of an expert system which applies to
the quality improvement of the aerodynamic design of airfoils for the wing of high per-
formance airplanes.

A shape which satisfies the design requirements can effectively be obtained resort-
ing to an existing optimization procedure that represents the translation into procedural
code of only a part of the semantics involved by the design. With expert systems we
want to increase the knowledge owned by the computer.

Qur first goal is the elimination of the difficulties a designer finds when using this
design procedure.

This expert system can be classified as dedicated for design (in fact it takes actions
about it) but, because of the iterative use of the procedure, it must accomplish success-
fully the tasks of configurating the input file for each modification cycle and those of
planning, monitoring and debugging the evolution of the geometry transformation.

The knowledge is acquired through a goal-driven approach, and is implemented
resorting to rules of production and inference.

This methodology seems to be useful for the acquisition of other knowledges in
the future. Several examples about the implemented knowledge are provided herein.

-55-

The Use of an Expert System in the Control of
Structural Analysis Idealizations

M.S. Shephard, E.V. Korngold, R. Wentotf,
A. Budhiraja and RR. Collar

Program for Automated Modeling
Rensselaer Design Research Center
Rensselaer Polytechnic Institute
Troy, N.Y. 12180-3590

An engineering analysis employs idealizations to reduce a physical behavior of
interest into sets of algebraic equations that can be solved on a computer. Each step of
idealization used in this process introduces approximation, and associated approxima-
tion error [BABU 86], [BABU 86a], [SHEP 89], [SZAB 88]. The reliability of the
modeling process depends on the ability to control the errors introduced by each
approximation. To control idealizations, the approximation errors introduced by the
idealizations need to be qualified. The methodologies available to control idealizations
range from analytically-based adaptive analysis procedures, to codified knowledge
based on experience and past practice. This paper will discuss the application of expert
system techniques to control structural analysis idealizations within and engineering
modeling system that employs all available levels of idealization control.

Over the past several years there has been substantial progress made in the
development of idealization control techniques for mesh discretization errors. These
efforts have lead to the development of adaptive analysis techniques. An adaptive finite
element code employs a posteriori error estimation to determine the magnitude and dis-
wibution of the mesh discretization errors, and then selectively enriches the mesh until
the desired level of accuracy in the selected norms is obtained. Adaptive analysis tech-
niques to control the discretization errors due to the finite element mesh continue to
matnre and should begin to become generally available for use by the engineering com-
munity. The combination of adaptive analysis techniques with tools such as automatic
mesh generators will allow for automated engineering analysis, the application of which
will be robust from the aspect of controlling the errors associated with the finite ¢le-
ment mesh. However, these tools and techniques will not ensure that the results
obtained are robust with respect to the original performance request made, unless the
other idealization errors associated with the modeling process are controlled. There-
fore, an engineering modeling system must provide techniques to ensure the best level
of conirol over the idealizations.

The most desirable approach to improve the robustness of analysis idealization
processes is to develop analytically-based tools which accurately estimate each error
contribution. Currently, there is no clear methodology to analytically control the errors
for a large number of commonly used idealizations. In fact, 2 number of critical ideali-
zation processes are not likely to be addressed by such methods in the near future. This
is particularly true if one considers the engineering design process which employs a
series of ever improving idealized models for an artifact which is not completely
defined until the design is finished.

- 56 -

The above situation indicates the need to develop engineering modeling systems
that can support all possible levels of idealization control. Since the goal of the ideali-
zation control capabilities is to support the application of engineering modeling tools
during the design process, idealization control must be an integral part of a design
modeling system. A key component of such a system is the process navigator [KORN

————————891—{SHEP-89a}-which-tracks-engineering-idealizations-and-controls-the-application-of

the modeling procedures invoked during the design process.

The process navigator consists of three major components. The first is the request
interpreter which is responsible for accepting a request to perform a modeling task,
determining if the design has progressed to the point where the requested process can
be applied in a meaningful manner, and determining if the tools necessary to apply that
process are available. The second component, the strategist, is responsible for execu-
tion of the modeling task. This includes defining the most appropriate strategies to per-
form the requested task with the available modeling tools and the current state of the
design. For example, given an analysis request, the analysis strategist extracts the
model information required for a particular analysis, determines the best way to per-
form the analysis and idealization control procedures needed for that analysis process.
The third component of the process navigator is the process monitor which is responsi-
ble for updating the model representation based on the results of a modeling process. It
also maintains a log of what procedures were applied and why. The information in the
log is used to help control the design process.

The paper will discuss the implementation of engineering modeling and control
procedures using a LISP based shell structure. Primary emphasis will be on the imple-
mentation of a process navigator, and the use of an expert system to apply structural
analysis idealization rules. The shell being used for this system is the frame-based
environment KEE by IntelliCorp. In the prototype procedures to be presented KEE is
used to support the overall user interface, the functional and attribute models, the
request interpreter, the process monitor, the knowledge bases, the inference engine, and
the knowledge-based portion of the analysis strategist. The geometric model is stored
within the structure of a geometric modeling system and the analytic applications reside
in their own software environments.

The paper will describe progress made on the implementation of idealization con-
irol procedures for the analysis of airframe structures, and the analysis of two-
dimensional plane elasticity problems within the design process. In the case of the air-
frame analysis, the majority of idealization control will be done through rule sets. In
the case of the two-dimensional elasticity analyses, the idealization control procedures
will range from adaptive analysis to rule sets.

The process navigator begins the process of controlling analysis requests through
the use of an analysis goal graph. An analysis goal graph indicates the various analysis
types possible, the inter-relations of those analyses, and the needed status of the design
to apply to each analysis. The analysis goal graph for the structural analysis of air-
frames includes various levels of static and dynamic analyses. The analysis levels
range from simplified frame analysis, through structural analyses with all members
represented using appropriate idealizations, to detailed fatigue analyses of individual
components. The analysis goal graph for the two-dimensional elasticity problems is
fairly simple using the same basic analysis techniques for all analysis goals.

-57 -

The process monitor first examines the functional model to determine if the
current state of a given design is sufficient to support the analysis requested. In the
case of the airframes, this consists of seeing if the structural components needed for the
requested analysis exist and have been defined to the point where the appropriate ideali-
zation procedures can be applied in a meaningful manner. For the two-dimensional

—eltasticity - appﬁmﬁuns:——the——proeessﬁmonﬂo&&e@neemedewdthqheelwel—ef—gmmelﬁr
detail defined (cutouts, fillets) and the availability of the analysis attributes.

The analysis strategist combines knowledge of the state of the design, the rules in
the rule base, and the results of the analysis process to give the user the most reliable
solution results possible. In the case of the airframes, the expert system will invoke
various rule sets to perform the dimensional reductions of individual members com-
monly used in this class of analysis [GABE 811. The dimensionally reduced members
are then discretized using another group of rule sets.

In the two-dimensional elasticity case, a more limited group of rule sets is applied
primarily to deal with the geometric simplifications of using sharp fillets and ignoring
small cutouts. One rule set uses a prior rules to indicate the acceptance of a geometric
simplification. Another rule set uses analysis results in an a posterior manner by apply-
ing analytic stress concentration formulas for idealized situations to determine the
appropriateness of a geometric simplification used in the analysis [SHEP 86]. The
remaining idealization error arises from the mesh discretization errors. These errors are
controlled using an automated, adaptive finite element modeling system [BAEH 89].

References

[BABU 86]

[BABU 86a]

[BAEH 89]

[KORN 89]

[GABE 81}

[SHEP 86]

Babuska, 1., Zienkiewicz, O.C., Gago, J. and de A. Oliveria, ER,, Accu-
racy Estimates and Adaptive Refinements in Finite Element Computa-
tions, John Wiley and Sons, Chichester, U.K., (1986).

Babuska, I, Uncertainities in engineering design: Mathematical theory
and numerical experience, The Optimum Shape: Automated Structural
Design, Bennett, J.E. and Botkin, M.E. (eds.), Plenum Press, N.Y,,
(1986), pp. 171-197.

Bachmann, P.L., Automated finite element modeling and simulation,
Ph.D. Theses, Dept. of Mechanical Engineering, RDRC TR-89014, RPI,
Troy, N.Y., (1989).

Korngold, E.V., Shephard, M.S,, Wentorf, R. and Spooner, D.L., Archi-
tectures of a design system for engineering idealizations, Advances in
Design Automation, 1989, Vol. 1, Computer-Aided and Compuiational
Design, ASME, N.Y., (1989), pp. 259-265.

Gabel, R., Ricks, R.G. and Magiso, H., Planning, creating and document-
ing a NASTRAN finite element vibration model of a modern helicopter,
NASA Contractor's Report 165722, (1981).

Shephard, M.S. and Yerry, M.A., Toward automatic finite element
modeling for the unification of engineering analysis and design, Finite
Elements in Analysis and Design, Vol. 2, (1986), pp. 143-160.

-58-

[SHEP 89] Shephard, M.S., Korngold, E.V. and Wentorf, R., Design modeling sys-
tem for engineering idealizations, Geometric Modeling for Product
Engineering, IFIP Proceedings, North Holland, to appear.

[SHEP 89a] Shephard, M.S., Idealizations in engineering modeling and design, NSF
Engineering Design Research Conference, Univ. of Mass., (1989), pp.

521-536. -

[SZAB 88] Szabo, B.A., Geometric idealizations in finite element computations,
Communications in Applied Numerical Methods, Vol. 4, No. 3 (May-

June 1988), pp. 393-400.

-59 -

QOPSP: An Object-Oriented Particle Simulation
Programming System

Xinming Lin and Walter J. Karplus

__Computer Science Departmoent

University of California
Los Angeles, CA 90024

OOPSP is a programming system facilitating particle simulation in an object-
oriented programming style. Particle simulation is a generic term representing a class
of simulation methods where the stimulated system is described by interacting “‘parti-
cles’’, which can exist physically or conceptually. The importance of the approach in
QOPSP includes

1. ‘The OOPSP approach is natural in particle simulation. Simulations are con-
structed from carefully designed building blocks like Models and Particles,
instead of from low-level descriptions like numbers and arrays of numbers.
It allows the users to concentrate on the high-level physical concepts instead
of on the detailed low-level implementation.

2. The QOPSP approach is general in particle simulation. It is applicable to
different kinds of particle simulation applications.

3. The OOPSP approach is effort-saving. Frequently-used models, schemes, and
algorithms are made as modules that can be used again and again without the
necessity of re-implementing them. Particle simulation programs in OOPSP
are much shorter and much easier to be composed than programs written in
FORTRAN.

4. The OOPSP approach can be efficient. The OOPSP modules can be con-
structed carefully. Algorithms that implement the modules can be selected
carefully. Optimization in the implementation should be attained as much as
possible and it has to be done only once. The implementation of OOPSP on
a spectal computer architecture can take the advantage of it, and in that case,
the users can take the advantage of the special architecture without knowing
it.

5. QOPSP is extendible. Users can replace the pre-defined modules with their
own definition. Since OOPSP is hierarchical, new modules can also be
derived from the existing ones with minimum efforts.

QOPSP is implemented in C++, an object-oriented extension of the C program-
ming language. However, the user does not need to know C++ in order to use it.
OOPSP has a C-like syntax, plus some pre-defined data types and functions that support
particle simulation.

OOPSP is organized around two main data types or classes — Model and Particle.
The Model class is a class of computational methods frequently-used in particle simula-
tion. The Particle class contains various templates to represent the simulated particles.

- 60 -

An instance of the Model class or the Particle class is called an object of the class. A
combination of the Model objects and the Particle objects through OOPSP functions
constitutes a particle simulation, QOPSP functions initialize, control, and visualize a
simulation, as well as perform miscellaneous operations.

Examples of the application of OOPSP in particle simulation will be prescnted

Specifically, the problem of metal dislocation under Tadiation will be™simulated im
OOPSP. The effectiveness of the Object-Oriented Particle Simulation Programming
system will be demonstrated.

-6l -

Continuation Expert System - CONYEX

P. Rosendorf, J. Orsag, I. Schreiber and M. Marek

Department of Chemical Engineering
—Prmgue Institute_of Chemical Technology

Suhbatarova 5
166 29 Prague 6, CZECHOSLOVAKIA

Numerical methods for analysis of nonlinear dynamical systems including methods
based on continuation techmiques for obtaining curves of stationary or periodic solu-
tions, bifurcation points and limit points in dependence on parameters have been
developed and discussed in several available textbooks [1-4,6,7], and in the proceedings
of conferences, c.f., e.g., [5]. Original software for analysis of the dependence of sta-
tionary solutions on a parameter [1,4] and of periodic solutions on a parameter [4,7],
were also published. Productive application of such a software requires relatively deep
knowledge both of specialized numerical methods and of the theory of nonlinear
dynamical systems. Also organization of computations and evaluation of computed
results can be often quite complicated. Here we describe our attempt to test the idea
whether a unification of available numerical algorithms with the means and approaches
of logical programming and knowledge engineering could help to increase productivity
of analysis of nonlinear dynamical systems.

An expert open modular system — CONVEX (CONtinuation EXpert system) has
been developed [8-10].

The CONVEX can automatically prepare the actual continuation program in a run-
able form, control its execution and incorporate results into the database. It works with
a library of numerical subroutines; however, only those necessary for the given task are
used in the course of generation of the actual program. Minimal hardware requirement
is IBM PC/XT compatible computer with a hard disc and 640 KB of RAM. Numerical
co-processor and the output graphical device are useful for an effective work. Numeri-
cal computations can be executed on a mainframe computer. The CONVEX in princi-
ple consists of the knowledge base for analysis, computational knowledge bases (CKB)
and data bases of studied problems. In particular, the CKB consists first of libraries
necessary to build proper continuation programs (€.g., the library of continuation rou-
tines, library of graphics support routines, etc.), and of a set of system routines (e.g.,
compiler, linker, editor, etc.) and second, of the knowledge base contatning information
on the use of the above routines and libraries.

The main program for solution of the given problem is generated on the basis of
model equations and the chosen type of the continuation. Also other options (e.g.,
inclusion of graphics, etc.) affect generation of the main program. At the same time,
other subroutines (default data initialization, evaluation of right hand sides, evaluation
of Jacobi matrices, etc.) are generated. Methods of symbolic differentiation and sym-
bolic simplification of algebraic expressions are used, for example to generate the
module for the evaluation of Jacobi martix. In addition to the above FORTRAN 77
program, also the description of the structure of the input and output data sets and
necessary information for evoking the compiler and linker are generated. The

-62 -

description of the input data structure is used by an interactive data editor. The descrip-
tion of the output data set is included into the databases of the studied problem only
after successful computation and analysis of the computed data.

There is a possibility to generate full source code of the particular continuation
program based on the source code libraries. This feature enables creation of specialized

Tstandalone continnaton programs. THe continuation library iH the present formr
includes software for the following tasks:

(@) Stationary solutions of ordinary differential equations (ODE).
- continuation of nonsingular stationary solutions,
- continuation of limit points,
- continuation of Hopf bifurcation points.
(b) Periodic solutions of difference equations.
- continuation of nonsingular periodic solutions,
- continuation of Hmit points,
- continuation of period doubling bifurcation points,
- continuation of Hopf points.
(c) Periodic solutions of periodically perturbed ODE’s.
- continuation of nonsingular periodic solutions,
- continuation of limit points,
- continuation of period doubling bifurcation points,
- continnation of Hopf points.
(d) Periodic solutions of autonomous ODE's.
- continuation of nonsingular periodic solutions,
- continuation of limit points,
- continuation of period doubling bifurcation points,
- continuation of Hopf points.
(e) Analysis of the computed continuation curves.
- compuration of the slope of the continuation curve at the branching
point of a stationary solution,
- computation of the slope of the continuation curve at the branching
point of a periodic solution,

- computation of the slope of the continuation curve at the branching
point at the Hopf bifurcation point.

The CKB has been designed so that it permits easy modification for other applica-
tions.

-63 -

References

[1]

KUBICEK, M. and MAREK, M., Computational methods in Bifurcation theory
and dissipative structures, Springer-Verlag, Berlin, (1983).

_HOLODNIOK,_M.,_KLIC, A., KUBICEK, M. and MAREK, M. Methods of

[5]
(6]
[7]

(8]

[9]

[10]

analysis of nonlinear dynamical models, Academic, Prague, (in czech), (1986).
RHEINBOLDT, W.C., Numerical analysis of parametrized nonlinear equations, J.
Wiley and Sons, New York, (1986).

DOEDEL, E.J. and KERNEVEZ, J.P., AUTO: Software for continuation and
bifurcation problems in ordinary differential equations, Applied Mathematics
Technical Report, California Institute of Technology, (1986).

KUPPER, T., SEYDEL, R. and TROGER, H. (eds.), BIFURCATION: Analysis,
algorithms, applications, Birkhauser, Verlag, Basel, (1987).

SEYDEL, R., From equilibrium to chaos, Elsevier Science Publ., New York,
(1986).

MAREK, M. and SCHREIBER, I, Chaotic behavior of deterministic dissipative
systems, Cambridge Univ. Press, Cambridge, Academia Press, Prague, (1989).
ORSAG, J., ROSENDOREF, P., SCHREIBER, I. and MAREK, M., Development
of an expert system for use of continuation techniques in nonlinear dynamics stu-
dies, 2nd Workshop on Path Following Methods and Bifurcation Theory, Leeds,
Great Britain, (Jan. 1988).

ORSAG, J., ROSENDORF, P., SCHREIBER, I. and MAREK, M,, Expert system
for use of continuation techniques in nonlinear dynamics studies, European Sym-
posium Computer Application in the Chemical Industry, Erlangen, Germany,
(Apr. 1989).

ROSENDOREF, P. ORSAG, J., SCHREIBER, I. and MAREK, M., Interactive sys-
tem for studies in nonlinear dynamics, NATO Workshop Coniinuation and Bifur-
cation: Numerical Technique and Applications, Leuven, Belgium, (Sept. 1989).

-64 -

SESSION 6

Synthesis of Mathematical Modeling Programs

Elaine Rant, Francois Daube, William MacGregor and Joseph Wald
Schlumberger Laboratory for Computer Science

P.0O. Box 200015
Austin, TX 78720-0015

We are using Mathematica to build a mathematical program synthesis system,
called Sinapse. The purpose of the system is to help engineers minimize the time
required to design, implement, and evaluate mathematical models. Our initial focus is
semi-automatically transforming models based on partial differential equations into
efficient numerical codes in Fortran and C for multple target architectures (including
massively parallel). To date, the system has synthesized a modest number of programs,
most of which are forward modeling, wave propagation programs that use finite
difference techniques.

The system can also synthesize a program that solves a set of equations via
Fourier transforms. Domain knowledge in these areas is represented primarily as
Mathematica functions with some rules; a simple object hierarchy is used to represent
classes of algorithms and domains. Program specifications in the range of 10 to 50
lines generate target code of 50 to 1600 lines in time ranging from 10 seconds to
several minutes.

Sinapse helps the user define a set of governing equations and select an appropri-
ate solution algorithm; it then produces an efficient implementation in Fortran or C.
The system maintains specifications and design histories to reduce the cost of redesign
for altered requirements. The user interface consists of simple menu choices and
single-line text entry. Because Sinapse has the symbolic manipulation facilities of
Mathematica available, an engineer can first work on symbolic formulations of prob-
lems and then have the system generate a program embodying a numerical solution.

In a sample session for a wave propagation problem, Sinapse helps the user
express governing stress-strain equations in Mathematica, then analyzes and discretizes
the equations to produce an explicit time-stepping solution code. This includes
transformation of partial differential equations into finite difference statements, and the
selection of finite difference operators with staggering of the grids. The synthesis
methods handle arbitrary dimensionality. Boundary conditions represent a significant
part of a modeler’s effort. Sinapse helps by including domain-specific knowledge for
expressing absorbing, reflecting, and free-surface boundary conditions for wave propa-
gation examples.

Such a general purpose modeling tool would be useful to Schlumberger because
physical phenomena such as seismic wave propagation, fluid flow, and electromagnetic
induction are central to many Schlumberger businesses. Systems for sensing these
phenomena, mathematical models of their behavior, and related computer program are
frequently tevised. Because many models are three dimensional and use large data sets,

-65-

program execution speed is critical. Unfortunately, customization for performance usu-
ally complicates software, obscuring fundamental algorithms, introducing errors, and
reducing portability and modifiability. Sinapse addresses this problem by enabling
modification at the specification level (with domain-specific constructs) and semi-
automated implementation and revision. A designer can therefore experiment with

——4lfermative - implermentations;record—comparisons—and—trade-offs—for—futhre—use;—and
exploit different types of design knowledge previously recorded by designers with
different backgrounds.

- 66 -

Effective Knowledge Representation Schemes For Automatic
Numerical Program Generation
(Extended Abstract)

Mark F. Russo

~ David Sarnoff
Research Center
Princeton, N.J. 08543-5300

A. Danie! Kowalski

CAIP Paralle]l Computing Laboratory
Rutgers University
Piscataway, N.J. 08855-1390

Richard L. Peskin

Department of Mechanical and Aeroscope Engineering and
CAIP Parallel Computing Laboratory
Rutgers University
Piscataway, N.J. 08855-1390

A critical component of any knowledge-based system designed to solve practical,
non-trivial problems is the methodology by which it represents specific domain
knowledge. The scheme should be simple enough to avoid adding complexity to
already complicated domain knowledge, yet powerful enough to express the intricate
relationships which characterize problems of practical concem. Extensive detailed
analysis and prototyping of knowledge-based systems for the automatic generation of
numerical programs has resulted in a knowledge representation scheme that is both
highly expressive and sufficiently flexible to depict the complex relationships in these
types of problems [Kowalski 89, Russo 87]. The knowledge representation scheme will
be analyzed for the components of an automatic numerical program generation system
for solving sample non-trivial mathematical problems. The advantages of applying the
scheme to each component will be discussed. In addition, an example will be presented
of the application of this technique to the problem of solving the primitive Navier-
Stokes equations over a forward facing step using the artificial compressibility formula-
tion and the Marker-And-Cell numerical method. The problem involves several cou-
pled nonlinear partial differential equations, a mixture of boundary conditions, and mul-
tiple overlaid rectinlinear grids.

The basis of the representation scheme is an object-oriented, logic programming
environment [Kowalski 89, Kowalski 87]. The combination of these two programming
paradigms provides a general environment that is highly suited to the problem of
numerical program generation. Management of the large quantity of diverse, structured,
domain-specific information in this problem requires a sophisticated and efficient organ-
izational strategy as well as a means of reasoning about domain knowledge. The
object-oriented programming paradigm provides basic hierarchical organization through
its encapsulation, inheritance and message passing characteristics. While these

- 67 -

characteristics are essential to the knowledge representation scheme, the object-oriented
programming paradigm alone is not sufficient to handle all required representation and
reasoning tasks; it must be embedded in an appropriate programming language.

Logic programming provides a powerful, structured, inferential capability which
can be applied to solving problems involving heterogeneous information. In addition,

“the declarative aspect of logic programming provides the abilify {0 express problem
details in a natural way within the object-oriented framework. The system we describe
is built entirely in Prolog, a sequential form of logic programming. Prolog provides
efficient pattern matching and backtracking features which are essential for reasoning
about equation solving and numerical methods. In addition, Prolog provides meta-
logical programming capabilities which permit the manipulation, alteration, and execu-
tion of programs as data. This is especially important to our problem domain since a
significant portion of the data represented by the knowledge base are numerical pro-
cedures, represented as logic programs, which are combined into complete numerical
algorithms.

The flexibility of the development environment has been further extended by
implementing a specific form of typed inheritance. Objects in the object-oriented
hierarchy can be related to other objects in ways other than the standard behavioral sub-
class or instance relationships. The mechanism used to implement these additional
relationships between objects is identical to that used to represent standard
classfinstance relationships except that messages can be directed to use 2 specific hierar-
chy. The result is a context-sensitive messaging capability.

The knowledge-based system initially accepts and stores information about the
mathematical problem in its natural form via a graphical interface and stores it as
instance data in the object-oriented hierarchy. The resulting object-oriented knowledge
base describes equations and the domains on which they apply. Typically there is a
single domain () on which a set of partial differential equations is to be solved. An
additional set of boundary, and possibly initial conditions, also in the form of equations,
are applied respectively to the boundary of the domain (9€2) and to the entire domain
(Q) at some fixed point.

Object-oriented methods symbolically analyze the problem data for particular
characteristics and create object instances in one of the appropriate behavioral hierar-
chies (see Figure 1 and Figure 2). The typed inheritance mechanisms is used to relate
each component of the problem back to an instance of a special class of objects called
problem Specification through the special type componentOf. This explicitly relates all
components of the problem through the inheritance hierarchy. Thus, one can send a
typed message to, say, an instance of the class nonLinScalPDE, with the request that
the associated method operate on the equation in the context of its function as a com-
ponent of the mathematical problem hierarchy, rather than as a member of the equation
class hierarchy. This provides a great deal of expressive power for representing and
reasoning about complex relationships within mathematical problems.

Problem components, like the equations and domains that comprise the mathemati-
cal problem, are further decomposed into their subcomponents. This decomposition of
single, complex problem component objects permits a ‘‘divide-and-conquer’’ strategy.
The equation or domain instance objects create “‘instance trees’’ of themselves. Thus,

- 68 -

for example, domain instances are decomposed into a special typed hierarchy of
instances of subclasses of the class Domain that have equal or less complexity (see Fig-
ure 3). This hierarchy is constructed using the subDomainOf inheritance type. Simi-
farly, equations are decomposed into instance trees of themselves with the special inher-
itance type fermOf. Each term in the hierarchy is also a separate instance of an

~appropriate equation class. “ThiS approach efficiently implements the method-bywhich
a complex partial differential equation is antomatically discretized.

The representation and symbolic analysis of practical mathematical problems with
subsequent automatic construction of numerical solution algorithms requires a system
which can not only maintain complex classifiable information, but can also reason
about information in the system and represent and manipulate algorithms as data. It is
shown that the hybrid object-oriented, logic programming system with typed inheritance
and inherent metalogical capabilities, while still a general purpose tool, is especially
well suited to this type of complex analysis.

IVBCIOWCEIE.I'EQH |
[difiScalEqn | [nonDitfScaiEan | [nonDiffEqnSet_| [diffEgnSet |
/ [scalarODE_ | [ranscendScalEqn | | linearNDESst_]
scalarPDE algebraicScalEqn

[nonLinNDESet |

[nonLinScalPDE |

[linearAlgScalEgn |
[linsarScalPDE | [nonLinAlgScalEgn |

Figure 1. Hierarchy of equation classes

curve

I :

ﬂﬂ(ﬁ&of L
l /jl \ 52
p ////// \\\

//////

IIIII

Figure 3. A solution domain decomposed into subdomain components

References

[KOWALSKI 89]

-70 -

Anatomy of AGNES: An automatic generator of numerical equa-
tion solutions, A.D. Kowalski, M.F. Russo and R.L. Peskin,
Expert Systems for Numerical Computing, a special issue of the

[RUSSO 87]

[KOWALSKI 87]

jourmat—Muarheratics—and—Computation—in—Simultation,—Vok—31;
Nos. 4 and 5, (Oct. 1989).

A prolog based expert system for partial differential equation
modeling, M.F. Russo, R.L. Peskin and A.D. Kowalski, in: Simu-
lation, a publication of The Society for Computer Simulation, San
Diego, California, Vol. 49, No. 4, (Oct. 1987).

An object-oriented prolog representation of quasilinear partial
differential equations, Kowalski, A.D., Proceedings of the Inier-
national Symposium on AI Expert Systems and Languages in
Modeling and Simulation, Barcelona, Spain, June 2-4 IMACS,
(1987).

-71 -

Using MACSYMA to Write Finite-Volume Solvers

Stanley Steinberg

Department of Mathematics and Statistics
University of New Mexico

Albuquerque, N.M. 87131

Partrick Roache

Ecodynamics Research Associates, Inc.
P.O. Box 8172
Albuquerque, N.M. 87198

MACSYMA is used to automatically write finite-volume code for solving general
symmetric elliptic partial differential equations in general coordinates. Most of the
MACSYMA code is written for #-dimensional problems, and then used to write code in
one, two, or three dimensions. The three-dimensional code is about 1400 lines long.

It is assumed that a physical problem is presented in a complex geometry, and
then transformed (using a general, non-orthogonal transformation) to a unit box in logi-
cal space (where the computations are done). The transformation is typically done
using numerical transformations (MACSYMA is used to write this code).

In this abstract, finite-volume means that control volumes in logical space are used
to derive a finite-difference scheme for approximating the problem. Much of the pro-
gramming complexity is caused by the fact that different quantities are computed at
different points in the grid. The coordinates in physical space are computed at cell
corners, the solution of the PDE is computed (as a cell-averaged quantity) at the cell
centers, and the fluxes are computed at cell face centers. Thus, MACSYMA must
create loops that run over cell corners, cell edge centers, cell face centers and cell
centers along with the relevant algebraic formulas.

Both the two-dimensional and three-dimensional codes have been thoroughly
tested and will soon be incorporated into production code at Ecodynamics. Amazingly
enough, this process produces essentially error-free code. Only one error has been
detected in each of the codes.

-72-

Formal Specification of Engineering Analysis Programs
(Extended Abstract)

John W. Baugh, Jr.
_____Department of Civil Engincering_ .

North Carolina State University
Box 7908
Raleigh, N.C. 27695-7908

A precise statement of observable behavior is needed to make engineering and
scientific software easier to use. Without such a statemnent, users are forced to inspect
code in an attempt to abstract its relevant properties. The benefits of providing this
documentation, or specification, not only impact the end-users of programs, but also the
researchers who use numerical libraries, and the programmers who develop large-scale
engineering software. Unfortunately, specifications are rarely produced during the
development of an engineering software system - exceptions may be certain key numer-
ical algorithms, such as equation solvers and numerical integration schemes, which are
analyzed for numerical properties such as convergence and roundoff errors. These par-
ticular algorithms, however, represent only a small percentage of the program text of
large-scale engineering analysis programs. This paper discusses the role of formal
specifications in engineering software development, including their effect on program
structure, reliability and efficiency.

Consider a typical analysis program or numerical library consisting of tens-of-
thousands of lines of FORTRAN statements. Casual inspection of any particular code
fragment is enough to reveal that imperative programs do not communicate intent very
well - this is the nature of imperative languages, which over-specify details of the com-
putation. In order to be more readily understood, these program fragments must be
documented with a higher-level description of their behavior. Increasing numbers of
computing researchers advocate formal methods of specification, not only for documen-
tation and communication purposes, but also for early detection of bugs and
clarification of the problem statement. Once set in a formal notation, however, such
specificaions may also be used for verifying program correctness, representing
knowledge, and prototyping complex software systems, since some formal notations
also have an operational interpretation.

A variety of mathematical notations, such as logic, algebra and functions, may be
used to formalize program specifications, and each of these is precise, unambiguous,
and amenable to some degree of machine manipulation. In addition to these defini-
tional notations are operational ones, such as abstract models, in which specifications
are constructed by describing a possible implementation. This work focuses on
definitional notations, which are generally more concise and less prone to implementa-
tion bias.

For example, many-sorted algebras are particularly suitable notations for describ-
ing abstract data types in programs, and this approach to specification has received con-
siderable attention in recent years (at least within research communides). However, the
role of algebraic specifications in numerical computing has not been addressed, and

-73-

neither has the effect of data decomposition on program structure, which is used to
identify appropriate data types. This work demonstrates that the benefits of data
decomposition (e.g., modularity and reusability) are also obtained for numerical appli-
cations. In terms of practical implications, this means that numerical programs and
libraries become collections of abstract data types, such as matrices, labeled graphs, and

————Ccoordinate SyStens; WhereTheTepresentationtsy-of-each-type—are-hidden—in-addition;

because each type’s specification is cast in a formal framework with an operational
semantics, syntactic proofs may be performed (by human or machine) to demonstrate
properties such as completeness and consistency. When combined with structural
induction as a method of proof, much can be said about a data type at the specification
level, i.e., before implementation begins. Because of their underlying formal semantics,
data type specifications provide the criteria to establish when an implementation is
“‘correct’’.

In addition to correctness concems, formal specifications may also be used to
represent knowledge about the algorithms and data types used in Al programs. For
example, an ‘‘intelligent’” implementation of a computationally intense numerical pro-
gram might accommodate multiple representations and algorithms, with selection based
on the problem (input) at hand. This feature could then be used, say, to take advantage
of matrix structure in solving linear systems. Note that a precise statement of behavior
is required to know when several different representations or algorithms can be used to
achieve the same effect.

Alternatively, algebraic specifications can be used for rapid prototyping when res-
(ricted to a ‘‘functional’’, and therefore executable, subset. This approach has in fact
been used in the development of a linear finite element program. Not only does it
improve productivity, but it also gives developers the opportunity to consider the merit
of a variety of module interfaces, ie., the specification. As compilation techniques
improve for this class of languages, such ‘‘prototypes’’ may actually become viable
implementations. On top of this optimism are the prospects for automated parallelism
via dataflow and reduction techniques, which are applicabie to functional languages.

Of course, certain consideration must be borne in applying specification technol-
ogy to numerical programs. Some of these considerations include:

e Matrix Operations. The imperative nature of some matrix operations results
in what is referred to as the “‘incremental update’’ problem in declarative
languages. Although the problem is primarily one of efficiency, there is a
certain lack of clarity in specifying matrix algorithms with “‘functional
update”” operations and recursion. Although various alternatives have been
proposed, this paper shows how monolithic array constructors and array
comprehensions can be used to improve both clarity and efficiency in many
situations.

e Roundoff Characteristics. Unlike most non-numerical applications, engineer-
ing analysis programs must deal specifically with the effects of roundoff
errors, and specifications must account for them. For example, it would
probably be wrong to specify the behavior of a routine that performs dot pro-
ducts as x’y. Because of less than infinite precision arithmetic, we might

-74 -

write instead fI(xTy), where 17xTy)-xTyl <e(w,n), in which fI0
represents the computed quantity and € is a function of the unit roundoff error
and the size of the vectors x and y. Of course, such specifications are not
executable. We may opt instead for a more operational specification based
on the definition of a dot product.

Among the other considerations in writing specifications for numerical programs
are: the specification of truncation error properties, where users typically demonstrate
convergence by experimenting with various discretizations; dealing with termination
properties (i.e., proving convergence) if and when verification is attempted; handling
partial functions, such as equation solvers that are undefined on singular matrices
(perhaps by using strict functions and error values, imperative exception handling tech-
niques, etc.); and incorporating facts about the application domain within the
specification, e.g., material properties and modeling assumptions.

Although formal specification methodology requires some ‘‘adjusting’’ for numeri-
cal applications, the author’s preliminary experiences have been both positive and infor-
mative. In some situations, the simple act of formalizing a specification or trying to
provide enough details to satisfy a proof has led to either increased understanding or a
reworking of the interface or both. The intent of this paper and presentation is to
demonstrate through discussion and specific examples some of the benefits derived
from applying formal specifications to engineering analysis programs.

-75 -
ALPAL’s Matrix Editor For Symbolic Jacobians

Jeffrey F. Painter

[.-316, Lawrence Livermore Laboratory
Livermore, CA_94550

The Matrix Editor is a tool for specifying the numerical treatment of Jacobian
matrices by an automatically generated code. This Matrix Editor is invoked as a part of
ALPAL, a "physics compiler" which generates modules of very large sirmulation codes.
With the Matrix Editor one can describe the sparsity structure of a symbolically defined
Jacobian matrix, how to treat it in a numerical code, and how to numerically solve
corresponding linear equations.

For writing code to solve complicated physical problems with implicit time
integration schemes, one of the most dramatic advantages of using ALPAL over direct
Fortran coding is that Alpal can automatically compute expressions for Jacobian matrix
elements. For large complex problems, it is nearly impossible to find accurate Jacobi-
ans by traditional means; the usual practice is to make rough approximations which
sacrifice speed and accuracy. Codes using such implicit methods for large problems
often devote most of their resources - time and memory - to solving linear equations.
Thus it is important for ALPAL to provide tools to make it easy for its users to solve
linear equations with good methods, and experiment if necessary to choose them.

ALPAL’s Matrix Editor provides the basic tools needed to generate Fortran code
that solves linear equations efficiently. It is mainly an easy-to-use program for specify-
ing how one wants a Jacobian matrix to be stored, and how to call an external linear
solver for it. Like the rest of ALPAL, the Matrix Editor follows the philosophy that an
intelligent user should make all decisions requiring significant intelligent judgement,
and ALPAL should do the more routine, mechanical parts of coding a physics model.
Thus the user would be the one to choose between, for example, a direct method on a
band matrix and an iterative method on a sparser malrix, because that involves judging
trade-offs among speed, storage, accuracy, Tobustness, etc. But the Matrix Editor would
then decide, among many other things, how many arrays to allocate for the Jacobian
and how big they will have to be.

Internally, the Matrix Editor works on a detailed representation of the symbolic
Jacobian matrix. The most important part of this representation involves descriptions of
four ways to index the symbolic matrix elements, and mappings between the different
kinds of index. Specifically, a matrix element can be identified by (i) row and column
number, (i) indices referring to the original physical problem, e.g. which partial
differential equation and which spatial zone produced a matrix row, (iii) indices identi-
fying the symbolic expression used to compute the matrix element; this typically will
arise from a term of a partial differential equation, (iv) where its numeric value will be
stored in a Fortran array, as well as an identifier for the array itself. The functions to
map between the different indices are computed at runtime, as the necessary informa-
tion becomes available. Most changes in the representation of the symbolic matrix
amount to a computation of new versions of these index mapping functions.

-76 -

The Matrix Editor is designed to be easy to interact with; that is, to look at the
symbolic Jacobian and tell the Matrix Editor what to do with it. Thus the Matrix Editor
finds an example of the Jacobian matrix, with the necessary symbolic parameters (e.g.,
number of zones in a discretization) temporarily bound to particular numbers. Then it
draws a picture of that example matrix. By clicking a mouse on menus and the picture,

——————and-by-typing-expressions-where-necessary;—one-can—change—the-displayand-tell the

Matrix Editor to compute a new internal representation of the symbolic Jacobian. In
particular, one can look at pictures showing how closely the matrix fits the Fortran
arrays being used, what expressions appear where in the Jacobian, etc. One can choose
standard sparsity structures and linear solver methods (it also is relatively easy to define
ones own) and reorder rows and columns in those ways which can be simply defined
for symbolic matrices. Once the displayed matrix looks good, ALPAL can go on to
generate Fortran code to compute the Jacobian, load it into the appropriate arTays, call a
linear solver, and use the results.

-77-

Construction of Large-Scale Simulation Codes Using ALPAL

Grant O. Cook, Jr.

L-316, Lawrence Livermore Laboratory
Livermore, CA 94550

Many computational scientists have developed a small simulation code at one time
or another. Codes of this scale are characterized by being quickly constructed, unclut-
tered by operating system-dependent details, and easy to debug. On the other hand,
large-scale simulation codes usually take many man-years to construct, remain buggy
even after years of effort, have complex internal operating characteristics, and support
significant on-line user interaction. For small simulation codes, many feel that Fortran
or other high-level languages are adequate programming vehicles. But this feeling is not
retained for large-scale simulation codes. While a fair amount of effort has been
directed at ameliorating this situation, it is only recently that some partial solutions
have been found for this state of affairs. A Livermore Physics Applications Language
[1] (ALPAL) is a new tool that fills in more solutions.

Large-scale simulation codes are usnally composed of an input generator, numeri-
cal modules that solve a particular set of models, and post processors for analyzing the
solution data. Sometimes, there are also linkers for transforming results from one code
into the form required as input in another code.

ALPAL takes as input a set of integrodifferential equations with associated boun-
dary and initial conditions. The dependent and independent variables must also be
specified. For brevity of notation and adherence to journal article presentation style, the
input model can be stated in terms of as many auxiliary or subsidiary variables as the
user chooses to employ. ALPAL supports general finite difference techniques on logi-
cally rectangular grids, and allows the user to either employ the built-in first-order tech-
niques or to supply operators that are more appropriate. Hence, the input must also con-
tain the specification of all finite difference meshes and all added finite difference opera-
tors. After input of the model is complete, ALPAL performs the following major steps:
discretization, analysis of problem details, Jacobian computation, and code generation.
ALPAL-generated code can interface to table lookup systems, as well as already esta-
blished simulation systems. Furthermore, it can perform "edits” of dependent variables,
subsidiary variables, and time-integrated "edit variables” to provide input to a postpro-
cessor for diagnostic and debugging purposes.

While ALPAL focuses on automatically generating the numerical modules in a
simulation code, there are significant advances that have been made in the other parts of
a large scale simulation code through the use of extensible code systems or “service”
languages such as BASIS [2] and PANACEA [3]. These systems are important because
they help to make a simulation code more robust and easy to use; i.e., they save labor
in the Iong run. Soon, ALPAL will have the capability to generate code modules for
simulations codes that use either BASIS or PANACEA.

For numerical code modules, many approaches have been tried in order to make

their development casier and less error prone. Of these, only ALPAL has begun to ade-
quately address the needs of large-scale simulation codes. Further development of

-78 -

ALPAL will enable it to be used to construct a wide variety of complex simulation
codes.

However, ALPAL does more than make it easier to develop numerical modules. It
also leverages the scientist’s abiliies and creativity with a number of important
features. First, ALPAL gives the scientist the ability to develop numerical modules that

~aTe 00 Mard To-derive by hand-because-of tomplexdiscretizationand-derivative-compu

tations. It also accelerates the development of numerical modules that can be tackled by
traditional methods.

Second, because large amounts of algebra are associated with both the develop-
ment of appropriate physical models and the discrete versions of these models on a
computer, ALPAL eliminates much of the drudgery and concomitant errors in con-
structing simulation codes. With fewer errors to worry about, more of the scientist’s
energies can be focused on improving the models and numerical methods used.
Clearly, this would help the computational scientist to be more creative insofar as the
modeling issues are concemned.

Third, a more natural way of describing the physical model is possible with such a
language. For example, when using the natural language of physics as opposed to For-
tran, it is far more transparent how to make modifications to both the physical model
and the numerical methods. This results in a savings of time that might be used to
examine interesting modifications to the physical model or to the numerical methods.

Fourth, it becomes possible to automate the computation of Jacobian matrices both
for linear and nonlinear problems. In many cases, Jacobian computation has not previ-
ously been tractable. Hence, implicit numerical methods are possible to use now where
they had not been considered viable before.

Fifth, ALPAL produces highly optimized simulation code modules. Nothing is
sacrificed in not writing the code by hand.

Sixth, the cost of developing simulation codes is great, especially for new machine
architectures. ALPAL generates vectorizable code where the discretization and solution
techniques permit, and in principle, capabilities could be added to generate code for
parallel computers.

Seventh, ALPAL outputs good high-level documentation. This documentation
clearly shows the modular structure of the generated code, and helps the computational
scientist to have some confidence that the automatically generated code module
corresponds correctly to his input.

In sum, ALPAL presents the user with a rather unusual opportunity. This oppor-
tunity is the capability to tackle otherwise infeasible problems, as well as to be more
creative in the areas in which the scientist was trained. This is only possible through the
removal of mundane work and the associated arcane errors in the process of developing
a simulation code.

References

[1] G.O. Cook, Jr., ALPAL: A program to generate physics simulation codes from
natural descriptions, Int. J. Mod. Phys. C, to appear.

[2]

(3]

-79 -

P.F. Dubois, The basis system, M-225, Lawrence Livermore National Laboratory,
(June 1989).

S.A. Brown, PANACEA Users manual, M-276, Lawrence Livermore Natdonal
Laboratory, (1989).

--80-

A Functional Representation of Software Selection Expertise
(Extended Abstract)

Michael Lucks*
Ian Gladwell**

*Department of Computer Science and Engineering
**Department of Mathematics
Southern Methodist University
Dallas, TX 75275

Users of numerical subroutine libraries often encounter difficulties in determining
the software most appropriate for solving a given problem. For certain important
classes of problems (e.g., differendal equations, algebraic equations, quadrature and
nonlinear optimization), there may be many applicable codes and the best choice
depends on a variety of factors, including the properties of the input problem, the
requirements of the user and the constraints of the computational environment. In an
earlier paper [Gla90], we described some of these difficulties and outlined the design of
a rule-based consultation system to aid users in the software selection task. From a
knowledge engineering standpoint, production rules are a clear improvement over previ-
ous methods for providing such assistance (e.g., the decision tree approach used in
[Add86] and [Add89]), particularly with respect to extendibility and understandability
of the knowledge base. Subsequent investigation, however, has exposed serious
weaknesses in the use of production rules (as well as related methods such as logic pro-
gramming [Sch88]) to represent software selection expertise. The main limitation of
the rule-based approach lies in the coarse, inflexible facilities for interpreting, compar-
ing and aggregating multiple pieces of quantitative information. Production rules
require that numerical data be discretized into qualitative abstractions that can be mani-
pulated symbolically. For example, the number of equations in a system of ODEs
might be used to confirm or disprove the logical hypothesis “the system is large’’.
Lost in this discretization is the knowledge of exactly ‘‘how large’’, i.e., borderline
cases are indistinguishable from extreme cases. In the case of ODEs, similar losses of
information occur for other continuous performance criteria such as stiffness, expense
of evaluation, number of discontinuities, the desired accuracy of the solution, etc.
Since the overall assessment of a code’s suitability may depend on all of these factors,
the total amount of lost information can be significant. Although the information loss
can be reduced by using finer-grained symbolic abstractions, this remedy can result in a
severe increase in the size of the knowledge base (and hence a severe decline in the
comprehensibility of the encoded knowledge).

The various numerical extensions to production systems (e.g., certainty factors
[Sho75], measures a belief [Dud79], belief functions [Sha76], do not provide the
appropriate semantics for modeling the quantitative information that is often critical in
software selection. Furthermore, we argue that their static, built-in mechanisms for pro-
pagating and aggregating numerical data cause additional Iosses of information.

This work was supported in part by Texas Instruments, Inc.

-81-

In the full paper we present an alternative knowledge representation scheme that
avoids the above difficulties, but retains the advantages of rule-based systems, e.g., ease
of modification and support for explanation. In the new representation, expertise is
encoded as real-valued functions that describe certain relationships between the set of
available software modules S = {s1,52,..., St} and the set of performance features

———————f—ffrf e F——In—addition—to—charaeieristics—of—the—iaput—problem—(suchas.

stiffness, system size, range of integration, etc.), the feature set also includes user per-
formances (such as requested accuracy) as well as environmental constraints (e.g.,
memory size). To evaluate the performance of codes from S for an arbitrary problem p
from some problem domain P, we construct a suitability function H: P X S - L, where
L is an arbitrarily chosen evaluation imterval for H. The module s such that
H(p,s;)2 H(p,s;) for all i # j is considered to be the most suitable module for solving
the problem. H(p,s;) is not an estimate of the absolute performance of s;. Rather, the
values of H(p,s;) for j=1,..., k are estimates of the relative performance of
S1,...,5 with respect to a user-specified set of performance objectives (e.g.,
efficiency, ease of use, reliability, etc.).

The knowledge functions provided by the expert represent an attempt to approxi-
mate H as a composition of smaller, modular, more understandable functional com-
ponents. We employ four types of components, each supplied by the domain expert:

1. real-valued measurement functions, M;: P >R, j=1,..., n, that compute
quantitative values describing the presence of each feature f; in the input

problem,

2. inlensity functions I;: R = Ly, j=1,..., n, that normalize the output of the
measurement functions into a uniform scale Ly,

3. compatibility functions C;j: Ly > Le, i=1,..., kE, j=1,...,n, that est-

mate the degree (normalized in L¢) to which the intensity value of each
feature f; is compatible with the behavioral characteristics of each module s;,

4. aggregation functions A;: F* = L, i =1,..., k that assess the overall suita-
bilities of the modules $1,..., S given the compatibilities of the modules
with respect to the individual features fy, ..., fn

We describe how the intensity and compatibility functions may be viewed as con-
tinuous generalizations of discrete production rules, while the aggregation functions
allow the expert to specify precisely how different features contribute to 2 module’s
overall suitability. The suitability function H is approximated via functional composi-
tion of the smaller components. The control flow for this composition may be visual-
ized as a network, in which the edges represent knowledge functions and the nodes
represent the functions’ input and output values. The configuration of the network
depends on the expert’s view of the problem domain. The simplest configuration is
shown in Figure 1, which illustrates the computation of the suitability for scme
software module s;. The input problem p at the bottom of the diagram is processed
upward by the knowledge functions, eventually yielding the suitability value at the top.
First, the n measurement functions are applied to the input, yielding #» measurement
values mq,..., My. The intensity functions then map the respective measurement
values into intensity values d4, ..., dp, Which, in turn are mapped into n compatibility

-82-

values by the compatibility functions. Finally, the compatibility values are aggregated
via A; into the overall estimate of the module’s suitability for the input problem. A
separate network (perhaps configured differently) exists for each module and we
approximate the suitability function H by the function H: P X § — L, defined as

where o denotes functional composition.,

The configuration shown in Figure 1 requires the expert to assess the direct impact
of each feature on the (single) performance criterion. In the paper, we also describe
more complicated configurations that allow multiple levels of aggregation via a hierar-
chy of features and performance criteria. Although such hierarchical arrangements
increase the complexity of the knowledge base, they each the process of extracting
informaton from the domain expert.

The knowledge representation scheme and an associated control mechanism
comprise a generic framework, similar to an expert system shell, for generating
software selection consultation systems. A prototype implementation of this framework
has been used to build a knowledge base for the domain of ordinary differential equa-
tion initial value problems. Given a description of the input problem, the resulting sys-
tem requires a list of appropriate ODE software, ranked according to criteria supplied
by the user. The prototype framework and the generated knowledge base are described

in the full paper.

References

[Add86] C.A. Addison, W.H. Enright, P.W. Gaffney, 1. Gladwell and P.M. Hanson, A
decision tree for the numerical solution of initial value ordinary differential
equations, Chr. Michelsen Institute, CCS 86/3, (1986).

[Add89] C.A. Addison, W.H. Enright, P.W. Gaffney, 1. Gladwell and P.M. Hanson, A
decision tree for the numerical solution of boundary value ordinary
differential equations, SMU Technical Report 87-7, (1989).

[Dud79] R.O. Duda, P.E. Hart, P. Barret, J. Gashnig, K. Konolige, R. Reboh and J.
Slocum, Development of the prospector consultation system for mineral
exploration, SRI International, Menlo park, California, (1979).

[Gla90] I Gladwell and M. Lucks, An antomated consultation system for the selec-
tion of mathematical software, in: Fourth Generation Mathematical Software
Systems, (E. Housts, J. Rice, R. Vichnevetsky, eds.), (1990).

[Sch88] K. Schulze and C. Cryer, NAXPERT: A prototype expert system for numeri-
cal software, STAM Journal on Scientific and Statistical Computing, Vol. 9,
No. 3, (May 1988), pp. 503-515.

[Sha76] G. Shafer, A mathematical theory of evidence, Princeton University Press,
(1976).

[Sho75] E. Shortliffe and B. Buchanan, A model of inexact reasoning in medicine,
Mathematical Biosciences, Vol. 23, (1975), pp. 351-379.

	The Second International Conference on Expert Systems for Numerical Computing
	Report Number:
	

	tmp.1307986960.pdf.OHRbD

