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Abstract

A new collocation methed based on quadratic splines is presented for second corder two point boun-
dary value problems. First, @ (h*) approximations to the first and second derivative of a function are
derived using a quadralic spline interpolant of u. Then these approximations are used to define an O (k%)
perturbation of the given boundary value problem. Second, the parturbed problem is used 1o define a collo-
cation approximation at interval midpoints for which an optimal O (& ¥4 global estimate for the j th deriva-
tive of the error is derived. Further, O (h*) emor bounds for the jth derivative are obiained for certain
superconvergence points. It should be observed that standard collocation at midpoints gives O (k%)
bounds. Results from numerical experiments are reported that verify the theorelical behavior of the
method.
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1. INTRODUCTION

In this paper, we consider the numerical solution of a second order two-point boundary value prob-
lem

Lu=u"+p(xu’ +glx)u=f on I =[a,bl {1.1)
subject 10 mixed boundary conditions
Bu = {ogou(a) + 0p1°(@) = go, Cyou(b)+ oy, u'(6) = g4} (1.2)

The method considered belongs to the class of fnite elements and it is based on collocation by quadratic

splines. In order to determine such an approximalion a high order expansion of the residual is forced 1o

collocate (interpolate) at certain points. The resulting error in the uniform norm is shown to be O (h%) glo-

bally and O (k% at the nodes of a uniform partition. Superconvergence behavior is exhibited for the
_ derivatives at certain points.

Several authors [4], [7], [11] and {12] have studied the approximating properties of the quadratic
splines. The resulls of Marsden [9] show that the quadratic interpolant and its derivatives exhibit supercon-
vergence at specific local points. The paper by Kammener et al [7] studies the projection properties of qua-
dratic interpolatory splines and generalizes the results in [9]. Collocation with quadratic splines for partic-
nlar instances of the two-point boundary value problem is considered in (7], [8] and [10]. In these sudies
the convergence obtained is not optimal. In [7] fourth order convergence is obtained by using fourth
degree splines. High order collocation residual expansion is used in [1], [3], [5] to obtain optimal cubic
spline collocation methods for the same problem. The method considered here can be applied for nonlinear
problems and can be exlended 10 two dimensional elliptic problems [2]. Optimal spline collocation
methods for higher degree boundary value problems are studied in [6].

2. QUADRATIC SPLINE INTERPOLATION RESULTS

In this secion we list and derive a number of quadrati¢ spline interpolation identities. These identi-
ties are used in Sections 3 and 4 to formulate and analyze a quadratic spline collocation method for the
two-point boundary value problem (1.I), (1.2). Consider the interval F=1[a,b] and let
A=s{ga=xp<x;< -+ <xy=>~} be a uniform partition of / with mesh size £ and T = {1, =x,,
T =0 +x.1)2; 1Si SN, Ty, = 2y} be a set of data points. Throughout, denote by P, , the space of
piecewise quadratic polynomials and S, 4 the space of quadratic splines (P, , N CY(1)) where C*(f) is the
set of functions with & derivatives continuous on /. In this paper we adopt the following notation, § is the
quadratic spline interpolant of u such that

S(t)=u{t)—h*Du(1x)/128, S () =u(r;); 1Si SN, S(Tys) =4 (Ty ) — 2D (1,128 (2.1)
where D¥ is the k th derivative operator. Define §; =80y =ulr;)andlete(x) = u(x) — §(x) be the
interpolation error, The following result of Mardsen [9], Kammerer et al [7] is needed to oblain a priori
error bounds for the collocation method considered here, We use the max norm unless otherwise indicated.
Theorem 2,1, Let ; be the middle points of each subinterval of A and A = (3 £ Y3)6. If u € C*({), then

le(x;}| = OhY), le'(x; = M) = 0(hY), le”(x; )] = O(hD (2.2)

and | |D*e||l.=0(*™), £ =0,12.
For uniform partitions it can be shown, Mardsen [9], thatany § € §, , satisfies the relation

S{x1) + 65 (0} + S(x540) = HS (O _ ) + S (x4 ) 2.3)

forl £i <N — 1. A direct consequence of this idenlity is the following theorem.
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Theorem 2.2, [fu € C°(I), then at the midpoinis T; of A, we have

2
S =u+ "ﬁ 1@ + 0 (Y, 2.43)
and
w_ w K 4
57 = - 2w+ O (Y (2.4b)

where u® denotes D*u (t;).

+ Proof: From (2.1}, (2.3) it can be seen that the error function e (x) = u(x) — S¢x} at the interior knots x;,
1 =i = N, satisfies the equations

e(xip) +6e0) + ey ) =u(xy) —4ux L) + 6005} — 4u(x; 4 ) + ulx,). (2.5)

If we denote by {b; V¥, the right sides of equations (2.5), then by Taylor's expansion we can show that

4

b; = ’1' 5 uNx)+ 0%, 1<i<N. (2.6)
Further, for any function g € C* we have
Biot + 68; + gy = 8g; + h7g P + O (h°. 2.7
W4 . ]
In (2.7) wechoose g = — 128 add equations (2.5) and (2.7) and then we obtain
Oy +60; + 0y, =0H%, 1<isN-1, (2.8)
R*u(x;)

where o; = e(x;) — — 5w According to the definition of §, oy = g~ Sy — k%uf?/128 =0, and

oy =uy — Sy — h*u§PN128 = 0. The system of equations (2.8) is stricily diagonally dominant. Thus, the
inverse of ils coefficient matrix exists and its norm is less than 1/4. This implies that, for Q0 < i < N,

o = 0. @9)
Since § is locally quadratic and 7; is the midpoint of [x;, x;_,1, we have (hat
5; = (5 () = S G5k (2.10)
For any function g € C* we have by Taylor's expansion

hz ) ,
g'(n) = % (e(x) — g (i)} - “8—24(1—) + 0 (h%). (2.11)

From (2.9), (2.10) and (2.11) we obtain the identity (2.4a). The relation (2.4b} follows easily from Lhe rela-
tion

2
D2u(r) - DB (4) = 4e @) + e i) VA2 — 1 uO5) + 0.1

and (2.9). This concludes the proof.
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We use the above results Lo prove the following:

Theorem 2.3. Let S be the quadratic spline interpolant of u € CS(I) defined by (2.1). Then at {t; 1 the
Jollowing relations hold:

w® = (§2) - 287 + S Wh2 + O (D), (2.12a)
D = (8 — 5012k + OB, (2.12b)
= (821 — 257 + S WhZ+ O (hD), (2.12¢)
u® = (S50, + 225 + 8;4y )24 + O (hY), (2.12d)
u; =—(Si_y —268; + 5,124 + O(h"). (2.12¢)

Proof: Equation (2.12a) follows from the relation ;¥ = (4,7, — 24, + u;y Yh? + O (1% and (2.4b). The
relation (2.12d) is a direct consequence of (2.12a) and (24b). Similarly, we have
™ =y — 24 + upy Yh? + O (R, which, using relation (2.4a), implies (2.12¢). From (2.12c) and
(2.4a) we obain (2.12¢), In order to show (2.12b) we use the relation

(= S7002h = (i — w502k — o R - w) + 04" = 4 + 0 (4D,

This concludes the proof,
If we define the difference operator A by A g; = (g;_, — 2g; + £;,1)/h* then the relations (2.12a),
{2.12c) appear as

4P =AS +0MD, uP=AS +0¢Y, 2<isN-L (2.13)
In order 1o approximate the higher derivatives of & at {xg, T;, Ty. Xy } we make use of the relations
udt = [3;;}"’ - u§*>] 2+0H, ul® =2 —uf? + 0,

2.14
ud = 2, — S + 0 (R, uff) = [3u * - u,&i’,]a + 0 (1%, @14

fork =3, 4. Using (2.13) we obtain the following approximations:

ul) = [5 ASED —3A S}""’] 2+ 0@y, uf) = [5 ASHED -3 A S,St;zi] 12 + 0(h3),
af =2 ASED _ASED 1 0RY and uf =2 A S - A SR + 0, 2.15)

for k = 3, 4. From the relations (2.12) to (2.15) we conclude easily the following corollary.

Corollary 2.1, Under the hypotheses of Theorem 2.3 and (2.14), (2.15) we have at T, and ty the following
relations:
uy ={(268; — 58, +485 —84)24 + O (h"),
Uy = (26Sx — 5Sn_1 +4Sy_3 — S.3 )24 + O (h%,
u, = (225, + 55, — 455 + S5)24 + O (b,
uy = (228y + 585y-1 — 4Sy_g + Sn_a )24 + O (Y.

(2.16)
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We consider the quadratic spline function ¢ defined by
bx)=x% 0<x<1;-3+6x—-2x% 1Sx<2;9—6x+x% 2<x<3
and 0 elsewhere. Then a set of basis functions for §; , are the functions B;(x) = 20((x — ayh — i + 2)73
for 0 <¢ <N+1. In order (o obtain a high order approximation of the first derivative of u at the end points
" {xq, xy } and at the nodal poinis we consider the identities
§0teg) + 65705 ) + 8'(xi0) = B(S (7.0} — S (VA (2.16a)
and

387 (xo) + 8°(xy) = 8(S (7)) — S (xo))h 138 ey ) + S (ony) = 8(S (xy) — S (3 )/, (2.16b)

These relations are true for any § € S, , and can be viewed as direct consequence of the definition of the
basis functions B;. Based on the identities (2.16) we prove the following:

Theorem 2.4. If S is the interpolant of u in S, , defined by (2.1) and u € C5(I), then

Wux)

4
o+ O, .17

$0;) =u'lx;) -

for0<i <N,

Proof: For the proof, we denote S°(x;) by S, S/(t;) by S _ v #(x;) by 4; and u(t;) by 4; _.. According
10 the definition of the interpolant § the relations (2.16) become

Sio1 + 657 + 8ity =8 4y~ U5 )ik, (2.18a)
and
380 + 81 = 8(uy, — g + K*ufV1128), 38y + Sy_y = S(uy _ys — uy + Au§128).  (2.18b)

By Taylor’s expansion, we have

2
% U oop— s ) = Bt + ”? 5D+ O, 2.19)
and
Uiy +6u; +uy =8u; +hu® + 0 (Y. (2.20)

From (2.18a), (2.19) and (2.20) we oblain

&g +6e +epy = % B2 + O (h%), (2.21)

where e; = u(x;) — S(x;). If we apply (2.20) for the function — —1-15 h%uD(x), add it to (2.21) and denote

2
byd; = e, — % 4™, then we obtain

d;y + 6d; + diyy = O (RY). 2.22)

Similarly, we can establish the expansions
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% (ar, = wig + WufP1128) = dug + bug + W2 16 + WPu{d 112 + 0 (%),
. and
Jug + uy =4ug + hug + h2ufP 12 + BPuf6 + 0 (r%). (2.23)

From the above relation we obtain that

3ep + 21 =R B+ WPu{n2 + 0. (2.24)
If we apply the relation (2.23) to the function — M and add it 10 (2.24) we obtain
3dy+d, = O (RY. (2.25a)
In the same way we obtain
3dy + dy_ = O(hY). (2.25b)

The system of equations (2.22), {2.25) is strictly diagonal dominant and the inverse of its coefficient matrix
has norm less than 5. Thus, for 0<i{ <N, d; = O (h*) which proves relation (2.17) and concludes this
proof.

This result allows us 0 obtain high accuracy approximations to the derivatives of u at the boundary
nodes.

Corollary 2.2. Under the assumptions of Theorem 2.4, we have the following relations at the boundary
nodes xgand xy:

u’(xg) = (2480 + 55, — 13§, + 11§55 — 35,024 + O (h% (2.26a)
u'(xy) = (2ASy.q + 58y — 138y, + 118y_; — 38x-3)724 + O (h%) (2.26b)

3. THE METHOD OF QUADRATIC-SPLINE COLLOCATION

We consider the linear second order equation Lu = f subject W homogeneous boundary conditions
Bu = 0. Based on the relations (2.4a), (2.4b) and (2.17) we observe that the interpolant § of u satisfies the
relations

hz hz .
LS =fi~ o 6P+ oo 4P+ 0%, 1<is<N, @1a)
and )
h .
BS; =15 o1 4P+ 0,  (k.j)=00), (1, N+1). (3.1b}

Notice that due to (2.13) and (2.15) the relations (3.1) can be written as

2 2 , ,
LS1=f]—hﬁ[2AS;—AS'3]+g_4pl [ZASZ—ASJ]+0(;14), (323)
LS; —f-—"—?'As-'+"‘—2 cAS; +OMY, 2<i <N-1 (3.2b)

LI 24 i 24.Ps P t [ .

h? - - hZ . . ‘

L\S-N' =fN_§ [2ASN—1_ASN—2]+§PN [2ASN—I —ASN_z]"‘O(h ). (3.2(:)




+ and the boundary relations:

2
BSy= hﬁ ) [5 AS;-3A SQ] + 0 RY,

2 (3.2d)
BSyn =47

o7 T [s ASya -3 A s,;_z] + O(h%).

If in (3.2) we move the lerms involving the approximations of the high order derivatives of & to the left
side, we obtain the relatons

L'S;=f;+0@®*), 1si<N, (3.33)
and
B'S; =0, j=0,N+l, (3.3b)

where L” and B” denole perturbations of L and B respectively, defined as

h?. " hz
L'y =Lu; + o A o7 Pi u®, 15i <N,
and

, h? :
B'uj =Bu; + o oy 4™, (kj)=(00), (1, N+1).

The above observations are summarized in the following lemma;

Lemma 3.1. Let S be the quadratic spline interpolant of the solution u of (1.1), (12) at the data points T.
Ifu € CO), then S satisfies the relations

LS —flycg =0@?, for i=1 to N,
[BS Iz = z0xs = O (A7),
[L'S —fleag =0, for i=1to N,
B’} = xoze = O (Y.

34

3.1. Formulation of the Quadratic-Spline Collocation Method

We now define the quadratic-spline collocation method as determining the approximation z, in S5 4
that satisfies

[L’za—f]xﬂ:o, for i=1to N, (3.5)

and the boundary conditions
B'zplyara =0. (3.6)

Throughout we refer to this formulation as one step spline collocation method.

An altemative formulation of the method is to view the determination of an approximation u, in §5 5
as a two siep collocation method as follows:



Step 1:  Determine v € S, such that is satisfics

v —fl;or=0, i=11to N, (3.7a)
and
By |y s =0 (3.7b)

Step2: (i) Fori =210N — 1estimate the higher derivatives of u at the data points T; by

D) = A vi(), (3.82)
and
™) = Av'(t;) (3.8b)

and substitute these values into (3.1} 1o obtain more accurate right side terms:

S1=f1-h2Av; —Avy —pi2Av; — Av)l24

fi =Fi = R¥AA v - p; Av)24 for i=2,....N~-1
fv=Ffi— M2 A vgq — Avga — Py A vy — A vy p)li24
So=h2og (S A vy —3 A w,]r24

Sy =h? a5 A Vio1 —3 A vyp)i24.

(it) Use these right sides to delermine 1, € S, 4 such that it satisfies the equations:

[Lus—fl e =0, 1SiSN, (3.9a)
and
(Bup—£);=z,z.=0. (3.9b)

In the general case (p, ¢ #0), the existence and convergence of (his method is discussed in Section 4. For
the case p(x) = g (x) = O denote by Q the coelficient matrix of {u, (':,-)}1jl~lr in the systemn (3.5). In this case
the solvability follows from the diagonal dominance of the corresponding system. Specifically we have the
following:

Lemma 32. If p(x)=¢(x)=0, then the sysiem (3.5) is solvable, 11Q7'|| <15 and
Hzy [l 2 L3S | ]en

Further we can show that the coefficient matrices of equations (3.7) and (3.9) are diagonally dom-
inant in certain cases.

Lemma 3.3. If ogg- 0 €0, 05 ) 20 and q(x) <0 at the ;'s, then the coefficient matrices of
. equations (3.7) and (3.9) are diagonally dominant for sufficient small h.

N+l
Proof: Afier the substitution of u, = ), u; B;(x) in the boundary equation at x = @ we oblain the diago-
=0
nal dominance condilion
2 4 2 4
|§ uo.o_ Bh 0I‘.'i,ll - | 3 u0,0+ 3k aD,ll 20!

which is satisfied for sufficiendy small A, provided oy - 09, < 0. Similarly, the collocalion equation
obtained by Lhe second boundary condition is diagonal dominant if ¢ ¢ - ¢ 2 0. In Lhe case of interior
collocation equations the diagonal dominance condition becomes
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4
- 57 + G —{ |32~ 3 P+ g A+ 1S+ @+ 1 4@)'}

I is easy to see that this condition is satisfied when g(t;) < Ofori =1 to N and 4 is sufficiently small.

4, CONVERGENCE ANALYSIS AND ERROR BOUNDS
In order o analyze the two quadratic spline collocation methods, we introduce an integral representa-
tion of equations (3.5), (3.7), (3.9) and the differential equation (1.1). For this purpose, we assume that the
boundary value problem u” =0, Bz =0 has a unique solution. Thjs 1mphes that there is 2 Green's func-
tion G (x,t) for this problem. If we denote by w, = z,,7 = u”, s = v” and rs = u, and assume that z,,
u, v and u, satisfy the homogeneous boundary conditions (1.2), then z,, u, v and u, can be obtained via
the Green's function. That is, we have
) , b
2a®)=[ GO wadt, 25 =] G.x.0) wa)dt,
b ]
ulxy=[ Glx.t)y r(t)r, w'(x) =] Glr,t) r(ndt,
b b
vx)=[_ G(x.t) s()dt, vix) =] Gix,0) sy,

b s b
uple) = [ GO,y raalt,  up(x) = [ Go(x,6) rofe)a
We introduce the operator K that maps Lo(I) to C () by

Krx)=p(x) j: G,(x,2) rt)de + g (x) j‘: G, 1) r(t)de, @.n

and the linear projection P , which maps continuous functions to Sq, 4 = Py 4 N C7'({) via piecewise inter-
polation at the middle points {t; }¥".

4.1 Convergence analysis of the two step method
Based on the nolation introduced we can rewrite equations (3.7), (3.9) in the following form:

s+P,Ks=P,f (4.22)
ratPyKra=P,f (4.2b)

respectively, since P, s = 5 and P, r, = r,. Equation (1.1) can be wrillen as
r+Kr=Ff (4.3)

According to the definition of P, we can assume that P, g =g(t;) for x € (x;_;, x;) and
P g = (g(%;41) + g(7;})2 at interior nodal points. Thus | |P,g - g || tends to zero as k converges 1o
zero for any continuous function g. This in turn implies that the sequence of operators P, converges
strongly to the identity operator f : C — L,. Further, according 1o Russell and Shampine [13], the operator
K from L,([a,b]) into C is completely continuous, (f + P, K)™! exists and is uniformly bounded for
sufficiently small 4. Following similar arguments as in (3], first we show convergence in step 1, that is, of
the collocation approximation v,

Theorem 4.1. If we assume that

(al) thecocfficients p, g and f arein C(I),

(a2) the boundary value problem Lu = f, Bu = 0 has a unique solution in C(I),
and
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(a3) the problem &” = 0, Bu = 0 has a unique solution,

then
(r1) the collocation approximation v € §, , defined by equations (3.7) exists,
(2) we have the global error estimates
[lu ~v11-<Ch% ||u'—v'|1.<Ch? and ||u" —v"||.<Ch, @.4)
and the local error estimates
(13) I —v)*)t)| < Ch® for k=012 and i=1,..., N, 4.5)

where C s a generic constant independent of h.
Prool: The solvability of equations (4.2) follows from the existence and uniform boundedness of
(I +P,K). To establish (4.4), (4.5), consider the problem s, = §”, BS = O (k?). Noice that there is a
linear function w such that BS =Bw = O (k% because of assumplion (a3). Further more
[ Iwlle=0%% and ||w’|{.=0(*%. From (3.1a) and the solvability of (§ — w)”=s,,
B(§ — w) =0 we conclude that
I +P RS —w")=P,f +O0OHY. 4.6)
Subtracling (4.2a) and (4.6} we oblain
d +PK)S”-w”—v")=0(HD.
The uniform boundedness of (¢ + P ,K)! yields
1S —w” —v"||..= 0. @4.7n
Since (§ —w —v)" =2z ,B(§ — w — v} = 01is uniquely solvable (a3), we have
b
S -w-v)®x)= .L D* G(x, 008" — w” — v}t )dt.
. This implies that
S —w = v][= 0@, [I1S"—w —v'|| = 0. “38)

The error bounds (4.4) and (4.5) now follow from Theorem 2.1, the definition of w and relations (4.7) and
(4.8). This concludes the proof.

From the relations (4.7), (4.8) and (2.4) one can conclude that AS* = Av*(1,)) + O(h%) k = 1,2.
Therefore the relations (3.2) can be wrilten as

LS;=f(t)+ 0@, i=110 N and

4.
BS; = () + OGS, Jj=ON +1. @.9)
From the definition of u , in equation (3.9) and (4.9) we obtain
LS —u))=0kY, 1<i<N (4.10a)

and
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B(S —uy = OHY). (4.10b)

Notice that there is a linear function w such that B{S — u,) = Bw =0(h4) and ||w]||=0C(Y,
| Iw’| | = O (#°). Equations (4.10a) can be written as

(I +PKNS” —uy —w™) =0,

since B(S — u, — w) = 0 and (a3) holds. Applying the arguments used in proof of Theorem 4.1 and with
A = (3 & V(3))/6, we obtain the following optimal resulls.

Theorem 4.2. Under the hypotheses of Theorem 4.1, and with ). = (3 £ V3)/6, we conclude that
() u,exists,
@ 110%@ - u)ll.=0*™),k =012,
(i) |D(lx; + M) —uply +Ah)) = O (R,
(V) 1Dy + 5 h)— uplx; + 3 k)1 = O(h?),
(V) lulx)—uyx)| =0 ") forx = x; and 1;.

4.2 Convergence analysis of the one step method

In order 10 represent equation (3.5) in integral form, we introduce the following notation: Let D, be
the vector value function D ,:C[a,b1 — R¥ defined by Dyg)i=g() for i=1 to NandE,,E, be
the NxV diagonal marrices E, = diag (p (v;)), E, =diag (¢(1;)). Consider the NXV tridiagonal matrices

1 . 1,
wo L _ R
TO= o rid(-1,26,-1), T®= - 1rid(1,22, 1)

and define the NxV matrics @ and ¥ such that

¢1.1 = d’N.N = 22;‘24, ¢1|2 = ¢N.N—l = 50“24, (1)1.3 = <DN,N-2 = -4&4, d’l,‘i = QN.N-B' = 1;24,

with the rest of the elements &@; ; = T, and

Y 1=VYyy =264, YW\ ,=Wyy =-524, W) 3=Y¥yy =424, W ,=V¥yys3=-1/24,

wilh the rest of the elements ‘¥; ; = T,f? Then we can rewrite equation (3.5) as
wo+ Ry Kwa=P, ¥ D, f 4.11)
where R, K is the integral operator defined by
b
Ry\Kg=P,¥'E, ®D,[ G.x,e)g(t)ds +
. ) (4.12)
+ Py, Y E, Dy, Gix,t) g()d.

Lemma 4.1: The sequence of operators R , K defined in (4.12) converges strongly to the integral operator
KinL,

Proof.: First consider the convergence of | |[R,Kg — P, D, Kgll,., for g € L,. According to the
definition of R , K and the use of the triangular inequality we obtain
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NRyKg —PyDyKglla <
b b
<|IPy,Y ' E, ®D, [, G,gdt ~P, ¥ YE, D, J. Gagde11o+

b -]
+ Py ¥ E, Dy [ Gedt —~P,¥'WE, D, | Geatll..
From the boundedness of | |P,||..and | ¥} ]

) b
[IR,Kg —P,D,Kgli_< [CllEp @D, |, G,gdt — YE, D, |, Gugdtll.+

b b 4.13)
[E, D4 j Ggd! - YE, DAL Ggdr | |,_].

It is easy 10 observe that the relation WE, = E,'¥ + O (h) holds. This implies that the first norm in the
right side of (4.13) can be bounded by

[
LIE, (@~ ¥) Dy [, Gygdt]la+ O(h).

If p is a least in Ly we conclude thal | | &, | 1. is bounded. From the definition of ¢ and ¥ we cpnclude
that (& -¥) D, L G, gdr is bounded by the modulus of continuity  of the continuous function L G, gdt
over a 3h -interval. ,

The second term of the right side in (4.13) is O(1 17 - ¥) D g L Ggdr | |2). It can be easily
observed that this norm is bounded by w{g L Ggdt, 3h). From (he propertics of P, and the continnity of
Kg we conclude that | [P, D, Kg — Kg | |- converges 1o zero. This proves the assertion of the Lemma,
since [ [RyKg —Kg||.S||[RyKg —PoDsKglla+ 1Py D4 Kg —Kg || holds.

Theorem 4.3. Under the assumptions of Theorem 4.2 we have that z, exists and for Dirichlet boundary
_ conditions the following error bounds hold:

[1D*(u -z )1 .= 0¥ ™), k=0,1,2,

1D (u(x; + M) = z,(x; + M) = O(HY),
(4.14)

DXl + 5 B) = 240 + 3 KD =0 (D,

lu(x) — z5(x)| = Oh®) for x =x; and ;.

Proof: From the existence of (f + K, Lemma 4.1 and the Neumann’s Theorem, we conclude that
(I + R, K)! exists, is uniformly bounded for sufficiently small % and the system of collocation equations
(4.11) has a unique solution. For homogeneous Dirichlet boundary conditions there is a linear function w
such that Bw =BS =0 ("), | |w || =0(h*) and | |[w’| | = O (h*). Following the same reasoning as in
Theorem 4,2 we derive the error bounds (4.14).

It is worth noticing that in the case of mixed boundary conditions we obtain numerically error
bounds similar to (4.14).
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5. NUMERICAL RESULTS

In this seclion, we present a number of numerical results 1o demonstrate the convergence of the qua-
dratic spline collocation method as implemented in the program P2C1COL. The second order method
based on the first slep is referred by P2C1COL (order = 2) and the fourth order one that corresponds to the
two-step method is denoted by P2C1COL (order = 4). The program P2C1COL has an argument 1o select
either second or fourth versions of the method. The choice is indicated here by the arguments order = 2 or
order = 4. These results exhibit the various oplimal emor bounds obtained in Theorems 4.1 and 4.2, The
examples were oblained from [3], [13] in order 10 allow a comparison with other collocation methods. All
computations were carried out on a VAX 780 in double precision. For problem 2, we present some data
for Galerkin method based on quadratic splines as implemented in the program (P2C1GAL). The data
indicate complete agreement between the analytical and numerical behavior of the method.
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Problem 1: This example is chosen to lest convergence of P2C1COL (order = 4) for various smoothness
assumptions on u.

u”(x) + [

subject to boundary conditions

1+4x®

’ 8
] u(x)+ ")

x?.

Agu(a) + Bou(a)=go and Au(b) + B u,(b) = g,.

u(xy=f for 0<x <1,

The functions f , go and g, are chosen so that u(x) = x¥2 Three values, 11, 9 and 7 of a, are used which
put 1 (x) in €33, C** and €37, respectively. We present tables of the norms of the observed errors for n=8
o 256 points in the partition A (see Tables 1, 3 and 5). From these we derive estimates of the orders of
convergence which are shown in Tables 2, 4 and 6. The A points are those of Theorem 4.2 with values
x; + A where & = (3 + ¥3)/6. In all cases the estimated orders of convergence agree quite well with those

predicted from Theorem 4.2.
n_| e —valley | Nl —sallo | Nu'—ually | e’ —ualle | N2” —aally | Nu” —uplle
8 532 442 6.0-2 1.4-1 1.4-1 3.6-1 4.3+0
16 3.53 323 3.6-3 8.5-2 1.6-2 3.6-2 2.1+0
32 194 194 194 444 4.6-3 8383 1.1+0
&4 115 115 1.1-5 2.5-% 1.1-3 223 5.1-1
128 7.1-7 107 7.0-7 1.5-6 2.84 554 2.6-1
256 448 448 448 2.0-7 6.5-5 144 1.4-1

Table 1. Errors of P2C1COL (order = 4) for the case =11 with Ag=B87=1,4,=0and B, = 1. The
notation x.y — k means xy * 10™* and » is the number of subintervals in the partition A. The
double entries in the first column are errors measured at the points ; and x; respectively.

i CONVErgence u’ convergence u” convergence

n alT;, x global at & poinis global arT; global
8

3.94 379 4.05 403 3.15 329 1.02
16

417 4.11 4.22 428 1.82 2.05 0.90
32

4.06 4.04 4.08 412 2.08 2.00 1.18
64

402 4.01 4.02 406 1.97 200 0.94
128

401 4.00 4.01 293 2.09 2.00 0.92
256

Table 2. Estimated orders of convergence of the P2C1COL {order = 4) for oo = 11 (Table 1).
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n | Nl#—uallng | N2 —salle § Nu"—ually | Ho" —ualla | N8” =84l | 8" = uglle
8 733 503 9.2-3 3.6-2 3.8-2 13-1 2.0+0

16 | 474 414 5.1-4 2.1-3 8.83 122 1.0+0

32 | 195 175 19-5 9.4-5 223 243 53-1

64 | 126 116 1.6-6 54-6 5.64 6.04 24-1

128 | 968 948 187 4.5.7 1.54 1.54 121

256 | 829 819 2.0-8 5.6-8 3.5-5 3.8-5 64-2

Table 3. Emors of P2CICOL (order = 4) for the case o = 9 and the rest of parameters as in Table 1. The
notation of Table I is used.

u convergence u’ convergence u” convergence
n arTy, x global at A points global ar Ty glabal
3
394 3.62 4.17 4.09 211 338 097
16
4.65 4.55 47 4.49 201 236 094
32
398 3.92 3.63 4.11 1.97 2.00 1.13
64
3.63 3.60 3.14 3.60 191 2.00 097
128
355 354 3.13 299 2.09 2.00 095
256
Table 4. Estimated orders of convergence of P2C1COL (order = 4) for ¢ = 9 (Table 3).
n| e —valloz | v —ualle | 12" —uplla, | Ho' ~balio | Iu”" —uplle | 8" —tslla
8 203 203 213 373 1.5-2 4.6-2 7.0-1
16 204 194 204 474 373 494 36-1
32 3.75 365 3.8-5 1.0.4 864 1.83 18-1
64 6.0-6 59-6 6.0-6 1.9-5 214 6.04 9.1-1
128 1.0-6 106 9.9.7 336 585 214 4.6-2
256 1.8-7 1.7-7 1.7-7 58-7 1.4-5 7.1-5 232

Table 5. Emors of P2C1COL {(order =4) for the case ¢ =7 withAg=Bg=1,A;=0and B, =1. The
notation of Table 1 is used.
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& CORvETEence u” convergence u” convergence
n atT;, X; global al & points global at T global
8
334 337 339 .00 2.02 323 0.98
16
240 242 242 221 211 1.48 0.98
32
264 261 2.64 244 2.01 155 1.00
64
257 255 2.60 250 1.87 154 0.98
128
252 2.52 252 250 209 153 1.03
256

Table 6. Estimated orders of convergence of P2C1COL (order = 4) for & = 7 (Table 5).

We now consider another version of Problem 1 where f, g, and g, are chosen to make

u(x) = 1/(1 + 4x%). This should give the highest possible order of convergence and, as the results of Table
7 show, the observed errors are smaller. The estimated orders of convergence seen in Table 8 are as
predicted by Thecrem 4.2 and essentially the same as in Table 2,

no | B —vallgs | N2 —ualle | Hu"—ualla, | Bo'—uplie | Nu” —uglly | Nu” - uxll.
4
394 284 774 6.5-3 3,72 1.1-1 2240
) 6.1-5 58-5 134 113 1.1-2 6.4-2 1.1+0
e 366 356 12-5 1.7-4 263 1.7-2 54-1
2 2.07 207 13-6 23-5 584 4.0-3 2.6-1
* 1.2-8 12.8 15.7 296 1.84 984 14-1
1 7.6-10 7.6-10 1.7-8 .77 4,2-5 244 7.0-2
256

Table 7. Errors of P2C1COL (order = 4} for Problem 1 with Dirichlet boundary conditions (A;=4,=1,
Bo=B,=0),and u(x) = 1/(1 + 4x%). The notation of Table 1 is used.
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Table 8. Estimated orders of convergence of P2C1COL (order = 4) for the case of

u = 1/(1 + 4x%) (Table 7).

u convergence u' convergence u"” convergence
n at T, X global at h points global atT; global
8
268 228 2.62 253 1.68 0.74 0.98
16
4.06 4.05 335 2.73 21 1.94 1.01
32
415 4.12 321 2.89 220 2.06 1.05
64
: 4.05 4.05 3.13 297 1.70 202 0.88
128
4.02 4.01 3.19 299 2.0 2.01 1.03
256
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Problem 2: This is a trivial second order problem used very often for verifying the convergence of various
numerical methods, the equation is

u” — 4u = 4cosh(1)

subject 1o boundary conditions z(0) = u (1) = 0. It has the true solulion

u{x) = cosh(2x — 1) — cosh(1).

The computational resulls show almost exact agreement with the orders of convergence predicted by

Theorem 4.2.
n | llu—tallem | lu—ualle | Ne'—ualla, | No" —uslle | Ia” —ualle | 118”7 —u4lle
3 4.0-5 356 154 714 713 142 4.6-1
16 286 147 1.8.5 9.2-5 1.83 3.8-3 231
32 1.8-7 128 21-6 125 5.04 9.84 121
&4 1.1-8 8.0-10 2343 1.5-6 1.24 254 552
128 | 7.2-10 5.1-11 348 1.8-7 29-5 6.2-5 282
256 | 4.5-11 3.2.12 389 24.8 7.0-6 1.6-5 152
Table 9. Errors of P2C1COL (order = 4) for Problem 2.
The notation of Table 1 is used.
u convergence u’ convergence u” convergence
n ar;, x; global at A points global arT; global
8
3.84 463 3.13 294 197 1.87 1.01
16
384 3.56 310 297 1.86 1.95 0.90
32
398 3.90 2.96 298 211 1.98 1.18
64
399 398 2.98 2.99 1.99 1.99 095
128
4.00 399 3.13 00 2.07 2.00 0.92
256

Table 10, Estimated orders of convergence of P2C1COL (order = 4) for Problem 2.
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Table 12. Estimated orders of convergence for P2C1COL (order = 2) for Problem 2,

We also solved this problem using the program P2C1GAL which implements the Galerkin method

using quadratic spline basis functions. The results shown in Tables 13 and 14 indicate the rates of conver-
gence expected for such a method. Comparing with Tables 9 and 10 for P2C1COL (order = 4}, we see that
the quadratic spline collocation methoed is slightly more accurate and they both exhibit the same order of
convergence. The collocation method is more general as it does not require a self-adjoint operator.

B | Ny —ualles | o —aalle | Nu'~uadly | D" —ualle | Nu” —uslle | fle” —ualle
8 964 103 1.04 4.1.3 9.0-3 383 45-1
i6 254 254 254 1.1-3 253 0.8.4 23-1
32 6.2-5 625 6.2-5 284 574 254 1.2-1
64 1.5-5 1.6-5 1.6-5 13.5 1.54 6.2-5 55-1
128 39.6 396 396 1.8-5 4.0-5 1.6-5 28-2
256 9.7.7 977 9.7-7 4.6-6 1.0-5 3.9-6 152
Table 11. Errors of P2C1COL (order =2) for Problem 2.
The notation of Table 1 is used.,
i COnvergence u’ convergence u” convergence
n aLt, x global at A points global alT; global
8
196 2.01 2.01 1.90 1.87 196 0.94
16
1.9 2.00 2.00 1.94 211 1.99 091
32
200 200 2.00 197 193 2.00 1.18
64
- 200 200 2.00 1.98 191 200 095
128
200 200 2.00 199 1.96 2.00 092
256
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n_| Nz —valluz | 4 ~ualle | N’ —ualla, | N6'—ualle | Nla” —ually | 2" -l
8 | 215 235 144 7.34 122 142 49-1
16 | 156 166 185 1.04 3.03 393 2.6-1
32 | 998 107 23.6 13-5 7.64 1.0-3 13-1
64 | 649 649 297 1.7-6 1.94 274 6.6-1
128 | 4.1-10 4.0-10 3.6-8 217 485 6.8-5 332

Table 13. Error estimates for quadratic spline galerkin (P2C1GAL) for Problem 2. The notation of Table

1is used
i convergence u” convergence u" convergence

n al T, X global at A points global aT global
8

381 391 2.08 287 196 1.85 0.95
60

390 396 299 293 198 191 0.97
32

395 3.98 3.00 296 199 195 0.99
64

397 399 3.00 298 2.00 1.98 0.99
128

Table 14. Qrders of convergence for P2C1GAL for Problem 2.
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Problem 3: This example was considered in [10]. The equation and boundary conditions are

u” +xu'(x) ~u(x)=xe* — [x| (6—12x + 2% — 3x3)
u(-D=el+2 u(l)=e

which has the unique solution

e*—x+x* zx20
u(x) = eE+x?-x* x<0

The derivatives degree three and four of u (x) have jump discontinuities at the origin, All partilions used
include the origin.

n | e —nuplley | e —uallo | Hu"—ualls, | N8 —valle | N8” —uaily | le” —dslle
8 | 943 122 122 3.02 9.8-2 12-1 3.140

16 | 253 293 29-3 733 242 452 1.6+0

32 | 654 704 694 1.8:3 6.3-3 192 8.2-1

64 | 164 174 1.74 444 1.63 8.7-3 3.7-1

128 | 415 425 415 114 414 4.1-3 19-1

256 | 105 115 1.05 275 9.7-5 2.03 9.9-2

Table 15. Emors of P2C1COL (order = 4) for Problem 3.
The notation of Table 1 is used.

¥ COMVETgence u’ convergence u” convergence
n at T, x; global at & points global ag; global
8
191 2.09 209 2.06 2.02 139 0.97
16
195 205 206 2.03 1.94 124 094
32
198 2.03 2.04 2.01 2.00 1.14 1.14
64
1.99 2.02 2.03 201 1.92 1.07 0.96
128
199 201 2.00 2.00 2.10 1.04 095
256

Table 16. Estimated orders of convergence of P2C1COL (order = 4) for Problem 3.
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